
VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 Manipulating Collections, Folders and Files
With VBScript’s FileSystemObject

Implementation Specifications or Requirements
Category Item

IWS Version: 6.0 and later
Service Pack: N/A
Windows Version: WinXP/2000/NT and Windows CE

Software

Web Thin Client: Yes
Panel Manufacturer: N/A
Panel Model: N/A
Other Hardware: N/A
Comm. Driver: All
Controller (e.g.: PLC) All

Equipment

Application Language: N/A
Software Demo Application N/A

.
Summary

In Application Note AN-00-0005, we examined various means to manipulate Collections, Folders and Files
using InduSoft Web Studio’s (IWS) built-in functions. As was shown, VBScript code segments can access
these IWS built-in functions by adding the “$” character in front of the IWS built-in function. These IWS built-
in functions can use VBScript variables, IWS tags and expressions as parameters.

VBScript was initially developed to be used with Web Servers (e.g. using ASP or Active Service Pages), but
since VBScript does not have built-in file I/O language elements, a method to access the web server’s file
system was needed. Microsoft developed the FileSystemObject object model (FSO) which is included in
VBScript’s runtime library. This object allows for the creation of files, determining whether a file, folder or
drive exists, opening a text file, as well as a variety of other tasks.

In this Application Note, we will examine how to manipulate Collections, Drives, Folders and Files from
VBScript using FSO. Since FSO is part of VBScript’s runtime library, its functions are not accessible from
IWS in a native script (e.g. Math Worksheets, Screen Logic, Command Properties). Instead, FSO is only
accessible from VBScript code segments (e.g. Global Procedures, Graphic Scripts, Screen Scripts,
Command Properties and Background Scripts). However, IWS tags as well as VBScript variables and
Expressions can be used as parameters when using FSO object model.

To use FSO, it is helpful to have a basic understanding of Objects, Methods and Properties available. An
Object can refer to a self-contained programming entity (such as FSO) that has a collection of functions,
called Methods. Objects can also refer to individual entities, such as a Drive, a Folder or a File. These
Objects usually have Properties, some which are read-only and others that can be written to. Additionally, a
list of parameters may sometimes be required to perform an operation.

Microsoft’s MSDN website provides a complete description of FSO.1

1 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/af4423b2-4ee8-41d6-a704-49926cd4d2e8.asp

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 2

COMPARISON CHART BETWEEN IWS BUILT-IN FUNCTIONS & T HE VBSCRIPT FSO
Category Function IWS Built-in

Function
VBScript

FSO
Drive Collection Returns collection of local and network drives �
Drive Free Space on a disk � �
Drive Returns drive type �
Drive Returns drive status (e.g. Ready, Name, Total Size, Volume Name) �
Drive Returns drive root folder �
Drive Drive Exists �
Folder Collection Return a collection of folders in a specified path �
Folder Create folder � �
Folder Copy folder �
Folder Delete folder � �
Folder Determine folder size � �
Folder Rename folder � �
Folder Verify folder exists � �
Folder Return name of parent folder �
Folder Return a random folder name (for temp storage) �
File Collection Delete files older than a specified date � *
File Collection Find collection of files that match a path and file mask criteria � *
File Collection Open dialog box of files in a specified directory matching a criteria �
File Copy a file � �
File Delete a file � �
File Determine file size � �
File Rename file � �
File Get file attributes � �
File Get date/time file was last modified � �
File Get date/time file was last accessed �
File Determine if file exists � �
Text File Create Text File �
Text File Write ASCII string to file � �
Text File Write Unicode string to file �
Text File Read text file �
Text File Search a text file for a specific string � *
Text File Print a text file �
Text File Set up local printer �
Miscellaneous Return directory of current application �
Miscellaneous Return directory of IWS Program files �
Miscellaneous Read a specified parameter from an INI file �
Miscellaneous Return directory where Alarm files are stored �
Miscellaneous Return directory where History files are stored �
Miscellaneous Export historical Trend files to a .TXT file �
Miscellaneous Verify conversion of Trend files is complete �
Miscellaneous Set path for Alarm files �
Miscellaneous Set path for historical Tend files �
Miscellaneous Set new path for the Application �
Miscellaneous Set file used for runtime translation �
Miscellaneous Enable/disable saving to historical Alarm and historical Trend file �

*can be implemented using combination of statements

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 3

The FileSystemObject Object Model

As shown in Figure 1 below, the FileSystemObject object model consists of the FileSystemObject (FSO)
object and seven other objects that are “components” of the FileSystemObject model. Each object can have
its own set of Properties and Methods.

Collections are groups of similar objects. For example, a Drives Collection is a group of drives on the local
computer or network share drives accessible by the local computer. Folders Collection generally refers to a
set of subfolders in a parent folder, while Files Collection refers to a set of files. Collections and other
objects (Drive, Folder, File, and TextStream) are usually created from the FSO object.

The FSO, like most other VBScript objects, must first be instantiated. This simply means that a unique
instance of the object must be defined in a VBScript code segment and the instance of the object must be
assigned to a VBScript variable through the SET statement. After this is done, all Methods and Properties

FileSystemObject

Drives Collection Object

Drive Object

Folders Collection Object

Folder Object

Files Collection Object

File Object

TextStream Object

- Properties
- Methods

- Properties

- Properties

- Properties
- Methods

- Properties
- Methods

- Properties

- Properties
- Methods

- Properties
- Methods

Part of VBScript Run-Time Library. Allows
creating, deleting, manipulating and getting
status information on files, folders and drives,

Retrieves information about a drive collection

Retrieves information about a drive

A list of all subfolders in a given folder, or folders
on a drive.

Allows creating, deleting, and moving of folders.
Can also be used to get information about a
folder

A list of all files in a given folder

Allows creating, deleting, and moving of files.
Can also be used to retrieve file properties.

Allows reading from and writing to text files.

The FileSystemObject Object Model
Figure 1

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 4

for that object are referenced through the VBScript variable. Additionally, other objects within the FSO can
be instantiated. The following command is used to instantiate the FSO:

Dim fso, myFile ‘Declare the variables
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FileSystemObject

Once the FSO is instantiated, there is one Property and a variety of Methods that can be used on the FSO.
These Properties and Methods are itemized in Table A and B, respectively. These Properties and Methods
can be used to perform specific operations or generate Collections. Following Table A & B is a detailed
description of the various Properties and Methods.

Table A: FileSystemObject Properties
Property Description
Drives Returns a Drives Collection object consisting of all Drive objects available to the local machine.

Table B: FileSystemObject Methods
Method Description
BuildPath Adds a file or folder specified to the existing path
CopyFile Copies the file or files to a folder
CopyFolder Copies the folder or folders to a another folder
CreateFolder Creates a new folder
CreateTextFile Creates a new text file on a disk
DeleteFile Deletes a file or files
DeleteFolder Deletes a folder or folders
DriveExists Verifies is a drive exists
FileExists Verifies if a file exists
FolderExists Verifies if a folder exists
GetAbsolutePathName Used to build an unambiguous path to a folder
GetBaseName Returns the name of a file or folder specified (removes path and extension)
GetDrive Returns a Drive object
GetDriveName Returns the name of the drive
GetExtensionName Returns the extension of a file or folder
GetFile Returns a File object
GetFileName Returns the name part of a file (removes path and extension)
GetFileVersion Returns the version information from a file XXXXXXXXXXXXXXXXXXXXXXXX
GetFolder Returns a Folder object
GetParentFolderName Returns the name of the parent folder of a folder or file
GetSpecialFolder Returns a Folder object corresponding to a special Windows folder
GetTempName Returns a randomly generated file name to be used for a temporary file or folder name
MoveFile Moves a file or files
MoveFolder Moves a folder or folders
OpenTextFile Creates a file (if non-existent) or opens a file (if it exists)

FileSystemObject (FSO)
Function Used to manipulate the Windows File System.

Remarks The FSO is part of VBScript’s runtime library and is a COM component. It can be used to generate
other objects or collections. The FSO is instantiated through the following statement:

Dim objFso ‘Declare the variable(s)
Set objFso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FileSystemObject

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 5

Property Drives
Description: Returns a collection of Drives objects.
Use: Set objDrive = fso.Drives
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
Return: An object containing a collection of Drives objects
Remarks: Returns a collection of Drives objects available on the local machine, including networked drives

mapped to the local machine. Removable media drives do not have to have media inserted to appear
in the Drives Collection.

Example: Dim fso, dc, d, strDrvList
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set dc = fso.Drives ‘Instantiate the Drives collection object
strDrvList = “”
For each d in dc ‘Evaluate each drive in the drives collection
 strDrvList = strDrvList & d.driveLetter & “ – “ ‘Get the Drive letter
 If d.DriveType = 3 Then ‘See if a network drive
 strDrvList = strDrvList & d.ShareName ‘Yes
 ElseIf d.IsReady Then ‘No – is a local drive. Check if ready
 strDrvList = strDrvList & d.VolumeName ‘Yes – add to list
 End If
 strDrvList = strDrvList & vbCrLf ‘Add a Cr & Lf and then get next drive
Next
MsgBox strDrvList ‘Display the list of drives

Method: BuildPath
Description: Appends a name to an existing path
Use: fso.BuildPath (path, name)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
 path

Required. Existing path to which name is appended. Path can be absolute or relative, and need
not specify an existing folder

 name
 Required. Name being appended to the existing path.

Return: None
Remarks: The BuildPath method inserts an additional path separator between the existing path and the name,

only if necessary. Does not check for a valid path.
Example: Dim fso, path, newpath
 Set fso = CreateObject("Scripting.FileSystemObject")
 path = $getAppPath()
 newpath = fso.BuildPath(path, "SubFolder")

Note:
• This same function can be easily accomplished in VBScript by string concatenation:

path = $getAppPath() ‘Built-in IWS function that returns the current application path
path = path & “subfolder” ‘String concatenation

Note:
• This function is useful for informational display purposes and displays similar information to what would be

shown using “My Computer” with the Windows OS.
• IWS does not have a comparable built-in function

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 6

Method: CopyFile
Description: Copies one or more files from one location to a new location
Use: fso.CopyFile (source, destination[, overwrite])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
 source

Required. A character string file specification, which can include wildcard characters, for one or
more files to be copied.

destination
Required. Character string destination where the file or files from source are to be copied.
Wildcard characters are not allowed in the destination string.

 overwrite
Optional. Boolean value that indicates if existing files are to be overwritten. If True , files are
overwritten; if False , they are not. The default is True . Note that CopyFile will fail if destination
has the read-only attribute set, regardless of the value of overwrite.

Return: None
Remarks: Wildcard characters can only be used in the last path component of the source argument. If source

contains wildcard characters or destination ends with a path separator (\), it is assumed that
destination is an existing folder in which to copy matching files. Otherwise, destination is assumed to
be the name of a file to create. In either case, three things can happen when a file is copied.

