
JavaScript & DHTML Cookbook
™

SECOND EDITION

Danny Goodman

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

JavaScript and DHTML Cookbook™, Second Edition
by Danny Goodman

Copyright © 2007, 2003 Danny Goodman. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Tatiana Apandi
Production Editor: Laurel R.T. Ruma
Proofreader: Audrey Doyle
Indexer: Ellen Troutman Zaig

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

April 2003: First Edition.
August 2007: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, JavaScript and DHTML Cookbook, the image of
a howler monkey, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51408-5

ISBN-13: 978-0-596-51408-2

[M]

v

Table of Contents

Preface . xiii

1. Strings . 1
1.1 Concatenating (Joining) Strings 4
1.2 Improving String Handling Performance 6
1.3 Accessing Substrings 7
1.4 Changing String Case 8
1.5 Testing Equality of Two Strings 9
1.6 Testing String Containment Without Regular Expressions 11
1.7 Testing String Containment with Regular Expressions 13
1.8 Searching and Replacing Substrings 14
1.9 Using Special and Escaped Characters 15

1.10 Reading and Writing Strings for Cookies 17
1.11 Converting Between Unicode Values and String Characters 20
1.12 Encoding and Decoding URL Strings 21
1.13 Encoding and Decoding Base64 Strings 23

2. Numbers and Dates . 27
2.1 Converting Between Numbers and Strings 31
2.2 Testing a Number’s Validity 33
2.3 Testing Numeric Equality 34
2.4 Rounding Floating-Point Numbers 35
2.5 Formatting Numbers for Text Display 36
2.6 Converting Between Decimal and Hexadecimal Numbers 39
2.7 Generating Pseudorandom Numbers 41
2.8 Calculating Trigonometric Functions 41
2.9 Creating a Date Object 42

vi | Table of Contents

2.10 Calculating a Previous or Future Date 43
2.11 Calculating the Number of Days Between Two Dates 45
2.12 Validating a Date 47

3. Arrays and Objects . 51
3.1 Creating a Simple Array 54
3.2 Creating a Multidimensional Array 56
3.3 Converting Between Arrays and Strings 57
3.4 Doing Something with the Items in an Array 59
3.5 Sorting a Simple Array 61
3.6 Combining Arrays 63
3.7 Dividing Arrays 64
3.8 Creating a Custom Object 65
3.9 Simulating a Hash Table for Fast Array Lookup 69

3.10 Doing Something with a Property of an Object 71
3.11 Sorting an Array of Objects 72
3.12 Customizing an Object’s Prototype 74
3.13 Converting Arrays and Custom Objects to Strings 79
3.14 Using Objects to Reduce Naming Conflicts 82

4. Variables, Functions, and Flow Control . 85
4.1 Creating a JavaScript Variable 85
4.2 Creating a Named Function 89
4.3 Nesting Named Functions 92
4.4 Creating an Anonymous Function 93
4.5 Delaying a Function Call 94
4.6 Branching Execution Based on Conditions 97
4.7 Handling Script Errors Gracefully 101
4.8 Improving Script Performance 103

5. Browser Feature Detection . 107
5.1 Detecting the Browser Brand 113
5.2 Detecting an Early Browser Version 113
5.3 Detecting the Internet Explorer Version 115
5.4 Detecting the Mozilla Version 116
5.5 Detecting the Safari Version 118
5.6 Detecting the Opera Version 119
5.7 Detecting the Client Operating System 120
5.8 Detecting Object Support 121

Table of Contents | vii

5.9 Detecting Object Property and Method Support 124
5.10 Detecting W3C DOM Standard Support 126
5.11 Detecting the Browser Written Language 127
5.12 Detecting Cookie Availability 128
5.13 Defining Browser- or Feature-Specific Links 129
5.14 Testing on Multiple Browser Versions 130

6. Managing Browser Windows . 132
6.1 Living with Browser Window Control Limitations 135
6.2 Setting the Main Window’s Size 136
6.3 Positioning the Main Window 137
6.4 Maximizing the Main Window 138
6.5 Creating a New Window 139
6.6 Bringing a Window to the Front 143
6.7 Communicating with a New Window 144
6.8 Communicating Back to the Main Window 147
6.9 Using Internet Explorer Modal/Modeless Windows 148

6.10 Simulating a Cross-Browser Modal Dialog Window 151
6.11 Simulating a Window with Layers 158

7. Managing Multiple Frames . 173
7.1 Creating a Blank Frame in a New Frameset 178
7.2 Changing the Content of One Frame from Another 179
7.3 Changing the Content of Multiple Frames at Once 181
7.4 Replacing a Frameset with a Single Page 182
7.5 Avoiding Being “Framed” by Another Site 183
7.6 Ensuring a Page Loads in Its Frameset 184
7.7 Reading a Frame’s Dimensions 187
7.8 Resizing Frames 188
7.9 Setting Frameset Specifications Dynamically 192

8. Dynamic Forms . 194
8.1 Auto-Focusing the First Text Field 197
8.2 Performing Common Text Field Validations 198
8.3 Preventing Form Submission upon Validation Failure 204
8.4 Auto-Focusing an Invalid Text Field Entry 207
8.5 Using a Custom Validation Object 208
8.6 Changing a Form’s Action 213
8.7 Blocking Submissions from the Enter Key 214

viii | Table of Contents

8.8 Advancing Text Field Focus with the Enter Key 215
8.9 Submitting a Form by an Enter Key Press in Any Text Box 216

8.10 Disabling Form Controls 217
8.11 Hiding and Showing Form Controls 219
8.12 Allowing Only Numbers (or Letters) in a Text Box 221
8.13 Auto-Tabbing for Fixed-Length Text Boxes 223
8.14 Changing select Element Content 224
8.15 Copying Form Data Between Pages 227

9. Managing Events . 231
9.1 Equalizing the IE and W3C Event Models 236
9.2 Initiating a Process After the Page Loads 240
9.3 Appending Multiple Load Event Handlers 242
9.4 Determining the Coordinates of a Click Event 244
9.5 Preventing an Event from Performing Its Default Behavior 248
9.6 Blocking Duplicate Clicks 251
9.7 Determining Which Element Received an Event 252
9.8 Determining Which Mouse Button Was Pressed 254
9.9 Reading Which Character Key Was Typed 256

9.10 Reading Which Noncharacter Key Was Pressed 257
9.11 Determining Which Modifier Keys Were Pressed During an Event 260
9.12 Determining the Element the Cursor Rolled From/To 262
9.13 Synchronizing Sounds to Events 266

10. Page Navigation Techniques . 268
10.1 Loading a New Page or Anchor 271
10.2 Keeping a Page Out of the Browser History 273
10.3 Using a select Element for Navigation 274
10.4 Passing Data Between Pages via Cookies 276
10.5 Passing Data Between Pages via Frames 278
10.6 Passing Data Between Pages via URLs 280
10.7 Creating a Contextual (Right-Click) Menu 283
10.8 Creating Drop-Down Navigation Menus 291
10.9 Providing Navigation Trail Menus 305

10.10 Creating Expandable Menus 308
10.11 Creating Collapsible XML Menus 320

Table of Contents | ix

11. Managing Style Sheets . 331
11.1 Assigning Style Sheet Rules to an Element Globally 333
11.2 Assigning Style Sheet Rules to a Subgroup of Elements 334
11.3 Assigning Style Sheet Rules to an Individual Element 336
11.4 Importing External Style Sheets 337
11.5 Importing Browser- or Operating System-Specific Style Sheets 338
11.6 Changing Imported Style Sheets After Loading 340
11.7 Enabling/Disabling Style Sheets 341
11.8 Toggling Between Style Sheets for an Element 342
11.9 Overriding a Style Sheet Rule 343

11.10 Turning Arbitrary Content into a Styled Element 344
11.11 Creating Center-Aligned Body Elements 345
11.12 Reading Effective Style Sheet Property Values 346
11.13 Forcing Recent Browsers into Standards-Compatibility Mode 348

12. Visual Effects for Stationary Content . 351
12.1 Precaching Images 354
12.2 Swapping Images (Rollovers) 356
12.3 Reducing Rollover Image Downloads with JavaScript 358
12.4 Reducing Rollover Image Downloads with CSS 362
12.5 Dynamically Changing Image Sizes 366
12.6 Changing Text Style Properties 367
12.7 Offering Body Text Size Choices to Users 370
12.8 Creating Custom Link Styles 374
12.9 Changing Page Background Colors and Images 375

12.10 Hiding and Showing Elements 378
12.11 Adjusting Element Transparency 379
12.12 Creating Transition Visual Effects 381
12.13 Drawing Charts in the Canvas Element 385

13. Positioning HTML Elements . 392
13.1 Making an Element Positionable in the Document Space 397
13.2 Connecting a Positioned Element to a Body Element 398
13.3 Controlling Positioning via a DHTML JavaScript Library 400
13.4 Deciding Between div and span Containers 407
13.5 Adjusting Positioned Element Stacking Order (Z-order) 409
13.6 Centering an Element on Top of Another Element 410
13.7 Centering an Element in a Window or Frame 412

x | Table of Contents

13.8 Determining the Location of a Nonpositioned Element 414
13.9 Animating Straight-Line Element Paths 415

13.10 Animating Circular Element Paths 419
13.11 Creating a Draggable Element 421
13.12 Scrolling div Content 426
13.13 Creating a Custom Scrollbar 432
13.14 Creating a Slider Control 445

14. Creating Dynamic Content . 452
14.1 Writing Dynamic Content During Page Loading 453
14.2 Creating New Page Content Dynamically 454
14.3 Including External HTML Content 456
14.4 Embedding XML Data 458
14.5 Embedding Data As JavaScript Objects 460
14.6 Transforming XML Data into HTML Tables 463
14.7 Transforming JavaScript Objects into HTML Tables 466
14.8 Converting an XML Node Tree to JavaScript Objects 469
14.9 Creating a New HTML Element 470

14.10 Creating Text Content for a New Element 473
14.11 Creating Mixed Element and Text Nodes 474
14.12 Inserting and Populating an iframe Element 476
14.13 Getting a Reference to an HTML Element Object 478
14.14 Referencing All Elements of the Same Class 480
14.15 Replacing Portions of Body Content 482
14.16 Removing Body Content 483
14.17 Using XMLHttpRequest for a REST Request 485
14.18 Using XMLHttpRequest for a SOAP Call 488
14.19 Sorting Dynamic Tables 491
14.20 Walking the Document Node Tree 494
14.21 Capturing Document Content 498

15. Dynamic Content Applications . 500
15.1 Displaying a Random Aphorism 501
15.2 Converting a User Selection into an Arbitrary Element 504
15.3 Automating the Search-and-Replace of Body Content 506
15.4 Designing a User-Editable Content Page 512
15.5 Creating a Slide Show 515
15.6 Auto-Scrolling the Page 523
15.7 Greeting Users with Their Time of Day 524

Table of Contents | xi

15.8 Displaying the Number of Days Before Christmas 525
15.9 Displaying a Countdown Timer 527

15.10 Creating a Calendar Date Picker 534
15.11 Displaying an Animated Progress Bar 542

A. Keyboard Event Character Values . 548

B. Keyboard Key Code Values . 550

C. ECMAScript Reserved Keywords . 552

Index . 553

xiii

Preface1

It may be difficult to imagine that a technology born as recently as 1995 would have
had enough of a life cycle to experience a rise and fall in popularity, followed now by
an amazing renaissance. Client-side scripting, begun initially with JavaScript embed-
ded in Netscape Navigator 2, has experienced such a roller coaster ride. A number of
early incompatibilities among major browsers caused many a content author’s head
to ache. But we learned to live with it, as a long period of stability in one platform—
Internet Explorer 6, in particular—meant that we could use our well-worn compati-
bility workarounds without cause for concern. Another stabilizing factor was the
W3C DOM Level 2 specification, which remained a major target for browser makers
not following Microsoft’s proprietary ways. Mozilla, Safari, and Opera used the
W3C DOM as the model to implement, even if Microsoft didn’t seem to be in a
hurry to follow suit in all cases.

Two factors have contributed to the rebirth of interest in JavaScript and Dynamic
HTML. The first is the wide proliferation of broadband connections. Implementing
large client-side applications in JavaScript can take a bunch of code, all of which
must be downloaded to the browser. At dial-up speeds, piling a 50–75 kilobyte script
onto a page could seriously degrade perceived performance; at broadband speeds,
nobody notices the difference.

But without a doubt, the major attraction these days is the now widespread availabil-
ity in all mainstream browsers of a technology first implemented by Microsoft: the
XMLHttpRequest object. It’s a mouthful (leading some to refer to it as, simply, XHR),
but it allows background communication between the browser and server so that a
script can request incremental data from the server and update only a portion of a
page. It is far more efficient than downloading a bunch of data with the page and less
visually disruptive than the old submit-and-wait-for-a-new-page process. To help put
a label on the type of applications one can build with this technology, the term Asyn-
chronous JavaScript and XML (Ajax) was coined. In truth, Ajax is simply a catchy
handle for an existing technology.

xiv | Preface

Ajax has opened the floodgates for web developers. Perhaps the most popular first
implementation was Google Maps, whereby you could drag your way around a map,
while scripts and the XMLHttpRequest object in the background downloaded adjacent
blocks of the map in anticipation of your dragging your way over there. It was
smooth, fast, and a real joy to use. And now, more powerful applications—word
processors, spreadsheets, email clients—are being built with JavaScript and
DHTML.

JavaScript in the browser was originally designed for small scripts to work on small
client-side tasks. It is still used that way quite a bit around the Web. Not every appli-
cation is a mega DHTML app. Therefore, this collection of recipes still has plenty of
small tasks in mind. At the same time, however, many recipes from the first edition
have been revised with scripting practices that will serve both the beginner and the
more advanced scripter well. Examples prepare you for the eventuality that your
scripting skills will grow, perhaps leading to a mega DHTML app in the future. Even
so, there are plenty of times when you need an answer to that age-old programming
question: “How do I...?”

About You
Client-side scripting and DHTML are such broad and deep subjects that virtually
every reader coming to this book will have different experience levels, expectations,
and perhaps, fears. No book could hope to anticipate every possible question from
someone wishing to use these technologies in his web pages. Therefore, this book
makes some assumptions about readers at various stages of their experience:

• You have at least rudimentary knowledge of client-side JavaScript concepts. You
know how to put scripts into a web page—where <script> tags go, as well as
how to link an external .js file into the current page. You also know what vari-
ables, strings, numbers, Booleans, arrays, and objects are—even if you don’t
necessarily remember the precise way they’re used with the JavaScript language.
This book is not a tutorial, but you can learn a lot from reading the introduc-
tions to each chapter and the discussions following each solution.

• You may be a casual scripter, who wants to put a bit of intelligence into a web
page for some project or other. You don’t use the language or object model every
day, so you need a refresher about even some simple things, such as the correct
syntax for creating an array or preloading images for fast image rollover effects.

• While surfing the Web, you may have encountered some scripted DHTML effect
that you’d like to implement or adapt for your own pages, but either you can’t
decipher the code you see or you want to “roll your own” version to avoid copy-
right problems with the code’s original owner. If the effect or technique you’ve
seen is fairly popular, this cookbook probably has a recipe for it. You can use these
recipes as they are or modify them to fit your designs. There are no royalties or

About the Recipes | xv

copyrights to worry about, as long as you don’t offer these recipes to others as
part of a collection of scripts. Of course, if you wish to acknowledge this book in
your source code comments, that would be great!

• You may be an experienced web developer who has probed gingerly, if at all,
into client-side scripting. The horror stories of yore about browser incompatibili-
ties have kept your focus entirely on server-side programming. But now that so
many mainstream sites are using client-side scripting to improve the user experi-
ence, you are ready to take another look at what is out there.

• At the far end of the spectrum, you may be an experienced client-side DHTML
developer in search of new ideas and techniques. For instance, you may have
developed exclusively for the Internet Explorer browser on the Windows plat-
form, but you wish to gravitate toward standards-compatible syntax for future
coding.

Virtually every reader will find that some recipes in this book are too simple and oth-
ers are too complex for their experience level. I hope the more difficult ones chal-
lenge you to learn more and improve your skills. Even if you think you know it all,
be sure to check the discussions of the easier recipes for tips and insights that may be
new to you.

About the Recipes
It’s helpful for a reader to know upfront what biases an author has on the book’s
subject. To carry the cookbook metaphor too far, just as a culinary chef has identifi-
able procedures and seasonings, so do I format my code in a particular way and
employ programming styles that I have adopted and updated over the years.

More important than scripting style, however, are the implementation threads that
weave their way throughout the code examples. Because these examples may serve as
models for your own development, they are written for maximum clarity to make it
easy (I hope) for you to follow the execution logic. Names assigned to variables,
functions, objects, and the like are meant to convey their purpose within the context
of the example. One of the goals of coding is that the operation of a program should
be self-evident to someone else reading the code, even if that “someone else” is the
programmer who revisits the code six months later to fix a bug or add a feature.
There’s no sense in being cryptically clever if no one can understand what you mean
by assigning some value to a variable named x.

This book unabashedly favors the W3C DOM way of addressing document objects.
You can use this format to reference element objects in browsers starting with
Microsoft Internet Explorer 5 and the other mainstream browsers addressed in this
edition (Mozilla-based browsers, Safari, and Opera 7 or later), which means that the
vast majority of browsers in use today support this standard. Where IE (including

xvi | Preface

IE 7) does not support the standard (as in handling events), all recipes here include
efficient cross-browser implementations. You won’t find too much in the way of IE-
only solutions, especially if they would cover only the Windows version of IE.

The long period of browser stability we have enjoyed since the first edition means
that visitors to public sites almost never use what are now antique browsers—IE
prior to 5.5 and Netscape Navigator 4 or earlier. All recipes are optimized for the
current browsers, but they also try to prevent hassles for anyone driving by in her
steam-powered browser.

One credo dominates the recipes throughout this book: scripting must add value to
static content on the page. Don’t look to this book for scripts that cycle background
colors to nauseate visitors or make elements bounce around the page while singing
“Happy Birthday.” You may be able to figure out how to do those horrible things
from what you learn in this book, but that’s your business. The examples here, while
perhaps conservative, are intended to solve real-world problems that scripters and
developers face in professional-quality applications.

The scripting techniques and syntax you see throughout this book are designed for
maximum forward compatibility. It’s difficult to predict the future of any technol-
ogy, but the W3C DOM and ECMAScript standards, as implemented in today’s lat-
est browsers, are the most stable platforms on which to build client-side applications
since client-side scripting began. With a bit of code added here and there to degrade
gracefully in older browsers, your applications should be running fine well into the
future.

What’s in This Book
The first four chapters focus on fundamental JavaScript topics. In Chapter 1, Strings,
you will see the difference between a string value and a string object. Regular expres-
sions play a big role in string parsing for these recipes. You will also see a reusable
library for reading and writing string data to cookies. Chapter 2, Numbers and Dates,
includes recipes for handling number formatting and conversions, as well as date cal-
culations that get used in later recipes. Perhaps the most important core JavaScript
language chapter is Chapter 3, Arrays and Objects. Recipes in this chapter provide
the keys to one- and multidimensional array creation, array sorting, object creation,
hash table simulation, and exploration of the prototype inheritance powers of
objects. You also see how creating custom objects for your libraries can reduce
potential naming conflicts as projects grow. Chapter 4, Variables, Functions, and
Flow Control, includes a recipe for improving overall script performance.

Chapter 5 through Chapter 8 provide solutions for problems that apply to almost all
scriptable browsers. In Chapter 5, Browser Feature Detection, you will learn how to
free yourself of the dreaded “browser sniffing” habit and use forward-compatible
techniques for determining whether the browser is capable of running a block of

Browser Platforms | xvii

script statements. If multiple windows are your nemesis, then Chapter 6, Managing
Browser Windows, provides plenty of ideas to handle communication between win-
dows. A few recipes present suggestions for modal windows (or facsimiles thereof).
Not everyone is a frame lover, but Chapter 7, Managing Multiple Frames, may be of
interest to all, especially if you don’t want your site being “framed” by another site.
Intelligent forms—one of the driving forces behind the creation of client-side script-
ing—are the subject of Chapter 8, Dynamic Forms. Updated to modern techniques,
recipes include form validation (with or without regular expressions) and some cool
but subtle techniques found on some of the most popular web sites on the Internet.

Interactivity with the user is driven by event processing, and Chapter 9, Managing
Events, covers the most common event processing tasks you’ll encounter with
DHTML scripting. Events (and one of the libraries shown in Chapter 9) ripple
through most of the remaining chapters’ recipes. That includes many recipes in
Chapter 10, Page Navigation Techniques, where you’ll see how to implement a vari-
ety of menuing designs and pass data from one page to the next. Chapter 11, Manag-
ing Style Sheets, provides recipes for both basic and advanced style sheet techniques
as they apply to dynamic content, including how to load a browser- or operating sys-
tem-specific stylesheet into the page. Style sheets play a big role in Chapter 12, Visual
Effects for Stationary Content, where recipes abound for image rollovers and user-
controlled font sizes, to name a couple.

Chapter 13, Positioning HTML Elements, addresses numerous challenges in keeping
positioned elements under tight rein. A positioning library recipe is used extensively
throughout the rest of the book, including more recipes in this chapter for animating
elements, scrolling content, and creating a draggable element. In Chapter 14, Creat-
ing Dynamic Content, the W3C DOM and XMLHttpRequest object get good workouts
with recipes for tasks such as embedding JavaScript and XML data within a docu-
ment, transforming data into renderable HTML content, and sorting HTML tables
instantly on the client. Additional dynamic content recipes come in Chapter 15,
Dynamic Content Applications, where more complex recipes show you how to use
DHTML for a slide show, a user-editable document, and a pop-up calendar date
picker, among others.

Browser Platforms
Freed from having to worry much about compatibility with very old browsers, the
goal of each recipe’s design in this edition is to work in the following browsers:

• Microsoft Internet Explorer 6 or later

• Mozilla 1.7.5 (Firefox 1.0, Netscape 8.0, Camino 1.0) or later

• Apple Safari 1.2 or later (including the Windows version)

• Opera 7 or later

xviii | Preface

Many of the simpler scripts in early chapters work in browsers all the way back to
Netscape Navigator 2, but that is hardly the focus here. Occasionally, a recipe may
require a later version of Mozilla, Safari, or Opera, as noted clearly in the recipe. In
those cases, the recipe is designed to prevent script errors from appearing in slightly
older versions of these modern browsers.

You will also see many references in this book to designing pages to convey mission-
critical information for browsers that either aren’t equipped with JavaScript or have
scripting turned off. Beyond the browsers mentioned in the previous list, there are a
lot of users of browsers in portable wireless devices and browsers for users with
vision or motor skill impairments. Always keep accessibility in mind with your
designs.

Conventions Used in This Book
The following typographical conventions are used throughout this book:

Italic
Indicates pathnames, filenames, program names, sample email addresses, and
sample web sites; and new terms where they are defined

Constant width
Indicates any HTML, CSS, or scripting term, including HTML tags, attribute
names, object names, properties, methods, and event handlers; and all HTML
and script code listings

Constant width italic
Indicates method and function parameters or assigned value placeholders that
represent an item to be replaced by a real value in actual use

Constant width bold
Used to draw attention to specific parts of code

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Request for Comments | xix

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “JavaScript & DHTML Cookbook,
Second Edition, by Danny Goodman. Copyright 2007 Danny Goodman, 978-0-596-
51408-2.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

Request for Comments
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-928-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, downloadable examples, and
any additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596514082

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, resource centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

xx | Preface

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
The physical act of writing a book—converting thoughts to keystrokes and charac-
ters on the screen—is a solitary one. But once the first draft is submitted, an army of
dedicated professionals join the author in shaping the work into a finished product.
When the army marches under the O’Reilly banner, the author can be assured of a
commitment to quality, even from many individuals whom the author never meets.

I extend my sincere appreciation to my editor, Tatiana Apandi, who magically kept
me on schedule. I also thank Rob Hoexter and Sergio Pereira, who provided invalu-
able contributions to improving the writing and scripting.

Much of the impetus for selecting the recipes for this book has come from the script-
ing public. Having read thousands of online forum threads since 1996, having lis-
tened to readers of my JavaScript and Dynamic HTML books for years, and having
observed search queries that lead visitors to my web site (http://www.dannyg.com), I
believe I have distilled the essence of the needs of most client-side scripters. Your
pain, confusion, and frustration with the technologies have not gone unnoticed. I
hope this book provides the relief and understanding you deserve.

1

Chapter 1 CHAPTER 1

Strings1

1.0 Introduction
A string is one of the fundamental building blocks of data that JavaScript works
with. Any script that touches URLs or user entries in form text boxes works with
strings. Most document object model properties are string values. Data that you read
or write to a browser cookie is a string. Strings are everywhere!

The core JavaScript language has a repertoire of the common string manipulation
properties and methods that you find in most programming languages. You can tear
apart a string character by character if you like, change the case of all letters in the
string, or work with subsections of a string. Most scriptable browsers now in circula-
tion also benefit from the power of regular expressions, which greatly simplify
numerous string manipulation tasks—once you surmount a fairly steep learning
curve of regular expression syntax.

Your scripts will commonly be handed values that are already string data types. For
instance, if you need to inspect the text that a user has entered into a form’s text box,
the value property of that text box object returns a value already typed as a string.
All properties and methods of any string object are immediately available for your
scripts to operate on that text box value.

Creating a String
If you need to create a string, you have a couple of ways to accomplish it. The sim-
plest way is to simply assign a quoted string of characters (known as a string literal)
to a variable (or object property):

var myString = "Fluffy is a pretty cat.";

Quotes around a JavaScript string can be either single or double quotes, but each
pair must be of the same type. Therefore, both of the following statements are
acceptable:

var myString = "Fluffy is a pretty cat.";
var myString = 'Fluffy is a pretty cat.';

2 | Chapter 1: Strings

But the following mismatched pair is illegal and throws a script error:

var myString = "Fluffy is a pretty cat.';

Having the two sets of quote symbols is handy when you need to embed one string
within another. The following document.write() statement that would execute while
a page loads into the browser has one outer string (the entire string being written by
the method) and nested sets of quotes that surround a string value for an HTML ele-
ment attribute:

document.write("");

You are also free to reverse the order of double and single quotes as your style
demands. Thus, the above statement would be interpreted the same way if it were
written as follows:

document.write('');

Two more levels of nesting are also possible if you use escape characters with the
quote symbols. See Recipe 1.9 for examples of escaped character usage in JavaScript
strings.

If you need to include only one instance of a single or double quote within a string
(e.g., "Welcome to Joe's Diner."), you can do so without special characters. This is
because upon encountering the start of a string, JavaScript treats ensuing characters—
up to the next occurrence of the same quote symbol that starts the string—as part of
the string. Trouble arises, however, when two or more alternate quote symbols are
nested within the string (e.g., "Welcome to Joanne's and Joe's Diner."). In such
cases, you would have to use escaped apostrophes to keep the string together
("Welcome to Joanne\'s and Joe\'s Diner."). Or, you can always use escaped quotes
(even just one) inside a string, and then you won’t have to worry about the balanc-
ing act.

Technically speaking, the strings described so far aren’t precisely string objects in the
purest sense of JavaScript. They are string values, which, as it turns out, lets the
strings use all of the properties and methods of the global String object which inhab-
its every scriptable browser window. Use string values for all of your JavaScript text
manipulation. In a few rare instances, however, a JavaScript string value isn’t quite
good enough. You may encounter this situation if you are using JavaScript to com-
municate with a Java applet, and one of the applet’s public methods requires an
argument as a string data type. In this case, you might need to create a full-fledged
instance of a String object and pass that object as the method argument. To create
such an object, use the constructor function of the String object:

var myString = new String("Fluffy is a pretty cat.");

The data type of the myString variable after this statement executes is object rather
than string. But this object inherits all of the same String object properties and
methods that a string value has, and works fine with a Java applet.

Introduction | 3

Regular Expressions
For the uninitiated, regular expressions can be cryptic and confusing. This isn’t the
forum to teach you regular expressions from scratch, but perhaps the recipes in this
chapter that demonstrate them will pique your interest enough to pursue their study.

The purpose of a regular expression is to define a pattern of characters that you can
then use to compare against an existing string. If the string contains characters that
match the pattern, the regular expression tells you what the text is that matches the
pattern and where the match occurs within the string, facilitating further manipula-
tion (perhaps a search-and-replace operation). Regular expression patterns are pow-
erful entities because they let you go much further than simply defining a pattern of
fixed characters. For example, you can define a pattern to be a sequence of five
numerals bounded on each side by whitespace. Another pattern can define the for-
mat for a typical email address, regardless of the length of the username or domain,
but the full domain must include at least one period.

The cryptic part of regular expressions is the notation they use to specify the various
conditions within the pattern. JavaScript regular expressions notation is nearly iden-
tical to regular expressions found in languages such as Perl. The syntax is the same
for all except for some of the more esoteric uses. One definite difference is the way
you create a regular expression object from a pattern. You can use either the formal
constructor function or the more compact literal syntax. The following two syntax
examples create the same regular expression object:

var re = /pattern/ [g | i | m]; // Literal syntax
var re = new RegExp(["pattern", ["g"| "i" | "m"]]); // Formal constructor

The optional trailing characters (g, i, and m) indicate whether:

g The pattern should be applied globally (i.e., to every instance of the pattern in a
string)

i The pattern is case-insensitive

m Each physical line of the target string is treated as the start of a string

If you have been exposed to regular expressions in the past, Table 1-1 lists the regu-
lar expression pattern notation available in today’s browsers.

Table 1-1. Regular expression notation

Character Matches Example

\b Word boundary /\bto/ matches “tomorrow”

/to\b/ matches “Soweto”

/\bto\b/ matches “to”

\B Word nonboundary /\Bto/ matches “stool” and “Soweto”

/to\B/ matches “stool” and “tomorrow”

/\Bto\B/ matches “stool”

\d Numeral 0 through 9 /\d\d/ matches “42”

4 | Chapter 1: Strings

See Recipes 1.6 through 1.8, as well as Recipe 8.2, to see how regular expressions can
empower a variety of string examination operations with less overhead than more
traditional string manipulations. For in-depth coverage of regular expressions, see
Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly).

1.1 Concatenating (Joining) Strings

Problem
You want to join together two strings or accumulate one long string from numerous
sequential pieces.

Solution
Within a single statement, use the plus (+) operator to concatenate multiple string
values:

var longString = "One piece " + "plus one more piece.";

To accumulate a string value across multiple statements, use the add-by-value (+=)
operator:

var result = "";
result += "My name is " + document.myForm.myName.value;
result += " and my age is " + document.myForm.myAge.value;

\D Nonnumeral /\D\D/ matches “to”

\s Single whitespace /under\sdog/ matches “under dog”

\S Single nonwhitespace /under\Sdog/ matches “under-dog”

\w Letter, numeral, or underscore /1\w/ matches “1A”

\W Not a letter, numeral, or underscore /1\W/ matches “1%”

. Any character except a newline /../ matches “Z3”

[...] Any one of the character set in brackets /J[aeiou]y/ matches “Joy”

[^...] Negated character set /J[^eiou]y/ matches “Jay”

* Zero or more times /\d*/ matches “”, “5”, or “444”

? Zero or one time /\d?/ matches “” or “5”

+ One or more times /\d+/ matches “5” or “444”

{n} Exactly n times /\d{2}/ matches “55”

{n,} n or more times /\d{2,}/ matches “555”

{n,m} At least n, at most m times /\d{2,4}/ matches “5555”

^ At beginning of a string or line /^Sally/ matches “Sally says...”

$ At end of a string or line /Sally.$/ matches “Hi, Sally.”

Table 1-1. Regular expression notation (continued)

Character Matches Example

1.1 Concatenating (Joining) Strings | 5

The add-by-value operator is fully backward-compatible and is more compact than
the less elegant approach:

result = result + "My name is " + document.myForm.myName.value;

Discussion
You can use multiple concatenation operators within a single statement as needed to
assemble your larger string, but you must be cautious about word wrapping of your
source code. Because JavaScript interpreters have a built-in feature that automati-
cally inserts semicolons at the logical ends of source code lines, you cannot simply
break a string with a carriage return character in the source code without putting the
syntactically correct breaks in the code to indicate the continuation of a string value.
For example, the following statement and format triggers a syntax error as the page
loads:

var longString = "One piece " + "plus one
more piece.";

The interpreter treats the first line as if it were:

var longString = "One piece " + "plus one;

To the interpreter, this statement contains an unterminated string and invalidates
both this statement and anything coming after it. To break the line correctly, you
must terminate the trailing string, and place a plus operator as the final character of
the physical source code line (do not put a semicolon there because the statement
isn’t finished yet). Also, be sure to start the next line with a quote symbol:

var longString = "One piece " + "plus one " +
"more piece.";

Additionally, whitespace outside of the quoted string is ignored. Thus, if you wish to
format the source code for improved readability, you can even indent the second line
without affecting the content of the string value:

var longString = "One piece " + "plus one " +
 "more piece.";

Source code carriage returns do not influence string text. If you want to include a
carriage return in a string, you need to include one of the special escaped characters
(e.g., \n) in the string. For example, to format a string for a confirm dialog box so
that it creates the illusion of two paragraphs, include a pair of the special newline
characters in the string:

var confirmString = "You did not enter a response to the last " +
 "question.\n\nSubmit form anyway?";

Note that this kind of newline character is for string text that appears in dialog boxes
or other string-only containers. It is not a newline character for text that is to be ren-
dered as HTML content. For that kind of newline, you must explicitly include a

tag in the string:

var htmlString = "First line of string.
Second line of string.";

6 | Chapter 1: Strings

See Also
Recipe 1.2 for a technique to improve performance; Recipe 1.9 to see how to include
special control characters (such as a carriage return) in a string value.

1.2 Improving String Handling Performance

Problem
You wish to improve the execution speed of routines manipulating large amounts of
text.

Solution
Use a JavaScript array as a temporary storage device when accumulating large
chunks of text. The push() method of an array object allows you to assemble indi-
vidual text blocks in the desired order—the method appends to the end of the array.
When it comes time to use the full text (e.g., to assign a large string of HTML code
to the innerHTML property of an element object), use the join() method of the array
object, specifying an empty string as the delimiter character.

Although the technique is intended for large text blocks, the following example uses
small strings to demonstrate the sequence:

var txtArray = new Array();
txtArray.push("<tr>");
txtArray.push("<td>Boston</td><td>24</td><td>10</td><td>Partly Cloudy</td>");
txtArray.push("</tr>");
txtArray.push("<tr>");
txtArray.push("<td>New York</td><td>21</td><td>14</td><td>Snow</td>");
txtArray.push("</tr>");
document.getElementById("weatherTBody").innerHTML = txtArray.join("");
txtArray = null;

The sequence ends by emptying the array so that the browser will free up memory
occupied by the array.

Discussion
String concatenation, especially when it involves either large amounts of text or an
inordinate amount of pieces being stitched together via the add-by-value (+=) opera-
tor, can be a performance hog in browsers. You may never notice the problem if your
strings are not very large, but the signs start to appear when you use standard string
concatenation in repeat loops that assemble huge strings. These situations are excel-
lent candidates for using an array as the temporary string data holder. Scripts typi-
cally execute array manipulation with much better performance than string
manipulation.

1.3 Accessing Substrings | 7

Note that, just as with strings, your code is responsible for handling details, such as
spaces between words in joined text. If spaces are needed, they should go in the text
being pushed onto the end of the array. Alternatively, if a space is needed between
absolutely every string stored in the array, you can specify a space character as the
parameter to the join() method:

var finalString = txtArray.join(" ");

The character you specify as the parameter (if any) is inserted between array items as
they are output as a single string.

Invoking the join() method does not alter the contents of the array. To minimize
the impact on browser memory once the array’s contents are no longer needed, you
should assign null to the array, thus allowing the browser’s garbage collector to do
its job.

1.3 Accessing Substrings

Problem
You want to obtain a copy of a portion of a string.

Solution
Use the substring() method (in all scriptable browsers) to copy a segment starting at
a particular location and ending either at the end of the string (omitting the second
parameter does that) or at a fixed position within the string, counting from the start
of the string:

var myString = "Every good boy does fine.";
var section = myString.substring(0, 10); // section is now "Every good"

Use the slice() method (in IE 4 or later and all modern scriptable browsers) to set
the end position at a point measured from the end of the string, using a negative
value as the second parameter:

var myString = "Every good boy does fine.";
var section = myString.slice(11, -6); // section is now "boy does"

Use the nonstandard, but widely supported, variant called substr() to copy a seg-
ment starting at a particular location for a string length (the second parameter is an
integer representing the length of the substring):

var myString = "Every good boy does fine.";
var section = myString.substr(6, 4); // section is now "good"

If the sum of the two arguments exceeds the length of the string, the method returns
a string from the start point to the end of the string.

8 | Chapter 1: Strings

Discussion
Parameters for the ECMA-compatible slice() and substring() methods are num-
bers that indicate the zero-based start and end positions within the string from which
the extract comes. The first parameter, indicating the start position, is required.
When you use two positive integer values for the slice() method arguments (and
the first argument is smaller than the second), you receive the same string value as
the substring() method with the same arguments.

Note that the integer values for substring() and slice() act as though they point to
spaces between characters. Therefore, when a substring() method’s arguments are
set to 0 and 4, it means that the substring starts to the right of the “zeroeth” position
and ends to the left of the fourth position; the length of the string value returned is
four characters, as shown in Figure 1-1.

If you should supply argument values for the substring() or substr() methods in an
order that causes the first argument to be larger than the second, the JavaScript inter-
preter automatically reverses the order of arguments so that the end pointer value is
always larger than the start pointer. The slice() method isn’t as forgiving and
returns an empty string.

None of the substring methods modifies the original string object or value in any
way. This is why you must capture the returned value in a variable, or apply the
returned value as an argument to some other function or method.

See Also
Recipe 1.7 for testing whether a string contains a substring.

1.4 Changing String Case

Problem
You want to convert a string to all upper- or lowercase letters.

Figure 1-1. How substring end points are calculated

Every good

0 1 2 3 4 5 6 7 8 9 10

substring(0, 4)

1.5 Testing Equality of Two Strings | 9

Solution
Use the two dedicated String object methods, toLowerCase() and toUpperCase(), for
case changes:

var myString = "New York";
var lcString = myString.toLowerCase();
var ucString = myString.toUpperCase();

Both methods return modified copies of the original string, leaving the original
intact. If you want to replace the value of a variable with a case-converted version of
the original string (and thus eliminate the original string), reassign the results of the
method to the same variable:

myString = myString.toLowerCase();

Do not, however, redeclare the variable with a var keyword.

Discussion
Because JavaScript strings (like just about everything else in the language) are case-
sensitive, it is common to use case conversion for tasks such as testing the equiva-
lency of a string entered into a text box by a user against a known string in your
code. Because the user might include a variety of case variations in the entry, you
need to guard against unorthodox entries by converting the input text to all upper-
case or all lowercase letters for comparison (see Recipe 1.5).

Another common need for case conversion is preparing user entries for submission
to a database that prefers or requires all uppercase (or all lowercase) letters. You can
accomplish this for a user either at the time of entry or during batch validation prior
to submission. For example, an onchange event handler in a text box can convert the
text to all uppercase letters as follows:

<input type="text" name="firstName" id="firstName" size="20" maxlength="25"
 onchange="this.value=this.value.toUpperCase()" />

Simply reassign a converted version of the element’s value to itself.

See Also
Recipe 1.5 for a practical example of case conversion simplifying an important string
task.

1.5 Testing Equality of Two Strings

Problem
You want to compare a user’s text entry against a known string value.

10 | Chapter 1: Strings

Solution
Convert the user input to either all uppercase or all lowercase characters, and then
use the JavaScript equality operator to make the comparison:

if (document.myForm.myTextBox.value.toLowerCase() == "new york") {
 // process correct entry }

By using the results of the case conversion method as one of the operands of the
equality expression, you do not modify the original contents of the text box. (See
Recipe 1.4 if you want to convert the text in the text box to all of one case.)

Discussion
JavaScript has two types of equality operators. The fully backward-compatible, stan-
dard equality operator (==) employs data type conversion in some cases when the
operands on either side are not of the same data type. Consider the following vari-
able assignments:

var stringA = "My dog has fleas.";
var stringB = new String("My dog has fleas.");

These two variables might contain the same series of characters but are different data
types. The first is a string value, while the second is an instance of a String object. If
you place these two values on either side of an equality (==) operator, JavaScript tries
various evaluations of the values to see if there is a coincidence somewhere. In this
case, the two variable values would show to be equal, and the following expression:

stringA == stringB

returns true.

But the other type of equality operator, the strict equality operator (===), performs no
data type conversions. Given the variable definitions above, the following expression
evaluates to false because the two object types differ, even though their payloads are
the same:

stringA === stringB

If the logic of your code requires you to test for the inequality of two strings, you can
use the inequality (!=) and strict inequality (!==) operators. For example, if you want
to process an incorrect entry, the branching flow of your function would be like the
following:

if (document.getElementById("myTextBox").value.toLowerCase() != "new york") {
 // process incorrect entry
}

The same data type conversion issues apply to the inequality and strict inequality
operators as to their opposite partners.

Although the equality and inequality operators go to great lengths to find value
matches, you may prefer to assist the process by performing obvious data type

1.6 Testing String Containment Without Regular Expressions | 11

conversions in advance of the operators. For instance, if you want to see if an entry
to a numeric text box (a string value) is a particular number, you could let the equal-
ity operator perform the conversion for you, as in:

if (document.getElementById("myTextBox").value == someNumericVar) { ... }

Or you could act in advance by converting one of the operands so that both are the
same data type:

if (parseInt(document.getElementById("myTextBox").value) == someNumericVar) { ... }

If you are accustomed to more strongly typed programming languages, you can con-
tinue the practice in JavaScript without penalty, while perhaps boosting your script’s
readability.

See Also
Recipe 2.1 for converting between string and number values; Recipe 3.3 for convert-
ing between strings and arrays; Recipe 3.13 for converting a custom object to a string
value.

1.6 Testing String Containment Without Regular
Expressions

Problem
You want to know if one string contains another, without using regular expressions.

Solution
Use the JavaScript indexOf() string method on the longer string section, passing the
shorter string as an argument. If the shorter string is inside the larger string, the
method returns a zero-based index integer of the start position of the smaller string
within the larger string. If the shorter string is not in the larger string, the method
returns –1.

For logic that needs to branch if the smaller string is not contained by the larger
string, use the following construction:

if (largeString.indexOf(shortString) == -1) {
 // process due to missing shortString
}

For logic that needs to branch if the smaller string is contained somewhere within the
larger string, use the following construction:

if (largeString.indexOf(shortString) != -1) {
 // process due to found shortString
}

12 | Chapter 1: Strings

In either case, you are not interested in the precise position of the short string but
simply whether it is anywhere within the large string.

Discussion
You may also find the integer returned by the indexOf() method to be useful in a
variety of situations. For example, an event handler function that gets invoked by all
kinds of elements in the event-propagation (bubbling) chain wants to process events
that come only from elements whose IDs begin with a particular sequence of charac-
ters. This is an excellent spot to look for the returned value of zero, pointing to the
start of the larger string:

function handleClick(evt) {
 var evt = (evt) ? evt : ((window.event) ? window.event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target : ((evt.srcElement) ?
 evt.srcElement : null);
 if (elem && elem.id.indexOf("menuImg") == 0) {
 // process events from elements whose IDs begin with "menuImg"
 }
 }
}

Be aware that if the larger string contains multiple instances of the shorter string, the
indexOf() method returns a pointer only to the first instance. If you’re looking to
count the number of instances, you can take advantage of the indexOf() method’s
optional second parameter, which specifies the starting position for the search. A
compact repeat loop can count up the instances quickly:

function countInstances(mainStr, srchStr) {
 var count = 0;
 var offset = 0;
 do {
 offset = mainStr.indexOf(srchStr, offset);
 count += (offset != -1) ? 1 : 0;
 } while (offset++ != -1)
 return count
}

Counting instances is much easier, however, using regular expressions (see Recipe
1.7). Although many factors can influence performance, for the task of testing only
for string containment, the indexOf() approach is typically faster than using a regu-
lar expression.

See Also
Recipe 1.7 for using regular expressions to test string containment.

1.7 Testing String Containment with Regular Expressions | 13

1.7 Testing String Containment with Regular
Expressions

Problem
You want to use regular expressions to know whether one string contains another.

Solution
Create a regular expression with the short string (or pattern) and the global (g) modi-
fier. Then pass that regular expression as a parameter to the match() method of a
string value or object:

var re = /a string literal/g;
var result = longString.match(re);

When a global modifier is attached to the regular expression pattern, the match()
method returns an array if one or more matches are found in the longer string. If
there are no matches, the method returns null.

Discussion
To work this regular expression mechanism into a practical function, you need some
helpful surrounding code. If the string you are looking for is in the form of a string
variable, you can’t use the literal syntax for creating a regular expression as just
shown. Instead, use the constructor function:

var shortStr = "Framistan 2000";
var re = new RegExp(shortStr, "g");
var result = longString.match(re);

After you have called the match() method, you can inspect the contents of the array
value returned by the method:

if (result) {
 alert("Found " + result.length + " instances of the text: " + result[0]);
} else {
 alert("Sorry, no matches.");
}

When matches exist, the array returned by match() contains the found strings. When
you use a fixed string as the regular expression pattern, these returned values are
redundant. That’s why it’s safe in the previous example to pull the first returned
value from the array for display in the alert dialog box. But if you use a regular
expression pattern involving the symbols of the regular expression language, each of
the returned strings could be quite different, but equally valid because they adhere to
the pattern.

14 | Chapter 1: Strings

As long as you specify the g modifier for the regular expression, you may get multi-
ple matches (instead of just the first). The length of the array indicates the number of
matches found in the longer string. For a simple containment test, you can omit the g
modifier; as long as there is a match, the returned value will be an array of length 1.

See Also
“Regular Expressions” in the introduction to this chapter; Recipe 8.2 for using regu-
lar expressions in form field validations.

1.8 Searching and Replacing Substrings

Problem
You want to perform a global search-and-replace operation on a text string.

Solution
The most efficient way is to use a regular expression with the replace() method of
the String object:

var re = /a string literal/g;
var result = mainString.replace(re, replacementString);

Invoking the replace() method on a string does not change the source (original)
string. Capture the changed string returned by the method, and apply the result
where needed in your scripts or page. If no replacements are made, the original string
is returned by the method. Be sure to specify the g modifier for the regular expres-
sion to force the replace() method to operate globally on the original string; other-
wise, only the first instance is replaced.

Discussion
To work this regular expression mechanism into a practical function, you need some
helpful surrounding code. If the string you are looking for is in the form of a string
variable, you can’t use the literal syntax for creating a regular expression as just
shown. Instead, use the constructor function:

var searchStr = "F2K";
var replaceStr = "Framistan 2000";
var re = new RegExp(searchStr , "g");
var result = longString.replace(re, replaceStr);

In working with a text-based form control or an element’s text node, you can per-
form the replace() operation on the value of the existing text, and immediately
assign the results back to the original container. For example, if a div element con-
tains one text node with scattered place holders in the form of (ph), and the job of
the replace() method is to insert a user’s entry from a text box (called myName), the
sequence is as follows:

1.9 Using Special and Escaped Characters | 15

var searchStr = "\\(ph\\)";
var re = new RegExp(searchStr, "g");
var replaceStr = document.getElementById("myName").value;
var div = document.getElementById("boilerplate");
div.firstChild.nodeValue = div.firstChild.nodeValue.replace(re, replaceStr);

The double backslashes are needed to escape the escape character before the paren-
theses characters, which are otherwise meaningful symbols in the regular expression
pattern language.

It is also possible to implement a search-and-replace feature without regular expres-
sions, but it’s a cumbersome exercise. The technique involves substantial text pars-
ing using the indexOf() method to find the starting location of text to be replaced.
You need to copy preceding text into a variable and strip away that text from the
original string; keep repeating this find-strip-accumulate tactic until the entire string
is accounted for, and you have inserted the replacement string in place of each found
search string. This was necessary in the early browsers, but the far more convenient
and efficient regular expressions are implemented in almost all scriptable browsers
that are now in use.

See Also
“Regular Expressions” in the introduction to this chapter; Recipe 14.15 for addi-
tional body text replacement techniques in modern browsers.

1.9 Using Special and Escaped Characters

Problem
You want to add low-order ASCII characters (tab, carriage return, etc.) to a string.

Solution
Use the escape sequences shown in Table 1-2 to represent the desired character. For
example, to include a quotation mark inside a literal string, use \", as in:

var msg = "Today's secret word is \"thesaurus.\"";

Discussion
The core JavaScript language includes a feature common to most programming lan-
guages that lets you designate special characters. A special character is not one of the
plain alphanumeric characters or punctuation symbols, but has a particular meaning
with respect to whitespace in text. Common characters used these days include the
tab, newline, and carriage return.

A special character begins with a backslash, followed by the character representing the
code, such as \t for tab and \n for newline. The backslash is called an escape character,

16 | Chapter 1: Strings

instructing the interpreter to treat the next character as a special character. To
include these characters in a string, include the backslash and special character inside
the quoted string:

var confirmString = "You did not enter a response to the last " +
 "question.\n\nSubmit form anyway?";

If you want to use one of these symbols between variables that contain string values,
be sure the special character is quoted in the concatenation statement:

var myStr = lineText1 + "\n" + lineText2;

Special characters can be used to influence formatting of text in basic dialog boxes
(from the alert(), confirm(), and prompt() methods of the window object) and
textarea form controls. Table 1-2 shows the recognized escaped characters and their
meanings.

Note that to include a visible backslash character in a string, you must use a double
backslash because a single one is treated as the invisible escape character. Use the
escaped quote symbols to include single or double quotes inside a string.

While you can use an escaped character in tests for the existence of, say, line feed
characters in a string, you have to exercise some care when doing so with the con-
tent of a textarea element. The problem accrues from a variety of implementations
of how user-entered carriage returns are coded in the textarea’s content. IE for Win-
dows and Opera (all platforms) inserts two escaped characters (\r\n in that
sequence) whenever a user presses the Enter key to make a newline in a textarea.
Other browsers, including Mozilla and Safari, have settled on a single \n character.
This variety in character combinations makes searches for user-typed line breaks dif-
ficult to perform accurately across browsers and operating systems.

Going the other way—creating a string for script insertion into a textarea value—is
easier because modern browsers accommodate all symbols. Therefore, if you assign
just \n or the combination \r\n, all browsers interpret any one of them as a carriage
return, and convert the escape character(s) to match their internal handling.

Table 1-2. String escape sequences

Escape sequence Description

\b Backspace

\t Horizontal tab (ASCII 9)

\n Line feed (newline, ASCII 10)

\v Vertical tab

\f Form feed

\r Carriage return (ASCII 13)

\" Double quote

\' Single quote

\\ Backslash

1.10 Reading and Writing Strings for Cookies | 17

See Also
Recipe 1.1 for tips on concatenating strings—tips that apply equally to escaped
string characters.

1.10 Reading and Writing Strings for Cookies

Problem
You want to use cookies to preserve string data from one page visit to the next.

Solution
Use the cookies.js library shown in the Discussion as a utility for saving and retriev-
ing cookies in modern browsers. To set a cookie via the library, invoke the
setCookie() function, passing, at a minimum, the cookie’s name and string value as
arguments:

setCookie("userID", document.entryForm.username.value);

To retrieve a cookie’s value, invoke the library’s getCookie() function, as in:

var user = getCookie("userID");

Discussion
Example 1-1 shows the code for the entire cookies.js library.

Example 1-1. cookies.js library

// utility function to retrieve an expiration date in proper
// format; pass three integer parameters for the number of days, hours,
// and minutes from now you want the cookie to expire (or negative
// values for a past date); all three parameters are required,
// so use zeros where appropriate
function getExpDate(days, hours, minutes) {
 var expDate = new Date();
 if (typeof days == "number" && typeof hours == "number" &&
 typeof minutes == "number") {
 expDate.setDate(expDate.getDate() + parseInt(days));
 expDate.setHours(expDate.getHours() + parseInt(hours));
 expDate.setMinutes(expDate.getMinutes() + parseInt(minutes));
 return expDate.toUTCString();
 }
}

// utility function called by getCookie()
function getCookieVal(offset) {
 var endstr = document.cookie.indexOf (";", offset);
 if (endstr == -1) {
 endstr = document.cookie.length;
 }

18 | Chapter 1: Strings

The library begins with a utility function (getExpDate()) that your scripts use to
assist in setting an expiration date for the cookie. A second utility function
(getCookieVal()) is invoked internally during the reading of a cookie.

Use the getCookie() function in your scripts to read the value of a named cookie pre-
viously saved. The name you pass to the function is a string. If no cookie by that
name exists in the browser’s cookie filing system, the function returns an empty
string.

To save a cookie, invoke the setCookie() function. The first two parameters (the
cookie’s name and the value to be preserved on the client) are required. If you intend
the cookie to last beyond the user quitting the browser, be sure to set an expiration

 return decodeURI(document.cookie.substring(offset, endstr));
}

// primary function to retrieve cookie by name
function getCookie(name) {
 var arg = name + "=";
 var alen = arg.length;
 var clen = document.cookie.length;
 var i = 0;
 while (i < clen) {
 var j = i + alen;
 if (document.cookie.substring(i, j) == arg) {
 return getCookieVal(j);
 }
 i = document.cookie.indexOf(" ", i) + 1;
 if (i == 0) break;
 }
 return "";
}

// store cookie value with optional details as needed
function setCookie(name, value, expires, path, domain, secure) {
 document.cookie = name + "=" + encodeURI(value) +
 ((expires) ? "; expires=" + expires : "") +
 ((path) ? "; path=" + path : "") +
 ((domain) ? "; domain=" + domain : "") +
 ((secure) ? "; secure" : "");
}

// remove the cookie by setting ancient expiration date
function deleteCookie(name,path,domain) {
 if (getCookie(name)) {
 document.cookie = name + "=" +
 ((path) ? "; path=" + path : "") +
 ((domain) ? "; domain=" + domain : "") +
 "; expires=Thu, 01-Jan-70 00:00:01 GMT";
 }
}

Example 1-1. cookies.js library (continued)

1.10 Reading and Writing Strings for Cookies | 19

date as the third parameter. Filter the expiration time period through the
getExpDate() function shown earlier so that the third parameter of setCookie() is in
the correct format.

One last function, deleteCookie(), lets you delete an existing cookie before its expi-
ration date. The function is hardwired to set the expiration date to the start of the
JavaScript date epoch.

Load the library into your page in the head portion of the document:

<script src="cookies.js"></script>

All cookie values you save must be string values; all cookie values you retrieve are
string values. Strings, however, can contain characters that upset their storage and
proper retrieval later on. To compensate for this issue, the cookies.js library uses the
global encodeURI() and decodeURI() methods to handle conversions. These methods
improve on (and supercede) the old escape() and unescape() methods.

A browser cookie is the only way to preserve a string value on the client between vis-
its to your web site. Scripts on your page may read only cookies that were saved from
your domain and server. If you have multiple servers in your domain, you can set the
fifth parameter of setCookie() to share cookies between servers at the same domain.

Browsers typically limit capacity to 20 name/value pairs of cookies per server; a
cookie should be no more than 4,000 characters, but more practically, the value of
an individual named cookie should be less than 2,000 characters. In other words,
cookies are not meant to act as high-volume data storage facilities on the client. Also,
browsers automatically send domain-specific cookie data to the server as part of each
page request. Keep the amount of data small to limit the impact on dial-up users.

When you save a cookie, the name/value pair resides in the browser’s memory. The
data, if set to expire sometime in the future, is written to the cookie filesystem only
when the browser quits. Therefore, don’t be alarmed if you don’t see your latest
entry in the cookie file while the browser is still running. Different browsers save
their cookies differently (and in different places in each operating system). IE stores
each domain’s cookies in its own text file, whereas Mozilla gangs all cookies together
in a single text file.

All of this cookie action is made possible through the document.cookie property. The
purpose of the cookies.js library is to act as a friendlier interface between your scripts
and the document.cookie property, which isn’t as helpful as it could be in extracting
cookie information. Although you can save a cookie with several parameters, only
the value of a cookie is available for reading—not the expiration date, path, or
domain details.

Cookies are commonly used to preserve user preference settings between visits. A
script near the top of the page reads the cookie to see if it exists, and, if so, applies
settings to various content or layout attributes while the rest of the page loads. Rec-
ipe 12.7 shows how this can work to let users select a relative font size and preserve

20 | Chapter 1: Strings

the settings between visits. For example, the function that preserves the user’s font
size choice saves the value to a cookie named fontSize, which is set to expire in 180
days if not updated before then:

setCookie("fontSize", styleID, getExpDate(180, 0, 0));

The next time the user visits, the cookie is read while the page loads:

var styleCookie = getCookie("fontSize");

With the information from the cookie, the script applies the previously selected style
sheet to the page. If the cookie was not previously set, the script assigns a default
style sheet to use in the interim.

Just because cookies can store only strings, don’t let that get in the way of preserving
information normally stored in arrays or custom objects. See Recipe 3.12 and Recipe
8.14 for ways to convert more complex data types to strings for preservation, and
then restore their original form after retrieval from the cookie on the next visit.

See Also
Recipe 10.4 for passing data between pages via cookies; Recipe 12.7 for an example
of using cookies to preserve a user’s style preference; Recipe 3.12 and Recipe 8.14 for
ways of converting arrays and objects to cookie string values; Recipe 3.14 for a way
to reduce the global “footprint” of this library.