• If destination does not exist, source gets copied. This is the usual case.
• If destination is an existing file, an error occurs if overwrite is False . Otherwise, an attempt is

made to copy source over the existing file.
• If destination is a directory, an error occurs. (Occurs because the directory doesn’t exist).

An error also occurs if a source using wildcard characters doesn't match any files. The CopyFile
method stops on the first error it encounters. No attempt is made to roll back or undo any changes
made before an error occurs.

Example: Const OverWrite = False
 Dim fso, srcFiles, destPath
 Set fso = CreateObject("Scripting.FileSystemObject")
 srcFiles = $getAppPath() & “Alarm*.*”

destPath = $getAppPath() & “AlarmHistory”
 If fso.FolderExists (destPath) = False Then
 fso.CreateFolder (destPath)
 End If
 fso.CopyFile srcFiles, destPath

Note:
• If copying a set of files (by using the wildcard) to a destination folder, make sure the destination folder exists

otherwise an error will occur.
• The comparable IWS built-in function is FileCopy

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 7

Method: CopyFolder
Description: Copies a folder to a new location
Use: fso.CopyFolder (source, destination[, overwrite])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
 source

Required. A character string folder specification, which can include wildcard characters, for one or
more folders to be copied. Wildcard characters can only be used in the last path component of the
source argument.

destination
Required. Character string destination where the folder and subfolders from source are to be
copied. Wildcard characters are not allowed in the destination string.

 overwrite
Optional. Boolean value that indicates if existing folders are to be overwritten. If True , files are
overwritten; if False , they are not. The default is True .

Return: None
Remarks: If source contains wildcard characters or destination ends with a path separator (\), it is assumed that

destination is an existing folder in which to copy matching folders and subfolders. Otherwise,
destination is assumed to be the name of a folder to create. In either case, four things can happen
when an individual folder is copied.

• If destination does not exist, the source folder and all its contents gets copied. This is the usual
case.

• If destination is an existing file, an error occurs.
• If destination is a directory, an attempt is made to copy the folder and all its contents. If a file

contained in source already exists in destination, an error occurs if overwrite is false. Otherwise,
it will attempt to copy the file over the existing file.

• If destination is a read-only directory, an error occurs if an attempt is made to copy an existing
read-only file into that directory and overwrite is false.

An error also occurs if a source using wildcard characters doesn't match any folders. The CopyFolder
method stops on the first error it encounters. No attempt is made to roll back or undo any changes
made before an error occurs

Example: Const OverWrite = False
 Dim fso, srcPath, destPath
 Set fso = CreateObject("Scripting.FileSystemObject")
 srcPath = $getAppPath() & “*”

destPath = fso.GetParentFolderName(srcPath) & “SaveApp”
 If fso.FolderExists (destPath) = False Then
 fso.CreateFolder (destPath)
 End If
 fso.CopyFolder srcPath, destPath, OverWrite

Notes:
• If copying a set of folders (by using the wildcard) to a destination folder, you can designate subfolders using

the path separator “\” and a wildcard “*”; e.g “c:\myAppFolder*” or “c:\myAppFolder**”
• CopyFolder will generate an “Invalid Path” error is you specify subfolders that do not exist, so be careful not

to specify subfolders at a level where they do not exist.
• IWS does not have a comparable built-in Function

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 8

Method: CreateFolder
Description: Creates a new folder in the specified location
Use: fso.CreateFolder(foldername)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
 foldername

Required. A character string expression that identifies the folder to create.
Return: None
Remarks: An error occurs if the specified folder already exists.
Example: Dim fso, destPath
 Set fso = CreateObject("Scripting.FileSystemObject")
 destPath = $getAppPath() & “AlarmHistory”
 If fso.FolderExists (destPath) = False Then
 fso.CreateFolder (destPath)
 End If

Method: CreateTextFile
Description: Creates a specified file name and returns a TextStream object that can be used to read from or write

to the file
Use: Set objfile = fso.CreateTextFile (filename[, overwrite[, Unicode]])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 filename

Required. A string expression that identifies the file to create
overwrite

Optional. Boolean value that indicates whether you can overwrite an existing file. The value is
True if the file can be overwritten, False if it can't be overwritten. If omitted, existing files are not
overwritten (default False).

unicode
Optional. Boolean value that indicates whether the file is created as a Unicode or ASCII file. If the
value is True, the file is created as a Unicode file. If the value is False, the file is created as an
ASCII file. If omitted, an ASCII file is assumed.

Remarks: None
Example: Dim fso, myFile

Set fso = CreateObject("Scripting.FileSystemObject")
Set myFile = fso.CreateTextFile("c:\testfile.txt", True, False)
myFile.WriteLine("This is a test.")
myFile.Close
Set Myfile = Nothing
Set fso = Nothing

Notes:
• The CreateTextFile method allows you to create a text file for UniCode characters. Compare this to the IWS

built-in FileWrite function which only supports ASCII files.
• One weakness with FSO is that there is no command to search a text file for a specified string (like the IWS

built-in function GetLine). However, this function can be accomplished with VBScript code.
• Although the CreateTextFile method indicates that it will support file reads, it does not appear to work. For

reading to TextStream files, use the OpenTextFile or OpenAsTextStream methods.

Note:
• The comparable IWS built-in function is DirCreate

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 9

Method: DeleteFile
Description: Deletes a specified file
Use: fso.DeleteFile (filename[, force])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 filename

Required. The name of the file to delete. The filename can contain wildcard characters in the last
path component.

force
Optional. Boolean value that is True of files with the read-only attribute set are to be deleted;
False if they are not. False is the default.

Return: None
Remarks: An error occurs if no matching files are found. The DeleteFile method stops on the first error it

encounters. No attempt is made to roll back or undo any changes that were made before an error
occurred.

Example: Dim fso, myFile
Set fso = CreateObject("Scripting.FileSystemObject")
myFile = “C:\TempData\Log*.dat”
fso.DeleteFile(myFile)
Set fso = Nothing

Method: DeleteFolder
Description: Deletes the specified folder and its contents
Use: fso.DeleteFolder (folderspec[, force])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderspec

Required. The name of the folder to delete. The folderspec can contain wildcard characters in the
last path component.

force
Optional. Boolean value that is True of folders with the read-only attribute set are to be deleted;
False if they are not. False is the default.

Return: None
Remarks: The DeleteFolder method does not distinguish between folders that have contents and those that do

not. The specified folder is deleted regardless of whether or not it has contents. An error occurs if no
matching folders are found. The DeleteFolder method stops on the first error it encounters. No
attempt is made to roll back or undo any changes that were made before an error occurred.

Example: Dim fso, myFolder
Set fso = CreateObject("Scripting.FileSystemObject")
myFolder = “C:\TempData\”
fso.DeleteFolder(myFolder)
Set fso = Nothing

Note:
• The DeleteFolder method allows you to specify wildcard characters in the last path component. The

comparable IWS built-in function DirDelete does not let you do this.

Notes:
• The DeleteFile method allows you to specify wildcard characters in the last path component. The

comparable IWS built-in function FileDelete does not let you do this.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 10

Method: DriveExists
Description: Determines whether or not a specified drive exists
Use: fso.DriveExists (drivespec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 drivespec

Required. A drive letter or a complete path specification.
Return: Returns a boolean True if the specified drives exists, otherwise returns False.
Remarks: For drives with removable media, the DriveExists method returns true even if there are no media

present. Use the IsReady property of the Drive object to determine if a drive is ready.
Example: Dim fso, drv, msg

Set fso = CreateObject("Scripting.FileSystemObject")
drv = “e:\”
If fso.DriveExists(drv) Then
 msg = "Drive " & UCase(drv) & " exists."
Else
 msg = "Drive " & UCase(drv) & " doesn't exist."
End If
MsgBox msg

Method: FileExists
Description: Determines whether or not a specified file exists
Use: fso.FileExists (filespec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 filespec

Required. The name of the file whose existence is to be determined. A complete path specification
(either absolute or relative) must be provided if the file isn't expected to exist in the current folder

Return: Returns a boolean True if the specified file exists, otherwise returns False.
Remarks: None
Example: Dim fso, myFile, msg

Set fso = CreateObject("Scripting.FileSystemObject")
myFile = $getAppPath() & “data\Mydata.mdb”
If fso.FileExists(myFile) Then
 msg = myFile & " exists."
Else
 msg = myFile & "doesn't exist."
End If
MsgBox msg

Note:
• IWS does not have a comparable built-in Function

Note:
• The comparable IWS built-in function is FindFile. FindFile is more powerful in that it allows a file mask (i.e.

wildcard as the last path component) whereas FSO FileExist does not.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 11

Method: FolderExists
Description: Determines whether or not a specified folder exists
Use: fso.FolderExists (folderspec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderspec

Required. The name of the folder whose existence is to be determined. A complete path
specification (either absolute or relative) must be provided if the folder isn't expected to exist in the
current folder

Return: Returns a boolean True if the specified folder exists, otherwise returns False.
Remarks: None
Example: Dim fso, myFolder, msg

Set fso = CreateObject("Scripting.FileSystemObject")
myFolder = $getAppPath() & “data\”
If fso.FolderExists(myFolder) Then
 msg = myFolder & " exists."
Else
 msg = myFolder & "doesn't exist."
End If
MsgBox msg

Method: GetAbsolutePathName
Description: Returns a complete and unambiguous path name that cannot be easily determined from the specified

path information.
Use: strPath = fso.GetAbsolutePathName(pathspec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 pathspec

Required. Path specification to change to a complete and unambiguous path
Return: String containing a complete and unambiguous path name
Remarks: A path is complete and unambiguous if it provides a complete reference from the root of the specified

drive. A complete path can only end with a path separator character (\) if it specifies the root folder of a
mapped drive. Assuming the current directory is c:\mydocuments\reports, the following table
illustrates the behavior of the GetAbsolutePathName method:

pathspec Returned path
"c:" "c:\mydocuments\reports"
"c:.." "c:\mydocuments"
"c:\" "c:\"
"c:*.*\may97" "c:\mydocuments\reports*.*\may97"
"region1" "c:\mydocuments\reports\region1"
"c:\..\..\mydocuments" "c:\mydocuments"

Example: Dim fso, pathSpec, myPath

Set fso = CreateObject("Scripting.FileSystemObject" ‘Current directory is c:\mydocuments\reports
pathSpec = “C:\”

 myPath = fso.GetAbsolutePathName(pathSpec) ‘Returns c:\mydocuments\reports

Note:
• The comparable IWS built-in function is FindPath.

Note:
• The comparable IWS built-in function is GetAppPath() . Note that the GetAbsolutePathName function does

not put a path delimiter “\” on the last path component, whereas the IWS built-in function always does.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 12

Method: GetBaseName
Description: Returns just the name of the object specified. It removes all other information including the extension
Use: strBaseName = fso.GetBaseName(path)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 path

Required. The path specification for the component whose base name is to be returned.
Return: String containing the name of the object specified.
Remarks: The GetBaseName method works only on the provided path string. It does not attempt to resolve the

path, nor does it check for the existence of the specified path. The GetBaseName method returns a
zero-length string (“”) if no component matches the path argument.