1.11 Converting Between Unicode Values and String
Characters

Problem
You want to obtain the Unicode code number for an alphanumeric character or vice
versa.

Solution
To obtain the Unicode value of a character of a string, use the charCodeAt() method
of the string value. A single parameter is an integer pointing to the zero-based posi-
tion of the character within the string:

var code = myString.charCodeAt(3);

If the string consists of only one character, use the 0 argument to get the code for
that one character:

var oneChar = myString.substring(12, 13);
var code = oneChar.charCodeAt(0);

The returned value is an integer.

1.12 Encoding and Decoding URL Strings | 21

To convert a Unicode code number to a character, use the fromCharCode() method of
the static String object:

var char = String.fromCharCode(66);

Unlike most string methods, this one must be invoked only from the String object
and not from a string value.

Discussion
ASCII values and Unicode values are the same for the basic Latin alphanumeric
(low-ASCII) values. But even though Unicode encompasses characters from many
written languages around the world, do not expect to see characters from other
writing systems displayed in alert boxes, text boxes, or rendered pages simply
because you know the Unicode values for those characters; the browser and operat-
ing system must be equipped for the language encompassed by the characters. If the
character sets are not available, the characters generated by such codes will be ques-
tion marks or other symbols. A typical North American computer won’t know how
to produce a Chinese character on the screen unless the target writing system and
font sets are installed for the OS and browser.

See Also
Recipe 1.3 for other ways to extract single-character substrings.

1.12 Encoding and Decoding URL Strings

Problem
You want to convert a string of plain text to a format suitable for use as a URL or
URL search string, or vice versa.

Solution
To convert a string consisting of an entire URL to a URL-encoded form, use the
encodeURI() global method, passing the string needing conversion as an argument.
For example:

document.myForm.action = encodeURI(myString);

If you are assembling content for values of search string name/value pairs, apply the
encodeURIComponent() global method:

var srchString = "?name=" + encodeURIComponent(myString);

Both methods have complementary partners that perform conversions in the oppo-
site direction:

decodeURI(encodedURIString)
decodeURIComponent(encodedURIComponentString)

22 | Chapter 1: Strings

In all cases, the original string is not altered when passed as an argument to these
methods. Capture the results from the value returned by the methods.

Discussion
Although the escape() and unescape() methods have been available since the first
scriptable browsers, they have been deprecated in the formal language specification
(ECMA-262) in favor of a set of new methods. The new methods are available in IE
5.5 or later and other modern browsers.

These new encoding methods work by slightly different rules than the old escape()
and unescape() methods. As a result, you must encode and decode using the same
pairs of methods at all times. In other words, if a URL is encoded with encodeURI(),
the resulting string can be decoded only with decodeURI().

The method names use “URI” (Universal Resource Identifier). A URI is an all-
encompassing reference to obtain any network-accessible item (document, object,
etc.). A URL (Universal Resource Locator) is a type of URI that includes both a net-
work location for the item, as well as an indication of the access mechanism (e.g.,
http:). That the method names adopt the more general URI nomenclature is not
unusual. For most client-side web authoring in HTML, CSS, and JavaScript, the
terms URI and URL are interchangeable.

The differences between encodeURI() and encodeURIComponent() are defined by the
range of characters that the methods convert to the URI-friendly form of a percent
sign (%) followed by the hexadecimal Unicode value of the symbol (e.g., a space
becomes %20). Regular alphanumeric characters are not converted, but when it
comes to punctuation and special characters, the two methods diverge in their cover-
age. The encodeURI() method converts the following symbols from the characters in
the ASCII range of 32 through 126:

space " % < > [\] ^ ` { | }

For example, if you are assembling a URL with a simple search string on the end,
pass the URL through encodeURI() before navigating to the URL to make sure the
URL is well formed:

var newURL = "http://www.megacorp.com?prod=Gizmo Deluxe";
location.href = encodeURI(newURL);
// encoded URL is: http://www.megacorp.com?prod=Gizmo%20Deluxe

In contrast, the encodeURIComponent() method encodes far more characters that
might find their way into value strings of forms or script-generated search strings.
Encodable characters unique to encodeURIComponent() are shown in bold:

space " # $ % & + , / : ; < = > ? @ [\] ^ ` { | }

You may recognize some of the encodeURIComponent() values as those frequently
appearing within complex URLs, especially the ?, &, and = symbols. For this reason,

1.13 Encoding and Decoding Base64 Strings | 23

you want to apply the encodeURIComponent() only to values of name/value pairs
before those values are inserted or appended to a URL. But then it gets dangerous to
pass the composite URL through encodeURI() again because the % symbols of the
encoded characters will, themselves, be encoded, probably causing problems on the
server end when parsing the input from the client.

If, for backward-compatibility reasons, you need to use the escape() method, be
aware that this method uses a heavy hand in choosing characters to encode. Encod-
able characters for the escape() method are as follows:

space ! \ " # $ % & ' () , : ; < = > ? @ [\] ^ ` { | } ~

The @ symbol, however, is not converted in Internet Explorer browsers via the
escape() method.

You can see now why it is important to use the matching decoding method if you
need to return one of your encoded strings back into plain language. If the encoded
string you are trying to decode comes from an external source (e.g., part of a URL
search string returned by the server), try to use the decodeURIComponent() method on
only those parts of the search string that are the value portion of a name/value pair.
That’s typically where the heart of your passed information is, as well as where you
want to obtain the most correct conversion.

See Also
Recipe 10.6 for passing data to another page via URLs, during which value encoding
is used.

1.13 Encoding and Decoding Base64 Strings

Problem
You want to convert a string to or from Base64 encoding.

Solution
Use the functions of the base64.js library shown in the Discussion. Syntax for invok-
ing the two functions is straightforward. To encode a string, invoke:

var encodedString = base64Encode("stringToEncode");

To decode a string, invoke:

var plainString = base64Decode("encodedString");

Discussion
Example 1-2 shows the entire base64.js library.

24 | Chapter 1: Strings

Example 1-2. base64.js library

// Global lookup arrays for base64 conversions
var enc64List, dec64List;

// Load the lookup arrays once
function initBase64() {
 enc64List = new Array();
 dec64List = new Array();
 var i;
 for (i = 0; i < 26; i++) {
 enc64List[enc64List.length] = String.fromCharCode(65 + i);
 }
 for (i = 0; i < 26; i++) {
 enc64List[enc64List.length] = String.fromCharCode(97 + i);
 }
 for (i = 0; i < 10; i++) {
 enc64List[enc64List.length] = String.fromCharCode(48 + i);
 }
 enc64List[enc64List.length] = "+";
 enc64List[enc64List.length] = "/";
 for (i = 0; i < 128; i++) {
 dec64List[dec64List.length] = -1;
 }
 for (i = 0; i < 64; i++) {
 dec64List[enc64List[i].charCodeAt(0)] = i;
 }
}

// Encode a string
function base64Encode(str) {
 var c, d, e, end = 0;
 var u, v, w, x;
 var ptr = -1;
 var input = str.split("");
 var output = "";
 while(end == 0) {
 c = (typeof input[++ptr] != "undefined") ? input[ptr].charCodeAt(0) :
 ((end = 1) ? 0 : 0);
 d = (typeof input[++ptr] != "undefined") ? input[ptr].charCodeAt(0) :
 ((end += 1) ? 0 : 0);
 e = (typeof input[++ptr] != "undefined") ? input[ptr].charCodeAt(0) :
 ((end += 1) ? 0 : 0);
 u = enc64List[c >> 2];
 v = enc64List[(0x00000003 & c) << 4 | d >> 4];
 w = enc64List[(0x0000000F & d) << 2 | e >> 6];
 x = enc64List[e & 0x0000003F];

 // handle padding to even out unevenly divisible string lengths
 if (end >= 1) {x = "=";}
 if (end == 2) {w = "=";}
 if (end < 3) {output += u + v + w + x;}
 }
 // format for 76-character line lengths per RFC

1.13 Encoding and Decoding Base64 Strings | 25

The library begins with two global declarations and an initialization function that
creates lookup tables for the character conversions. At the end of the library is a
statement that invokes the initialization function.

 var formattedOutput = "";
 var lineLength = 76;
 while (output.length > lineLength) {
 formattedOutput += output.substring(0, lineLength) + "\n";
 output = output.substring(lineLength);
 }
 formattedOutput += output;
 return formattedOutput;
}

// Decode a string
function base64Decode(str) {
 var c=0, d=0, e=0, f=0, i=0, n=0;
 var input = str.split("");
 var output = "";
 var ptr = 0;
 do {
 f = input[ptr++].charCodeAt(0);
 i = dec64List[f];
 if (f >= 0 && f < 128 && i != -1) {
 if (n % 4 == 0) {
 c = i << 2;
 } else if (n % 4 == 1) {
 c = c | (i >> 4);
 d = (i & 0x0000000F) << 4;
 } else if (n % 4 == 2) {
 d = d | (i >> 2);
 e = (i & 0x00000003) << 6;
 } else {
 e = e | i;
 }
 n++;
 if (n % 4 == 0) {
 output += String.fromCharCode(c) +
 String.fromCharCode(d) +
 String.fromCharCode(e);
 }
 }
 } while (typeof input[ptr] != "undefined");
 output += (n % 4 == 3) ? String.fromCharCode(c) + String.fromCharCode(d) :
 ((n % 4 == 2) ? String.fromCharCode(c) : "");
 return output;
}

// Self-initialize the global variables
initBase64();

Example 1-2. base64.js library (continued)

26 | Chapter 1: Strings

Scripts may call the base64Encode() function directly to convert a standard string to a
Base64-encoded string. The value of the original string is not changed, but the func-
tion returns an encoded copy. To convert an encoded string to a standard string, use
the base64Decode() function, passing the encoded string as an argument.

All Mozilla-based browsers include global methods that perform the same conver-
sions shown at length in the solution. The atob() method converts a Base64-
encoded string to a plain string; the btoa() method converts a plain string to a
Base64-encoded string. These methods are not part of the ECMAScript standard
used as the foundation for these browser versions, so it’s unclear when or if they will
find their way into other browsers.

Frankly, there hasn’t been a big need for Base64 encoding in most scripted web
pages, but that’s perhaps because the facilities weren’t readily available. A Base64-
encoded string contains a very small character set: a–z, A–Z, 0–9, +, /, and =. This low
common denominator scheme allows data of any type to be conveyed by virtually
any Internet protocol. Binary attachments to your email are encoded as Base64
strings for their journey en route. Your email client decodes the simple string and
generates the image, document, or executable file that arrives with the message. You
may find additional ways to apply Base64-encoded data in your pages and scripts. To
learn more about Base64 encoding, visit http://www.ietf.org/rfc/rfc2045.txt.

See Also
Recipe 1.12 for URL-encoding techniques.

27

Chapter 2 CHAPTER 2

Numbers and Dates2

2.0 Introduction
Designers of friendly scripting languages might have nonprogrammers in mind when
they first define the scope of their languages, but it’s difficult for any such language
to be taken seriously by professional programmers unless some of the nerdy basics
are there. Math may be anathema to scripters not schooled in computer science, but
even an accessible language such as JavaScript has a solid complement of features to
accommodate the kinds of arithmetic, trigonometric, and other operations typically
supported by a programming language. Date manipulation—also numerically inten-
sive, as it turns out—is well supported in JavaScript as well. This chapter includes
recipes for both of these areas.

JavaScript Numbers
For most scripters, the interior details about how JavaScript treats numbers is of lit-
tle importance. In fact, the more you know about programming languages and differ-
ent types of numbers, the more you need to forget in order to use JavaScript
numbers. Unlike other languages, JavaScript has only one kind of number data type.
All integers and floating-point values are represented by the same data type in Java-
Script: number.

Internally, a JavaScript number is an IEEE double-precision 64-bit value. JavaScript
provides a usable range of number values from 2.2E-208 to 1.79E+308 (boundary
values obtainable by the static Number object properties Number.MIN_VALUE and Number.
MAX_VALUE, respectively). JavaScript treats numbers beyond these limits as infinity,
represented by Number.NEGATIVE_INFINITY and Number.POSITIVE_INFINITY. It is
unlikely that you will ever refer to these four properties in your scripts, but the lan-
guage has them for the sake of completeness.

Number values do not carry any formatting with them. If a value needs places to the
right of the decimal to signify a fractional part of an integer, those places are there.
But if a variable that once held a number with 10 digits to the right of the decimal is

28 | Chapter 2: Numbers and Dates

modified through an arithmetic operation to become an integer, the decimal and
zeros to the right of the decimal disappear.

As with JavaScript strings (see Chapter 1), numbers are most commonly values (of
data type number), but may also be created as more formal objects through the Number
object constructor. Therefore, both of the following statements produce a piece of
data that evaluates to the same number:

var myNum = 55;
var myNum = new Number(55);

But if you examine the data types of the two objects (via the typeof operator), the
first is number and the second is object. A number value inherits the properties and
methods of the Number object, many of which are discussed in this chapter.

The Math Object
Available in every JavaScript context is a static Math object that provides a standard
set of math constants and methods for working with numbers and trigonometry. At
no time do your scripts create an instance of the Math object. It is simply “there” as a
resource for your scripts to use as needed.

Table 2-1 shows the properties of the Math object. All of them are well-known con-
stants in math circles. You can use these constants within JavaScript expressions. For
example, to calculate the circumference of a circle (π times the diameter) whose
diameter measure is in a variable d, the statement is:

var circumference = d * Math.PI;

The long list of Math object methods is located in Table 2-2. Many of them support
trigonometric operations, some of which can come into play for path animation
with positioned elements. Others provide math services that are useful from time to
time, such as taking a number to a power, rounding, and getting the minimum or
maximum of a pair of number values. As with most JavaScript methods, the values
passed as arguments to the methods are not altered in any way. Capture the results
in a variable.

Table 2-1. Math object properties (constants)

Property Description

E Euler’s constant (2.718281828459045)

LN2 Natural logarithm of 2 (0.6931471805599453)

LN10 Natural logarithm of 10 (2.302585092994046)

LOG2E Log base-2 of Euler’s constant (1.4426950408889634)

LOG10E Log base-10 of Euler’s constant (0.4342944819032518)

PI π (3.141592653589793)

SQRT1_2 Square root of 1/2 (0.7071067811865476)

SQRT2 Square root of 2 (1.4142135623730951)

Introduction | 29

Dates and Times
Since the very beginning of the JavaScript language, one of its most powerful objects
has been the Date object. It is a global object in that every window (or frame) has a
static Date object sitting in the background, ready to be invoked at any time. With
only a couple of exceptions, the way you work with dates is to create an instance of
the Date object via the constructor function for this object:

var myDate = new Date();

Creating an instance of the Date object (which I call a date object—with a lowercase
d) is like taking a snapshot of an instant in time. A date object contains information
about the date and time, down to the millisecond, but it is not a ticking clock. Even
so, you can use the myriad functions associated with every date object to read indi-
vidual components of the date and time (year, month, day, hour, and so on). A par-
allel set of methods let you set the date and/or time of that date object instance.
That’s one way you can perform some date or time arithmetic, as shown in Recipes
2.10 and 2.11.

Table 2-2. Math object methods

Method Description

abs(number) Returns the absolute value of number

acos(number) Returns the arc cosine (in radians from +0 to π) of number (from -1 to +1)

asin(number) Returns the arc sine (in radians from -π/2 to +π/2) of number (from -1 to +1)

atan(number) Returns the arc tangent (in radians from -π/2 to +π/2) of number (between
NEGATIVE_INFINITY and POSITIVE_INFINITY)

atan2(y, x) Returns the arc tangent (in radians from -π to +π) of the quotient y/x

ceil(number) Returns the next higher integer that is greater than or equal to number

cos(number) Returns the cosine (in radians) of number (also in radians between
NEGATIVE_INFINITY and POSITIVE_INFINITY)

exp(number) Returns Euler’s constant raised to the number power

floor(number) Returns the next lower integer that is less than or equal to number

log(number) Returns the natural logarithm (base e) of number

max(number1, number2) Returns the greater value of number1 or number2

min(number1, number2) Returns the lesser value of number1 or number2

pow(number1, number2) Returns the value of number1 raised to the number2 power

random() Returns a pseudorandom number between 0 and 1

round(number) Returns an integer of number+1 if number is greater than or equal to number+ 0.5;
otherwise, returns integer of number

sin(number) Returns the sine (in radians) of number (also in radians)

sqrt(number) Returns the square root of number

tan(number) Returns the tangent (in radians) of number (also in radians)

30 | Chapter 2: Numbers and Dates

Be aware that the date object operates solely on the client computer in which the
page is loaded. There is no connection with the server clock or its timekeeping abili-
ties. This means that your date and time calculations are entirely at the mercy of the
accuracy (and proper setting) of the client computer’s internal clock. Not only must
the date and time be reasonably accurate, but the time zone setting is critical. If the
user is located in California, but the computer’s time zone settings are for New York,
the computer will be thinking strictly in New York time. This could disturb some
date and time calculations, as shown in Recipe 15.9.

If a script is concerned with the “ticking clock,” the script must periodically create a
new date object instance to get the latest snapshot of the clock—and then perhaps
compare it against some known deadline. Again, the discussion in Recipe 15.9 shows
how to do this.

Working with dates in JavaScript can be rather puzzling at times. Perhaps the most
difficult concept to comprehend is when you create a date object (either for the
present or for some other date and time), the object instance stores its value as an
integer representing the number of milliseconds from the start of January 1, 1970.
More importantly, the point of reference for all date values is Coordinated Universal
Time (UTC), which is essentially the same as Greenwich Mean Time (GMT). What
makes this hard to understand is that when you create a date object instance and ask
to view its value, the JavaScript interpreter automatically returns the computer’s
local date and time for that object, even though the GMT value is stored. For exam-
ple, if you create a date object on a computer running in New York City at 10:00 P.M.
on Friday night, the date object preserves that date and time in GMT, or (during
standard time months) five hours later than the time in New York (3:00 A.M. on Sat-
urday). But if you ask to view the value of the date object (say, in an alert dialog
box), the value reports itself to be 10:00 P.M. on Friday.

For the most part, this discrepancy between a date object’s internal calculation and
external display is of no consequence. Since all of your date objects behave the same
way, calculations such as the amount of time separating two date objects yield the
same results. You need to worry about this GMT offset business only when your cal-
culations involve times in two different time zones. See Recipe 15.9 for an example of
how to account for time zone offsets.

Look to recipes in this chapter for examples of how to perform date calculations; see
Chapter 15’s recipes for additional practical applications in dynamic pages. The Date
object is a powerful beast that, once tamed, can enliven the personalization features
and dynamic aspects of your pages.

2.1 Converting Between Numbers and Strings | 31

2.1 Converting Between Numbers and Strings

Problem
You want to change a number data type to a string data type, or vice versa.

Solution
To convert a number value to a string value, use the toString() method of a num-
ber value:

var numAsStringValue = numValue.toString();

You can also create an instance of a String object by passing the number as an argu-
ment to the String object constructor:

var numAsStringObject = new String(numValue);

To convert a string to a number, use the parseInt() global method if the desired
result is an integer only, or the parseFloat() global method if the number could be
or is definitely a floating-point number:

var intValue = parseInt(numAsString, 10);
var floatValue = parseFloat(numAsString);

If you use parseFloat() and the number passed as an argument is an integer, the
result will also be formatted as an integer, without a decimal and trailing zero. Both
the parseInt() and parseFloat() functions work with all scriptable browser versions.

Discussion
In many cases, the JavaScript interpreter tries to cast values between number and
string data types automatically. For example, if you multiply a number times a string
version of the number, the string is automatically converted to a number value, and
the operation succeeds. This kind of casting doesn’t always work, however. For
instance, the addition (+) operator plays two roles in JavaScript: adding numbers and
concatenating strings. When you place this operator between a number and a num-
ber that is actually a string value, the string wins the battle, and the two numbers
get concatenated together as a string. Thus, the expression 2 + "2" equals "22" in
JavaScript.

Most commonly, you need to convert a string to a numeric value when you perform
math operations on values entered by the user in form text boxes. The value prop-
erty of any text field supplies the data as a string value. To add values from two text
boxes to fill a third requires converting each operand to a number before doing the
math. Then you can assign the resulting number value to the value property of the

32 | Chapter 2: Numbers and Dates

third text box, where the number automatically converts to a string value because
that’s the only data type acceptable in a text box. For example:

var val1 = parseFloat(document.getElementById("firstNum").value);
var val2 = parseFloat(document.getElementById("secondNum").value);
var result = val1 + val2;
document.getElementById("sum").value = result;

Unlike most other programming languages, JavaScript does not differentiate numeric
data types by the kind of number. A number is a number, whether it happens to be
an integer or a floating-point number. The distinction made by the two number pars-
ing methods is that even if the source string contains a number with a decimal point
and digits to the right of the decimal, only the integer portion is returned from
parseInt(). This behavior comes in handy when the source string starts with a num-
ber but has additional string characters following it. For example, the navigator.
appVersion property returns a string similar to the following:

4.0 (compatible; MSIE 6.0; Windows 98; Q312461)

If you want to get the integer that starts this string, you can apply the parseInt()
method:

var mainVer = parseInt(navigator.appVersion, 10);

Similarly, if the string starts with a floating-point number (say, 4.2), you could use
parseFloat() to get a numeric copy of just the leading number. In other words, both
methods try to grab as much of their kinds of numbers as they can from the front of
the string. When they encounter a nonnumeric value, the copying stops, and they
return whatever number has been collected up to that point.

It’s a good idea to specify the optional second parameter to parseInt() as a 10, signi-
fying that you want the value treated as a base-10 value. If you don’t, and the string
begins with a zero and either an 8 or a 9, the string number is treated as an octal value
(whose allowable digits are 0 through 7), and the 8 and 9 digits are treated as nonnu-
meric. The parseFloat() method always returns a base-10 value (see Recipe 2.6).

As for converting a number to a string, an old trick from the earliest days of Java-
Script still works. It’s simply an extrapolation of the behavior just explained that
forces the addition operator to give priority to string concatenation over numeric
addition. If you “add” an empty string to a number value, the result of the operation
is a string version of that number:

var numAsString = numVal + "";

The syntax isn’t particularly elegant, but it is compact and fully backward-compatible.
If you see this construction in some old code, now you know where it comes from.

See Also
Recipe 2.6 for converting between different number bases.

2.2 Testing a Number’s Validity | 33

2.2 Testing a Number’s Validity

Problem
You want to be sure a value is a number before performing a math operation on it.

Solution
If the value you’re testing can come from any kind of source, the safest bet is to use
the typeof operator on the value. Applying this operator to any numeric value evalu-
ates to the string number. Therefore, using it in a conditional expression looks like
this:

if (typeof someVal == "number") {
 // OK, operate on the value numerically
}

But some JavaScript methods, such as parseInt() and parseFloat(), return a special
value, NaN (“Not a Number”), signifying that they were unable to derive the number
you desired. Operations expecting numeric operands or arguments that encounter
values evaluating to NaN also generally return NaN. To test for this condition, use the
isNaN() method, which returns true if the value is not a number. For example:

var myVal = parseInt(document.getElementById("myAge").value);
if (isNaN(myVal)) {
 alert("Please check the Age text box entry.");
} else {
 // OK, operate on the value numerically
}

Discussion
Don’t get the wrong impression about the isNaN() method from the second example
just shown. It is not a suitable approach to validating numeric input to a text box.
That’s because the parseInt() and parseFloat() methods return the first numbers
(if any) they encounter in the string value passed as an argument. If someone enters
32G into a text box intended for an age, the parseInt() method pulls off the 32 por-
tion, but the full value of the text box is not valid for your database that expects a
strictly numeric value for that field. See Recipe 8.2 for more robust ways of validat-
ing numeric text entries.

You don’t have to perform validity testing on absolutely every value about to
undergo a math operation. Most values in your scripts tend to be under strict con-
trol of the programmer, allowing data-typing kinks to be worked out before the
script is put into production. You need to exercise care, however, whenever user
input enters the equation.

34 | Chapter 2: Numbers and Dates

Look to the NaN value as a debugging aid. If some calculation is failing, use alert dia-
log boxes or debuggers to show the values of the operands and components. Any
value that reports itself to be NaN means that it has problems at its source that need
fixing before your calculation can even get started.

As a point of trivia, the NaN value is, believe it or not, a number data type, and is also
a property of the static Number object.

See Also
Recipe 8.2 for numeric data entry validation in a form.

2.3 Testing Numeric Equality

Problem
You want to know whether two numeric values are equal (or not equal) before con-
tinuing processing.

Solution
Use the standard equality operator (==) in a conditional statement:

if (firstNum == secondNum) {
 // OK, the number values are equal
}

Values on either side of the equality operator may be variables or numeric literals.
Typical practice places the suspect value to the left of the operator, and the fixed
comparison on the right.

Discussion
JavaScript has two types of equality operators. The fully backward-compatible, stan-
dard equality operator (==) employs automatic data type conversion in some cases
when the operands on either side are not of the same data type. Consider the follow-
ing variable assignments:

var numA = 45;
var numB = new Number(45);

These two variables might contain the same numeric value, but they are different
data types. The first is a number value, while the second is an instance of a Number
object. If you place these two values on either side of an equality (==) operator, Java-
Script tries various evaluations of the values to see if there is a coincidence some-
where. In this case, the two variable values would show to be equal, and the
following expression:

numA == numB

returns true.

2.4 Rounding Floating-Point Numbers | 35

But the other type of equality operator, the strict equality operator (===), performs no
data type conversions. Given the variable definitions above, the following expression
evaluates to false because the two object types differ, even though their payloads are
the same:

numA === numB

If one equality operand is an integer and the other is the same integer expressed as a
floating-point number (such as 4 and 4.00), both kinds of equality operators find
their values and data types to be equal. A number is a number in JavaScript.

If the logic of your code requires you to test for the inequality of two numbers, you
can use the inequality (!=) and strict inequality (!==) operators. For example, if you
want to process an entry for a special value, the branching flow of your function
would be like the following:

if (parseInt(document.getElementById("myTextBox").value) != 0) {
 // process entry for non-zero values
}

The same issues about data type conversion apply to the inequality and strict ine-
quality operators as to their opposite partners.

See Also
Recipe 2.1 for converting between number and string value types.

2.4 Rounding Floating-Point Numbers

Problem
You want to round a floating-point value to the nearest whole number.

Solution
Use the Math.round() method on the value:

var roundedVal = Math.round(floatingPointValue);

The operation does not disturb the original value. Capture the rounded result in a
variable.

Discussion
The Math.round() method uses the following algorithm: any floating-point value that
is greater than or equal to x.5 is rounded up to x+1; otherwise, the returned value is x.

JavaScript’s Math object contains some other useful methods for trimming floating-
point numbers of their fractional parts. Math.floor() and Math.ceil() return the next
lowest and next highest integer values, respectively. For example, Math.floor(3.25)

36 | Chapter 2: Numbers and Dates

returns 3, while Math.ceil(3.25) returns 4. With negative values, the rules still apply,
but the results seem backward at first glance: Math.floor(-3.25) returns the next
lowest integer, -4; Math.ceil(-3.25) returns -3. For positive values, you can use the
Math.floor() method as a substitute for what some other languages treat as obtain-
ing the integer part of a number.

Anytime a floating-point number evaluates to a number equal to an integer value, the
decimal and digits to the right of the decimal go away. A variable can hold a floating-
point number in one statement and be modified to an integer in the next. This drives
some programmers crazy because they were indoctrinated by other languages to treat
each type of number as a different data type.

See Also
“The Math Object” in the introduction to this chapter.

2.5 Formatting Numbers for Text Display

Problem
You want to display the results of numeric calculations with a fixed number of digits
to the right of the decimal.

Solution
Two global methods of the JavaScript language (and ECMA standard) simplify the
display of numbers with a specific number of digits. These methods are imple-
mented in IE 5.5 or later for Windows and other modern browsers (Mozilla, Safari,
and Opera). To obtain a string containing a number with digits to the right of the
decimal, use the toFixed() method, as in the following:

document.getElementById("total").value = someNumber.toFixed(2);

The argument to the toFixed() method is the number of digits to the right of the
decimal. Even if the number is an integer, the resulting string has a decimal and two
zeros to the right of the decimal.

To obtain a string containing a number with a total fixed number of digits, use the
toPrecision() method, as in the following:

document.getElementById("rate").value = someNumber.toPrecision(5);

The argument to the toPrecision() method is the total number of digits in the
returned string value, including digits to the left and right of the decimal (the deci-
mal is not counted). If the original value has fewer digits than the method argument
calls for, the result is padded with zeros to the right of the decimal; an argument
smaller than the number of integer digits yields a value in scientific notation. Here
are some examples:

2.5 Formatting Numbers for Text Display | 37

var num = 123.45;
preciseNum = num.toPrecision(7); // preciseNum is now 123.4500
preciseNum = num.toPrecision(4); // preciseNum is now 123.5
preciseNum = num.toPrecision(3); // preciseNum is now 123
preciseNum = num.toPrecision(2); // preciseNum is now 1.2e+2

For older browsers, number formatting is a more cumbersome process, but one that
can be encapsulated in the formatNumber() utility function shown in the Discussion.
Invoke the function by passing either a number or string that can be cast to a num-
ber and an integer signifying the number of places to the right of the decimal for the
returned string:

document.myForm.total.value = formatNumber(someNumber, 2);

The result from this function is a string intended for display on the page, not further
calculation. The string can conceivably contain an error message, but you can mod-
ify the function to change how errors are reported.

Discussion
In the now rare case that you need number formatting for browsers such as IE 5 or
Netscape 4, you can use the formatNumber() reusable utility function shown in
Example 2-1. It also works in the newest browsers.

Example 2-1. formatNumber() function for text display of numbers

function formatNumber (num, decplaces) {
 // convert in case it arrives as a string value
 num = parseFloat(num);
 // make sure it passes conversion
 if (!isNaN(num)) {
 // multiply value by 10 to the decplaces power;
 // round the result to the nearest integer;
 // convert the result to a string
 var str = "" + Math.round (eval(num) * Math.pow(10,decplaces));
 // exponent means value is too big or small for this routine
 if (str.indexOf("e") != -1) {
 return "Out of Range";
 }
 // if needed for small values, pad zeros
 // to the left of the number
 while (str.length <= decplaces) {
 str = "0" + str;
 }
 // calculate decimal point position
 var decpoint = str.length - decplaces;
 // assemble final result from: (a) the string up to the position of
 // the decimal point; (b) the decimal point; and (c) the balance
 // of the string. Return finished product.
 return str.substring(0,decpoint) + "." + str.substring(decpoint,str.length);
 } else {
 return "NaN";
 }
}

38 | Chapter 2: Numbers and Dates

When you use the newer built-in methods (toFixed() and toPrecision()) to set the
number format, you should be aware of the way truncated numbers are rounded. All
rounding is based on the value of the next digit to the right of the last visible digit in
the returned string. For example, if you format the number 1.2349 to two digits to
the right of the decimal, the returned value is 1.23 because the next digit to the right
of the 3 is a 4.

It should be clear that none of the methods or functions shown in this recipe operate
in the same way that more sophisticated number formatting in other programs work.
There is nothing about adding commas for large numbers or a leading currency sym-
bol. Such extras need to be handled through your own scripts.

Inserting commas for displaying large numbers can be accomplished easily on the
integer portion of a number through regular expressions. Here is a simple function
that inserts commas in the appropriate places, regardless of the size of the number
(in plain, nonscientific notation, that is):

function formatCommas(numString) {
 // extract decimal and digits to right (if any)
 var re = /\.\d{1,}/;
 var frac = (re.test(numString)) ? re.exec(numString) : "";
 // divide integer portion into three-digit groups
 var int = parseInt(numString,10).toString();
 re = /(-?\d+)(\d{3})/;
 while (re.test(int)) {
 int = int.replace(re, "$1,$2");
 }
 return int + frac;
}

This function accepts as a parameter a string version of any integer or floating-point
value.

While on the subject of commas, it’s not unusual for users to enter large numbers
with commas, but the database or other backend processing does not allow commas
in numbers. If that’s the case, you can use a form’s submit event handler to modify
the value of a text box that contains commas and strip those commas before sub-
mitting the form. It can all take place during the client-side batch validation of the
form. The function to remove commas also uses regular expressions, and looks like
the following:

function stripCommas(numString) {
 var re = /,/g;
 return numString.replace(re,"");
}

One final point about number formatting involves a comparatively new JavaScript
method of the Number object called toLocaleString(), invoked as:

var formattedString = myNumber.toLocaleString();

2.6 Converting Between Decimal and Hexadecimal Numbers | 39

The formal ECMAScript specification does not recommend any particular format-
ting for this method because it is largely dependent on how the browser maker
wishes to align formatting with localized customs. For now, only Internet Explorer
(at least for the U.S. version) does anything special when invoking this method on a
number value. All numbers are formatted to two places to the right of the decimal
(dollars and cents without any currency symbol). IE for Windows also inserts com-
mas for large numbers. While Mozilla, Safari, and Opera support this method, they
perform no additional formatting for numbers.

Bear in mind that other parts of the world use different symbols where North Ameri-
cans use commas and decimals. For example, in Europe, it’s not uncommon to find
commas and periods used in the opposite manner, so that the number 20,000.50
would be displayed as 20.000,50. If your audience uses that system, you could mod-
ify the functions above to work within that system. The most deeply nested state-
ment of the formatCommas() function would be:

numString = numString.replace(re, "$1.$2");

and the first statement of the stripCommas() function would be:

var re = /\./g;

You’d also probably want to change the names of both functions to formatPeriods()
and stripPeriods(), respectively. This is just the kind of cultural variation that the
toLocaleString() method was intended to solve. Now it is up to the browser mak-
ers to agree on an implementation that works across the board.

See Also
Recipe 8.3 for using the submit event handler to trigger batch validation and other
last-instant tasks on a form prior to submission.

2.6 Converting Between Decimal and Hexadecimal
Numbers

Problem
You want to change a decimal number to its hexadecimal equivalent, and vice versa.

Solution
The core JavaScript language provides facilities for going from hexadecimal to deci-
mal and back again, but through two separate mechanisms.

To get a hexadecimal number as a string into its decimal equivalent, use the
parseInt() method and specify the second parameter as 16:

var decimalVal = parseInt(myHexNumberValue, 16);

40 | Chapter 2: Numbers and Dates

For myHexNumberValue, you can use either the hexadecimal characters for the num-
ber, or the format required for hexadecimal arithmetic in JavaScript: the hexadeci-
mal characters preceded by 0x or 0X (a zero followed by an X). Here are some
examples with string literals in the two formats:

var decimalVal = parseInt("1f", 16);
var decimalVal = parseInt("0x1f", 16);

To convert a decimal number to a hexadecimal string equivalent, use the toString()
method of the Number object, specifying base 16 as the argument:

var hexVal = (255).toString(16) // result = "ff"

Because JavaScript automatically converts hexadecimal numbers to their decimal
equivalents for arithmetic operations, the hexadecimal conversion is needed only for
display of a hexadecimal result.

Discussion
Hexadecimal arithmetic isn’t used much in JavaScript, but the language provides
rudimentary support for base 16 numbers. As long as you signify a hexadecimal
number value with the leading 0x, you can perform regular arithmetic on that value
to your heart’s content. But be aware that the results of those operations are returned
in base 10, which allows the odd possibility of using hexadecimal and decimal val-
ues in the same expression:

var result = 0xff - 200;

Hexadecimal digits a through f may be expressed in your choice of upper- or lower-
case letters.

The parseInt() method is frequently a handy tool for getting values in other bases
into decimal. For example, you obtain a decimal equivalent of a binary number
string by specifying base 2 as the second argument of the method:

var decimalVal = parseInt("11010011", 2);

Converting in the other direction (from decimal to other bases) is aided by the
toString() method that you can apply to any number value (not string values). This
works not only for hexadecimal values, as shown earlier, but for octal (base 8) and
binary (base 2) values as well:

var decimalVal = parseFloat(document.getElementById("textBox").value);
var binaryVal = decimalVal.toString(2);

See Also
Recipe 2.1 for converting between number and string value types.

2.8 Calculating Trigonometric Functions | 41

2.7 Generating Pseudorandom Numbers

Problem
You want to generate a random number.

Solution
The Math.random() method returns a pseudorandom number between 0 and 1. To
calculate a pseudorandom integer value within a range starting with zero, use the
formula:

var result = Math.floor(Math.random() * (n + 1));

where n is the highest acceptable integer of the range. To calculate a pseudorandom
integer number within a range starting at a number other than zero, use the formula:

var result = Math.floor(Math.random() * (n - m + 1)) + m;

where m is the lowest acceptable integer of the range, and n is the highest acceptable
integer of the range.

Discussion
The previous examples focus on random integers, such as the kind you might use for
values of a game cube (a die with numbers from 1 through 6). But you can remove
the Math.floor() call to let the rest of the expression create random numbers with
decimal fractions if you need them.

JavaScript’s random number generator does not provide a mechanism for adjusting
the seed to ensure more genuine randomness. Thus, at best you can treat it as a pseu-
dorandom number generator.

See Also
“The Math Object” in the introduction to this chapter.

2.8 Calculating Trigonometric Functions

Problem
You want to invoke a variety of trigonometric functions, perhaps for calculating ani-
mation paths of a positioned element.

Solution
JavaScript’s Math object comes with a typical complement of functions for trigono-
metric calculations. Each one requires one or two arguments and returns a result in

42 | Chapter 2: Numbers and Dates

radians. Arguments representing angles must also be expressed in radians. The fol-
lowing statement assigns the sine of a value to a variable:

var sineValue = Math.sin(radiansInput);

All Math object methods must be invoked as methods of the static Math object, as
shown above.

Discussion
See the introduction to this chapter for a summary of all Math object methods and
constants. You can see an application of trigonometric functions in Recipe 13.10,
which calculates the circular path for a positioned element to follow on the page.

See Also
“The Math Object” in the introduction to this chapter; Recipe 13.10 where some
trigonometric operations help calculate points around a circular path.

2.9 Creating a Date Object

Problem
You want to create an instance of a Date object to use for date calculations or display.

Solution
Use the Date object constructor method with any of the acceptable arguments signi-
fying a date (and, optionally, a time for that date):

var myDate = new Date(yyyy, mm, dd, hh, mm, ss);
var myDate = new Date(yyyy, mm, dd);
var myDate = new Date("monthName dd, yyyy hh:mm:ss");
var myDate = new Date("monthName dd, yyyy");
var myDate = new Date(epochMilliseconds);

With all of these constructions, you can generate a date object for any point in his-
tory (reliably back to approximately 100 A.D.) or the future (thousands of millennia
hence). When you create a date object without specifying the time, all time values
are automatically set to zero—the very start of that day.

To create a date object with the current date and time, omit all arguments:

var now = new Date();

The accuracy of the value assigned by the Date object constructor is entirely depen-
dent upon the accuracy of the client computer’s internal clock and control panel set-
tings. Correct setting of the computer’s local time zone and daylight saving time
option is essential to accurate date and time calculations based on the current date.

2.10 Calculating a Previous or Future Date | 43

Discussion
Notice that the arguments for the Date object constructor—as specified in the
ECMAScript standard—have no variation that readily accepts shortcut ways of
entering dates (such as mm/dd/yyyy, or the numerous variations used around the
world). Instead, numerical entries need to be broken into the component parts to be
passed as discrete arguments for the constructor. If you need to generate a date
object from user entries in a text box (or, better still, a series of three text boxes),
you can pass the value properties of those text boxes directly as arguments of the
constructor:

var dateEntry = new Date(document.getElementById("year").value,
 document.getElementById("month").value,
 document.getElementById("date").value);

This is one of those many places where the JavaScript engine automatically attempts
to cast a string value to the required number value.

Despite the lack of ECMA standard support for entry in formats such as mm/dd/yyyy
or mm-dd-yyyy, browsers support them. Therefore, you can get away with supplying
one of those formats to a constructor method, but remember that the sequence is
assured to work only in browsers and operating systems whose date formats support
that sequence. A North American browser, for instance, will misinterpret dates for-
matted as dd/mm/yyyy, which is a very common format outside North America.

It’s important to remember that all of this date object creation and manipulation
occurs strictly on the client. A client-side date object has no connection with the
server’s clock or time zone. At best, a server can timestamp a page as it leaves the
server, but that has nothing to do with a date object on the client. Any attempt at
synchronizing a client-side date object with the server clock is doomed due to latency
between the serving of the page and the rendering in the client.

See Also
Recipes 2.10 and 2.11 for date calculations; Recipe 2.12 for using regular expres-
sions to validate date entries in a form; Recipes 15.8 and 15.9 for applications of a
date object in showing how much time is left before a future event.

2.10 Calculating a Previous or Future Date

Problem
You want to obtain a date based on a specific number of days before or after a
known date.

44 | Chapter 2: Numbers and Dates

Solution
The basic technique is to create a date object with a known date, and then add or
subtract any number of units from that known date. After that, you can read the
components of the modified date object to obtain the string or numerical representa-
tion of the date.

For example, we’ll calculate the date that is 10 days from the current date. After cre-
ating a date object for now, a statement reads the date component (a calendar date
within the month) and then sets the date value ahead by 10 days:

var myDate = new Date();
myDate.setDate(myDate.getDate() + 10);

At this point, the myDate object contains the future date in milliseconds, irrespective
of months, dates, and years. But if you then read myDate’s string version (or locale
string), you see the future date correctly calculated:

document.myForm.deadline.value = myDate.toLocaleDateString();

Discussion
You can move the date forward or back by any increment you like, even when it
doesn’t seem logical. For example, if a date object is currently pointing to the 25th of
a month, you can get the date 10 days in the future by adding 10 to the date:

myDate.setDate(myDate.getDate() + 10);

Even though 25 plus 10 is 35, the date object corrects for the number of days in the
object’s month, and calculates the correct date in the following month, 10 days after
the 25th.

By keeping its internal workings strictly at the millisecond level, a date object can
easily adapt itself to month and year boundaries. Details about the month, date, and
year are calculated internally and returned only upon request. For example, you add
10 days to the 25th of June (which has 30 days), you arrive at the 5th of July; but add
10 days to the 25th of July (which has 31 days), and you reach the 4th of August.
The JavaScript interpreter takes care of all such irregularities for you.

A date object has numerous functions for getting and setting components of the date,
ranging from the millisecond to the year. Table 2-3 shows the most common meth-
ods and their value ranges.

Table 2-3. Date methods

Read Write Values Description

getTime() setTime(val) 0– . . . Number of milliseconds since 1Jan1970 at
00:00:00 UTC

getSeconds() setSeconds(val) 0–59 Number of seconds after the minute stored in the
object

2.11 Calculating the Number of Days Between Two Dates | 45

All of these methods deal with time in the client computer’s local time zone. If you
need to work on a more global scale, see Recipe 15.9.

See Also
Recipe 2.9 for creating a date object; Recipe 2.11 for calculating the number of days
between two dates; Recipes 15.7, 15.8, and 15.9 for more date applications.

2.11 Calculating the Number of Days Between Two
Dates

Problem
You want to find out how many days come between two known dates.

Solution
Use the daysBetween() function shown in the Discussion to obtain an integer signify-
ing the number of whole days between two dates that are passed as parameters to the
function. For example:

var projectLength = 0;
// validate form entries with checkDate() function from Recipe 2.12
var startField = document.getElementById("startDate");
var endField = document.getElementById("endDate");
if (checkDate(startField) && checkDate(endField)) {
 var startDate = new Date(startField.value);
 var endDate = new Date(endField.value);
 projectLength = daysBetween(startDate, endDate);
}
if (projectLength > 0) {
 alert("You\'ve specified " + projectLength + " days for this project.");
}

getMinutes() setMinutes(val) 0–59 Number of minutes after the hour stored in the
object

getHours() setHours(val) 0–23 Number of hours in the date stored in the object

getDay() setDay(val) 0–6 Day of the week (Sunday = 0, Monday = 1, etc.)

getDate() setDate(val) 1–31 Date number

getMonth() setMonth(val) 0–11 Month in the object’s year (January = 0)

getFullYear() setFullYear(val) 1970– . . . Four-digit year

Table 2-3. Date methods (continued)

Read Write Values Description

46 | Chapter 2: Numbers and Dates

Discussion
Example 2-2 shows the daysBetween() utility function. The function’s two argu-
ments are date objects.

The calculation is based on the number of milliseconds between the two dates.
Because it is possible that one or both of the arguments’ date objects could have been
created with times (as happens when invoking the Date() constructor method with-
out parameters), the function sets the times of both objects to zero.

You probably noticed the code in the daysBetween() function that revolves around
the DSTAdjust variable. This adjustment is needed when the span of time between the
two dates includes a local time change—known as Daylight Saving Time in North
America, and Summer Time in many other parts of the world.

While every day has a fixed number of milliseconds (as far as JavaScript is con-
cerned), the days in which the time changes occur can have an artificial measure of
23 or 25 hours. When the function sets the hours, minutes, and seconds of the date
objects to zero, the values are assigned to the local time of the client computer. Con-
sider what happens during the change back to standard time, when the day with the
change lasts for 25 hours. If that day is a Sunday, and you want to count the number
of days between Friday and Monday, the total number of milliseconds between those
two days will have one hour’s worth of extra milliseconds in the total difference
between the two dates. Without adjusting for this extra hour, the daysBetween()

Example 2-2. daysBetween() function for calculating days between dates

function daysBetween(date1, date2) {
 var DSTAdjust = 0;
 // constants used for our calculations below
 oneMinute = 1000 * 60;
 var oneDay = oneMinute * 60 * 24;
 // equalize times in case date objects have them
 date1.setHours(0);
 date1.setMinutes(0);
 date1.setSeconds(0);
 date2.setHours(0);
 date2.setMinutes(0);
 date2.setSeconds(0);
 // take care of spans across Daylight Saving Time changes
 if (date2 > date1) {
 DSTAdjust =
 (date2.getTimezoneOffset() - date1.getTimezoneOffset()) * oneMinute;
 } else {
 DSTAdjust =
 (date1.getTimezoneOffset() - date2.getTimezoneOffset()) * oneMinute;
 }
 var diff = Math.abs(date2.getTime() - date1.getTime()) - DSTAdjust;
 return Math.ceil(diff/oneDay);
}

2.12 Validating a Date | 47

function returns an integer showing one more day than is actually there (by taking
the ceiling of the result of dividing the total number of elapsed milliseconds by the
number of milliseconds in one day).

It’s almost magic that the date management mechanism of the JavaScript interpreter
(working in concert with the operating system) knows that for a given locale (as
determined by the operating system), the offset from GMT is one measure during
Daylight Saving Time and another measure during standard time. It is that intelli-
gent offset measure that the daysBetween() function uses to determine the amount of
adjustment to make to the calculation (and is not affected by legislated changes to
Daylight Saving Time start and end dates). For a date span that does not cross one of
these boundary cases, the value of DSTAdjust is zero; but during those breaks, the
variable holds the number of minutes difference between the two dates (the
getTimezoneOffset() method returns a value in minutes).

See Also
Recipe 15.8 for a dynamic display of the number of shopping days until Christmas;
Recipe 15.9 for a dynamic countdown timer.

2.12 Validating a Date

Problem
You want to validate a date entered by the user in a form.

Solution
Use the checkDate() function shown in the Discussion. This function takes a text
input element as its sole argument and expects the user to enter a date value in either
mm/dd/yyyy or mm-dd-yyyy format. For example, the following validation function
could be triggered from a change event handler of a date entry form field:

function validateDate(fld) {
 if (!checkDate(fld)) {
 // focus if validation fails
 fld.focus();
 fld.select();
 }
}

Discussion
Before you undertake validating a date entry, you must clearly understand your
assumptions about the users, the purpose of the entry, and what you want to report
back to the users for invalid entries. It’s comparatively easy to test whether a field
expecting a date in the mm/dd/yyyy format has numbers in the right places, but that

48 | Chapter 2: Numbers and Dates

typically is not good enough. After all, you don’t want someone to get away with
entering the 45th of June into a date field.

The checkDate() validation function in Example 2-3 assumes that users will enter
dates in either mm/dd/yyyy or mm-dd-yyyy formats (in that order only), and that the
validation must test for the entry of a true date. There is no boundary checking here,
so practically any year is accepted. As a form-validation function, this one takes a ref-
erence to the text input element as the sole argument. Upon successful validation,
the function returns true; otherwise, the user receives an alert message with some
level of detail about the error, and the function returns false.

The basic operation of the checkDate() function is to first validate the format of the
entry against a regular expression pattern. If the format is good, the function creates
a date object from the entered numbers. Then the components of the resulting date
object are compared against the initial entries. If there is any discrepancy between
the two sets of numbers, a problem with the entry exists. It helps that the JavaScript
Date object constructor accepts out-of-range dates and calculates the effective date
from those wacky values. When the user enters 2/30/2007, the resulting date object

Example 2-3. Basic date validation function

function checkDate(fld) {
 var mo, day, yr;
 var entry = fld.value;
 var re = /\b\d{1,2}[\/-]\d{1,2}[\/-]\d{4}\b/;
 if (re.test(entry)) {
 var delimChar = (entry.indexOf("/") != -1) ? "/" : "-";
 var delim1 = entry.indexOf(delimChar);
 var delim2 = entry.lastIndexOf(delimChar);
 mo = parseInt(entry.substring(0, delim1), 10);
 day = parseInt(entry.substring(delim1+1, delim2), 10);
 yr = parseInt(entry.substring(delim2+1), 10);
 var testDate = new Date(yr, mo-1, day);
 if (testDate.getDate() == day) {
 if (testDate.getMonth() + 1 == mo) {
 if (testDate.getFullYear() == yr) {
 return true;
 } else {
 alert("There is a problem with the year entry.");
 }
 } else {
 alert("There is a problem with the month entry.");
 }
 } else {
 alert("There is a problem with the date entry.");
 }
 } else {
 alert("Incorrect date format. Enter as mm/dd/yyyy.");
 }
 return false;
}

2.12 Validating a Date | 49

is for 3/2/2007. Since the month and date no longer coincide with the entries, it’s
clear that the user entered an invalid date.

Although this function uses a regular expression only to verify the basic format of the
date entry, it uses more rudimentary string parsing for the detailed analysis of the
entry. This tactic is needed for backward-compatibility to overcome incomplete
implementations of advanced regular expression handling in browsers prior to IE 5.5
for Windows. The checkDate() function works in all mainstream browsers from Ver-
sion 4 onward.

In a high-volume data-entry environment, where productivity is measured in opera-
tors’ keystrokes and time spent per form, you want to build more intelligence in a
form. For example, you want to allow two-digit year entries, but code the validation
routine so that it fills the field with the expanded version of the date because the
backend database requires it. Moreover, the two-digit entry needs to be done in a
maintenance-free way so that the range of allowable years for two-digit dates contin-
ues to modify itself as the years progress. Example 2-4 is an enhanced version of the
checkDate() function with these upgrades shown in bold.

Example 2-4. Enhanced date validation function

function checkDate(fld) {
 var mo, day, yr;
 var entry = fld.value;
 var reLong = /\b\d{1,2}[\/-]\d{1,2}[\/-]\d{4}\b/;
 var reShort = /\b\d{1,2}[\/-]\d{1,2}[\/-]\d{2}\b/;
 var valid = (reLong.test(entry)) || (reShort.test(entry));
 if (valid) {
 var delimChar = (entry.indexOf("/") != -1) ? "/" : "-";
 var delim1 = entry.indexOf(delimChar);
 var delim2 = entry.lastIndexOf(delimChar);
 mo = parseInt(entry.substring(0, delim1), 10);
 day = parseInt(entry.substring(delim1+1, delim2), 10);
 yr = parseInt(entry.substring(delim2+1), 10);
 // handle two-digit year
 if (yr < 100) {
 var today = new Date();
 // get current century floor (e.g., 2000)
 var currCent = parseInt(today.getFullYear() / 100) * 100;
 // two digits up to this year + 15 expands to current century
 var threshold = (today.getFullYear() + 15) - currCent;
 if (yr > threshold) {
 yr += currCent - 100;
 } else {
 yr += currCent; }
 }
 var testDate = new Date(yr, mo-1, day);
 if (testDate.getDate() == day) {
 if (testDate.getMonth() + 1 == mo) {
 if (testDate.getFullYear() == yr) {

50 | Chapter 2: Numbers and Dates

You can short-circuit a lot of the potential problems for date validation—including
the one involving cultural differences in date formats—by providing either three text
boxes (for month, day, and year in any order), or three select lists. Even the select
list solution isn’t free from validation, however, because you have to make sure that
the user has chosen a valid combination (e.g., not something like June 31). You can
get creative in this regard by using dynamic forms to repopulate the date list each
time the user changes the month (see Recipe 8.14).

Date fields are generally important to the form in which they exist. Don’t skimp on
the thoroughness of validation for dates either on the client or on the server.

See Also
Recipe 8.2 for additional form field validation functions.

 // fill field with database-friendly format
 fld.value = mo + "/" + day + "/" + yr;
 return true;
 } else {
 alert("There is a problem with the year entry.");
 }
 } else {
 alert("There is a problem with the month entry.");
 }
 } else {
 alert("There is a problem with the date entry.");
 }
 } else {
 alert("Incorrect date format. Enter as mm/dd/yyyy.");
 }
 return false;
}

Example 2-4. Enhanced date validation function (continued)

51

Chapter 3 CHAPTER 3

Arrays and Objects3

3.0 Introduction
Most programming tasks involve moving data around in memory. A lot of the data
involved in browser-based JavaScript activity consists of objects that are part of the
rendered document. But very often your scripts arrive at the client accompanied by
data provided by a server or hardwired in the script (as arrays or custom objects). Or
you may find it convenient to create more flexible data structures that mirror the ren-
dered content on the page. For example, it may be easier and faster to sort a table’s
data inside a JavaScript array and re-render the table rather than playing Tower of
Hanoi games with cells and rows of a table one by one.

One of the most important jobs you have as a programmer is designing the data
structures that your scripts will be working with. It’s not unusual to start the plan-
ning of a major scripting job by scoping out the data structures that will facilitate
DHTML-enhanced user interface features. When you do so, you will find JavaScript
arrays and custom objects to be the containers and organizers of your data. These
containers give your scripts a regular way to access the data points and a clean way
to structure the data to make it easy to visualize the abstract comings and goings dur-
ing script execution.

JavaScript Arrays
The loose data typing that pervades JavaScript carries over to arrays, but even more
so. Unlike similar structures in many other programming languages, a JavaScript
array is not limited to a specific size chiseled in stone at the time of its creation. You
can add or delete items from an array at will. It is an extraordinarily flexible data
store.

Another feature of the JavaScript array is that each entry in the array can hold data of
any type. It’s no problem mixing strings, numbers, Booleans, and objects within the
same array. You can even change the data and data type for a single array entry at
any time. Neither of these practices may be advisable from a programming-style
point of view, but they’re possible nevertheless.

52 | Chapter 3: Arrays and Objects

Arrays are indexed by zero-based integers. In other words, to reference the first entry
in an array named myArray, use myArray[0]. A reference to the array entry returns the
entry’s value. To assign a value to an entry, use the simple assignment (=) operator.
You may also use the add-by-value (+=) operator to add a number or append a string
to an array entry, as appropriate.

The basic JavaScript array is a one-dimensional kind of array. But as you will see in
Recipes 3.2 and 3.9, you can create more complex array structures, including multi-
dimensional arrays (arrays of arrays), and arrays whose entries are complex custom
objects.

JavaScript Custom Objects
The “looseness” of the JavaScript language, as exhibited in the way it handles data
typing, arrays, and variable values, extends to its concept of objects. Forget what you
know about object-oriented programming techniques and relationships between
objects. The notions of traditional classes, subclasses, and message passing have lit-
tle application in JavaScript (although some of these ideas may come to the language
in the future). Instead, think of a custom object as simply a convenient container for
data in which the data values have labels that make it easier to remember what’s
what. Custom object syntax is just like the syntax you use for other JavaScript and
DOM objects: it follows the “dots” rule (e.g., myObject.myProperty and myObject.
myMethod()).

One of the hazards of bringing too much object-oriented programming experience to
scripting is that you might tend to turn every piece of data into an object, even when
the overhead (in terms of source code space) to generate the object outweighs any
functional or readability benefit you might get from using objects. It’s not uncom-
mon for an object-oriented approach to a simple problem to obfuscate the relation-
ships among data points. But if your scripts frequently need to refer to some data
associated with an entity that hangs around in the global variable space, it probably
makes good sense to use an object there. In later chapters of this book, you will see
many objects used as repositories for bits of information related to a particular item,
such as the details of a drop-down menu.

Despite the cautions expressed here about the difference between objects in Java-
Script (which are based on a concept called prototype inheritance) and true object-
oriented environments, you can simulate a goodly amount of genuine OOP ideas
with custom objects. Recipe 3.12 demonstrates a few of these simulations.

Choosing Between Arrays and Objects
So, when do you use an array, and when do you use an object? Think of an array as
an ordered list of similar kinds of data. The list, itself, signifies the purpose or kind of
data it contains, such as a series of coworker names or the titles of all books on a
shelf. The position of one item among the others is not important, although you

Introduction | 53

might like to sort the list to, perhaps, show the contents in alphabetical order. Hav-
ing the items in this kind of “blind” list means that at some point you will be look-
ing through all items in the list, perhaps to pull out their values for insertion into an
HTML element for display.