Example: Dim fso, filespec, baseName
 Set fso = CreateObject("Scripting.FileSystemObject"
 filespec = $getAppPath() & “recipes.xml”
 baseName = fso.GetBaseName (filespec) ‘Returns “recipes”

Method: GetDrive
Description: Returns a Drive object corresponding to the drive for a specified path
Use: objDrv = fso.GetDrive(drivespec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 drivespec

Required. The drivespec argument can be a drive letter (c), a drive letter with a colon appended
(c:), a drive letter with a colon and path separator appended (c:\), or any network share
specification (\\computer2\share1).

Return: Drive Object corresponding to the drive for a specified path
Remarks: For network shares, a check is made to ensure that the share exists. An error occurs if drivespec does

not conform to one of the accepted forms or does not exist.
Example: Dim fso, drvPath, d, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = “c:”
 Set d = fso.GetDrive(fso.GetDriveName(drvPath))
 s = "Drive " & UCase(drvPath) & " - "
 s = s & d.VolumeName & vbCrLf
 s = s & "Free Space: " & FormatNumber(d.FreeSpace/1024, 0)
 s = s & " Kbytes"
 MsgBox s

Note:
• There is no comparable IWS built-in function, but the GetBaseName method is of little use in an IWS

application.
r

Note:
• There is no comparable IWS built-in function. GetDrive returns a Drive object for subsequent processing.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 13

Method: GetDriveName
Description: Returns a string containing the name of the drive for a specified path
Use: strName = fso.GetDriveName(path)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 path

 Required. The path specification for the component whose drive name is to be returned.
Return: String containing the name of the drive for a specified path
Remarks: The GetDriveName method works only on the provided path string. It does not attempt to resolve the

path, nor does it check for the existence of the specified path. The GetDriveName method returns a
zero-length string (“”) if the drive can’t be determined.

Example: Dim fso, drvPath, GetAName
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = “c:”
 GetAName = fso.GetDriveName(drvPath) ‘Returns “c:”

Method: GetExtensionName
Description: Returns a string containing the extension name for the last component in a path.
Use: strExtName = fso.GetExtensionName(path)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 path

 Required. The path specification for the component whose drive name is to be returned.
Return: String containing the extension name for the last component in a path.
Remarks: For network drives, the root directory (\) is considered to be a component. The GetExtensionName

method returns a zero-length string ("") if no component matches the path argument.
Example: Dim fso, drvPath, ExtName
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath() & “recipes.xml”
 ExtName = fso.GetExtensionName(drvPath) ‘Returns “xml”

Note:
• There is no comparable IWS built-in function but GetDriveName is of little use in an IWS application.

Note:
• There is no comparable IWS built-in function but GetDriveName is of little use in an IWS application.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 14

Method: GetFile
Description: Returns a File object corresponding to the file in the specified path. The file object methods and

properties can be accessed. See File Object for the file object’s methods and properties.
Use: objFile = fso.GetFile(fileSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 fileSpec

 Required. The filespec is the path (absolute or relative) to a specific file.
Return: File Object
Remarks: An error occurs if the specified file does not exist. The GetFile method does not support the use of

wildcard characters, such as ? or *.
Example: Dim fso, fileSpec, f, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 fileSpec = $getAppPath() & “recipes.xml”
 Set f = fso.GetFile(fileSpec)
 s = f.Path & vbCrLf

s = s & "Created: " & f.DateCreated & vbCrLf
s = s & "Last Accessed: " & f.DateLastAccessed & vbCrLf
s = s & "Last Modified: " & f.DateLastModified
MsgBox s

Method: GetFileName
Description: Returns the last component of a specified path (file name or folder name) that is not part of the drive

specification.
Use: strName = fso.GetFileName(fileSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 fileSpec

 Required. The path (absolute or relative) to a specific file.
Return: String containing the last component of a specified path
Remarks: The GetFileName method works only on the provided path string. It does not attempt to resolve the

path, nor does it check for the existence of the specified path. The GetFileName method returns a
zero-length string (“”) if pathspec does not end with the named component.

Example: Dim fso, fileSpec, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 fileSpec = $getAppPath() & “recipes.xml”
 s = fso.GetFile(fileSpec) ‘Returns “recipes.xml”
 MsgBox s

Note:
• There is no comparable IWS built-in function. GetFile returns a File object for subsequent processing.

Note:
• There is no comparable IWS built-in function but GetFileName is of little use in an IWS application.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 15

Method: GetFileVersion
Description: Returns the version number of a specified file
Use: strVersionNum = fso.GetFileVersion(fileSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 fileSpec

 Required. The path (absolute or relative) to a specific file.
Return: String containing the version number of a specified file
Remarks: The GetFileVersion method works only on the provided path string. It does not attempt to resolve the

path, nor does it check for the existence of the specified path. The GetFileVersion method returns a
zero-length string (“”) if pathspec does not end with the named component.

Example: Dim fso, fileSpec, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 fileSpec = “c:\windows\system32\notepad.exe”
 s = fso.GetFile(fileSpec) ‘Returns “5.1.2600.2180”
 If Len(s) Then
 MsgBox “File Version is : “ & s
 Else
 MsgBox “No File Version information is available”
 End If

Method: GetFolder
Description: Returns a Folder object corresponding to the folder in a specified path
Use: objFolder = fso.GetFolder (folderSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderSpec

 Required. The folderspec is the path (absolute or relative) to a specific folder.
Return: Returns a folder object
Remarks: Since this method creates an object, you need to use it with the Set command. An error occurs if the

specified folder does not exist.
Example: Dim fso, drvPath, f, fc, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath()
 Set f = fso.GetFolder(drvPath)

Set fc = f.SubFolders
 s = “”
 For Each x in fc
 s = s & x.Name & vbCrLf
 Next

MsgBox s ‘Displays a list of folders in the App directory

Note:
• There is no comparable IWS built-in function but GetFileVersion is of little use in an IWS application.

Note:
• There is no comparable IWS built-in function. GetFolder returns a File object for subsequent processing.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 16

Method: GetParentFolderName
Description: Returns a string containing the name of the parent folder of the last component in the specified path
Use: strName = fso.GetParentFolderName(path)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 path

Required. The path specification for the component whose parent folder name is to be returned.
Return: String containing the name of the parent folder
Remarks: The GetParentFolderName method works only on the provided path string. It does not attempt to

resolve the path, nor does it check for the existence of the specified path. The GetParentFolderName
method returns a zero-length string (“”) if there is no parent folder for the component specified in the
path argument.

Example: Dim fso, drvPath, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath()
 s = fso.GetParentFolderName(drvPath)
 MsgBox “Parent Folder = “ & s ‘Returns “c:\My Documents\InduSoft Web Studio v6.1 Projects”

Method: GetSpecialFolder
Description: Returns the special folder specified
Use: strFolderName = fso.GetSpecialFolder(folderSpec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderSpec

Required. Then name of the special folder to be returned. Can be any of the following constants:
Constant Value Description
WindowsFolder 0 The Windows folder containing files installed by the Windows

operating system
SystemFolder 1 The (Windows) System folder containing libraries, fonts and

device drivers
TemporaryFolder 2 The Temp folder is used to store temporary files. Its path is

found in the TMP environment variable.
Return: String containing the name of the parent folder
Remarks: None
Example: Dim fso, WinFolder, SysFolder
 Set fso = CreateObject("Scripting.FileSystemObject")
 WinFolder = fso.GetSpecialFolder(0) & “\” ‘Result is “C:\Windows\”
 SysFolder = fso.GetSpecialFolder(1) & “\” ‘Result is “C:\Windows\system32\”

Note:
• There is no comparable IWS built-in function.

Note:
• There is no comparable IWS built-in function.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 17

Method: GetStandardStream
Description: Returns a TextStream object corresponding to the standard input, output, or error stream

Method: GetTempName
Description: Returns a randomly generated temporary file or folder name that is useful for performing operations

that require a temporary file or folder
Use: strName = fso.GetTempName
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
Return: String that contains a randomly generated temporary file or folder name. A random name with a .tmp

extension will be returned.
Remarks: The GetTempName method does not create a file. It only provides only a temporary file name that

can be used with CreateTextFile to create a file.
Example: Dim fso, tempFile

 Function CreateTempFile
 Const TemporaryFolder = 2
 Dim tfolder, tname, tfile
 Set tfolder = fso.GetSpecialFolder(TemporaryFolder)
 tname = fso.GetTempName
 Set tfile = tfolder.CreateTextFile(tname)
 Set CreateTempFile = tfile
End Function

Set fso = CreateObject("Scripting.FileSystemObject")
Set tempFile = CreateTempFile
tempFile.WriteLine "Hello World"
tempFile.Close

Note:
• The GetStandardStream Method does not work with IWS and if you use it, you will get an error.

GetStandardStream only works for standard I/O when CScript is the VBScript Interpreter. For operator I/O,
use MsgBox and InputBox instead.

Note:
• IWS has the built-in function DirCreate to create a folder but there is no IWS built-in function to create a text

file.
• The GetTempName function can be used to create a temporary file for data logging or any other purpose.

The file can subsequently be renamed and moved or copied to another location.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 18

Method: MoveFile
Description: Moves one or more files from one location to another
Use: fso.MoveFile (source, destination)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 source

Required. The path to the file or files to be moved. The source argument string can contain
wildcard characters in the last path component only.

 destination
Required. The path where the file or files are to be moved. The destination argument can't contain
wildcard characters.

Return: None
Remarks: If source contains wildcards or destination ends with a path separator (\), it is assumed that destination

specifies an existing folder in which to move the matching files. Otherwise, destination is assumed to
be the name of a destination file to create. In either case, three things can happen when an individual
file is moved:

• If destination does not exist, the file gets moved. This is the usual case.
• If destination is an existing file, an error occurs.
• If destination is a directory, an error occurs.

An error also occurs if a wildcard character that is used in source doesn't match any files. The
MoveFile method stops on the first error it encounters. No attempt is made to roll back any changes
made before the error occurs

Example: Dim fso, drvPath
Set fso = CreateObject("Scripting.FileSystemObject")
drvPath = $getAppPath() & “recipes.xml”
fso.MoveFile drvPath, "c:\backup\"

Note:
• The comparable IWS built-in function is FileRename.
• This Method allows moving files between volumes only if supported by the operating system.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 19

Method: MoveFolder
Description: Moves one or more folders from one location to another.
Use: fso.MoveFolder (source, destination)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 source

Required. The path to the folder or folders to be moved. The source argument string can contain
wildcard characters in the last path component only.

 destination
Required. The path where the folder or folders are to be moved. The destination argument can't
contain wildcard characters.

Return: None
Remarks: If source contains wildcards or destination ends with a path separator (\), it is assumed that destination

specifies an existing folder in which to move the matching folders. Otherwise, destination is assumed
to be the name of a destination folder to create. In either case, three things can happen when an
individual folder is moved:

• If destination does not exist, the folder gets moved. This is the usual case.
• If destination is an existing file, an error occurs.
• If destination is a directory, an error occurs.