An object, on the other hand, is best used to encapsulate information about a single
entity. A coworker object might contain properties for the person’s name and age; a
book object could have dozens of properties for information points such as title,
author, publisher, category, and so on. The properties are explicitly named so that
you can readily access the value of a single property directly (e.g., book3.publisher).
You can also equip an object with methods whose actions operate on the object and
its properties (see Recipe 3.8).

As you will see in Recipe 3.7 and elsewhere, there is an advantage in creating an
array of objects. The “array-ness” gives your scripts the ability to iterate through the
entire list of objects; the “object-ness” lets the same script inspect a specific property
of each object in the array to perform tasks like lookups. An array of book objects,
for instance, lets a looping construct look through the entire list of books and inspect
the author property of each item to accumulate the title property values of those
objects whose author property meets a particular criterion.

Be prepared to use arrays and objects by themselves, as well as in combination. Not
only are you likely to use an array of objects, but a property of an object may be an
array. For example, an object that represents a book might define the author prop-
erty as an array to accommodate multiple authors. A book with a single author has a
one-entry array for that property, but the scripts that go diving for authors know to
expect an array data type there, as well as use appropriate comparison tools against
the entries in the array.

As dry as this chapter’s subject may seem at first glance, it may be the most impor-
tant one in the entire book. Most of the recipes from this chapter are used in later
chapters repeatedly because they are fundamental building blocks for a lot of
Dynamic HTML and other scripting.

Getting Data into the Page
Most of the recipes in this chapter show data arrays and objects embedded directly
within the page of the examples. This approach works for a fixed set of data or, after
the page has loaded, data dynamically read from the page or user entry forms. But
you can also embed data from live sources—server databases—with the help of
server programming.

If you use a server environment (such as ASP, JSP, ColdFusion, PHP, and many
more) that assembles each page’s content by way of server-side templates and pro-
grams, you can use the same environment to retrieve data from your databases and
convert the returned data sets into JavaScript arrays and objects to be delivered with
the rest of the page. Another approach is to let the external script-loading capability

54 | Chapter 3: Arrays and Objects

of browsers (via the src attribute of the <script> tag) point to a server process URL.
The URL contains query data that the server program uses to fetch the database
data, then the server converts the returned data into JavaScript arrays and objects for
output to the client, delivered in the format and MIME type of a .js file. The data
becomes part of the page’s scripts, just as if it were directly embedded in the page.

Perhaps the most intriguing possibilities, however, arise from a technology that is
now common to every scriptable browser. An object called XMLHttpRequest makes it
possible for a rendered page to make requests to a server process without disturbing
the current page. Typically, the process returns data in the form of an XML docu-
ment, from which a browser script may readily extract data to update portions of the
rendered page. The technology has been given a more convenient name: Asynchro-
nous JavaScript and XML, or Ajax for short.

Such data retrieval is not limited to XML. Instead, a server process can return to the
XMLHttpRequest object a string consisting of a JavaScript array and custom object
code. Once received at the browser, a single statement (eval()) converts the string
into full-fledged JavaScript arrays and objects, ready for further manipulation. This
so-called JavaScript Object Notation (JSON) is yet another way to feed server data to
an already rendered page.

3.1 Creating a Simple Array

Problem
You want to create a simple array of data.

Solution
JavaScript provides both a long way and a shortcut to generate and populate an
array. The long way is to use the Array object constructor. If you specify no parame-
ters for the constructor, you create an empty array, which you may then populate
with data entry by entry:

var myArray = new Array();
myArray[0] = "Alice";
myArray[1] = "Fred";
...

You do not have to declare a fixed size for an array when you create it, but you may
do so if you wish, by passing a single integer value as a parameter to the constructor
method:

var myArray = new Array(12);

This creates an array of 12 entries whose values are null.

3.1 Creating a Simple Array | 55

If you supply more than one comma-delimited parameter to the constructor method,
the arguments are treated as data for the array entries. Thus, the following statement:

var myArray = new Array("Alice", "Fred", "Jean");

creates a three-item array, each item containing a string value.

A shortcut approach to the same action lets you use square brackets to symbolize the
array constructor:

var myArray = ["Alice", "Fred", "Jean"];

Discussion
After you create an array (through any of the syntaxes just shown), you can add to it
by assigning a value to the array with the next numeric index in sequence. If your
script doesn’t know how large an array is when it needs to add to it, you can use the
length property of the array to help out. Because the length integer is always one
larger than the highest zero-based index value of the array, the length value can act
as the index for the next item:

myArray[myArray.length] = "Steve";

In fact, you can use this construction to populate any existing array object, including
an empty one. This is particularly helpful if you are populating a large array and need
to change values in the source code from time to time. Rather than trying to juggle
fixed index numbers in a long series of assignment statements, use the length prop-
erty, and order the assignment statements so that all items are in the desired array
order. The indexes will take care of themselves when the statements run, even if you
change the order in the source code tomorrow.

If your pages limit IE browsers to version 5.5 or later, you should use the ECMA-
standard push() method of arrays to append items to an existing array. Thus, in
place of the first example shown in the Solution, you would use the following syntax:

var myArray = new Array();
myArray.push("Alice");
myArray.push("Fred");
...

Your code can use the same method to add new items to the array at any time. If the
order of items in an array requires that a new item be inserted as the first array entry
(occupying the zeroth position), use the unshift() method of an array. Index values
for all subsequent items increment by one as a result of the insertion.

See Also
Recipe 3.2 for creating a more complex array; Recipe 3.8 for a discussion about cre-
ating an array of objects; Recipe 3.3 for converting an array’s entries to a string value.

56 | Chapter 3: Arrays and Objects

3.2 Creating a Multidimensional Array

Problem
You want to consolidate data in an array construction of two dimensions—such as a
table—or even more dimensions.

Solution
Create an array of arrays. As an example, consider the following small table of
regional sales data:

To place the data portions of this table into an array that has three items (one for
each region row), in which each item contains an array of four nested items (sales fig-
ures for each quarter column for that region), you can use a variety of array-creation
syntaxes. A comparatively long version creates each of the nested arrays first, and
then assigns those nested arrays to the outer array:

var eastArray = new Array(2300, 3105, 2909, 4800);
var centralArray = new Array(1800, 1940, 2470, 4350);
var westArray = new Array(900, 1200, 1923, 3810);
var salesArray = new Array(eastArray, centralArray, westArray);

The most compact array creation approach is to use the bracket shortcuts exclusively:

var salesArray = [[2300, 3105, 2909, 4800],
 [1800, 1940, 2470, 4350],
 [900, 1200, 1923, 3810]];

To access any nested item within salesArray, use a double index. For example, to
reach the first item (East Q1), the reference is:

salesArray[0][0] // 2300

There are no commas or other symbols allowed between the bracketed index values
in this kind of reference. The first index applies to the first-level array, while the sec-
ond applies to the nested arrays. Therefore, to reach the Central region’s Q3 sales,
the reference is:

salesArray[1][2] // 2470

You may read and write to these multidimensional array items just like any other
array items.

Description Q1 Q2 Q3 Q4

East 2300 3105 2909 4800

Central 1800 1940 2470 4350

West 900 1200 1923 3810

3.3 Converting Between Arrays and Strings | 57

Discussion
There is no practical limit to the number of nesting levels you can create for a multi-
dimensional array. For each dimension, lengthen the reference to the most deeply
nested items with another bracketed index value. See Recipe 3.4 for using loops to
inspect every item in a deeply nested array.

One potential problem with using a multidimensional array is that you may lose
track of what a particular entry represents. When you look at the array creation
examples just shown, the numbers lose their contextual meaning with respect to
region or quarter. Their position in the two-dimensional array is all that the num-
bers know about. It is up to the rest of your scripts to keep the relationships between
the data points and their meanings straight. In many cases, you may be better served
by creating an array of custom objects. The objects can contain properties that pro-
vide labels and context for the raw data. See Recipes 3.8 and 3.9 for additional
thoughts on the issue.

See Also
Recipe 3.4 to see how to iterate through simple and multidimensional arrays; Recipe
3.8 for using an array of objects in place of a multidimensional array; Recipe 3.9 for a
custom object implementation of the sales example and how to create a simulated
hash table to speed access to a particular entry.

3.3 Converting Between Arrays and Strings

Problem
You want to obtain a string representation of an array’s data or change a string to an
array.

Solution
Array objects and string values have methods that facilitate conversion between these
data types, thus allowing arrays to be conveyed to other pages via URL search strings
or cookies.

To convert a simple (one-dimensional) array to a string, first select a character that
can act as a unique delimiter character between the array values when they become
embedded in a string. The character cannot appear in any of the data entries. Specify
that character as the sole parameter to the join() method of the array. The follow-
ing statement uses a comma as a delimiter between entries after the conversion to
string form:

var arrayAsString = myArray.join(",");

The original array is not disturbed in the course of this transformation.

58 | Chapter 3: Arrays and Objects

If you have a string with a delimiter character separating individual points of data
that you want to convert to an array, specify that character as the parameter of the
split() method of your string value or object:

var restoredArray = myRegularString.split(",");

The split() method performs the task of an array constructor, automatically pass-
ing the values between delimiters as items of the new array. The delimiter characters
do not become part of the array’s value.

Discussion
Although the preceding examples show only single characters used as the so-called
separators for the string versions, you can use any string. For example, if you
intended to display the array entries as a vertical list in a textarea element, you could
use the \n special character to force carriage returns between the items. Similarly, if
the data was to be formatted as an XHTML list, you could use the string
 as
the separator of the join() method; or if the array items have all the necessary
XHTML code in them, specify an empty string as the join() method parameter.
Then use the resulting string as a value to assign to an element’s innerHTML property
for display in the body text of a page.

Use the join() method only on simple arrays. For a multidimensional array, the
method is safe to use on any of the most deeply nested arrays, which are, them-
selves, simple arrays.

Even more powerful is the split() method of a string value or object. You can use
regular expressions as the separator parameter. For example, consider the string of
comma-delimited dollar values:

var amounts = "30.25,120.00,45.09,200.10";

If you want to create an array of just the integer portions of those values, you could
create a regular expression whose pattern looks for a period, followed by two numer-
als and an optional comma (to accommodate the final entry):

var amtArray = amounts.split(/\.\d{2},?/); // result = [30, 120, 45, 200,]

One by-product of the use of the split() method on a string when the separator is at
the end of the string is that the method creates an array entry for the nonexistent
item following the end separator. Most typically, the separator does not come at the
end of the string, but if it does, watch out for this extra empty array entry.

An optional second parameter of the split() method lets you supply an integer rep-
resenting the number of items from the string to send to the new array. Thus, if the
string value always ends in the separator character or sequence, you can limit the
split() method to the actual number of items in the string (assuming your scripts
know or derive that information from string parsing or other activities). This parame-
ter is not part of the formal ECMAScript standard, but is implemented in mainstream
browsers.

3.4 Doing Something with the Items in an Array | 59

In practice, converting arrays to a string is limited to array data that is easily repre-
sented in strings, such as numbers, Booleans, and other strings. If an array’s items
consist of references to objects (either custom or DOM), such objects don’t have a
suitable or meaningful string representation. For an array of DOM objects, you
might consider grabbing the id properties of the objects and preserving them in the
string. Although the characteristics of the objects won’t be conveyed, if the same
objects exist in another page, the IDs can be used (via the document.
getElementById() method) to resurrect a proper reference to the object. See Reci-
pes 3.13 and 8.14 for ideas about converting objects to strings.

See Also
Recipe 3.13 for a way to convert data consisting of custom objects and arrays to a
string that can later rebuild the objects and arrays; Recipe 8.14 to convert form data
to strings for transfer to another page.

3.4 Doing Something with the Items in an Array

Problem
You want to loop through all entries of an array and read their values.

Solution
Use a for loop to build an incrementing index counter, limited by the length of the
array. Although not particularly practical, the following sequence demonstrates how
to iterate through an array and reference individual entries of the array from inside
the loop:

var myArray = ["Alice", "Fred", "Jean", "Steve"];
for (var i = 0; i < myArray.length; i++) {
 alert("Item " + i + " is:" + myArray[i] + ".");
}

The limit expression portion of the for loop uses the less-than (<) operator on the
length property of the array. Because index values are zero-based, but the length
property contains the actual count of items, you want to keep the maximum index
value at one less than the count of items. Therefore, do not use the less-than or equal
to (<=) operator. If you want the loop to operate in reverse order, initialize the loop
counter variable (i) to be the length minus 1:

for (var i = myArray.length - 1; i >= 0; i--) {
 alert("Item " + i + " is:" + myArray[i] + ".");
}

You don’t have to redeclare the counter variable with the var statement if you have
initialized it in a separate var statement or in a previous loop earlier within the same
function.

60 | Chapter 3: Arrays and Objects

Discussion
It’s not uncommon to loop through an array (or collection of DOM objects) to find a
match for some value within the array, and then use the index of the found item to
assist with other lookup tasks. For example, the following parallel (but distinctly sep-
arate) arrays contain data with individuals’ names and their corresponding ages:

var nameList = ["Alice", "Fred", "Jean", "Steve"];
var ageList = [23, 32, 28, 24];

You can use these parallel arrays as a lookup table. The following function receives a
name string as a parameter, and looks for the matching age in the second array:

function ageLookup(name) {
 for (var i = 0; i < nameList.length; i++) {
 if (nameList[i] = = name) {
 return ageList[i];
 }
 return "Could not find " + name + ".";
}

Similarly, you can examine a property of objects within a collection, and use the
“found” index to read or write properties of the target items. The following function
empties all of the text boxes on a page, even if the page contains multiple forms:

function clearTextBoxes() {
 var allInputs = document.getElementsByTagName("input");
 for (var i = 0; i < allInputs.length; i++) {
 if (allInputs[i].type = = "text") {
 allInputs[i].value = "";
 }
 }
}

For a multidimensional array, you need a multidimensional (i.e., nested) for loop
construction to access each item. For example, given the two-dimensional array dem-
onstrated in Recipe 3.2, the following nested for loops are able to reference each
item and accumulate the numeric values from all entries of the two-dimensional
array:

var total = 0;
var i, j;
for (i = 0; i < salesArray.length; i++) {
 for (j = 0; j < salesArray[i].length; j++) {
 total += salesArray[i][j];
 }
}

The nested array uses a separate loop counting variable (j). If you visualize the multi-
dimensional array as the table shown in Recipe 3.2, the outer-counting variable (i)
works along the rows, and the nested counting variable (j) works down the columns.

3.5 Sorting a Simple Array | 61

Thus, the sequence of operations in this construction goes across the rows of the cor-
responding table as follows:

row 0, cell 0
row 0, cell 1
row 0, cell 2
row 0, cell 3
row 1, cell 0
row 1, cell 1
...

See Also
Recipe 3.9 for a speedy alternative to parallel array lookups using a simulated hash
table; Recipe 3.2 for creating a multidimensional array.

3.5 Sorting a Simple Array

Problem
You want to sort an array of numbers or strings.

Solution
To sort an array of numbers from lowest to highest, use the plain sort() method of
the array object:

myArray.sort();

This action modifies the order of the items within the array, and its original order
cannot be restored unless your scripts have preserved that information elsewhere.
Sorting a multidimensional array sorts only the outermost level.

Discussion
You can use the same parameter-less method on an array of string items, but the
sorting is performed according to the ASCII values of the string characters. There-
fore, if the strings in the array are not homogenous with respect to case, you may
receive the array sorted such that all strings starting with uppercase letters sort ahead
of those starting with lowercase letters (because ASCII values for uppercase letters
are smaller than those for lowercase letters, as shown in Appendix A). For more
complex and numeric sorting, however, you need to define a comparison function
and invoke it from the sort() method.

A comparison function used with array sorts is a very powerful component of the
JavaScript language and data manipulation. To invoke the comparison function, pass
a reference to the function as the sole parameter of the sort() method.

62 | Chapter 3: Arrays and Objects

Sorting through a comparison function causes the interpreter to repeatedly send
pairs of values from the array to the function. The function should have two parame-
ter variables assigned to it. The job of the function is to compare each pair of values,
and return a value of less than zero, zero, or greater than zero, depending on the rela-
tionships between the two values:

<0 The second passed value should sort later than the first value.

0 The sort order of the two values should not change.

>0 The first passed value should sort later than the second.

As an example, consider an array consisting of numeric values. If you invoke the
sort() method without any parameters, the default sorting routine treats the values
like strings and sorts them according to their ASCII values, which puts the number
10 sorting earlier than 4 because the first character of 10 is a lower ASCII value than
that for 4.

To sort the values in genuine numerical order, you need to create a sorting function
that explicitly compares the values as numbers:

function compareNumbers(a, b) {
 return a - b;
}

Invoke the sort through the statement:

myArray.sort(compareNumbers);

Behind the scenes, the JavaScript interpreter repeatedly sends pairs of values from
the array to the function. If, during one of the trips to the comparison function the
returned value is less than zero, it means that the second value is larger than the first
and should be pushed down the sorting order. After rippling through all the values,
the array is in the desired sorting order. To change the order of the sorting so that
numbers are sorted in descending order, rework the comparison function as follows:

function compareNumbers(a, b) {
 return b - a;
}

For more complex sorting, including how you could sort by the number of charac-
ters in array item strings, see Recipe 3.11.

See Also
Recipe 3.11 for sorting arrays of objects based on values of a property in the objects.

3.6 Combining Arrays | 63

3.6 Combining Arrays

Problem
You want to blend two or more separate arrays into one larger array.

Solution
To join arrays together, use the concat() method of the array object, passing a refer-
ence to the other array as a parameter:

var comboArray = myArray.concat(anotherArray);

Arrays joined through the concat() method are not altered. Instead, the concat()
method returns the combined array as a new value, which you can preserve in a sepa-
rate variable. The base array (the one used to invoke the concat() method) comes
first in the combined array.

For combining multiple arrays, pass the additional arrays as comma-delimited
parameters to the concat() method:

var comboArray = myArray.concat(otherArray1, otherArray2, otherArray3);

The combined array has items in the same order as they appear in the comma-delimited
arguments.

Discussion
The concat() method is not limited to tacking one array onto another. Comma-
delimited parameters to the method can be any data type. A value of any data type
other than an array becomes another entry in the main array—in the same sequence
as the parameters. You can even combine arrays and other data types in the group of
parameters passed to the method.

In addition to the concat() method, a quartet of array methods let you treat an array
like a stack for tacking on and removing items from the frontend or backend of the
array. The push() method lets you append one or more items to the end of an array;
the corresponding pop() method removes the last item from the array and returns its
value. You can perform the same operations at the beginning of the array with the
unshift() (append) and shift() (remove) methods. All four of these methods are
implemented in IE 5.5 or later and all modern scriptable browsers.

See Also
Recipe 3.5 for sorting an array—something you may wish to do once you add to an
array; Recipe 3.7 for dividing an array.

64 | Chapter 3: Arrays and Objects

3.7 Dividing Arrays

Problem
You want to divide one array into two or more array segments.

Solution
To divide an array into two pieces, use the splice() method on the original array
(the method is available in IE 5.5 or later and all modern scriptable browsers). The
splice() method requires two parameters that signify the zero-based index of the
first item, and the number of items from there to be removed from the original array.
For example, consider the following starting array:

var myArray = [10, 20, 30, 40, 50, 60, 70];

To create two arrays that have three and four items, respectively, first decide which
items are to remain in the original array. For this example, we’ll remove the first
three items to their own array:

var subArray = myArray.splice(0, 3);

After the splice() method executes, there are now two arrays as follows:

myArray: [40, 50, 60, 70]
subArray: [10, 20, 30]

You can extract any sequence of contiguous items from the original array. After the
extraction, the original array collapses to its most compact size, reducing its length to
the number of items remaining. The two arrays do not maintain any connection with
each other after the splice() method executes.

Discussion
The splice() method does more than merely cut out a group of entries from an
array. Optional parameters to the method let you both remove and insert items in
their place all in one step. Moreover, you don’t have to replace removed items with
the same quantity of new items. To demonstrate, we’ll start with a simple array:

var myArray = [10, 20, 30, 40, 50, 60, 70];

Our goal is to extract the middle three items (preserved as their own array for use
elsewhere), and replace these items with two new items:

var subArray = myArray.splice(2, 3, "Jane", "Joe");

After the splice() statement executes, the two arrays have the following content:

myArray: [10, 20, "Jane", "Joe", 60, 70]
subArray: [30, 40, 50]

Using the splice() method is the best way to delete entries from within an array. If
you simply invoke the method without capturing the returned result, the items

3.8 Creating a Custom Object | 65

specified by attributes are gone, and the length of the array closes up to the remain-
ing items.

To insert an item into an array at a specific location, specify the zero-based index
location as the first parameter, zero for the second parameter (deleting zero items),
and the inserted value (or comma-separated values) as the last parameter. For example:

var myArray = [10, 20, 30, 40];
myArray.splice(2, 0, 25);
// myArray is now [10, 20, 25, 30, 40]

One other array method, slice(), allows you to copy a contiguous section of an
array and create a separate, new array with those entries. The difference between
slice() and splice() is that slice() does not alter the original array. Parameters to
slice() are integers of the starting index of the group to extract and the ending
index. (Or else, omit the ending index to take every entry to the end of the array.)

See Also
Recipe 3.6 for combining two or more arrays into a single array.

3.8 Creating a Custom Object

Problem
You want to create a custom object for your data structure.

Solution
As with creating arrays, object creation has both a long form and a compact form.
The long form requires that you define a constructor function, while the compact
form uses special inline symbols to denote the structure of the object.

A constructor function looks like any other JavaScript function, but its purpose is to
define the initial structure of an object—its property and method names—and per-
haps to populate some or all of the properties with initial values. Values to be
assigned to properties of the object are typically passed as parameters to the func-
tion, and statements in the function assign those values to properties. The following
constructor function defines an object with two properties:

function coworker(name, age) {
 this.name = name;
 this.age = age;
}

To create objects with this constructor, invoke the function with the new keyword:

var emp1 = new coworker("Alice", 23);
var emp2 = new coworker("Fred", 32);

66 | Chapter 3: Arrays and Objects

The this keyword in the constructor function localizes the context of the function to
the object being created. As the function is reused for each object it creates, the con-
text limits itself just to the one object under construction.

If you prefer not to use a constructor function, you can create objects with a short-
cut syntax that defines an object inside curly braces. Property names and values are
defined inside the curly braces as name/value pairs with a colon between the name
and value, and each pair is comma-delimited. Property names cannot begin with a
numeral. For example, the two objects just shown can be created using the shortcut
syntax as follows:

var emp1 = {name:"Alice", age:23};
var emp2 = {name:"Fred", age:32};

After the objects are created, you access a property value just like you do with other
JavaScript objects. For example, to display data from the emp2 object in an alert dia-
log box, the statement looks like the following:

alert("Employee " + emp2.name + " is " + emp2.age + " years old.");

After an object exists, you can add a new property to that instance by simply assign-
ing a value to the property name of your choice. For example, to add a property
about the cubicle number for Fred, the statement is:

emp2.cubeNum = 320;

After that assignment, only emp2 has that property (see Recipe 3.12 for more power-
ful assignments). There is no requirement that a property be predeclared in its con-
structor or shortcut creation code. This also means that you can be quite cavalier in
your object creation to the point of generating a blank object and then populating it
explicitly property by property:

var emp1 = new Object();
emp1.name = "Alice";
emp1.age = 23;

This kind of object creation is usually more difficult to maintain in the source code
and also takes up much more space if you need to create many similar objects.

Discussion
We’ve covered how to create properties for a custom object. Doing the same with
methods is no more difficult. All it requires is that the method initially be defined in
your source code as a JavaScript function; then assign a reference to that function as
a value for a method name in either the constructor function or name/value pair
inside curly braces. Continuing with the simple employee objects just shown, let’s
add a method to the object that displays an alert dialog box with the employee’s
name and age. Begin by defining the function that will do the work when invoked
through one of the objects:

3.8 Creating a Custom Object | 67

function showAll() {
 alert("Employee " + this.name + " is " + this.age + " years old.");
}

Then assign the function to a method name in the constructor function:

function coworker(name, age) {
 this.name = name;
 this.age = age;
 this.show = showAll;
}

Or add the assignment to the shortcut constructors:

var emp1 = {name:"Alice", age:23, show:showAll};
var emp2 = {name:"Fred", age:32, show:showAll};

To invoke the method, do so via one of the objects:

emp1.show();

Note how the context of the object passes through to the function when it is invoked
as a method of the object. The this keyword in the function definition points back to
the context of the object that invoked the method, and thus has immediate access to
its companion properties.

JavaScript provides an extra shortcut operator in constructor functions that lets you
automatically assign a default value to any property that has a null value passed to it
in the function’s parameter variables. For example, in the coworker object construc-
tor function, if the statement that invokes the function leaves the second parameter
blank, the age parameter variable is initialized as a null value. To provide a valid but
harmless default value (of zero) to that property, the syntax is as follows:

function coworker(name, age) {
 this.name = name;
 this.age = age || 0;
 this.show = showAll;
}

The operator is the regular JavaScript OR operator. If the first value evaluates to a
boolean false (e.g., null, undefined, zero, an empty string, and so on), the second
value is assigned to the property. You can use this construction in any variable
assignment in JavaScript.

One advantage to the longer constructor function approach is that you can include
calls to other functions from inside the constructor. For example, you might wish to
invoke some initialization routines with the object immediately as it is being created.
Simply add the call to the function as another statement inside the constructor func-
tion. You can even pass a reference to the object under construction by passing this
as a parameter. The following example builds on the coworker() constructor func-
tion previously shown.

68 | Chapter 3: Arrays and Objects

A separate function displays an alert dialog box each time an object is created:

function verify(obj) {
 alert("Just added " + obj.name + ".");
}
function coworker(name, age) {
 this.name = name;
 this.age = age;
 this.show = showAll;
 verify(this);
}

If the external function returns a value, the constructor function can assign that value
to a property of the object.

If you are going to the trouble of creating a constructor function for a complex data
structure, more than likely you are doing it for multiple instances of that object. But
instead of having these objects floating around the window’s scripting space as inde-
pendent global variables, it will probably be more convenient to store these objects
in an array of objects. As shown in Recipe 3.4, the array data structure facilitates iter-
ating through a collection of similar items. For example, you could use an array of
coworker objects to look through all records in search of those coworkers within a
specific age range, and accumulate the names of those who meet your criteria.

Very little extra is needed to generate an array of objects while you are in the process
of generating the objects themselves. The following demonstrates how a series of
calls to a constructor function can be blended into an array constructor:

var employeeDB = new Array();
employeeDB[employeeDB.length] = new coworker("Alice", 23);
employeeDB[employeeDB.length] = new coworker("Fred", 32);
employeeDB[employeeDB.length] = new coworker("Jean", 28);
employeeDB[employeeDB.length] = new coworker("Steve", 24);

You can do the same with shortcut syntax:

var employeeDB = new Array();
employeeDB[employeeDB.length] = {name:"Alice", age:23, show:showAll};
employeeDB[employeeDB.length] = {name:"Fred", age:32, show:showAll};
employeeDB[employeeDB.length] = {name:"Jean", age:28, show:showAll};
employeeDB[employeeDB.length] = {name:"Steve", age:24, show:showAll};

Or you can go the whole route with shortcut syntax (albeit with one long statement):

var employeeDB = [{name:"Alice", age:23, show:showAll},
 {name:"Fred", age:32, show:showAll},
 {name:"Jean", age:28, show:showAll},
 {name:"Steve", age:24, show:showAll}];

Finally, here’s the function that looks for all coworkers in a certain age group:

function findInAgeGroup(low, high) {
 var result = new Array();
 for (var i = 0; i < employeeDB.length; i++) {

3.9 Simulating a Hash Table for Fast Array Lookup | 69

 if (employeeDB[i].age >= low && employeeDB[i].age <= high) {
 result = result.concat(employeeDB[i].name);
 }
 }
 return result;
}

This function returns an array of the names of those whose ages fall between the low
and high values passed as parameters.

As discussed in Recipes 3.9 and 3.11, an array of objects is one of the most flexible
complex data structures available to JavaScript coders. During the design phase of
your applications, look for opportunities to group together similar objects in arrays.

See Also
Recipe 3.9 for generating a fast hash table from an array of objects; Recipe 3.11 for
sorting an array of objects based on object property values; Recipe 3.14 for minimizing
object naming conflicts; Recipe 4.4 for using anonymous functions in object creation.

3.9 Simulating a Hash Table for Fast Array Lookup

Problem
You want to be able to go directly to an entry in an array (especially an array of
objects or a multidimensional array) without having to loop through the entire array
in search of that item.

Solution
By taking advantage of the fact that a JavaScript array is a JavaScript object, you can
define properties for an array without interfering with the true array portion of the
object. Properties can be referenced by name either by string (in parentheses, like
array index value) or following a period like a typical object property.

The key to implementing this construction for an existing array is that you must gen-
erate a property for each entry with a unique value. If you are implementing this for
an array of objects, use a property value that is unique for each entry as the hash
table lookup index.