An error also occurs if a wildcard character that is used in source doesn't match any folders. The
MoveFolder method stops on the first error it encounters. No attempt is made to roll back any
changes made before the error occurs

Example: Dim fso, drvPath
Set fso = CreateObject("Scripting.FileSystemObject")
drvPath = $getAppPath()
fso.MoveFolder drvPath, "c:\backup\"

Notes:
• The comparable IWS built-in function is DirRename.
• The FSO MoveFolder method allows moving folders between volumes only if supported by the operating

system. .
• You can use the Folder Object Move method to move an individual folder. The FSO Move method supports

moving multiple folders.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 20

Method: OpenTextFile
Description: Opens a specified file and returns a TextStream object that can be used to read from, write to, or

append to a file.
Use: oTSO = fso.OpenTextFile(filename [, iomode[, create[, format]]])
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 filename

Required. A string expression that identifies the file to open.
 iomode

Optional. Indicates the file input/output mode. Can be one of three constants:
Constant Value Description
ForReading 1 Open a file for reading only. You can’t write to this file
ForWriting 2 Open a file for reading & writing
ForAppending 8 Open a file and write to the end of the file

create
Optional. Boolean value that indicates whether a new file can be created if the specified filename
doesn't exist. The value is True if a new file is to be created if it doesn’t exist, False if it isn't to be
created if it doesn’t exist. If omitted, a new file isn't created (default = FALSE).

format
Optional. One of three Tristate values used to indicate the format of the opened file. If omitted, the
file is opened as ASCII.

Constant Value Description
TristateUseDefault -2 Opens the file using the system default
TristateTrue -1 Opens the file as Unicode
TristateFalse 0 Opens the file as ASCII

Return: A TextStream object
Remarks None
Example: Const ForReading=1, ForWriting=2, ForAppending=8
 Dim fso, f
 Set fso = CreateObject("Scripting.FileSystemObject")
 Set f = fso.OpenTextFile("c:\testfile.txt", ForWriting, True)
 f.Write "Hello world!"
 f.Close

Notes:
• The IWS built-in function FileWrite can be used to create a file and write an ASCII string into it. However,

FileWrite does not support UniCode characters.
• The VBScript OpenAsTextStream Method is functionally equivalent to the OpenTextFile Method. The

difference is that the OpenTextFile Method is called using a FileSystemObject object, while the
OpenAsTextStream method is called using a File object.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 21

The Drives Collection Object

The FileSystemObject (FSO) Object model can return three types of object collections, or groupings of like
objects. These collections are the Drives collection (a collection of local and network shared drives), the
Folders collection (a collection of subfolders under a parent folder) and the Files collection (a collection of
files under a folder). Since each of these collections is itself an object, the collection must be instantiated
with the Set command. However, the method of instantiation is different for each type of collection.

The first of these collections is the Drives collection, which is retrieved from the Drives property of the FSO
object. Once the Drives collection object is instantiated, you can iterate through the collection to retrieve
each of the objects (individual drives) contained in the collection. The syntax for the Drives collection use is
as follows:

FSO Property Drives
Description: Returns a collection of Drives objects.
Use: Set objDrives = fso.Drives
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated.
objDrives

Required. The name of a Drive Collection.
Return: An object containing a collection of Drives objects
Remarks: Returns a collection of Drives objects available on the local machine, including networked drives

mapped to the local machine. Removable media drives do not have to have media inserted to appear
in the Drives Collection.

Example: Dim fso, dc, d, strDrvList
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set dc = fso.Drives ‘Instantiate the Drives collection object
strDrvList = “”
For each d in dc ‘Evaluate each drive in the drives collection
 strDrvList = strDrvList & d.driveLetter & “ – “ ‘Get the Drive letter
 If d.DriveType = 3 Then ‘See if a network drive
 strDrvList = strDrvList & d.ShareName ‘Yes
 ElseIf d.IsReady Then ‘No – is a local drive. Check if ready
 strDrvList = strDrvList & d.VolumeName ‘Yes – add to list
 End If
 strDrvList = strDrvList & vbCrLf ‘Add a Cr & Lf and then get next drive
Next
MsgBox strDrvList ‘Display the list of drives

Table C: Drives Collection Properties
Property Description
Count Returns the number of items in the collection
Item Returns an item from the collection based on the specified key

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 22

Property Count
Description: Returns the number of items in a collection. Read only.
Use: intCount = objDrives.Count
Arguments: objDrives

Required. The name of a Drive Collection previously instantiated.
Return: The number of items in a collection.
Remarks: Read only.
Example: Dim fso, dc, totDrives

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set dc = fso.Drives ‘Instantiate the Drives collection object
totDrives = dc.Count
MsgBox “There are “ & totDrives & “ drives available”

Property Item
Description: Returns an item (a Drive Name) based on the specified key.
Use: strName = objDrives.Item(key)
Arguments: objDrives

Required. The name of a Drive Collection previously instantiated.
key

Required. The key is associated with the item being retrieved.
Return: The drive name for a specified key.
Remarks: Read only. This is a function more commonly used with the VBScript dictionary object.

(Scripting.Dictionary). The “Item” is similar to a numerical-based index in an array, except that an Item
can be character based and it must be unique.

Example: Dim fso, dc, myItem
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set dc = fso.Drives ‘Instantiate the Drives collection object
myItem = dc.Item (“c”)
MsgBox myItem ‘Displays “c:”

Notes:
• The Item Property of a Drives Collection is of little value in a typical IWS application.
• The Drives Collection by itself is of limited use other than to give a count of the number of drives available to

the local computer.
• The Drives Collection provides an object which can be further manipulated to access the individual drives in

the collection. E.g.:
Dim fso, dc, d, strDrvList
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set dc = fso.Drives ‘Instantiate the Drives collection object
strDrvList = “”
For each d in dc ‘Evaluate each drive in the drives collection

strDrvList = strDrvList & d.driveLetter & “ – “ ‘Get the Drive letter
 If d.DriveType = 3 Then ‘See if a network drive

 strDrvList = strDrvList & d.ShareName ‘Yes
 ElseIf d.IsReady Then ‘No – is a local drive. Check if ready
 strDrvList = strDrvList & d.VolumeName ‘Yes – add to list
 End If
 strDrvList = strDrvList & vbCrLf ‘Add a Cr & Lf and then get next drive
Next
MsgBox strDrvList ‘Display the list of drives

• There are no Methods for the Drive Collection object
• There is no built-in IWS function that returns a Drives Collection
• Drives Collection objects are not necessarily sorted.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 23

The Folders Collection Object

The Folders Collection is the second of the collection objects available to the FSO object model. The
Folders collection object is a collection of subfolders contained in a parent folder or path. Once instantiated,
you can iterate through the Folders collection to retrieve an individual subfolder or information about each of
the subfolders.

The method of instantiating the Folders collection object is different than a Drives collection object. The
steps to instantiating the Folders collection is to first instantiate the parent folder by the FSO GetFolder
method. Then, the Folders Collection object is instantiated by calling the SubFolders method on the parent
folder object. This method returns a Folders Collection object which you can iterate through as shown
below:

FSO Method GetFolder
Description: Returns a Folder object corresponding to the folder in a specified path
Use: objFolder = fso.GetFolder (folderspec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderspec

 Required. The folderspec is the path (absolute or relative) to a specific folder.
Return: Returns a folder object
Remarks: Since this method creates an object, you need to use it with the Set command. An error occurs if the

specified folder does not exist.
Example: Dim fso, drvPath, f, fc, nf,
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath()
 Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object

Set fc = f.SubFolders ‘Return the subfolder Folders collection
 s = “”
 For Each x in fc
 s = s & x.Name & vbCrLf ‘Iterate through the Folders collection object
 Next

MsgBox s ‘Displays a list of subfolders in the App directory

Table D: Folders Collection Properties
Property Description
Count Returns the number of items in the collection
Item Returns an item from the collection based on the specified key

Table E: Folders Collection Methods
Method Description
Add Adds a new folder to the Folders Collection

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 24

Property Count
Description: Returns the number of items in a collection. Read only.
Use: intCount = objFolders.Count
Arguments: objFolders

Required. The name of a Folders Collection previously instantiated.
Return: The number of items in a collection.
Remarks: Read only.
Example: Dim drvPath, fso, fc, f, numf

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.SubFolders ‘Return the subfolder Folders collection
numf = fc.Count
MsgBox “There are “ & numf & “ subfolders”

Property Item
Description: Returns an item (a Drive Name) based on the specified key.
Use: strName = objFolders.Item(key)
Arguments: objFolders

Required. The name of a Folders Collection.
key

Required. The key is associated with the item being retrieved.
Return: The drive name for a specified key.
Remarks: Read only. This is a function more commonly used with the VBScript dictionary object.

(Scripting.Dictionary). The “Item” is similar to a numerical-based index in an array, except that an Item
can be character based and it must be unique.

Example: Dim drvPath, fso, fc, myItem
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.SubFolders ‘Return the subfolder Folders collection
myItem = fc.Item (“Web”)
MsgBox myItem ‘displays the entire path to the Web subfolder

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 25

Method Add
Description: Adds a new folder to the Folders collection.
Use: objFolders.Add(folderName)
Arguments: objFolders

Required. The name of a Folders Collection previously instantiated.
folderName

Required. The name of the new Folder being added.
Return: None
Remarks: Adds a subfolder to the parent folder. An error occurs if the folderName already exists.
Example: Dim drvPath, fso, fc, numf

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.SubFolders ‘Return the subfolder Folders collection
numf = fc.Count
MsgBox “There are “ & numf & “ subfolders” ‘Returns “7”
fc.Add (“TempData”) ‘Add a “TempData” subfolder
numf = fc.Count
MsgBox “There are “ & numf & “ subfolders” ‘Returns “8”

Notes:
• As with the Drives Collection, the Item Property of a Folders Collection is of little value in a typical IWS

application.
• In addition to the Folders Collection Add method, the FSO CreateFolder method is another way to create a

folder.
• There is no built-in IWS function that returns a Folders Collection
• Folders Collection objects are not sorted. This can be done by an external procedure.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 26

The Files Collection Object

The Files Collection is the third (and final) type of collection objects available in the FSO object model. The
Files collection object is a collection of files contained in a specified folder. Once instantiated, you can
iterate through the Files collection to retrieve an individual file or information about each of the files in the
specified folder.

The method of instantiating the Files collection object is similar to the Folders collection object. The steps to
instantiating the Files collection is to first instantiate the specified folder by the FSO GetFolder method.
Then, the Files Collection object is instantiated by calling the Files method on the folder object. This method
returns a Files Collection object which you can iterate through as shown below:

FSO Method GetFolder
Description: Returns a Folder object corresponding to the folder in a specified path
Use: objFolder = fso.GetFolder (folderspec)
Arguments: fso

Required. The name of a FileSystemObject object previously instantiated
 folderspec

 Required. The folderspec is the path (absolute or relative) to a specific folder.
Return: Returns a folder object
Remarks: Since this method creates an object, you need to use it with the Set command. An error occurs if the

specified folder does not exist.
Example: Dim fso, drvPath, f, fc, x, s
 Set fso = CreateObject("Scripting.FileSystemObject")
 drvPath = $getAppPath() & “Hst”
 Set f = fso.GetFolder(drvPath) ‘Instantiate the folder object

Set fc = f.Files ‘Return the Files collection
 s = “”
 For Each x in fc
 s = s & x.Name & vbCrLf ‘Iterate through the Files collection object
 Next

MsgBox s ‘Displays a list of files in the “Hst” subfolder

Table F: Files Collection Properties
Property Description
Count Returns the number of items in the collection
Item Returns an item from the collection based on the specified key

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 27

Property Count
Description: Returns the number of items in a collection. Read only.
Use: intCount = objFiles.Count
Arguments: objFiles

Required. The name of a Files Collection object previously instantiated.
Return: The number of items in a collection.
Remarks: Read only.
Example: Dim drvPath, fso, fc, numf

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.Files ‘Return the subfolder Folders collection
numf = fc.Count
MsgBox “There are “ & numf & “ files”

Property Item
Description: Returns an item (a Drive Name) based on the specified key.
Use: strName = objFiles.Item(key)
Arguments: objFiles

Required. The name of a Folders Collection object previously instantiated.
key

Required. The key is associated with the item being retrieved.
Return: The drive name for a specified key.
Remarks: Read only. This is a function more commonly used with the VBScript dictionary object.

(Scripting.Dictionary). The “Item” is similar to a numerical-based index in an array, except that an Item
can be character based and it must be unique.

Example: Dim drvPath, fso, fc, myItem
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
drvPath = $getAppPath()
Set f = fso.GetFolder(drvPath) ‘Instantiate the parent folder object
Set fc = f.Files ‘Return the subfolder Folders collection
myItem = fc.Item (“myApp.app”)
MsgBox myItem ‘displays the entire path to myApp.app

Notes:
• As with the Drives and Folders Collection objects, the Item Property of a Files Collection is of little value in a

typical IWS application.
• There is no built-in IWS function that returns a Files Collection object. However, there are specific built-in

IWS functions that manipulate collections of files, such as DeleteOlderFiles , FindFiles , and ReadFileN. The
functions DeleteOlderFiles and FindFiles can be implemented with additional logic in VBScript. The
ReadFileN provides a dialog box and selection of an item in the dialog box, and this functionality is not easily
replicated in VBScript.

• There are no Methods for Files Collection object.
• Files Collection objects are not sorted. This can be done by an external procedure.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 28

The Drive Object

The Drive Object lets the programmer refer to a specific disk drive or network share drive. Once the Drive
object is instantiated, it can be referred to as an object from VBScript and its various Properties accessed.

The Drive Object is instantiated as follows:
 Dim fso, d, driveSpec

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO Object
driveSpec = “c”
Set d = fso.GetDrive(driveSpec) ‘Instantiate the Drive Object

See the GetDrive method under the FileSystemObject Object Model section for additional details on
instantiation of the Drive Object.

The Drive object has no Methods, only Properties. These properties are generally read-only and follow the
format:

return = objDrive.Property
where

return = return value or a returned object
objDrive = the required Drive object (“d” in the examples below)
Property = the Drive object property being accessed

Table G: Drive Object Properties
Property Description
AvailableSpace Returns the amount of space available to the user on the specified drive or network share drive
DriveLetter Returns the drive letter of a physical local drive or a network share drive. Read-only value
DriveType Returns the value indicating the type of the specified drive.
FileSystem Returns the type of the file system in use for the specified drive. Return types are FAT, NTFS, CDFS
FreeSpace Returns the amount of free space (in bytes) available to the user on a specified drive or network share

drive. Read-only
IsReady Returns True if the specified file is ready, otherwise returns False. For removable media drives,

returns True only when the media is inserted and ready for access
Path Returns the path for a specified drive. For Drive letters, the root drive is not included. E.g. the path for

the C drive is C:, not C:\
RootFolder Returns a Folder object representing the root folder of a specified drive. Read only value
SerialNumber Returns a decimal number used to uniquely identify a disk volume
ShareName Returns the network share name for a specified drive
TotalSize Returns the total space, in bytes, of a Drive or network shared drive
VolumeName Sets or returns the volume name from the specified drive. Read/Write.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 29

Property AvailableSpace
Description: Returns the amount of space available to a user on the specified drive or network share drive.
Use: intSpace = objDrive.AvailableSpace
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The read-only value returned by the AvailableSpace property is typically the same as that returned by

the FreeSpace property. Differences may occur between the two for computer systems that support
quotas.

Remarks: Read only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
MsgBox “Available Space = “ & FormatNumber(d.AvailableSpace/1024, 0) & “ Kbytes”

Property DriveLetter
Description: Returns the drive letter of a physical local drive or a network share.
Use: strLetter = objDrive.DriveLetter
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The DriveLetter property returns a zero-length string ("") if the specified drive is not associated with a

drive letter, for example, a network share that has not been mapped to a drive letter.
Remarks: Read only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
MsgBox “Drive “ & d.DriveLetter & “:”

Property DriveType
Description: Returns a value indicating the type of a specified drive.
Use: intType = objDrive.DriveType
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The DriveType property a value indication the type of the specified drive. Return values are:

0 – unknown
1 – Removable
2 – Fixed
3 – Network
4 – CD-ROM
5 – RAM Disk

Remarks: Read only.
Example: Dim fso, d, t

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
Select Case d.DriveType
 Case 0: t = "Unknown"
 Case 1: t = "Removable"
 Case 2: t = "Fixed"
 Case 3: t = "Network"
 Case 4: t = "CD-ROM"
 Case 5: t = "RAM Disk"
 End Select
 MsgBox "Drive " & d.DriveLetter & ": - " & “ is a “ & t & “ drive”

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 30

Property FileSystem
Description: Returns the type of file system in use for the specified drive.
Use: strType = objDrive.FileSystem
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: Available return types include FAT, NTFS, and CDFS.
Remarks: Read only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
MsgBox “Drive “ & d.DriveLetter & “ Files System type =” & d.FileSystem

Property FreeSpace
Description: Returns the amount of space available to a user on the specified drive or network share drive.
Use: intSpace = objDrive.FreeSpace
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The read-only value returned by the FreeSpace property is typically the same as that returned by the

AvailableSpace property. Differences may occur between the two for computer systems that support
quotas.

Remarks: Read only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
MsgBox “Free Space = “ & d.FreeSpace/1024 & “ Kbytes”

Property IsReady
Description: Indicates whether the specified drive is ready or not
Use: boolReady = objDrive.IsReady
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: Returns True if the specified drive is ready; False if it is not.
Remarks: Read only.
Example: Dim fso, d, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”)
s = “Drive “ & d.DriveLetter
If d.IsReady Then
 s = s & " Drive is Ready."
Else
 s = s & " Drive is not Ready."
End If
MsgBox s

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 31

Property Path
Description: Returns the path for a specified drive.
Use: strPath = objDrive.Path
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The path for a specified drive
Remarks: For drive letters, the root drive is not included. For example, the path for the C drive is C:, not C:\.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(fso.GetDriveName(“c:”))
MsgBox “Path = “ & UCase(d.Path) ‘Returns c:

Property RootFolder
Description: Returns a Folder object representing the root folder of a specified drive.
Use: objFolder = objDrive.RootFolder
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: The path for a specified drive
Remarks: Read-only. All the files and folders contained on the drive can be accessed using the returned Folder

object.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
MsgBox “RootFolder = “ & d.RootFolder ‘Returns “c:\”

Property SerialNumber
Description: Returns the decimal serial number used to uniquely identify a disk volume.
Use: intSerNum = objDrive.SerialNumber
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: A decimal serial number that uniquely identifies a disk volume
Remarks: Read-only. You can use the SerialNumber property to ensure that the correct disk is inserted in a

drive with removable media.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
MsgBox “Drive Serial Number = “ & d.SerialNumber ‘Returns “c:\”

Property ShareName
Description: Returns the network share name for a specified drive.
Use: strName = objDrive.ShareName
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: A string that is the network share name for a specified drive.
Remarks: Read-only. If object is not a network drive, the ShareName property returns a zero-length string ("").
Example: Dim fso, dc, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
If d.DriveType = 3 Then ‘See if a network drive
 MsgBox “Network Shared Drive Name = “ & d.ShareName
Else
 MsgBox “Not a Network Shared Drive”
End If

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 32

Property TotalSize
Description: Returns the total space, in bytes, of a drive or network shared drive.
Use: intSize = objDrive.TotalSize
Arguments: objDrive

Required. The name of a Drive Object previously instantiated.
Return: Integer. The total space, in bytes, of a drive or network shared drive
Remarks: Read-only.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
MsgBox “Total Drive Size = “ & d.TotalSize & “ bytes” ‘Returns the total size of the drive

Property VolumeName
Description: Sets or returns the volume name of the specified drive. Read/write.
Use: strName = objDrive.VolumeName
 objDrive.VolumeName [= newname]
Arguments: objDrive

Required. The name of a Drive Object previously instantiated..
newname

Optional. If provided, newname is the new name of the specified object
Return: String. The volume name of the specified drive.
Remarks: Read/Write.
Example: Dim fso, d

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
Set d = fso.GetDrive(“c:”)
MsgBox “Total Drive Size = “ & d.TotalSize & “ bytes” ‘Returns the total size of the drive

 Notes:
• The comparable IWS built-in function to the AvailableSpace and FreeSpace property is InfoDiskFree
• There are no comparable IWS built-in functions to the rest of the Drive object Properties.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 33

The Folder Object

The Folder Object allows the programmer refer to a specific folder. Once the Folder object is instantiated, it
can be referred to as an object from VBScript and its various Methods and Properties accessed.

The Folder Object is instantiated as follows:
 Dim fso, f, myPath

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO Object
myPath = $GetAppPath() & “Hst” ‘Define the path to the folder of interest
Set f = fso.GetFolder(myPath) ‘Instantiate the Drive Object

See the GetFolder method under the FileSystemObject Object Model section for additional details on
instantiation of the Folder Object.

The Folder object has both Methods and Properties available.

Table H: Folder Object Methods
Method Description
Copy Copies a specified folder from one location to another
CreateTextFile Creates a specified file name and returns a TextStream object that can be used to read

from or write to the file
Delete Deletes a specified folder
Move Moves a specified file or folder from one location to another.