As a simple example with the coworker objects created in other recipes of this chap-
ter, we’ll assume no two coworkers have the same name. Thus, we’ll use the name
property of the coworker objects as property names for the hash table. Immediately
after the array of coworker objects is populated, we execute the following statements:

for (var i = 0; i < employeeDB.length; i++) {
 employeeDB[employeeDB[i].name] = employeeDB[i];
}

70 | Chapter 3: Arrays and Objects

Without the hash table, to find the age of a coworker, you have to loop through the
employeeDB array in search of a match against the name property of each entry. With
the simulated hash table, however, simply reference the unique object bearing the
name of the person you’re looking for, and retrieve the age property of that object:

var JeansAge = employeeDB["Jean"].age;

You typically use the string way of referring to the object because variable lookup
information will likely be coming from a text source: a text input box or a string
value of a select element.

Discussion
I cannot overemphasize the importance of the uniqueness of the property name. If
you unknowingly have two assignments to the same property value, the last one to
execute is the one that sticks.

If one property of an object is not enough to make it unique, you may need to com-
bine values to obtain that uniqueness. For example, the following table’s data could
be made into a convenient array of objects:

Each cell of numeric data should be its own object, with other properties assisting in
identifying the context of the number. For example:

var sales = new Array();
sales[sales.length] = {period:"q1", region:"east", total:2300};
sales[sales.length] = {period:"q2", region:"east", total:3105};
...
sales[sales.length] = {period:"q4", region:"west", total:3810};

None of the label properties—the properties you’d likely be using to look up sales
information—is totally unique. The East region is shared by four objects, and the Q1
period is shared by three objects. But a combination of the region and period names
generates a unique identifier for a given object. Thus, if we use a name of the form
region_period (e.g., east_q1), other scripts can perform lookups to reach individual
records. Therefore, the hash table maker comes after the object creation statements
above:

for (var i = 0; i < sales.length; i++) {
 sales[sales[i].region + "_" + sales[i].period] = sales[i];
}

To access the third quarter sales for the central region, use the following reference:

sales["central_q3"].total

Description Q1 Q2 Q3 Q4

East 2300 3105 2909 4800

Central 1800 1940 2470 4350

West 900 1200 1923 3810

3.10 Doing Something with a Property of an Object | 71

Another important point about the names of hash table indices is that they cannot be
numbers or start with a numeral. Remember that these indices are property names,
and therefore must follow the same rules of all properties of JavaScript objects,
including the avoidance of reserved keywords (see Appendix C) and native prop-
erty and methods names of JavaScript objects (e.g., constructor, length, join, push,
pop, sort).

When a hash table entry is assigned a reference to an object (as happens in the pre-
ceding examples), each hash table entry simply points to the original object without
duplicating the data. Any change you assign to an object’s property in the array of
objects is reflected in the hash table reference to that object’s property.

Anytime you have a large multidimensional array or collection of objects through
which your scripts will be looking for matching records, try to add the simulated
hash table to your array. It gives you the best of both worlds: the ability to iterate
through the collection when you need to use every entry, and the ability to dive into
a specific record without any looping.

See Also
Recipes 8.13, 10.8, and 14.5 for real-world examples of the simulated hash table in
action.

3.10 Doing Something with a Property of an Object

Problem
You want to examine (or modify) the values of properties belonging to an object, but
the object and its properties may change from one examination to another.

Solution
Use a for/in loop to access every property of an object, regardless of the property’s
name. The following function assembles a list of properties and their values for any
object passed as an argument to the function:

function listProperties(obj, objName) {
 var result = "";
 for (var i in obj) {
 result += objName + "." + i + "=" + obj[i] + "\n";
 }
 alert(result);
}

In this special type of loop, the variable (i in this example) is automatically assigned
the name of each property (in string form) as the loop progresses through the list of
available properties for the object. By using the string name as an index to the object
(obj[i] in this example), the value of that property is returned.

72 | Chapter 3: Arrays and Objects

Discussion
Figure 3-1 shows what the alert dialog box generated by the function would display
for one of the sales objects defined in Recipe 3.9 if you invoke the following:

listProperties(sales[0], "sales[0]");

The type of property enumeration shown in the listProperties() function in the
Solution is useful not only for custom objects but also for DOM objects. When using
it with DOM objects, some browser-specific behaviors reveal themselves. For exam-
ple, IE for Windows enumerates all of the event handler properties of the object.
Mozilla, Safari, and Opera enumerate properties and methods. The order of enumer-
ated items is determined by the inner workings of the browser (rarely alphabetical),
but your scripts can accumulate results in an array and sort the array before display-
ing the data.

See Also
Recipe 3.4 for looping through all entries of an array; Recipe 3.11 for sorting arrays.

3.11 Sorting an Array of Objects

Problem
You want to sort an array of objects based on the value of one of the properties of the
objects.

Solution
Sorting an array of objects relies on a logical extension of the comparison function
described for simple arrays in Recipe 3.5. Define a comparison function as usual, but
let the actual comparisons work on the properties of the objects being passed to the
function two at a time.

Figure 3-1. Object property enumeration example

3.11 Sorting an Array of Objects | 73

To demonstrate the concept, we’ll start with the array of sales objects:

var sales = new Array();
sales[sales.length] = {period:"q1", region:"east", total:2300};
sales[sales.length] = {period:"q2", region:"east", total:3105};
...
sales[sales.length] = {period:"q4", region"west", total:3810};

If you want to sort the sales array in descending order of the values of the total
properties of each object, define a comparison function that returns the appropriate
values based on the arithmetic:

function compareTotals(a, b) {
 return b.total - a.total;
}

Because each array entry passed as parameters a and b is an object, you can use those
parameter variables to reference the properties of the objects as they pass through in
waves during the full sort operation. To sort the array by way of the comparison
function, pass the function’s reference to the sort() method of the array:

sales.sort(compareTotals);

Recall that the sort() method modifies the order of the original array. But you can
invoke other sort() methods (that call other comparison functions) to re-sort the
array by other criteria.

Discussion
Comparison functions can get rather elaborate if necessary. It all depends on the
kind of data in your object properties and what kind of sorting you need to perform.
For example, if an object is defined with separate properties for month, day, and
year, and if you want to sort the objects by the dates that those numbers represent,
the comparison function can create date objects from those values and then com-
pare the resulting date objects:

function compareDates(a, b) {
 var dateA = new Date(a.year, a.month, a.date);
 var dateB = new Date(b.year, b.month, b.date);
 return dateA - dateB;
}

If sorting is required of string values in properties, you have to be more explicit in the
comparisons you perform and the values you return. You may also want to elimi-
nate case as a factor by comparing values converted to all upper- or all lowercase
characters. The following function sorts string values of the lastName property of an
array of objects:

function compareNames(a, b) {
 var nameA = a.lastName.toLowerCase();
 var nameB = b.lastName.toLowerCase();
 if (nameA < nameB) {return -1}

74 | Chapter 3: Arrays and Objects

 if (nameA > nameB) {return 1}
 return 0;
}

The return values from the function fall into the three categories described for all
array sorting in Recipe 3.5. And because the toLowerCase() method of a string
doesn’t disturb the case of the original string, the object values are ready to be dis-
played as entered into the data structure.

Avoid excessive string manipulation in comparison functions. They can negatively
impact performance on large (hundreds of items) arrays.

See Also
Recipe 3.5 for basic array sorting concepts; Recipe 14.19 for using object sorting to
sort data for rendering in a Dynamic HTML table.

3.12 Customizing an Object’s Prototype

Problem
You want to add a property or method to objects that have already been created or
are about to be created.

Solution
To add a property or method to a group of objects built from the same constructor,
assign the property or method name and its default value to the prototype property
of the object. To demonstrate this concept, we’ll start with the coworker object con-
structor from Recipe 3.8 and create four instances of this object, all stored in an
array:

function coworker(name, age) {
 this.name = name;
 this.age = age || 0;
 this.show = showAll;
}
var employeeDB = new Array();
employeeDB[employeeDB.length] = new coworker("Alice", 23);
employeeDB[employeeDB.length] = new coworker("Fred", 32);
employeeDB[employeeDB.length] = new coworker("Jean", 28);
employeeDB[employeeDB.length] = new coworker("Steve", 24);

Each object has two properties and one method assigned to it. Each object’s prop-
erty values are private to that particular object instance. And although each object
shares a method name (and the same function code for that method), when the
method executes, it does so within the private context of the single object’s instance
(e.g., the this keyword in the method code refers to the object instance only).

3.12 Customizing an Object’s Prototype | 75

Before or after the object instances exist, you can add a property that belongs to the
prototype—an abstract object that represents the “mold” from which the object
instances are made. When you assign a property and value to the prototype of the
constructor, all object instances—including those that have already been created—
gain this new property and value. For example, we can add a property to the
coworker constructor that provides employment status information. The default
value at the time the prototype property is assigned is the string “on duty”:

coworker.prototype.status = "on duty";

Each object in the employeeDB array immediately inherits the status property, which
is read via the following reference (for any item in the array indexed with integer i):

employeeDB[i].status

Here is where things get interesting. If you modify the value of the status property of
an instance of the object, the value is private to that instance only (akin to overriding
a property in a subclass in other languages). All other objects continue to share the
default prototype property value. Therefore, if you execute the following statement:

employeeDB[2].status = "on sick leave";

the value of all of the other object instances (and any new objects you create via the
coworker constructor) show their status to be “on duty.”

Overridden property values are durable. If, after the above modifications, you change
the value of the prototype property, the private property values assigned individually
do not reflect the prototype change. For example, changing the prototype status
property to reflect the company-wide vacation period is accomplished as follows:

coworker.prototype.status = "on vacation";

But the value of employeeDB[2].status continues to be “on sick leave” because the
local value was explicitly overridden.

From any object reference that inherits a prototype property, you can reach the pro-
totype’s value, even if that value has been overridden by the object instance. The
object’s constructor property points to the constructor function that maintains infor-
mation about the prototype. For example, the following statement tests the equality
of the local status property against the prototype status property:

if (employeeDB[2].status != employeeDB[2].constructor.prototype.status) {
 // the two values aren't the same, so the local value has been overridden
}

Referencing the constructor’s prototype is the JavaScript equivalent of calling super
in some truly object-oriented languages.

76 | Chapter 3: Arrays and Objects

Discussion
The following discussion assumes you have experience with, or working knowledge
of, object-oriented programming concepts in languages such as Java. Even if you
don’t, feel free to read along to witness some of the advanced intricacies and possibil-
ities with the JavaScript language.

All objects accessible by JavaScript—custom objects, global language objects, and
DOM objects (in Mozilla and Opera 9)—are subject to prototype inheritance.
Whenever a statement includes a reference to an object’s property (or method), the
JavaScript interpreter follows a prototype inheritance chain to find the value (if it
exists along the chain) that currently applies. The rules that the interpreter follows
are relatively simple:

• If the object has a private value assigned to that property (as is the case more
than 99 percent of the time), that is the value returned by the reference.

• If no local value exists, the interpreter looks for that property and value in the
constructor prototype for that object.

• If no property or value exists in the constructor prototype, the interpreter fol-
lows the prototype chain all the way to the basic Object object if necessary.

• When no property by that name exists in the prototype inheritance chain, the
interpreter indicates an “undefined” value for that property.

When a prototype inheritance chain consists of two or more objects, you can also
use scripts to access points higher up the chain. For example, an Array constructor
inherits from the basic Object constructor. In other words, it is conceivable that a
prototype property influencing an instance of an array could be defined for the
Object or Array constructor prototype. As shown in the Solution, a reference to the
Array’s prototype property is:

myArray.constructor.prototype.propertyName

To reach one level higher, access the (Object) constructor of the (Array) constructor:

myArray.constructor.constructor.prototype.propertyName

Mozilla-based browsers implement a proprietary shortcut syntax for these kinds of
upward prototype traversals: the __proto__ property (with a double underscore
before and after the word). I mention it here in case you encounter this syntax in fur-
ther research about simulating object-oriented techniques in JavaScript. The short-
cut equivalents to these references are:

myArray.__proto__.propertyName
myArray.__proto__.__proto__.propertyName

There is no shortcut equivalent in other browsers.

It is possible in JavaScript to simulate what some programming languages describe as
an interface or implements construction—a way of empowering one object with the

3.12 Customizing an Object’s Prototype | 77

properties and methods of another object without creating a subclass of the shared
object. The approach to this implementation is not particularly intuitive, but it
works nicely once you have it set up.

To demonstrate, we’ll start with the now familiar coworker object, which contains
basic information about a person. In creating another object for project team mem-
bers, we find that the coworker object already contains some properties that we’d like
to reuse in the project team members object. We’ll use two object constructors: one
for coworker objects and one for project team members:

// coworker object constructor
function coworker(name, age) {
 this.name = name;
 this.age = age;
 this.show = showAll;
}
// teamMember object constructor
function teamMember(name, age, projects, hours) {
 this.projects = projects;
 this.hours = hours;
 this.member = coworker;
 this.member(name, age);
}

Notice in the teamMember constructor function that the coworker constructor function
is assigned to this.member. In other words, invoking the member() method of a
teamMember object creates a new coworker object. And in fact, the next statement of
the teamMember constructor function invokes the member() method, passing two of
the incoming parameters to the coworker() function. Creating a series of teamMember
objects takes the following form:

var projectTeams = new Array();
projectTeams[projectTeams.length] = new teamMember("Alice", 23, ["Gizmo"], 240);
projectTeams[projectTeams.length] = new teamMember("Fred", 32, ["Gizmo","Widget"],
 325);
projectTeams[projectTeams.length] = new teamMember("Jean", 28, ["Gizmo"], 200);
projectTeams[projectTeams.length] = new teamMember("Steve", 23, ["Widget"], 190);

The result of blending these two constructor functions is that when you create a
teamMember object, it has four properties (projects, hours, name, and age) and two
methods (showAll() and member()). Your scripts wouldn’t have much reason to invoke
the member() method because it’s used internally by the teamMember() function. But all
other pieces of the teamMember object are readily accessible and meaningful to your
scripts.

An unusual side effect to the connection between these nested objects is that the
teamMember objects do not have the coworker constructor in their prototype chain.
Therefore, if you assign a property and value to the prototype of the coworker con-
structor, none of the teamMember objects gains that property.

78 | Chapter 3: Arrays and Objects

There is, however, a way to place the coworker constructor in the prototype chain of
the teamMember object: assign a blank coworker object to the prototype of the
teamMember constructor:

teamMember.prototype = new coworker();

You must do this before creating instances of the teamMember object, but you can hold
off on assigning specific coworker object prototype properties or methods until later.
Then you can do something like the following:

coworker.prototype.status = "on duty";

After this statement runs, all instances of teamMember have the additional status prop-
erty with the default setting. And, just like any prototype property or method, you
can override the private value for a single instance without disturbing the default val-
ues of the other objects.

In Mozilla and Opera 9, many of these language capabilities add potentially enor-
mous power to the DOM you use every day. These browsers give scripters access to
the constructors of every type of DOM object, thus allowing you to add prototype
properties and methods to any class of DOM object. For example, if you wish to
empower all table elements with a method that removes all rows of nested tbody ele-
ments, first define the function that acts as the method, and then assign the function
to a prototype method name:

function clearTbody() {
 var tbodies = this.getElementsByTagName("tbody");
 for (var i = 0; i < tbodies.length; i++) {
 while (tbodies[i].rows.length > 0) {
 tbodies[i].deleteRow(0);
 }
 }
}
HTMLTableElement.prototype.clear = clearTbody;

Thereafter, you can invoke the clear() method of any table element object to let it
remove all of its rows:

document.getElementById("myTable").clear();

Given the fact that Mozilla-based browsers and Opera 9 expose every W3C DOM
object type to scripts, just like the HTMLTableElement, you may get all kinds of wild
ideas about extending the properties or methods of all HTML elements or text
nodes. Go crazy!

3.13 Converting Arrays and Custom Objects to Strings | 79

3.13 Converting Arrays and Custom Objects to Strings

Problem
You want to convert the details of an array or a custom object into string form for
conveyance as a URL search string or preservation in a cookie, and then be able to
reconstruct the array or object data types from the string when needed later.

Solution
Use the objectsArraysStrings.js script library shown in the Discussion. To convert a
custom object to string form, invoke the object2String() function, passing a refer-
ence to the object as a parameter:

var objAsString = object2String(myObj);

To convert an array (including an array of custom objects) to string form, invoke the
array2String() function, passing a reference to the array as a parameter:

var arrAsString = array2String(myArray);

To reconvert the strings to native data types, use the corresponding library function:

var myArray = string2Array(arrayString);
var myObj = string2Object(objString);

Discussion
Example 3-1 shows the code for the objectsArraysString.js library.

Example 3-1. objectsArraysString.js conversion library

function object2String(obj) {
 var val, output = "";
 if (obj) {
 output += "{";
 for (var i in obj) {
 val = obj[i];
 switch (typeof val) {
 case ("object"):
 if (val[0]) {
 output += i + ":" + array2String(val) + ",";
 } else {
 output += i + ":" + object2String(val) + ",";
 }
 break;
 case ("string"):
 output += i + ":'" + encodeURI(val) + "',";
 break;
 default:
 output += i + ":" + val + ",";

80 | Chapter 3: Arrays and Objects

The first two functions of the library perform the conversion to strings. The first,
object2String(), works through the properties of a custom object, and assembles a
string in the same format used to generate the object in the curly-braced shortcut
syntax. The sole parameter to the function is a reference to the custom object you
wish to convert. The returned value is a string, including the curly braces surround-
ing the text.

 }
 }
 output = output.substring(0, output.length-1) + "}";
 }
 return output;
}

function array2String(array) {
 var output = "";
 if (array) {
 output += "[";
 for (var i in array) {
 val = array[i];
 switch (typeof val) {
 case ("object"):
 if (val[0]) {
 output += array2String(val) + ",";
 } else {
 output += object2String(val) + ",";
 }
 break;
 case ("string"):
 output += "'" + encodeURI(val) + "',";
 break;
 default:
 output += val + ",";
 }
 }
 output = output.substring(0, output.length-1) + "]";
 }
 return output;
}

function string2Object(string) {
 eval("var result = " + decodeURI(string));
 return result;
}

function string2Array(string) {
 eval("var result = " + decodeURI(string));
 return result;
}

Example 3-1. objectsArraysString.js conversion library (continued)

3.13 Converting Arrays and Custom Objects to Strings | 81

To demonstrate the effect of object2String(), start with a simple object constructor:

function coworker(name, age, dept) {
 this.name = name;
 this.age = age;
 this.department = dept;
}

Create an instance of the object:

var kevin = new coworker("Kevin", 28, "Accounts Payable");

Convert the object to a string via the object2String() library function:

var objStr = object2String(kevin);

The value of objStr becomes the following string:

{name:'Kevin',age:28,department:'Accounts%20Payable'}

In the second library function, array2String(), an array passed as the parameter is
converted to its square bracket-encased shortcut string equivalent. Each function
relies on the other at times. For example, if you are converting an object to a string,
and one of its properties is an array, the array portion is passed through
array2String() to get the desired format for that segment of the full string. Con-
versely, converting an array of objects requires calls to object2String() to format the
object portions.

To reconstruct the object or array data type from the string, use one of the final two
functions that applies to the outermost construction of the string. The two functions
perform the same operation, but the names are provided for each conversion type to
improve readability of the code that invokes them. Despite warnings elsewhere in this
book about performance degradation of the eval() function, its use is necessary here.

Let the type of the outermost data structure govern which of the two convert-to-
string functions you use. Even though your custom objects may be the most impor-
tant part of your script data structure conceptually, they may be found within an
array of those objects, as shown in Recipe 3.8. In this case, convert the entire array of
objects to a single string by invoking array2String(), and let it handle the object
conversion along the way.

Conversions between objects and strings are the foundation of JSON (JavaScript
Object Notation), one of the ways you can use Ajax technology to access server data
from the current page. See Recipe 14.5 for more details.

See Also
Recipes 3.1 and 3.8 to see the shortcut array and object creation syntax emulated here
in string form; Recipe 4.8 for a discussion about the eval() function; Recipe 10.6 for
an example of this library being used to pass objects between pages via URLs; Reci-
pes 14.5 and 14.7 for using strings to transfer objects from server to page via Ajax.

82 | Chapter 3: Arrays and Objects

3.14 Using Objects to Reduce Naming Conflicts

Problem
You want to minimize the possibility of script object naming conflicts, especially in
larger projects involving multiple script sources.

Solution
Make use of what is known as encapsulation, an automatic feature of JavaScript
objects. Each property or method name you define for an object is private to that
object. For example, if you define an object that contains three properties and two
methods, the only name that is accessible to other script statements outside of the
object is the identifier you use for the entire object. The five names you use for the
properties and methods can be used anywhere else without fear of naming conflicts.
Access to the internal properties and methods is via the standard objectName.
propertyName and objectName.methodName() syntax.

Discussion
At issue here is the global (i.e., window-wide) scope for scriptable objects. Every glo-
bal variable and, importantly, every non-nested named function has global scope.
For example, if you import two external .js libraries into a page, and both define a
function using the same function name, only the one that is defined later in source
code order prevails. So, too, with global variables that may be defined in multiple .js
files. When multiple authors work on a project, or if you use third-party script files,
you may be unaware of the conflicts looming when all files are loaded into a single
page.

Contributing even more to the problem is that some browsers—notably IE and
Safari—expose IDs of all named HTML elements to the global scope. Thus, if you
have a form containing a text input element whose ID is total, you cannot have any
JavaScript global variable or function by that name.

To demonstrate the “savings” in global names, we will transform the cookies.js
library from Recipe 1.10. The original library contains five functions, each of which
occupies a global name spot: getExpDate, getCookieVal, getCookie, setCookie, and
deleteCookie. The replacement library contains a single object, cookieMgr, which
becomes the gateway to invoking the functions.

Example 3-2 shows the code for the revised cookie manager library, with changes
shown in bold.

3.14 Using Objects to Reduce Naming Conflicts | 83

Example 3-2. cookieManager.js library

var cookieMgr = {
 // utility function to retrieve an expiration date in proper
 // format; pass three integer parameters for the number of days, hours,
 // and minutes from now you want the cookie to expire (or negative
 // values for a past date); all three parameters are required,
 // so use zeros where appropriate

getExpDate : function(days, hours, minutes) {
 var expDate = new Date();
 if (typeof days == "number" && typeof hours == "number" &&
 typeof minutes == "number") {
 expDate.setDate(expDate.getDate() + parseInt(days));
 expDate.setHours(expDate.getHours() + parseInt(hours));
 expDate.setMinutes(expDate.getMinutes() + parseInt(minutes));
 return expDate.toGMTString();
 }

},
 // utility function called by getCookie()

getCookieVal : function(offset) {
 var endstr = document.cookie.indexOf (";", offset);
 if (endstr == -1) {
 endstr = document.cookie.length;
 }
 return decodeURI(document.cookie.substring(offset, endstr));

},
 // primary function to retrieve cookie by name

getCookie : function(name) {
 var arg = name + "=";
 var alen = arg.length;
 var clen = document.cookie.length;
 var i = 0;
 while (i < clen) {
 var j = i + alen;
 if (document.cookie.substring(i, j) == arg) {
 return this.getCookieVal(j);
 }
 i = document.cookie.indexOf(" ", i) + 1;
 if (i == 0) break;
 }
 return "";

},
 // store cookie value with optional details as needed
 setCookie : function(name, value, expires, path, domain, secure) {
 document.cookie = name + "=" + encodeURI(value) +
 ((expires) ? "; expires=" + expires : "") +
 ((path) ? "; path=" + path : "") +
 ((domain) ? "; domain=" + domain : "") +
 ((secure) ? "; secure" : "");

},
 // remove the cookie by setting ancient expiration date

deleteCookie : function(name,path,domain) {

84 | Chapter 3: Arrays and Objects

The new library consists of one global object and five internal functions. Each func-
tion is coded as an anonymous function (see Recipe 4.4). When a JavaScript custom
object property name (to the left of the colon) is defined as an anonymous function
(to the right of the colon), the property becomes a method of the object. Therefore,
following the example from the Discussion section of Recipe 1.10, invoking the
methods to set and get cookie values from other script statements would look like
the following:

cookieMgr.setCookie("fontSize", styleID, cookieMgr.getExpDate(180, 0, 0));
var styleCookie = cookieMgr.getCookie("fontSize");

Notice in Example 3-2 that when a script statement within the object needs to
invoke another method of the same object, it must provide the context within which
the method operates. While you could refer to the object by name (cookieMgr), that
tactic limits you to always using that specific name for the object. Instead, use the
this operator to point to the current object, as shown in the getCookie() and
deleteCookie() methods.

See Also
Recipe 3.8 for creating JavaScript objects; Recipe 4.4 for more on anonymous functions.

 if (this.getCookie(name)) {
 document.cookie = name + "=" +
 ((path) ? "; path=" + path : "") +
 ((domain) ? "; domain=" + domain : "") +
 "; expires=Thu, 01-Jan-70 00:00:01 GMT";
 }
 }
};

Example 3-2. cookieManager.js library (continued)

85

Chapter 4 CHAPTER 4

Variables, Functions, and Flow Control4

4.0 Introduction
This chapter covers a miscellany of core JavaScript topics. A couple of these recipes
(or your own variations on them) may be part of your daily menu. If you don’t use
these constructions frequently, let this chapter serve to refresh your memory, and
give you models to get you back on track when you need them.

Even simple subjects, such as JavaScript variables and functions, have numerous
nuances that are easy to forget over time. On another front, scripters without formal
programming training tend to be rather loose in their attention to detail in the error
department—something that can come back to bite you. On the other hand, the
browser implementations of some of the details of exception handling are far from
compatible. If you aren’t yet using exception-handling techniques in your scripts,
you should get to know the concepts. As time goes on and the full W3C DOM
becomes implemented in browsers, the notion of “safe scripting” will include regu-
lar application of exception-handling practices.

This chapter ends with some suggestions about improving script performance. Most
scripts can scrape by with inefficiencies, but larger projects that deal with complex
document trees and substantial amounts of hidden data delivered to the client must
pay particular attention to performance. You’ll learn some practices here that you
should apply even to short scripts.

4.1 Creating a JavaScript Variable

Problem
You want to create a JavaScript variable value either in the global space or privately
within a function.

86 | Chapter 4: Variables, Functions, and Flow Control

Solution
Use the var keyword to define the first instance of every variable, whether you assign
a value to the variable immediately or delay the assignment until later. Any variable
defined outside of a function is part of the global variable scope:

var myVar = someValue;

All script statements on the page, including those inside functions, have read/write
access to a global variable.

When you define a variable with var inside a function, only statements inside the
function can access that variable:

function myFunction() {
 var myFuncVar = someValue;
 ...
}

Statements outside of the function cannot reach the value of a variable whose scope
is limited to its containing function.

Discussion
A JavaScript variable has no inherent limit to the amount of data it can hold. Maxi-
mum capacity is determined strictly by memory available to the browser application—
information not accessible to your scripts.

Variable scope is an important concept to understand in JavaScript. Not only is a
global variable accessible by all script statements in the current window or frame, but
statements in other frames or windows (served from the same domain and server)
can access those global variables by way of the window or frame reference. For
example, a statement in a menu frame can reference a global variable named myVar in
a frame named content as follows:

parent.content.myVar

You don’t have to worry about the same global variable names colliding when they
exist in other windows or frames, because the references to those variables will
always be different.

Where you must exercise care is in defining a new variable inside a function with the
var keyword. If you fail to use the keyword inside the function, the variable is treated
as a global variable. If you have defined a global variable with the same name, the
function’s assignment statement overwrites the value originally assigned to the glo-
bal variable. The safest way to avoid these kinds of problems is to always use the var
keyword with the first instance of any variable, regardless of where it’s located in
your scripts. Even though the keyword is optional for global variable declarations, it
is good coding style to use var for globals as well. That way you can readily see
where a variable is first used in a script.

4.1 Creating a JavaScript Variable | 87

Although some programming languages distinguish between the tasks of declaring a
variable (essentially reserving memory space for its value) and initializing a variable
(stuffing a value into it), JavaScript’s dynamic memory allocation for variable values
unburdens the scripter of memory concerns. A variable is truly variable in JavaScript
in that not only can the value stored in the variable change with later reassignments
of values, but even the data type of the variable’s value can change (not that this is
necessarily good programming practice, but that’s simply a by-product of Java-
Script’s loose data typing).