Table I: Folder Object Properties
Properties Description
Attributes Sets or returns the attributes of files or folders.
DateCreated Returns the date and time that the specified folder was created.
DateLastAccessed Returns the date and time that the specified folder was last accessed
DateLastModified Returns the date and time that the specified folder was last modified
Drive Returns the drive letter of the drive on which the specified file or folder resides
Files Returns a Files collection consisting of all File objects contained in the specified folder.
IsRootFolder Tests to see if the specified folder is the root folder.
Name Sets or returns the name of a specified file or folder
ParentFolder Returns the folder object for the parent of the specified folder
Path Returns the path for a specified folder
ShortName Returns the short name used by programs that require the earlier 8.3 naming convention.
ShortPath Returns the short path used by programs that require the earlier 8.3 naming convention.
Size Returns the size of all the files and subfolders contained in the specified folder
SubFolders Returns a Folders collection consisting of all folders contained in a specified folder,
Type Returns information about the type of a folder.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 34

Method Copy
Description: Copies a specified folder from one location to another.
Use: objFolder.Copy (destination, [overwrite])
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
destination

Required. Destination where the folder is to be copied. Wildcard characters are not allowed.
overwrite

Optional. Boolean value that is True (default) if existing folders are to be overwritten, False if they
are not.

Return: None
Remarks: The results of the Copy method on a Folder are identical to operations performed using

FileSystemObject.CopyFolder where the folder referred to by object is passed as an argument. You
should note, however, that the alternative method is capable of copying multiple folders.

Example: Dim fso, f, myFolder
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() & “Hst” ‘Application Folder for Historical files
Set f = fso.GetFolder (myFolder)
f.Copy (myFolder & “Temp”) ‘Creates folder /HstTemp and copies files

Method: CreateTextFile
Description: Creates a specified file name and returns a TextStream object that can be used to read from or write

to the file
Use: Set objFile = objFolde.CreateTextFile (filename[, overwrite[, Unicode]])
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
 filename

Required. A string expression that identifies the file to create
overwrite

Optional. Boolean value that indicates whether you can overwrite an existing file. The value is
True if the file can be overwritten, False if it can't be overwritten. If omitted, existing files are not
overwritten (default False).

unicode
Optional. Boolean value that indicates whether the file is created as a Unicode or ASCII file. If the
value is True, the file is created as a Unicode file. If the value is False, the file is created as an
ASCII file. If omitted, an ASCII file is assumed.

Remarks: None
Example: Dim fso, myFile

Set fso = CreateObject("Scripting.FileSystemObject")
Set myFile = fso.CreateTextFile("c:\testfile.txt", True, False)
myFile.WriteLine("This is a test.")
myFile.Close

Notes:
• The CreateTextFile method allows you to create a text file for UniCode characters. Compare this to the IWS

built-in FileWrite function which only supports ASCII files.
• The CreateTextFile method is available in either the FSO object or the Folder object
• Although the CreateTextFile method indicates that it will support reading, it does not appear to work. For

reading to TextStream files, use the OpenTextFile or OpenAsTextStream methods.
•

Notes:
• This Copy method only copies an individual folder. The FSO Copy method will copy multiple folders.
• IWS does not have a comparable built-in Function

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 35

Method: Delete
Description: Deletes a specified folder
Use: objFolder.Delete (force)
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
force

Optional. Boolean value that is True if folders with the read-only attribute set are to be deleted;
False if they are not (default).

Return: None
Remarks: An error occurs if the specified folder does not exist. The results of the Delete method on a Folder are

identical to operations performed using FileSystemObject.DeleteFolder . The Delete method does
not distinguish between folders that have content and those that do not. The specified folder is deleted
regardless of whether or not it has content.

Example: Dim fso, f, myFolder
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() & “HstTemp” ‘Specify the HstTemp folder in app directory
Set f = fso.GetFolder (myFolder)
f.Delete ‘Delete it

Method: Move
Description: Moves a specified folder from one location to another.
Use: objFolder.Move (destination)
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
destination

Required. Destination where the folder is to be moved. Wildcard characters are not allowed.
Return: None
Remarks: The results of the Move method on a Folder is identical to operations performed using

FileSystemObject.MoveFolder . You should note, however, that the alternative methods are capable
of moving multiple folders.

Example: Dim fso, f, myFolder
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() & “HstTemp” ‘Specify the HstTemp folder in app directory
Set f = fso.GetFolder (myFolder)
f.move(“c:\archive”) ‘Move it into c:\archive folder

Note:
• The FSO DeleteFolder method allows you to specify wildcard characters in the last path component. The

Folder Move method and the IWS built-in function DirDelete only deletes one Folder at a time.

Notes:
• The comparable IWS built-in function is DirRename.
• The FSO MoveFolder method allows moving folders between volumes only if supported by the operating

system. .
• You can use the Folder Object Move method to move an individual folder. The FSO Move method supports

moving multiple folders.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 36

Property: Attributes
Description: Sets or returns the attributes of files or folders.
Use: objFolder.Attributes = newAttributes
 intAttribute = objFolder.Attributes
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
newAttributes

Optional. If provided, newAttributes is the new value for the attributes of the specified object. The
newattributes argument can have any of the following values or any logical combination of the
following values:

Constant Value Description
Normal 0 Normal file. No Attributes are set.
ReadOnly 1 Read-only file. Attribute is read/write.
Hidden 2 Hidden file. Attribute is read/write.
System 4 System file. Attribute is read/write.
Volume 8 Disk drive volume label. Attribute is read-only
Directory 16 Folder or directory. Attribute is read-only.
Archive 32 File has changed since last backup. Attribute is read/write
Alias 1024 Link or shortcut. Attribute is read-only
Compressed 2048 Compressed file. Attribute is read-only.

Return: Can return an attribute of a file or folder
Remarks: Read/write or read-only, depending on the attribute. The newAttribute can have any valid combination

of the above values.
Example: Dim fso, f, attrVal, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
attrVal = f.Attributes
attrVal = attrVal And 16 ‘See if a folder
If attrVal = 16 Then
 MsgBox “Object is a folder”
Else
 MsgBox “Object is not a folder”
End If

Property: DateCreated
Description: Returns the date and time that the specified folder was created.
Use: objFolder.DateCreated
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “App Directory created on “ & f.DateCreated

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 37

Property: DateLastAccessed
Description: Returns the date and time that the specified folder was last accessed
Use: objFolder.DateLastAccessed
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “App Directory was last accessed on “ & f.DateLastAccessed

Property: DateLastModified
Description: Returns the date and time that the specified folder was last modified
Use: objFolder.DateLastModified
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “App Directory was last modified on “ & f.DateLastModified

Property: Drive
Description: Returns the drive letter of the drive on which the specified folder resides
Use: objFolder.Drive
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “App Directory is installed on drive “ & f.Drive ‘Installed on drive c:

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 38

Property: Files
Description: Returns a Files collection consisting of all File objects contained in the specified folder.
Use: objFolder.Files
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: A file collection.
Remarks: Includes files with hidden and system file attributes set.
Example: Dim fso, f, fc, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
fc = f.files ‘Return file collection of files in app folder

Property: IsRootFolder
Description: Tests to see if the specified folder is the root folder.
Use: boolValue = objFolder.IsRootFolder
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: True if the specified folder is the root folder; False if not.
Remarks: Includes files with hidden and system file attributes set.
Example: Dim fso, f, n, s, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
n = 0
If f.IsRootfolder Then
 MsgBox “The app folder is the root folder”
Else
 s = myFolder & vbCrLf
 Do Until f.IsRootFolder
 Set f = f.ParentFolder
 n = n+1
 s = s & “parent folder is “ & f.Name & vbCrLf
 Loop
 MsgBox “Folder was nested “ & n & “ levels” & vbCrLf & s
End If

Property: Name
Description: Sets or returns the name of a specified folder
Use: objFolder.Name = newName
 strName = objFolder.Name
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
newName

Optional. If provided, newName is the new name of the specified folder object
Return: The name of the specified folder.
Remarks: Read/write.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “folder name is “ & f.Name ‘Returns the folder name

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 39

Property: ParentFolder
Description: Returns the folder object for the parent of the specified folder
Use: objParent = objFolder.ParentFolder
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The folder object for the parent of the specified folder.
Remarks: Read-only
Example: Dim fso, f, pf, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
Set pf = f.ParentFolder ‘Get the parent folder
MsgBox “Parent Folder name = “ & pf.Name

Property Path
Description: Returns the path for a specified folder
Use: strPath = objFolder.Path
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The path for a specified folder
Remarks: None
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Path = “ & UCase(f.Path) ‘Display path to app folder

Property ShortName
Description: Returns the short name used by programs that require the earlier 8.3 naming convention.
Use: strName = objFolder.ShortName
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The short name for the folder object
Remarks: None
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Short name = “ & f.ShortName ‘Display short name of app folder

Property ShortPath
Description: Returns the short path used by programs that require the earlier 8.3 naming convention.
Use: strPath = objFolder.ShortPath
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The short path for the folder object
Remarks: None
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Short pathname = “ & f.ShortPath ‘Display short path of app folder

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 40

Property Size
Description: Returns the size of all the files and subfolders contained in the specified folder
Use: intSize = objFolder.Size
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The size of the specified folder
Remarks: Size is in bytes
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Size = “ & f.Size & “ bytes” ‘Display size of app folder

Property SubFolders
Description: Returns a Folders collection consisting of all folders contained in a specified folder,
Use: objFC = objFolder.SubFolders
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: A folders collection of all subfolders in a specified folder.
Remarks: Includes folders with hidden and system file attributes set.
Example: Dim fso, f, fc, s, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
fc = f.Subfolders ‘Returns collection of (sub)folders
s = “”
For each f1 in fc
 s = s & fc.name & vbCrLf
Next
MsgBox s

Property Type
Description: Returns information about the type of a folder.
Use: strType = objFolder.Type
Arguments: objFolder

Required. The name of a Folder Object previously instantiated.
Return: The type of folder.
Remarks: If the object is a folder, “Folder” will be returned.
Example: Dim fso, f, myFolder

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFolder = $getAppPath() ‘Specify the app directory
Set f = fso.GetFolder (myFolder)
MsgBox “Type = “ & f.Type ‘Dispays “Folder”

Notes:
• Many of the Folder object Properties have no corresponding IWS built-in function. Many are, however, of little

use in a typical IWS application.
• Note that two of the Folder object Properties return collections: the SubFolders property which returns a

collection of (sub)folders within specific folder, and the Files property which returns a collection of files
contained within a specific folder. These collections are not sorted and do not have any mask criteria (e.g. date,
type, etc.). Compare this to the IWS built-in function FindFile which can return a collection of files has satisfy a
file mask criteria. However, collections returned by the SubFolders and Files properties can be further
manipulated in VBScript by examining other attribute properties.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 41

The File Object

The File Object allows the programmer refer to a specific file. Once the File object is instantiated, it can be
referred to as an object from VBScript and its various Methods and Properties accessed.

The File Object is instantiated as follows:
 Dim fso, f, myPath

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO Object
myPath = $GetAppPath() & “notes.txt” ‘Define the path to the file of interest
Set f = fso.GetFile(myPath) ‘Instantiate the Drive Object

See the GetFile method under the FileSystemObject Object Model section for additional details on
instantiation of the File Object.

The File object has both Methods and Properties available.

Table J: File Object Methods
Method Description
Copy Copies a specified folder from one location to another
Delete Deletes a specified folder
Move Moves a specified file or folder from one location to another.
OpenAsTextStream Creates a specified file name and returns a TextStream object that can be used to read

from or write to the file

Table K: File Object Properties
Properties Description
Attributes Sets or returns the attributes of files or folders.
DateCreated Returns the date and time that the specified folder was created.
DateLastAccessed Returns the date and time that the specified folder was last accessed
DateLastModified Returns the date and time that the specified folder was last modified
Drive Returns the drive letter of the drive on which the specified file or folder resides
Name Sets or returns the name of a specified file or folder
ParentFolder Returns the folder object for the parent of the specified folder
Path Returns the path for a specified folder
ShortName Returns the short name used by programs that require the earlier 8.3 naming convention.
ShortPath Returns the short path used by programs that require the earlier 8.3 naming convention.
Size Returns the size of all the files and subfolders contained in the specified folder
Type Returns information about the type of a folder.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 42

Method Copy
Description: Copies a specified file from one location to another.
Use: objFile.Copy (destination, [overwrite])
Arguments: objFile

Required. The name of a File Object previously instantiated.
destination

Required. Destination where the File is to be copied. Wildcard characters are not allowed.
overwrite

Optional. Boolean value that is True (default) if existing files are to be overwritten, False if they
are not.

Return: None
Remarks: The results of the Copy method on a File are identical to operations performed using

FileSystemObject.CopyFile where the file referred to by object is passed as an argument. You
should note, however, that the alternative method is capable of copying multiple files.

Example: Dim fso, f, myFile
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Get the file object
Set f = fso.GetFile (myFile)
f.Copy (“c:\save\recipe1.xml”) ‘Save the file

Method: Delete
Description: Deletes a specified file
Use: objFile.Delete (force)
Arguments: objFile

Required. The name of a File Object previously instantiated.
force

Optional. Boolean value that is True if files with the read-only attribute set are to be deleted; False
if they are not (default).

Return: None
Remarks: An error occurs if the specified file does not exist. The results of the Delete method on a File are

identical to operations performed using FileSystemObject.DeleteFile . The Delete method does not
distinguish between files that have content and those that do not. The specified file is deleted
regardless of whether or not it has content.

Example: Dim fso, f, myFile
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the HstTemp folder in app directory
Set f = fso.GetFile (myFile)
f.Delete ‘Delete it

Note:
• The comparable IWS built-in function is FileCopy
• The FSO CopyFile method allows use of wildcards to copy multiple files. The File object Copy method only

copies a single file.

Note:
• The comparable IWS built-in function is FileDelete
• The FSO DeleteFile method allows use of wildcards to delete multiple files. The File object Delete method

only deletes a single file.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 43

Method: Move
Description: Moves a specified file from one location to another.
Use: objFile.Move (destination)
Arguments: objFile

Required. The name of a File Object previously instantiated.
destination

Required. Destination where the file is to be moved. Wildcard characters are not allowed.
Return: None
Remarks: The results of the Move method on a File is identical to operations performed using

FileSystemObject.MoveFile . You should note, however, that the alternative methods are capable of
moving multiple files.

Example: Dim fso, f, myFile
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the HstTemp folder in app directory
Set f = fso.GetFile (myFile)
f.move(“Recipe1Save.xml”) ‘Moves the file

Method: OpenAsTextStream
Description: Opens a specified file name and returns a TextStream object that can be used to read from or write

to, or append to a file
Use: oTso = oFile.OpenAsTextStream([iomode[,format]])
Arguments: objFile

Required. The name of a File Object previously instantiated.
 iomode

Optional. Indicates the file input/output mode. Can be one of three constants:
Constant Value Description
ForReading 1 Open a file for reading only. You can’t write to this file
ForWriting 2 Open a file for reading & writing
ForAppending 8 Open a file and write to the end of the file

format
Optional. One of three Tristate values used to indicate the format of the opened file. If omitted, the
file is opened as ASCII.

Constant Value Description
TristateUseDefault -2 Opens the file using the system default
TristateTrue -1 Opens the file as Unicode
TrstateFalse 0 Opens the file as ASCII

Return: A TextStream object
Remarks The OpenAsTextStream method provides the same functionality as the OpenTextFile method of the

FileSystemObject . In addition, the OpenAsTextStream method can be used to write to a file.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, tso
 Set fso = CreateObject("Scripting.FileSystemObject")
 Set f = fso.GetFile("c:\testfile.txt") ‘Must be an existing file
 Set tso = f.OpenAsTextStream(ForWriting, True) ‘Unicode file
 tso.Write "Hello world!" ‘Write a line of text to the file
 tso.Close

Note:
• The comparable IWS built-in function is FileRename
• The FSO MoveFile method allows use of wildcards to move multiple files. The File object Move method only

moves a single file.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 44

Property: Attributes
Description: Sets or returns the attributes of files or folders.
Use: objFile.Attributes = newAttributes
 intAttribute = objFile.Attributes
Arguments: objFile

Required. The name of a File Object previously instantiated.
newAttributes

Optional. If provided, newAttributes is the new value for the attributes of the specified object. The
newattributes argument can have any of the following values or any logical combination of the
following values:

Constant Value Description
Normal 0 Normal file. No Attributes are set.
ReadOnly 1 Read-only file. Attribute is read/write.
Hidden 2 Hidden file. Attribute is read/write.
System 4 System file. Attribute is read/write.
Volume 8 Disk drive volume label. Attribute is read-only
Directory 16 Folder or directory. Attribute is read-only.
Archive 32 File has changed since last backup. Attribute is read/write
Alias 1024 Link or shortcut. Attribute is read-only
Compressed 2048 Compressed file. Attribute is read-only.

Return: Can return an attribute of a file or folder
Remarks: Read/write or read-only, depending on the attribute. The newAttribute can have any valid combination

of the above values.
Example: Dim fso, f, attrVal, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory and file
Set f = fso.GetFile(myFile)
attrVal = f.Attributes
attrVal = attrVal And 1 ‘See if a normal file
If attrVal = 0 Then
 MsgBox “Object is a normal file”
Else
 MsgBox “Object is not a normal file”
End If

Notes:
• To create a TextFile, you need to use the CreateTextFile method from the FSO Object or Folder Object.

Additionally, you could use the OpenTextFile method of the FSO object.
• The OpenAsTextStream method only works on existing files.
• As with the CreateTextFile and OpenTextFile methods, the OpenAsTextStream method supports UniCode

characters.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 45

Property: DateCreated
Description: Returns the date and time that the specified file was created.
Use: objFile.DateCreated
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “File created on “ & f.DateCreated

Property: DateLastAccessed
Description: Returns the date and time that the specified file was last accessed
Use: objFile.DateLastAccessed
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “File was last accessed on “ & f.DateLastAccessed

Property: DateLastModified
Description: Returns the date and time that the specified file was last modified
Use: objFile.DateLastModified
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “File was last modified on “ & f.DateLastModified

Property: Drive
Description: Returns the drive letter of the drive on which the specified file resides
Use: objFile.Drive
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: None
Remarks: Read-only.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “File is located on drive “ & f.Drive ‘Installed on drive c:

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 46

Property: Name
Description: Sets or returns the name of a specified file
Use: objFile.Name = newName
 strName = objFile.Name
Arguments: objFile

Required. The name of a File Object previously instantiated.
newName

Optional. If provided, newName is the new name of the specified file object
Return: The name of the specified file.
Remarks: Read/write.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “file name is “ & f.Name ‘Returns the file name

Property: ParentFolder
Description: Returns the folder object for the parent of the specified file
Use: objFolder = objFile.ParentFolder
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The folder object for the parent folder of the specified file.
Remarks: Read-only
Example: Dim fso, f, pf, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
Set pf = f.ParentFolder ‘Get the parent folder
MsgBox “Parent Folder name = “ & pf.Name

Property Path
Description: Returns the path for a specified file
Use: strPath = objFile.Path
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The path for a specified file
Remarks: None
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Path = “ & UCase(f.Path) ‘Display path to app file

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 47

Property ShortName
Description: Returns the short name used by programs that require the earlier 8.3 naming convention.
Use: strName = objFile.ShortName
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The short name for the file object
Remarks: None
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Short name = “ & f.ShortName ‘Display short name of app file

Property ShortPath
Description: Returns the short path used by programs that require the earlier 8.3 naming convention.
Use: strPath = objFile.ShortPath
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The short path for the file object
Remarks: None
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Short name = “ & f.ShortPath ‘Display short path of app file

Property Size
Description: Returns the size of the specified file
Use: intSize = objFile.Size
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The size of the specified file
Remarks: Size is in bytes
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Size = “ & f.Size & “ bytes” ‘Display size of file

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 48

Property Type
Description: Returns information about the type of a file.
Use: strType = objFile.Type
Arguments: objFile

Required. The name of a File Object previously instantiated.
Return: The type of file.
Remarks: E.g. for files ending in .TXT, "Text Document" is returned.
Example: Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “recipe1.xml” ‘Specify the app directory & file
Set f = fso.GetFile (myFile)
MsgBox “Type = “ & f.Type ‘Dispays “XML Document”

Notes:
• Many of the File object Properties have no corresponding IWS built-in function. Many are, however, of little

use in a typical IWS application.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 49

The TextStream Object

The TextStream Object allows the programmer to sequentially access a text file. Once the TextStream
object is instantiated, it can be referred to as an object from VBScript and its various Methods and
Properties accessed.

The TextStream object can be instantiated in three different ways. These are
• Through the CreateTextFile method of the FSO object
• Through the OpenTextFile method of the FSO object
• Through the OpenAsTextStream method of the File Object

There are subtle differences between these methods. The CreateTextFile is used to create a file and a
TextStream object. This method can optionally overwrite an existing object. The OpenTextFile opens an
existing file and returns a TextStream object, but can optionally create the filename if it does not exist. The
OpenAsTextStream object opens an existing file and returns a TextStream object. This method gives an
error if the text file does not exist, there is no option to create the file if it does not exist. Another difference
is that the CreateTextFile method opens a TextStream object for reading and writing, while the
OpenTextFile and OpenAsTextStream methods open a TextStream object for reading, writing or
appending.

Examples of the various approaches to instantiating the TextStream object are:

Instantiating a TextStream object with the CreateTextFile Method
Dim fso, f, myfile
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.CreateTextFile(myFile, True, True) ‘Open as UniCode TextStream object

Instantiating a TextStream object with the OpenTextFile Method

Constant forReading = 1, forWriting = 2, forAppending = 8
Dim fso, myfile, tso
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set tso = fso.OpenTextFile(myFile, ForWriting, True, True) ‘Open as UniCode TextStream object

Instantiating a TextStream object with the OpenAsTextStream Method

Constant forReading = 1, forWriting = 2, forAppending = 8
Dim fso, f, myfile, tso
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.GetFile(myFile) ‘Instantiate the file object
Set tso = f.OpenAsTextStream(forAppending, True) ‘Open as UniCode TextStream object

See the CreateTextFile and OpenTextFile methods under the FileSystemObject Object Model section for
additional details on instantiation of the TextStream Object. See the OpenAsTextStream method under the
File Object section for additional details on instantiation of the TextStream Object

The TextStream object supports either ASCII or UniCode characters, according to the argument settings
when calling the method used to instantiate the TextStream object.