Speaking of good programming practice, it is generally advisable to define global
variables near the top of the script, just as it’s also advisable to define heavily used
variables inside a function at the top of the function. Even if you don’t have a value
ready to assign to the variable, you can simply declare the variable as undefined with
a statement like the following:

var myVar;

If you have multiple variables that you’d like to declare, you may do so compactly by
separating the variable names with commas:

var myVar, counter, fred, i, j;

You may even combine declarations and initializations in a comma-delimited statement:

var myVar, counter = 0, fred, i, j;

In examples throughout this book, you typically find variables being declared or ini-
tialized at the top of their scope regions, but not always. It’s not unusual to find
variables that are about to be used inside a for loop defined (with their var key-
words) just before the loop statements. For example, if a nested pair of loops is in the
offing, I may define the loop counter variables prior to the outer loop’s start:

var i, j;
for (i = 0; i < array1.length; i++) {
 for (j = 0; j < array1[i].array2.length; j++) {
 ...
 }
}

This is merely my style preference. But in any case, this situation definitely calls for
declaring the variables outside of the loops for another reason. If you were to use the
var keywords in the loop counter initialization statements (e.g., var j = 0;), the
nested loop would repeatedly invoke the var declaration keyword each time the
outer loop executes. Internally, the JavaScript interpreter creates a new variable
space for each var keyword. Fortunately, the interpreter is also able to keep track of
which variable repeatedly declared is the current one, but it places an unnecessary
burden on resources. Declare once, then initialize and reassign values as often as
needed. Thus, in complex functions that have two or more outer for loops, you
should declare the counter variable at the top of the function, and simply initialize
the value at the start of each loop.

88 | Chapter 4: Variables, Functions, and Flow Control

As for selecting the names for your variables, there are some explicit rules and
implicit customs to follow. The explicit rules are more important. A variable name
cannot:

• Begin with a numeral

• Contain any spaces or other whitespace characters

• Contain punctuation or symbols except the underscore character

• Be surrounded by quote marks

• Be a reserved ECMAScript keyword (see Appendix C)

Conventions among programmers with respect to devising names for variables are
not rigid, nor do they affect the operation of your scripts. They do, however, help in
readability and maintenance when it comes time to remember what your script does
six months from now.

The main idea behind a variable name is to help you identify what kind of value the
variable contains (in fact, names are commonly called identifiers). Littering your
scripts with a bunch of one- or two-letter variables won’t help you track values or
logic when reading the script. On the other hand, there are performance reasons (see
Recipe 4.8) to keep names from getting outrageously long. The shorter the better,
but not to the point of cryptic ciphers. If you need two or more words to describe the
value, join the words together via underscore characters, or capitalize the first char-
acter of any words after the first word (a convention used throughout this book).
Thus, either of the variable names in the following initializations is fine:

var teamMember = "George";
var team_member = "George";

Apply these rules and concepts to the identifiers you assign to HTML element name
and id attributes, as well. Your scripts will then have no trouble using these identifi-
ers in DOM object references.

Variable names are case-sensitive. Therefore, it is permissible (although not neces-
sarily advisable) to reuse an identifier with different case letters to carry different
values. One convention that you might employ is to determine which variables won’t
be changing their values during the execution of your scripts (i.e., you will treat them
as constants) and make their names all uppercase. Mozilla-based browsers imple-
ment a forthcoming ECMAScript keyword called const, which you use in place of
var to define a true constant value. No other browser supports this keyword yet, so
you can use variables as constants and keep modification statements away from
them.

JavaScript assigns data to a variable both “by reference” and “by value,” depending
on the type of data. If the data is a true object of any kind (e.g., DOM object, array,
custom object), the variable contains a “live” reference to the object. You may then
use that variable as a substitute reference to the object:

4.2 Creating a Named Function | 89

var elem = document.getElementById("myTable");
var padWidth = elem.cellPadding;

But if the data is a simple value (string, number, Boolean, object property other than
an object), the variable holds only a copy of the value, with no connection to the
object from which the value came. Therefore, the padWidth variable shown above
simply holds a string value; if you were to assign a new value to the variable, it would
have no impact on the table element. To set the object’s property, go back to the
object reference and assign a value to the property:

elem.cellPadding = "10";

If an object’s property value is itself another object, the variable receives that data as
an object reference, still connected to its object:

var elem = document.getElementById("myTable");
var elemStyle = elem.style;
elemStyle.fontSize = "18px";

Exercise care with DOM objects assigned to variables. It may seem as though the
variable is a mere copy of the object reference, but changes you make to the variable
value affect the document node tree.

Global variables share the same scope with all non-nested named functions. In IE
and Safari, this same scope is shared with IDs of HTML element objects. In large
projects, you may wish to move the declaration of related groups of variables into a
custom object as properties. See Recipe 3.14 for more on this subject.

See Also
Chapters 1, 2, and 3 for a discussion on assigning values of different types—strings,
numbers, arrays, and objects—to variables; Recipe 4.8 for the impact of variable name
length on performance; Recipe 3.14 for ways to minimize global variable space naming
collisions.

4.2 Creating a Named Function

Problem
You want to define a function that can be invoked from any statement in the page.

Solution
For a function that receives no parameters, use the simple function declaration format:

function myFunctionName() {
 // statements go here
}

90 | Chapter 4: Variables, Functions, and Flow Control

If the function is designed to receive parameters from the statement that invokes the
function, define parameter variable names in the parentheses following the function
name:

function myFunctionName(paramVar1, paramVar2[, ..., paramVarN]) {
 // statements go here
}

You can define as many unique parameter variable identifiers as you need. These
variables become local variables inside the function (var declarations are implied).
Following JavaScript’s loosely typed conventions, parameter variables may hold any
valid data type, as determined by the statement that invokes the function and passes
the parameters.

Curly braces that contain the statements belonging to the function are required only
when two or more statements are inside the function. It is good practice to use curly
braces anyway, even for one-line statements, to assist in source code readability (a
convention followed throughout this book).

The majority of long scripts throughout this book employ named functions, some
with parameters, others without. Real-world examples abound, especially in reci-
pes containing external JavaScript libraries, such as the DHTML API library in
Recipe 13.3.

Discussion
A function is an object type in JavaScript, and the name you assign to the function
becomes a case-sensitive identifier for that object. As a result, you cannot use a
JavaScript-reserved keyword as a function name, nor should you use a function
name that is also an identifier for one of your other global entities, such as variables
or (in IE and Safari) element IDs. If you have two functions with the same name in a
page, the one that comes last in source code order is the only available version. Java-
Script does not implement the notion of function or method overloading found in
languages such as Java (where an identically named method with a different number
of parameter variables is treated as a separate method).

Invoke a function using parentheses:

myFunc();
myFunc2("hello",42);

At times, you will need to assign a function’s reference to a property. For example,
when you assign event handlers to element object properties (see Chapter 9), the
assignment consists of a function reference. Such a reference is the name of the func-
tion but without parentheses, parameters, or quotes:

document.onclick = myFunc;

This kind of property assignment is merely setting the stage for a future invocation of
the function, where parameters may be passed, if necessary.

4.2 Creating a Named Function | 91

Some programming languages distinguish between executable blocks of code that
operate on their own and those that return values. In JavaScript, there is only one
kind of function. If the function includes a return statement, the function returns a
value; otherwise, there is no returned value. Functions used as what other environ-
ments might call subroutines commonly return values simply because you define
them to perform some kind of information retrieval or calculation, and then return
the result to the statement that invoked the routine. When a function returns a value,
the call to the function evaluates to a value that can be assigned immediately to a
variable or be used as a parameter value to some other function or method. Recipe
15.7 demonstrates this feature. Its job is to display the part of the day (morning,
afternoon, or evening) in a welcome greeting that is written to the page as it loads. A
function called getDayPart() (defined in the head portion of the page) calculates the
current time and returns a string with the appropriate day part:

function dayPart() {
 var oneDate = new Date();
 var theHour = oneDate.getHours();
 if (theHour < 12) {
 return "morning";
 } else if (theHour < 18) {
 return "afternoon";
 } else {
 return "evening";
 }
}

That function is invoked as a parameter to the document.write() method that places
the text in the rendered page:

<script type="text/javascript">
document.write("Good " + dayPart() + " and welcome")
</script>
<noscript>Welcome</noscript>
 to GiantCo.

It is not essential to pass the same number of arguments to a function, as you have
defined parameter variables for that function. For example, if the function is called
from two different places in your script, and each place provides a different number
of parameters, you can access the parameter values in the function by way of the
arguments property of the function rather than by parameter variables:

function myFunc() {
 for (var i = 0; i < myFunc.arguments.length; i++) {
 // each entry in the arguments array is one parameter value
 // in the order in which they were passed
 }
}

A typical function (except a nested function, as described in Recipe 4.3) exists in the
global context of the window housing the current page. Just as with global variables,
these global functions can be referenced by script statements in other windows and

92 | Chapter 4: Variables, Functions, and Flow Control

frames. See “Frames As Window Objects” in Chapter 7 for examples of referencing
content in other frames.

How large a function should be is a matter of style. For ease of debugging and main-
tenance, it may be appropriate to divide a long function into sections that either
branch out to subroutines that return values or operate in sequence from one func-
tion to the next. When you see that you use a series of statements two or more times
within a large function, these statements are excellent candidates for removal to their
own function that gets called repeatedly from the large function.

The other stylistic decision in your hands is where you place the curly braces. This
book adopts the convention of starting a curly brace pair on the same line as the
function name, and closing the pair at the same tab location as the function declara-
tion. But you can place the opening curly brace on the line below the function name,
and left-align it if you like:

function myFunc()
{
 // statements go here
}

Some coders feel this format makes it easier to keep brace pairs in sync. For a one-
line function, the single statement can go on the same line as the function name:

function myFunc() {//statement goes here}

Adopt the style that makes the most logical sense to you and your code-reading eye.

See Also
Recipe 4.1 for a discussion about variables “by reference” and “by value”—a discussion
that applies equally to function parameter variables; Recipe 4.3 for nesting functions.

4.3 Nesting Named Functions

Problem
You want to create a function that belongs to only one other function.

Solution
You can nest a function inside another function according to the following syntax
model:

function myFuncA() {
 // statements go here
 function.myFuncB() {
 // more statements go here
 }
}

4.4 Creating an Anonymous Function | 93

In this construction, the nested function may be accessed only by statements in the
outer function. Statements in the nested function have access to variables declared in
the outer function, as well as to global variables. Statements in the outer function,
however, do not have access to the inner function’s variables.

Discussion
The basic idea behind nested functions is that you can encapsulate all activity related
to the outer function by keeping subroutine functions private to the outer function.
Because the nested function is not directly exposed to the global space, you can reuse
the function name in the global space or for a nested function inside some other
outer function.

See Also
Recipe 4.1 for a discussion of variable scope.

4.4 Creating an Anonymous Function

Problem
You want to define a function in the form of an expression that you can, for exam-
ple, pass as a parameter to an object constructor or assign to an object’s method.

Solution
You can use an alternative syntax for defining functions without creating an explic-
itly named function (as shown in Recipe 4.2). Called an anonymous function, this
syntax has all the components of a function definition except its identifier. The syn-
tax model is as follows:

var someReference = function() {statements go here};

Statements inside the curly braces are semicolon-delimited JavaScript statements.
You can define parameter variables if they’re needed:

var someReference = function(paramVar1[,..., paramVarN]) {statements go here};

Invoke the function via the reference to the function:

someReference();

Discussion
Anonymous function creation returns an object of type function. Therefore, you can
assign the right side of the statement to any assignment statement where a function
reference (the function name without parentheses) is expected. To demonstrate,
we’ll make a version of a shortcut object constructor from Recipe 3.8. It starts with

94 | Chapter 4: Variables, Functions, and Flow Control

an ordinary function definition that gets invoked as a method of four objects defined
with shortcut syntax:

function showAll() {
 alert("Employee " + this.name + " is " + this.age + " years old.");
}
var employeeDB = [{name:"Alice", age:23, show:showAll},
 {name:"Fred", age:32, show:showAll},
 {name:"Jean", age:28, show:showAll},
 {name:"Steve", age:24, show:showAll}];

Notice how in the object constructors, a reference to the showAll() function is assigned
to the show method name. Invoking this method from one of the objects is done in the
following manner:

employeeDB[2].show();

For the sake of example, we assign an anonymous function to the first object. The
anonymous function is custom-tailored for the first object and replaces the reference
to showAll():

var employeeDB = [{name:"Alice", age:23,
 show:function()
 {alert("Alice\'s age is not open to the public.")}},
 {name:"Fred", age:32, show:showAll},
 {name:"Jean", age:28, show:showAll},
 {name:"Steve", age:24, show:showAll}];

Now, if you invoke employeeDB[0].show(), the special alert displays itself because the
anonymous function is running instead of the showAll() function. We have saved
the need to create an external function with its own identifier just to act as an inter-
mediary between the show method name and the statements to execute when the
method is invoked.

Assigning anonymous function definitions to object properties—thus creating object
methods—is a good way to remove groups of related functions from the global
scope. In large projects containing multiple libraries or frameworks (often from
multiple authoring sources), unintentionally redundant function names can cause
havoc. See Recipe 3.14 for suggestions on minimizing such conflicts.

See Also
Recipe 4.3 for creating traditional named functions; Recipe 3.14 for using anony-
mous functions to reduce global naming conflicts.

4.5 Delaying a Function Call

Problem
You want a function to run at a specified time in the near future.

4.5 Delaying a Function Call | 95

Solution
Use the window.setTimeout() method to invoke a function one time after a delay of a
number of milliseconds. You essentially set a timer to trigger a function of your
choice. In its most common form, the function is referenced as a string, complete
with parentheses, as in the following example:

var timeoutID = setTimeout("myFunc()", 5000);

The method returns an ID for the time-out operation and should be preserved in a
global variable or property of a global object. If, at any time before the delayed func-
tion fires, you wish to abort the timer, invoke the clearTimeout() method with the
time-out ID as the parameter:

clearTimeout(timeoutID);

Once the timer is set, other script processing may proceed as usual, so it is often a
good idea to place the setTimeout() call as the final statement of a function.

Discussion
It’s important to understand what the setTimeout() method doesn’t do: it does not
halt all processing in the manner of a delay that suspends activity until a certain time.
Instead, it simply sets an internal countdown timer that executes the named func-
tion when the timer reaches zero. For example, if you are creating a slide show that
should advance to another page after 15 seconds of inactivity from the user, you
would initially set the timer via the load event handler for the page and the
resetTimer() function:

var timeoutID;
function goNextPage() {
 location.href = "slide3.html";
}
function resetTimer() {
 clearTimeout(timeoutID);
 timeoutID = setTimeout("goNextPage()", 15000);
}

You would also set an event handler for, say, the mousemove event so that each time
the user activates the mouse, the autotimer resets to 15 seconds:

window.onmousemove = resetTimer;

The resetTimer() function automatically cancels the previously set time-out before it
triggers the goNextPage() function, and then it starts a new 15-second timer.

If the function you are invoking via the delay requires parameters, you can assemble
a string with the values, even if those values are in the form of variables within the
function. But—and this is important—the variable values cannot be object refer-
ences. Parameters must be in a form that will survive the conversion to the string
needed for the first argument of the setTimeout() method. Recipe 8.4 demonstrates

96 | Chapter 4: Variables, Functions, and Flow Control

how you can convey names of DOM form-related objects as ways of passing an
object reference. The tricky part is in keeping the quotes in order:

function isEMailAddr(elem) {
 var str = elem.value;
 var re = /^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]{2,7}$/;
 if (!str.match(re)) {
 alert("Verify the e-mail address format.");
 setTimeout("focusElement('" + elem.form.name + "', '" + elem.name + "')", 0);
 return false;
 } else {
 return true;
 }
}

In this example, the focusElement() function requires two parameters that are used
to devise a valid reference to both a form object and a text input object. Both parame-
ters of the focusElement() function are strings. Because the first argument of
setTimeout() is, itself, a string, you have to force the “stringness” of the parameters
to focusElement() by way of single quotes placed within the extended string concate-
nation sequence. (The zero milliseconds shown in the example is not a mistake for
this application. Learn why in the Discussion for Recipe 8.4.)

Conveniently, setTimeout() also accepts a function reference as its first parameter,
thus opening up the possibility of using an anonymous function in that spot. Staying
with the previous example, we can invoke multiple method calls within a single
anonymous function, as in the following:

setTimeout(function() {elem.focus(); elem.select();}, 0);

This approach circumvents all the string machinations of the other format.

If you are looking for a true delay between the execution of statements within a
function or sections of a function, JavaScript has nothing comparable to commands
available in some other programming languages. But you can accomplish the same
result by dividing the original function into multiple functions—one function for
each section that is to run after a delay. Link the end of one function to the next by
ending each function with setTimeout(), which invokes the next function in
sequence after the desired amount of time:

function mainFunc() {
 // initial statements here
 setTimeout("funcPart2()", 10000);
}
function funcPart2() {
 // initial statements here
 setTimeout("finishFunc()", 5000);
}
function finishFunc() {
 // final batch of statements here
}

4.6 Branching Execution Based on Conditions | 97

The related functions don’t have to be located adjacent to each other in the source
code. If all related functions need to operate on the same set of values, you can cas-
cade the value as parameters (provided the parameters can be represented as nonob-
ject values), or you can preserve them as global variables. If the values are related, it
may be a good reason to define a custom object with values assigned to labeled prop-
erties of that object to make it easier to see at a glance what each function segment is
doing with or to the values.

Another JavaScript method, setInterval(), operates much like setTimeout(), but
repeatedly invokes the target function until told to stop (via the clearInterval()
method). The second parameter (an integer in milliseconds) controls the amount of
time between calls to the target function.

See Also
Recipe 8.4 for using setTimeout() to keep script execution synchronized; Recipe 12.6
for an example of using a self-contained counter variable in a repeatedly invoked func-
tion to execute itself a fixed number of times; Recipes 13.9 and 13.10 for applications
of setInterval() in animation.

4.6 Branching Execution Based on Conditions

Problem
You want your scripts to execute sections of code based on external values, such as
Booleans, user entries in text boxes, or user choices from select elements.

Solution
Use the if, if/else, or switch flow control construction to establish an execution
path through a section of your scripts. When you need to perform a special section
of script if only one condition is met, use the simple if construction with a condi-
tional expression that tests for the condition:

if (condition) {
 // statements to execute if condition is true
}

To perform one branch under one condition and another branch for all other situa-
tions, use the if/else construction:

if (condition) {
 // statements to execute if condition is true
} else {
 // statements to execute if condition is false
}

98 | Chapter 4: Variables, Functions, and Flow Control

You can be more explicit in the else clause by performing additional condition tests:

if (conditionA) {
 // statements to execute if conditionA is true
} else if (conditionB) {
 // statements to execute if conditionA is false and conditionB is true
} else {
 // statements to execute if both conditionA and conditionB are false
}

For multiple conditions, you should consider using the switch statement if the condi-
tions are based on string or numeric value equivalency:

switch (expression) {
 case valueA:
 // statements to execute if expression evaluates to valueA
 break; // skip over default
 case valueB:
 // statements to execute if expression evaluates to valueB
 break; // skip over default
 ...
 default:
 // statements to execute if expression evaluates to no case value
}

The break statements in each of the case branches ensure that the default branch
(which is optional) does not also execute.

Discussion
A condition expression in the if and if/else constructions is an expression that evalu-
ates to a Boolean true or false. Typically, such expressions use comparison operators
(==, ===, !=, !==, <, <=, >, >=) to compare the relationship between two values. Most of
the time, you are comparing a variable value against some constant or known value:

var theMonth = myDateObj.getMonth();
if (theMonth == 1) {
 // zero-based value means the date is in February
 monLength = getLeapMonthLength(myDateObj);
} else {
 monLength = getMonthLength(theMonth);
}

JavaScript offers some additional shortcut evaluations for condition expressions.
These shortcuts come in handy when you need to branch based on the existence of
an object or property. Table 4-1 lists the conditions that automatically evaluate to
true or false when placed inside the parentheses of a condition expression. For
example, the existence of an object evaluates to true, which allows a construction
such as the following to work:

if (myObj) {
 // myObj exists, so use it
}

4.6 Branching Execution Based on Conditions | 99

When testing for the existence of an object property (including a property of the glo-
bal window object), be sure to start the reference with the object, as in the following:

if (window.innerHeight) { ... }

But you also need to be careful when testing for the existence of a property if there is
a chance that its value could be an empty string or zero. Such values force the condi-
tional expression to evaluate to false, even though the property exists. Therefore, it
is better to test for the data type of the property with the typeof operator. If you’re
not sure about the data type, test the data type against the undefined constant:

if (typeof myObj.myProperty != "undefined") {
 // myProperty exists and has a value of some kind assigned to it
}

If there is a chance that neither the object nor its property exists, you need to group
together conditional expressions that test for the existence of both. Do this by test-
ing for the object first, then the property. If the object does not exist, the expression
short-circuits the test of the property:

if (myObj && typeof myObj.myProperty != "undefined") {
 // myObj exists, and so does myProperty
}

If, instead, you test for the property first, the test fails with a script error because the
expression with the object fails unceremoniously.

JavaScript also provides a shortcut syntax that lets you avoid the curly braces for
simple assignment statements that execute differently based on a condition. The syn-
tax is as follows:

var myValue = (condition) ? value1 : value2;

If the condition evaluates to true, the righthand expression evaluates to the first
value; otherwise, it evaluates to the second value. For example:

var backColor = (temperature > 100) ? "red" : "blue";

Table 4-1. Condition expression equivalents

True False

String has one or more characters Empty string

Number other than zero 0

Nonnull value null

Referenced object exists Referenced object does not exist

Object property is defined and evaluates to a string of one or
more characters or a nonzero number

Object property is undefined, or its value is an empty string or
zero

100 | Chapter 4: Variables, Functions, and Flow Control

Several recipes in later chapters use this shortcut construction frequently, even to
two levels deep. For example:

var backColor = (temperature > 100) ? "red" : ((temperature < 80) ?
 "blue" : "yellow");

This shortcut expression is the same as the longer, more readable, but less elegant
version:

var backColor ;
if (temperature > 100) {
 backColor = "red";
} else if (temperature < 80) {
 backColor = "blue";
} else {
 backColor = "yellow";
}

When you have lots of potential execution branches, and the triggers for the various
branches are not conditional expressions per se, but rather the value of an expres-
sion, then the switch construction is the way to go. In the following example, a form
contains a select element that lets a user choose a size for a product. Upon making
that choice, a change event handler in the select element triggers a function that
inserts the corresponding price for the size in a text box:

function setPrice(form) {
 var sizeList = form.sizePicker;
 var chosenItem = sizeList.options[sizeList.selectedIndex].value;
 switch (chosenItem) {
 case "small" :
 form.price.value = "44.95";
 break;
 case "medium" :
 form.price.value = "54.95";
 break;
 case "large" :
 form.price.value = "64.95";
 break;
 default:
 form.price.value = "Select size";
 }
}

If the switch expression always evaluates to one of the cases, you can omit the
default branch, but while you are in development of the page, you might leave it
there as a safety valve to alert you of possible errors if the expression should evaluate
to an unexpected value.

See Also
Most of the recipes in Chapter 15 use the shortcut conditional statement to equalize
disparate event models.

4.7 Handling Script Errors Gracefully | 101

4.7 Handling Script Errors Gracefully

Problem
You want to process all script errors out of view of users, and thus prevent the
browser from reporting errors to the user.

Solution
The quick-and-dirty, backward-compatible way to prevent runtime script errors
from showing themselves to users is to include the following statements in a script
within the head portion of a page:

function doNothing() {return true;}
window.onerror = doNothing;

This won’t stop compile-time script errors (e.g., syntax errors that the interpreter dis-
covers as the page loads). It also won’t reveal to you, the programmer, where errors
lurk in your code. Add this only if you need to deploy a page before you have fully
debugged the code (essentially sweeping bugs under the rug); remove it to test your
code.

In IE 5 or later, Mozilla, Safari, and Opera 7 or later, you can use more formal error
(exception) handling. If you are allowing your pages to load in older browsers, you
may need to prevent those browsers from coming into contact with the error-handling
code. To prevent earlier browsers from tripping up on the specialized syntax used for
this type of processing, embed these statements in <script> tags that specify Java-
Script 1.5 as the language attribute (language="JavaScript1.5").

Wrap statements that might cause (throw) an exception in a try/catch construction.
The statement to execute goes into the try section, while the catch section processes
any exception that occurs:

<script type="text/javascript" language="JavaScript1.5">
function myFunc() {
 try {
 // statement(s) that could throw an error if various conditions aren't right
 }
 catch(e) {
 // statements that handle the exception (error object passed to e variable)
 }
}
</script>

Even if you do nothing in the required catch section, the exception in the try section
is not fatal. Subsequent processing in the function, if any, goes on, provided it is not
dependent upon values created in the try section. Or, you can bypass further pro-
cessing in the function and gracefully exit by executing a return statement inside the
catch section.

102 | Chapter 4: Variables, Functions, and Flow Control

Discussion
Each thrown exception generates an instance of the JavaScript Error object. A refer-
ence to this object reaches the catch portion of a try/catch construction as a parame-
ter to the catch clause. Script statements inside the catch clause may examine
properties of the object to learn more about the nature of the error. Only a couple of
properties are officially sanctioned in the ECMAScript standard so far, but some
browsers implement additional properties that contain the same kind of information
you see in script error messages. Table 4-2 lists informative Error object properties
and their browser support.

Error messages are never intended to be seen by users. Use the description or
message property of an Error object in your own exception handling to decide how to
process the exception. Unfortunately, the precise message from the various browsers
is not always identical for a given error. For example, if you try to reference an unde-
fined object, IE reports the description string as:

'myObject' is undefined

Mozilla, on the other hand, reports:

myObject is not defined

This makes cross-browser exception handling a bit difficult. In this case, you could
try to fudge it by performing string lookups (regular expression matches) for the
object reference and the fragment “defined” as in the following:

try {
 window.onmouseover = trackPosition;
}
catch(e) {
 var msg = (e.message) ? e.message : e.description;
 if (/trackPosition/.exec(msg) && /defined/.exec(msg)) {
 // trackPosition function does not exist within page scope
 }
}

Table 4-2. Error object properties

Property IE/Windows Mozilla Safari Opera Description

description 5 n/a n/a n/a Plain-language description of error

fileName n/a all n/a n/a URI of the file containing the script throwing the
error

lineNumber n/a all n/a n/a Source code line number of error

message 5.5 all all 7 Plain-language description of error (ECMA)

name 5.5 all all 7 Error type (ECMA)

number 5 n/a n/a n/a Microsoft proprietary error number

stack n/a 1.0.1 n/a n/a Multi-line string of function references leading
to error

4.8 Improving Script Performance | 103

You can also intentionally throw an exception as a way to build exception handling
into your own processing. The following function is a variation of a form validation
function that tests for the entry of only a number in a text box. The try clause tests
for an incorrect value. If found, the clause creates its own instance of an Error object
and uses the throw method to trigger an exception. Of course, the thrown exception
is immediately caught by the following catch clause, which displays the alert mes-
sage and refocuses the text box in question:

function processNumber(inputField) {
 try {
 var inpVal = parseInt(inputField.value, 10);
 if (isNaN(inpVal)) {
 var msg = "Please enter a number only.";
 var err = new Error(msg);
 if (!err.message) {
 err.message = msg;
 }
 throw err;
 }
 // it's safe to process number here
 }
 catch (e) {
 alert(e.message);
 inputField.focus();
 inputField.select();
 }
}

This kind of function is invoked by both a change event handler for the text field and
a batch validation routine, as described in Chapter 8.

4.8 Improving Script Performance

Problem
You want to speed up a sluggish script.

Solution
When swallowing small doses of code, JavaScript interpreters tend to process data
speedily. But if you throw a ton of complex and deeply nested code at a browser, you
may notice some latency, even after all the data has been downloaded in the browser.

Here are a handful of useful tips to help you unclog potential processing bottlenecks
in your code:

• Avoid using the eval() function.

• Avoid the with construction.

• Minimize repetitive expression evaluation.

104 | Chapter 4: Variables, Functions, and Flow Control

• Use simulated hash tables for lookups in large arrays of objects.

• Avoid excessive string concatenation.

• Investigate download performance.

• Avoid multiple document.write() method calls.

Look for these culprits especially inside loops, where delays become magnified.

Discussion
One of the most inefficient functions in the JavaScript language is eval(). This func-
tion converts a string representation of an object to a genuine object reference. It
becomes a common crutch when you find yourself with a string of an object’s name
or ID, and you need to build a reference to the actual object. For example, if you
have a sequence of mouse rollover images comprising a menu, and their names are
menuImg1, menuImg2, and so on, you might be tempted to create a function that
restores all images to their normal image with the following construction:

for (var i = 0; i < 6; i++) {
 var imgObj = eval("document.menuImg" + i);
 imgObj.src = "images/menuImg" + i + "_normal.jpg";
}

The temptation is there because you are also using string concatenation to assemble
the URL of the associated image file. Unfortunately, the eval() function in this loop
is very wasteful.