The TextStream object has both Methods and Properties available.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 50

Table L: TextStream Object Methods
Method Description
Close Closes an open TextStream file
Read Reads a specified number of characters from a TextStream file and returns a resulting

string.
ReadAll Reads an entire TextStream file and returns a resulting string. Note: this is an inefficient

way to read a file. Use ReadLine Method instead.
ReadLine Reads an entire line from a TextStream file and returns a resulting string. Reads up to but

not including the newline character.
Skip Skips a specified number of characters when reading a TextStream file. Skipped characters

are discarded.
SkipLine Skips the next line when reading a TextStream file. This method actually reads then

discards all characters in a line up to and including the next newline character. An Error
occurs if the file is not open for reading.

Write Writes a specified string to a TextStream file. The specified string is written with no
intervening spaces or characters between each string written. To write lines of text, use
either a string that ends with a newline character or use the WriteLine method.

WriteLine Writes a specified string and new line character to a TextStream file.
WriteBlankLines Writes a specified number of newline characters to a TextStream file.

 Table M: TextStream Object Properties
Property Description
AtEndOfLine Returns a value of True of the file pointer immediately preceeds the end of line marker in a

TextStream file. Otherwise returns a value of False.
AtEndOfStream Returns a value of True if the file pointer is at the end of the File, otherwise returns False
Column Depending on the
Line

Notes:
• When reading or writing files, remember that files can only be read or written to sequentially
• A file object cannot be open simultaneously for both reading and writing. However, you can use two objects,

one for reading and one for writing, to a file. For example:
Const ForReading = 1, ForWriting = 2, ForAppending = 8
Dim f, f1, fso, tso, myFile, s
Set fso = CreateObject("Scripting.FileSystemObject")
myFile = $getAppPath() & "notes.txt" 'Specify the app directory & file"
Set f = fso.OpenTextFile(myFile, ForReading) ‘Use OpenTextFile method for reading
Set f1 = fso.GetFile(myFile) ‘Instantiate a file object
Set tso = f1.OpenAsTextStream(ForAppending) ‘Instantiate a TextStream object for writing
s = f.ReadAll
MsgBox “Line count = “ & f.Line & vbCrLf & s
tso.WriteLine “this is a line of appended data”
s = f.ReadAll
MsgBox “Line count = “ & f.Line & vbCrLf & s ‘Will only display the line of appended data

Note:
• Although Microsoft documentation indicates that the CreateTextFile method supports text file reading, no

examples of this are documented and all read methods for an object created by the CreateTextFile method
fail. It is recommended to use either the OpenTextFile or OpenAsTextStream method for a text file read
method.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 51

Method: Close
Description: Closes an open TextStream file
Use: objTso.Close
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: None
Remarks: The Close method closes the file, but still need to set the object variable to Nothing to release

memory. (e.g. “ Set objTso = Nothing”
Example: Dim fso, f, myfile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.CreateTextFile(myFile, True)
f.WriteLine (“this is a note”)
f.Close ‘Close the document

Method: Read
Description: Reads a specified number of characters from a TextStream file and returns the resulting string.
Use: strChars = objTso.Read(numCharacters)
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
numCharacters

Required. The number of characters you want to read from the file
Return: A specified number of characters from the file
Remarks: None
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
s = f.Read(10) ‘Read 10 characters
MsgBox “First 10 characters = “ & s ‘Display
f.Close ‘Close the document

Method: ReadAll
Description: Reads the entire TextStream file and returns the resulting string.
Use: strChars = objTso.ReadAll
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: The entire TextStream file.
Remarks: VBScript does not have a limit on the resultant character string length other than the available

memory.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
s = f.ReadAll ‘Read entire file
MsgBox “File contents = “ & s ‘Display it
f.Close

Notes:
• The ReadAll method inefficiently uses memory for large text files. Other methods, such as ReadLine are

recommended instead.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 52

Method: ReadLine
Description: Reads an entire line (up to, but not including, the newline character) from a TextStream file and

returns the resulting string.
Use: strChars = objTso.ReadLine
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: An entire line from a TextStream file
Remarks: Does not include the newline character. Successive calls to the ReadLine method do not return any

newline character(s). For display purposes, you must add a newline character
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s, linecount

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
linecount = 0
s = “”
Do While f.AtEndOfStream <> True
 linecount = linecount +1
 s = s & “line “ & linecount & “ “ & f.ReadLine & vbCrLf ‘Read a line at a time
Loop
MsgBox s ‘Display it
f.Close

Note:
• Another (simpler) approach to this example would be to use the following:

Const ForReading=1, Const ForWriting=2, ForAppending=8
Dim fso, f, myfile, s, linecount
Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
s = f.ReadAll
linecount = f.Line
MsgBox “# of lines = “ & linecount & VbCrLf & “Data” & VbCrLf & s ‘Display information
f.Close

Notes:
• IWS includes a built-in function GetLine which searches for a specific string, then returns the whole line.
• IWS has a limit of 256 characters for a string tag, which is where the line of text from a file is stored. VBScript

by comparison, has no limitation on the size of the character string other than the available system memory.
• The TextStream object Read, ReadAll and ReadLine methods read a character (or number of characters) at

a time, a line at a time, or the whole file at once. Following whichever Read method is used, VBScript’s
character operations can search the string for a specific character sequence.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 53

Method: Skip
Description: Skips a specified number of characters when reading a TextStream file
Use: objTso.Skip(numCharacters)
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
numCharacters

Required. The number of characters you want to skip when reading a file
Return: None
Remarks: Skipped characters are discarded.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
f.Skip(5) ‘Skip 5 characters
MsgBox f.ReadLine ‘Read the rest of the line
f.Close ‘Close the document

Method: SkipLine
Description: Skips the next line when reading from a TextStream file.
Use: objTso.SkipLine
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: None
Remarks: The skipped line is discarded.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading)
f.SkipLine ‘Skip the first line
s=f.ReadLine
MsgBox s ‘Display the second line
f.Close

Notes:
• If you use the Skip method followed by a ReadLine method, the remained of a line (up to, but not including,

the newline character will be read)

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 54

Method: Write
Description: Writes a specified string to a TextStream file.
Use: objTso.Write(string)
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
string

Required. The text you want to write to the file.
Return: None
Remarks: Specified strings are written to the file with no intervening spaces or characters between each string.

Use the WriteLine method to write a newline character or a string that ends with a newline character.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myFile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForWriting, True)
f.Write “This is a new string of data” ‘Write a string
Set f = fso.OpenTextFile(myFile, ForReading)
MsgBox “File contents = “ & f.ReadLine ‘Display line of data
f.Close

Method: WriteBlankLines
Description: Writes a specified number of newline characters to a TextStream file.
Use: objTso.WriteBlankLines(numLines)
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
numLines

Required. The number of newline characters you want to write to the file.
Return: None
Remarks: None
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForWriting, True)
f.WriteBlankLines(3) ‘Write 3 blank lines
f.WriteLine “This is a new line of data” ‘Write data on the 4th line
f.Close

Notes:
• The corresponding IWS built-in function is FileWrite .
• The IWS FileWrite function includes a parameter specifying whether to overwrite or appending text. With the

TextStream object, the choice of overwriting or appending text is specified in the OpenTextFile or
OpenAsTextStream method.

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 55

Method: WriteLine
Description: Writes a specified string and newline character to a TextStream file.
Use: objTso.WriteLine([string])
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
string

Optional. The text you want to write to the file.
Return: None
Remarks: If you omit the string, a newline character is written to the file.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForWriting, True)
f.WriteLine “This is a line of data” ‘Write a line of data
f.WriteLine ‘Write a blank line
f.Close

Property: AtEndOfLine
Description: Indicates whether the file pointer is positioned immediately before the end-of-line marker in a

TextStream file.
Use: objTso.AtEndOfLine
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: Returns True if the file pointer is positioned immediately before the end-of-line marker in a

TextStream file; False if it is not.
Remarks: The AtEndOfLine property applies only to TextStream files that are open for reading; otherwise, an

error occurs.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading, False)
s =””
Do While f.AtEndOfLine <> True
 s=f.read(1) ‘Read one character at a time
Loop
MsgBox “A line of text = “ & s
f.Close

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 56

Property: AtEndOfStream
Description: Indicates whether the file pointer is positioned at the end of a TextStream file.
Use: objTso.AtEndOfStream
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: Returns True if the file pointer is positioned at the end of a TextStream file; False if it is not.
Remarks: The AtEndOfStream property applies only to TextStream files that are open for reading; otherwise,

an error occurs.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading, False)
s =””
Do While f.AtEndOfLine <> True
 s = s & f.ReadLine ‘Read file one line at a time
Loop
MsgBox s ‘Display text
f.Close

Property: Column
Description: Returns the column number of the current character position in a TextStream file.
Use: intColumnPos = objTso.Column
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: An integer column number
Remarks: Read-only. After a newline character has been written, but before any other character is written,

Column is equal to 1.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s, colNum

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading, False)
s = f.ReadLine ‘Read a line
colNum = f.Column ‘Get the column position
f.Close

Property: Line
Description: Returns the current line number in a TextStream file.
Use: intLineNum = objTso.Line
Arguments: objTso

Required. The name of a TextStream Object previously instantiated.
Return: An integer line number
Remarks: Read-only. After a file is initially opened and before anything is written, Line is equal to 1.
Example: Const ForReading=1, Const ForWriting=2, ForAppending=8
 Dim fso, f, myfile, s, lineNum

Set fso = CreateObject(“Scripting.FileSystemObject”) ‘Instantiate the FSO object
myFile = $getAppPath() & “notes.txt” ‘Specify the app directory & file
Set f = fso.OpenTextFile(myFile, ForReading, False)
s = f.ReadAll ‘Read the entire file
lineNum = f.Line ‘Get the last line number
f.Close

VBScript FileSystemObject
©Copyright InduSoft Systems LLC 2006

 57

Summary

IWS has a number of specific built-in functions that work well for typical IWS applications. The FSO object
model provides several objects, methods and properties that allow generic manipulation of drives, folder,
files and text files to support a wide range of applications where VBScript is used. As shown in this
Application Note and Application Note AN-00-005, the choice of whether to use an IWS built-in function or a
FSO function depends on the operation to be performed. In addition, the combination of calling IWS built-in
functions from VBScript to be used as parameters for a FSO method or property is quite powerful,
performing operations that neither approach alone would easily support.

Note:
• Since IWS does not have a comparable TextStream object, many of the TextStream object Properties have

no corresponding function in IWS.