When it comes to referencing element objects, there is almost always a way to get from
a string reference to the actual object reference without using the eval() function. In
the case of images, the document.images collection (array) provides the avenue. Here is
the revised, more streamlined loop:

for (var i = 0; i < 6; i++) {
 var imgObj = document.images["menuImg" + i];
 imgObj.src = "images/menuImg" + i + "_normal.jpg";
}

If an element object has a name or ID, you can reach it through some collection that
contains that element. The W3C DOM syntax for document.getElementById() is a
natural choice when working in browsers that support the syntax and you have the
element’s ID as a string. But even for older code that supports names of things like
images and form controls, there are collections to use, such as document.images and
the elements collection of a form object (document.myForm.elements["elementName"]).
For custom objects, see the later discussion about simulated hash tables. Hunt down
every eval() function in your code and find a suitable, speedier replacement.

Another performance grabber is the with construction. The purpose of this control
statement is to help narrow the scope of statements within a block. For example, if
you have a series of statements that work primarily with a single object’s properties
and/or methods, you can limit the scope of the block so that the statements assume

4.8 Improving Script Performance | 105

properties and methods belong to that object. In the following script fragment, the
statements inside the block invoke the sort() method of an array and read the
array’s length property:

with myArray {
 sort();
 var howMany = length;
}

Yes, it may look efficient, but the interpreter goes to extra lengths to fill in the object
references before evaluating the nested expressions. Don’t use this construction.

It takes processing cycles to evaluate any expression or reference. The more “dots” in
a reference, the longer it takes to evaluate the reference. Therefore, you want to avoid
repeating a lengthy object reference or expression if it isn’t necessary, especially
inside a loop. Here is a fragment that may look familiar to you from your own cod-
ing experience:

function myFunction(elemID) {
 for (i = 0; i < document.getElementById(elemID).childNodes.length; i++) {
 if (document.getElementById(elemID).childNodes[i].nodeType = = 1) {
 // process element nodes here
 }
 }
}

In the course of this function’s execution, the expression document.getElementById()
evaluates twice as many times as there are child nodes in the element whose ID is
passed to the function. At each start of the for loop’s execution, the limit expression
evaluates the method; then the nested if condition evaluates the same expression
each time through the loop. More than likely, additional statements in the loop eval-
uate that expression to access a child node of the outer element object. This is very
wasteful of processing time.

Instead, at the cost of one local variable, you can eliminate all of this repetitive
expression evaluation. Evaluate the unchanging part just once, and then use the vari-
able reference as a substitute thereafter:

function myFunction(elemID) {
 var elem = document.getElementById(elemID);
 for (i = 0; i < elem .childNodes.length; i++) {
 if (elem .childNodes[i].nodeType = = 1) {
 // process element nodes here
 }
 }
}

If all of the processing inside the loop is with only child nodes of the outer loop, you
can further compact the expression evaluations:

function myFunction(elemID) {
 var elemNodes = document.getElementById(elemID).childNodes;
 for (i = 0; i < elemNodes.length; i++) {

106 | Chapter 4: Variables, Functions, and Flow Control

 if (elemNodes[i].nodeType = = 1) {
 // process element nodes here
 }
 }
}

As an added bonus, you have also reduced the source code size. If you find instances
of repetitive expressions whose values don’t change during the course of the affected
script segment, consider them candidates for pre-assignment to a local variable.

Next, eliminate time-consuming iterations through arrays, especially multidimen-
sional arrays or arrays of objects. If you have a large array (say, more than about 100
entries), even the average lookup time may be noticeable. Instead, use the tech-
niques shown in Recipe 3.9 to perform a one-time generation of a simulated hash
table of the array. Assemble the hash table while the page loads so that any delay
caused by creating the table is blended into the overall page-loading time. Thereaf-
ter, lookups into the array will be nearly instantaneous, even if the item found is the
last item in the many-hundred member array.

As discussed in depth in Recipe 1.2, string concatenation can be a resource drain.
Using arrays as temporary storage of string blocks can streamline execution.

Getting a ton of JavaScript code from server to browser can be a bottleneck on its
own. Bear in mind that each external .js file loaded into a page incurs the overhead of
an HTTP request (with at most two simultaneous connections possible). Various
techniques for condensing .js source files are available, such as utilities that remove
whitespace and shorten identifiers (often at the cost of ease of source code manage-
ment and debugging). Most modern browsers can also accept external JavaScript
files compressed with gzip (although IE 6 exhibits problems). As you can see, no sin-
gle solution is guaranteed to work in every situation.

One other impact on loading time is where in the page you place <script> tags that
load external .js files. The user may perceive that the entire page is loading faster if
your <script src=""> tags are just above the closing </body> tag because images and
text start to appear faster. Interaction on the elements that relies on the scripts will
still be delayed until the scripts fully load.

The final tip addresses use of the document.write() method to generate content
while the page loads. Treat this method as if it were an inherently slow input/output
type of operation. Invoke the method as infrequently as possible. If you are writing a
lot of content to the page, accumulate the HTML into one string variable, and blast
it to the page with one call to document.write().

See Also
Recipe 3.9 for details on creating a simulated hash table from an array; Recipe 3.13
for a rare case where the eval() function can’t be avoided; Recipe 1.2 for details on
using an array to speed large string assembly.

107

Chapter 5 CHAPTER 5

Browser Feature Detection5

5.0 Introduction
Perhaps the greatest challenge that faces any web author who needs scripting or
Dynamic HTML features embedded within content is how to select features that
work with the widest set of browsers for the target audience. Despite claims of com-
patibility with industry standards, every browser is guilty of one or more of the fol-
lowing charges:

• It implements some features in a peculiar way.

• It offers its preliminary vision of proposed standards.

• It includes proprietary features never intended for the standards track.

From an authoring standpoint, the most dramatic changes to browser functionality
from version to version tend to be in two areas: the core JavaScript language (cov-
ered in Chapter 1 through Chapter 4) and the document object model (the “things”
you manipulate on the page using the JavaScript vocabulary). After several years of
rapid escalation of the browser feature wars among major brands, the dominant
browser—Internet Explorer for Windows—remained stagnant after IE 6’s final
release in October 2001. Given that almost nothing in the way of scriptable improve-
ments arrived with IE 7 in late 2006, this period of IE stability continues. Unfortu-
nately for developers, however, the IE 6 implementation failed to support several key
W3C DOM standards, most annoyingly, the event model. In the meantime, other
browsers, including Mozilla-based browsers (Firefox is the most popular), Apple’s
Safari, and the cross-platform Opera browser, continued to implement more or
newer W3C and other standards (such as the WHATWG effort). The browser wars
are still being fought.

Complicating the issue is the fact that just because a new generation of web browser
is available to the world doesn’t mean that the world’s user base rushes to adopt it.
Even if IE 8 magically appears with superb standards support, universal adoption
won’t be immediate. The cost of upgrading an organization-wide deployment of web

108 | Chapter 5: Browser Feature Detection

browser software may be too high to let employees keep pace with the available soft-
ware. At the same end of the scale, oddly enough, is the consumer who would rather
use a stable, reliable browser for years as if it were an appliance—not something that
is upgraded every 12 to 18 months. It’s all too easy for the web-literate to get caught
up in the latest pre-release browser version frenzy, failing to realize that web server
logs won’t show the audience reaching a critical mass of that new browser version
for as much as one year after its release.

These and other factors conspire to fragment the installed base of browsers in the
real world. As a web application author, your task is to balance the desire to spiff up
your content with DHTML features against the trouble of making sure the content
degrades well on less-capable browsers. Part of achieving this balance is determining
how maintainable your content should be. Sure, in an ideal world, you might have
many versions of a given page, each optimized for a combination of browser brand,
browser version, and operating system. But unless you have very sophisticated content
management tools, a single text change to a page may become an unthinkable night-
mare to deploy. In truth, the more palatable ideal world lets one HTML file (or
server routine under PHP, ASP, JSP, and others) handle browser- and operating
system-specific idiosyncrasies. That’s what browser feature detection and scripting
are all about.

Unfortunately, there are no hard and fast rules to follow when it comes to handling
browser detection. Each combination of content and target audience has its own
compatibility requirements. It’s helpful to know this ahead of time, because you can
start thinking about the level of browser detection you need to deploy for your con-
tent. In fact, it’s one of the first things I address when embarking on a new project.

Developing a Browser Strategy
An approach I frequently recommend is to start with a mock-up of the art and con-
tent for related pages. Next, visualize the ideal user interaction that adds value to the
content. For example: would site navigation be faster with pop-up submenus associ-
ated with main menu icons? Do you want to offer customized visual settings that are
invoked automatically when a user accesses the site next time? Would it be more fun
and convenient for users to build components of their online order by dragging icons
representing features or modules?

With your wish list in hand, it’s time to figure out what browser versions can sup-
port those features, and then map that support to the profiles of users you expect for
the site. You may want to have all the fancy user interface features available for users
of only the most recently released browsers and shuttle all others to a simpler presen-
tation. A lot of scriptable and DHTML features can be added to a page such that the
same HTML file serves both older and newer browsers, with users of new browsers
getting the benefit of the added features—thanks to scripts that modify the docu-
ment in the browser.

Introduction | 109

To make any these grand ideas work, you must include browser or feature detec-
tion scripts in your document. Such detection can be as simple as creating separate
script-processing paths in the same document for different levels of scriptable fea-
ture support. Your designs may call for two or more HTML document paths through
your web site, depending not only on various levels of scriptability but also on
whether the browser is scriptable at all. You might even have your default page act as
a filter for the browser flavors you are prepared to handle.

When There Is No JavaScript
It’s not unusual for newcomers to client-side scripting to wonder how a script might
detect the absence of JavaScript. Only after a bit of thought do they realize the ridicu-
lous proposition of using JavaScript for decision-making when the browser completely
ignores all scripts.

A user won’t have JavaScript available for one of two reasons—one by force, one by
choice. The most common reason is that the browser knows nothing about Java-
Script. This isn’t limited only to nongraphical browsers such as Lynx or special-pur-
pose browsers for disabled users. Some portable wireless devices use browsers
endowed with little or none of the scripting support found in full-fledged browsers
(Apple’s iPhone Safari browser being a notable exception).

Regardless of the latest browser bells and whistles, or the “preferred” way to apply
certain content constructs, many thousands of web pages on the Net use techniques
long ago deprecated in the standards documents. Web browser makers, however,
bear the burden of this “ancient” baggage, as their browsers (with rare exception)
continue to be backward-compatible with earlier technologies. Unfortunately, this
continued support can lead casual page authors to believe that the old ways are just
fine, so they believe they have little incentive to use the latest techniques. Con-
versely, a tuned-in content author who blindly follows standards—essentially treat-
ing the standards as platforms—may be even more foolhardy because browser
makers haven’t caught up with the standards or have implemented them oddly in the
early development stages.

The second reason JavaScript may be unavailable is that for personal or MIS policy
reasons, JavaScript is turned off in a browser that is otherwise capable of JavaScript.
When scripting is turned off in a scriptable browser, any HTML content contained
by the <noscript> tag pair is rendered by the browser. This is where you might
include a message that alerts users about what they’re missing:

<noscript>
<p>
If you are able to turn on JavaScript in your browsers, you will enjoy
convenient shortcuts to speed your site navigation. To learn how to enable
JavaScript for your browser, click the link for your browser:
Internet Explorer for Windows,
Firefox,
Safari.
Opera.

110 | Chapter 5: Browser Feature Detection

</p>
</noscript>

With a little server programming, you can help the visitor even more. By analyzing
the HTTP USERAGENT string arriving with the page request, the server can examine the
browser and operating system type, and thus provide a single link in the <noscript>
tag to the script-enabling instructions tailored for that browser class. Not all visitors
know (or care) which browser brand or version they’re using. A little extra server
programming (if you have access to it for your web hosting) can simplify life for non-
technical visitors.

Masking Scripts from Nonscriptable Browsers
Scripting has been a part of web page development for so many years now, it’s
extremely rare to be visited by a browser that doesn’t know what to do with a
<script> tag, even if just to ignore the tag and its content. Such wasn’t always the
case. For scripting’s first few years, it was necessary to guard against old browsers
that ignored the <script> tag, but rendered the script contents as if it were body con-
tent. To prevent the display of scripts, you had to wrap script statements with
HTML comment tags:

<script language="JavaScript">
<!--
script statements go here
//-->
</script>

This practice is no longer necessary, although you will see it deployed widely in
pages that have been on the Web for a long time.

Incidentally, this masking technique is not a way to prevent inquisitive visitors from
viewing the source code of your HTML or scripts. And before you ask, there is no
sure-fire way to prevent someone from seeing your client-side scripts. While numer-
ous ways exist to obfuscate your code, a determined visitor will be able to view your
scripts one way or another.

Detecting the JavaScript Version
A somewhat imprecise way of providing multiple levels of functionality in a single
page is possible by letting scripts branch based on the version of JavaScript built into
the browser. This strategy is called browser detection; it was practical in the early
days of scripting when increments in the scripting language version were more
closely tied to specific browser versions from the only two scriptable browsers: Inter-
net Explorer and Netscape Navigator. For example, JavaScript 1.2 was the language
deployed in Navigator 4 and Internet Explorer 4.

Since then, the correlation between JavaScript version number and scriptable fea-
tures of browsers—the latter determined by the separate document object models—
is too loose to be useful. I no longer recommend language version branching. But,

Introduction | 111

because a lot of legacy code deployed on the Web demonstrates this technique, I
present a brief discussion of how it works.

Just like HTML, scripts load into the browser in source code order (i.e., from top to
bottom). If the browser encounters more than one function of the same name, the
last one to be read overrides all others that appear earlier in the document. But the
browser recognizes <script> tags only for the JavaScript language versions it knows
about. For example, consider the following parallel sets of tags:

<script language="JavaScript" type="text/javascript">
function myFunction() {
 function statements
}
</script>
<script language="JavaScript1.2" type="text/javascript">
function myFunction() {
 function statements
}
</script>

A browser that knows only JavaScript 1.0 or 1.1 keeps the first definition of
myFunction() in memory ready to be invoked by any event handler or script state-
ment. A browser that knows JavaScript 1.2 (or later) loads the first definition into
memory as the page loads, but the function is immediately overwritten in memory by
the second definition. Only the second function runs when invoked by an event han-
dler elsewhere in the document.

Object Detection: The Way to Go
Using browser brand, version, or operating system detection assumes that you know
for certain which browser versions support a particular document object, property,
or method. With so many scriptable browsers prowling the Web these days, it is
impossible to know which current or future subversion of each browser supports the
object model features you need. This is where a technique known as object detection
picks up the slack. As demonstrated in Recipes 5.8 and 5.9, your scripts can make sure
the browser supports a new or limited object model feature before using that feature.

Use object detection wisely. Do not assume that because a browser supports one fea-
ture of some other browser that all other features of that other browser are sup-
ported. For example, it is an unfortunately common practice to assume that just
because a browser supports the document.all collection, the browser is Internet
Explorer 4 or later. If you are familiar with that browser class in the Windows envi-
ronment, you’re probably aware of a wide range of IE DOM features. But some of
those features are not available in IE 4 or later for other operating systems, nor in the
Opera browser set to behave like IE—all of which support the document.all collec-
tion. On the other hand, you don’t need to be a JavaScript guru to know that sup-
port for document.all universally equates with support for the document.all.length
property—all object collections have a length property.

112 | Chapter 5: Browser Feature Detection

Deploying object detection intelligently requires a good source of language- and
object-compatibility ratings. The latest edition of my book Dynamic HTML: The
Definitive Reference (O’Reilly) is tailored for this task.

Setting Global Variables
How often your scripts need to perform the actual browser or object detection
depends a lot on how large your scripts are and how often those scripts need to dif-
ferentiate among support profiles for browsers. Most browser detection occurs via
the navigator object, sometimes involving compound detection statements (e.g.,
you’re looking for a particular browser brand and version). Because browser detec-
tion is most often used to branch script execution within an if construction, it is
generally more convenient to establish one or more global variables at the start of
your script to be used as flags later on. Let the assignment statements perform the
examination and assign true or false Boolean values to the global(s). Then use the
global variable(s) as expressions within your branching if conditions:

var isMacOS = (navigator.userAgent.indexOf("Mac") != -1);
...
if (isMacOS) {
 Macintosh-specific scripts here
} else {
 Other scripts here
}

You can do the same for object detection (and reduce excessive expression evalua-
tion throughout your scripts):

var isW3C = (document.getElementById) ? true : false;

After some experience, you’ll get to know the kinds of branching a particular job
requires. Assigning the browser global variables at the start of your scripts will
become second nature to you.

DHTML and Accessibility
Many countries have enacted laws that require employers and organizations open to
the public to provide site access to employees, customers, and visitors who have a
variety of disabilities. It’s not uncommon for such users to visit web pages with
browsers that permit navigation exclusively via keyboard or render content through
speech synthesis. Implementing an application that relies solely on DHTML tech-
niques to convey its content may place such content in violation of these laws. For
information about the U.S. law covering this topic, visit http://www.section508.gov.

A related issue is how accessible the content is to search engine spiders and bots that
troll the Web to build their databases. These services tend to follow HTML links
found on a page, but do not execute scripts. Thus, they see only explicit HTML con-
tent as delivered by the web server. If all links from the home page activate only
through script control, the search engines won’t get past your site’s lobby.

5.2 Detecting an Early Browser Version | 113

5.1 Detecting the Browser Brand

Problem
You want script execution to branch one way for IE users and another way for all
other browser users.

Solution
Use the navigator.appName property to find out which brand the browser purports to
be. The following statement sets a global Boolean variable for browser brands:

var isIE = (navigator.appName == "Microsoft Internet Explorer");

Discussion
The navigator.appName property returns a string that the browser maker determines.
Firefox and Safari always return the string “Netscape”, while Internet Explorer
returns “Microsoft Internet Explorer”. These strings and the equivalency operator
are case-sensitive.

You will also encounter some interesting aberrations to this scheme with Opera,
which reports that its appName is “Microsoft Internet Explorer”, “Netscape”, or
“Opera”, depending on how the user sets the preferences. Settings for IE and NN
force the browser to react to script syntax and objects along the lines of the selected
browser (at least for simple tasks). If you want to find out for sure whether the
browser is Opera, you must dig into the navigator.userAgent property, which con-
tains more information about the browser. See Recipe 5.6 for more details.

With respect to Internet Explorer, you should be aware that substantial differences
exist between the Windows and now-defunct Macintosh versions. Thus, you may
need operating-system detection as well (covered in Recipe 5.7).

See Also
Recipes 5.2 through 5.6 for more granular browser version sniffing; Recipe 5.7 for
operating-system detection.

5.2 Detecting an Early Browser Version

Problem
You want script execution to branch based on Internet Explorer or pre-Mozilla
Netscape Navigator.

114 | Chapter 5: Browser Feature Detection

Solution
For IE and Netscape browsers through version 4, the navigator.appVersion property
returns the complete version of the browser along with further information about the
operating system platform. To determine the major generation of the browser, use
the parseInt() function to extract the integer value of the version:

var isVer4 = (parseInt(navigator.appVersion) == 4);

To get the version number that includes incremental upgrades of the browser (repre-
sented as numbers to the right of the decimal, such as 4.74), use the parseFloat()
function:

var isVer4_74 = (parseFloat(navigator.appVersion) == 4.74);

If you want your variable to indicate that a certain minimum version is available, use
the >= operator instead of the equality (==) operator:

var isVer4Min = (parseInt(navigator.appVersion) >= 4);
var isVer4_5Min = (parseFloat(navigator.appVersion) >= 4.5);

Discussion
For any browser version up to Microsoft Internet Explorer 4.0 and the last released
version of the Netscape Navigator 4 family (4.8), the navigator.appVersion string
begins with accurate information about the browser’s version. For example:

Microsoft Internet Explorer 4.01 running on Windows 98:
 4.0 (compatible; MSIE 4.01; Windows 98)
Netscape Navigator 4.79 for the Macintosh PowerPC:
 4.79 (Macintosh; U; PPC)

For all subsequent browser versions, the leading characters of the navigator.
appVersion string no longer correspond to the browser’s actual version number.
Instead, the leading number represents the generation of core browser code. Thus,
the lead part of the navigator.appVersion string, even for Internet Explorer 7 for
Windows, continues to read 4.0.

Newer browsers that succeeded Netscape 4.x are built with an entirely new core
engine (the Gecko engine developed by Mozilla). For a variety of historical reasons,
this generation of code is counted as the fifth generation. Therefore, because the
fifth-generation core engine is used in Mozilla-based browsers, the navigator.
appVersion string for those browsers begins with 5.0, rather than a number corre-
sponding to the actual browser version.

To determine the precise browser version number for newer browsers, you must use
other techniques that are, unfortunately, not cross-browser compatible. These are
described in Recipes 5.3 through 5.6.

See Also
Recipe 5.1, and Recipes 5.3 through 5.6 for additional browser detection tips.

5.3 Detecting the Internet Explorer Version | 115

5.3 Detecting the Internet Explorer Version

Problem
You want script execution to branch based on a specific or minimum version of
Internet Explorer.

Solution
Access the complete version number by parsing the string of the navigator.
userAgent property. Internet Explorer identifies itself with the string MSIE, fol-
lowed by a space, the version number (with one or more digits to the right of the
decimal), and a semicolon. Here’s a function that returns the numeric portion of
the pertinent information:

function getIEVersionNumber() {
 var ua = navigator.userAgent;
 var MSIEOffset = ua.indexOf("MSIE ");
 if (MSIEOffset == -1) {
 return 0;
 } else {
 return parseFloat(ua.substring(MSIEOffset + 5, ua.indexOf(";", MSIEOffset)));
 }
}

You can use the returned value to establish a global variable that gets used elsewhere
in code execution branch condition statements. For example, here’s how to execute
code only if the browser identifies itself as being compatible with IE 5 or later:

var isIE5Min = getIEVersionNumber() >= 5;
...
if (isIE5Min) {
 // perform statements for IE 5 or later
}

Discussion
Because the function in the Solution returns a number data type, it does not reveal
whether the version number is followed by any letters, such as B for beta versions. If
you omit the parseFloat() function, the returned result will be a string value. But by
and large, you will be looking for a numeric value to use for a comparison, as shown
previously.

The userAgent string for IE 7 continues the same format as in earlier versions. In
Windows Vista, IE 7 also reports itself as MSIE 7.0, but the operating system reports
in as Windows NT 6.0.

Using a numerical comparison of the version number is a two-edged sword. On one
side is a warning against using a simple equality operator (==) instead of a greater-
than or equals operator (>=). Using the equality operator is a frequent mistake of a

116 | Chapter 5: Browser Feature Detection

routine that is designed to run on only the latest version. The problem with this is
that when the next version appears, the comparison operation fails. On the other
side is that the >= operator assumes that future versions of the browser will continue
to support the branched feature. While browsers tend to be backward-compatible,
scripters familiar with the removal of the layer object between Netscape Navigator 4
and 6 know how this assumption can get you into trouble. This is one more reason
to look toward object detection rather than version detection in most cases. Version
detection is valuable, however, when you are aware of a bug in a particular version
and you want your script to bypass that bug when running on the rogue browser.

See Also
Recipes 5.2 and 5.4 through 5.6 for additional browser detection tips; Recipe 2.1 for
uses of the parseFloat() function; Recipe 1.6 for uses of the indexOf() method.

5.4 Detecting the Mozilla Version

Problem
You want script execution to branch based on a specific or minimum version of a
Mozilla-based browser.

Solution
Script execution tends to rely on core JavaScript, DOM, and CSS features that are
built into the Gecko rendering engine that Mozilla-based browsers have in common.
The navigator.userAgent string for all of these browsers contains the string Gecko,
followed by a slash and the date (in YYYYMMDD form) of the engine build used in
the browser. The date varies with virtually every build, including those that don’t
necessarily result in new application versions, but just minor bug fixes. Mozilla does
not explicitly publish the Gecko engine dates corresponding to each build release,
but you can install archived versions of several browsers to discover the Gecko
reporting date for a specific browser version.

In recent implementations, the navigator.userAgent string also contains a reference
to the Mozilla build version from which the current browser was taken. A table of var-
ious browser versions and their corresponding Mozilla build numbers appears in the
Discussion section. Some sample navigator.userAgent strings are as follows:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.8.1.2) Gecko/20070219
Firefox/2.0.0.2
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.10) Gecko/20070216 Firefox/
1.5.0.10
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.5) Gecko/20060912 Netscape/
8.1.2

5.4 Detecting the Mozilla Version | 117

Given these patterns, your scripts can first test for the presence of Gecko/ in the
navigator.userAgent string to determine if you are using a Mozilla-based browser (an
early version of Safari contained the phrase like Gecko, without the slash). From
there, you can extract the revision number using the following script fragment:

var re = /(rv:)(\d+\.\d+\.?\d*\.?\d*)/;
var mozVer = a.exec(navigator.userAgent)[2];

The returned value is a string of only the revision number (e.g., 1.8.1.2). This value
cannot easily be converted to a number that can be used for numeric comparisons.
You can, of course, divide the string into array items (via the split() method) and
compare desired items against your baseline requirements.

Discussion
Use Table 5-1 as a guide to the Mozilla build version, Gecko version, and three of the
most popular Mozilla-based browsers. The m18 designation stands for milestone
build number 18, a convention later dropped in favor of traditional numbering.
Gecko dates are the earliest dates obtained from a released browser using the Mozilla
build version in the same row. As you can see, there is little tracking between the
Mozilla version and the version of a particular branded browser.

If you are interested in knowing if the Mozilla-based browser is of a particular brand,
check the navigator.userAgent property value for the desired browser to see how it
reports itself. Although the examples above demonstrate that Firefox and Netscape
use a similar format (the brand name followed by a slash and version number), other
brands may not necessarily follow this format. In fact, Mozilla’s own documentation
recommends avoiding using the navigator.userAgent string for browser identifica-
tion, but offers no alternative suggestion.

See Also
Recipe 5.1 for primary browser brand detection; Recipes 5.3, 5.5, and 5.6 for detect-
ing other browser brands; Recipe 3.3 for converting between arrays and strings.

Table 5-1. Mozilla build versions versus branded browser versions

Mozilla Gecko Netscape Firefox Camino

m18 20001108 6.0

0.9.4 20011022 6.2

1.0.1 20020823 7.0

1.4 20030624 7.1

1.7.2 20040804 7.2

1.7.5 20041217 8.0–8.2 1.0

1.8 20051111 1.5 1.0

1.8.1 20061010 2.0

118 | Chapter 5: Browser Feature Detection

5.5 Detecting the Safari Version

Problem
You want script execution to branch based on a specific or minimum version of
Apple’s Safari browser.

Solution
Apple recommends performing version detection not on the Safari indicator of the
navigator.userAgent string, but rather on the AppleWebKit version. This version
indicates the fundamental rendering engine that influences your scripting decisions.

The following script fragment sets a global flag for whether the current Safari version
is one that implements a rich set of scriptable CSS and DOM support beginning with
Safari 1.3 (Mac OS X 10.3) and Safari 2.0 (Mac OS X 10.4):

var isModernSafari = false;
if (navigator.userAgent.indexOf("AppleWebKit") != -1) {
 var re = /\(.*\) AppleWebKit/(.*) \((.*)/;
 var webkitVersion = re.exec(ua)[1].split(".")[0];
 if (webkitVersion > 312) {
 isModernSafari = true;
 }
}

Apple provides a complete list of AppleWebKit versions for each release and update
since the first release at http://developer.apple.com/internet/safari/uamatrix.html.

Discussion
The best reason to use the AppleWebKit version is that the engine may be built into
other applications capable of rendering HTML and running scripts. You therefore do
not want to be tied down only to Safari, when your scripts could run elsewhere.

The relative complexity of the regular expression shown in the Solution is due to the
fact that AppleWebKit versions can contain multiple sub-versions, each separated by
periods, such as 418.9.1. By and large, your branching will consider only whole ver-
sion numbers. During the transition between Mac OS X 10.3 (Panther) and Mac OS
X 10.4 (Tiger), Safari was released with similar functionality, but with different ver-
sion numbers and AppleWebKit series. Safari 1.3 for Panther was released at approx-
imately the same time as Safari 2.0 for the newly released Tiger. Therefore, although
the AppleWebKit version for Tiger begins at 412, the corresponding Panther release
was 312. Thus, the example above uses the 312 version as a baseline for what the
script considers “modern” Safari at the time.

See Also
Recipe 5.1 for primary browser brand detection; Recipes 5.3, 5.4, and 5.6 for detect-
ing other browser brands; Recipe 3.3 for converting between arrays and strings.

5.6 Detecting the Opera Version | 119

5.6 Detecting the Opera Version

Problem
You want script execution to branch based on a specific or minimum version of the
Opera browser.

Solution
Although Opera can identify itself in its navigator.userAgent string as being Opera,
Firefox, or Internet Explorer (depending on user preference settings), the string
always contains some representation of the Opera name and version. Here are the
possibilities from a recent version of the browser:

Opera/9.10 (Windows NT 5.1; U; en)
Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.0) Gecko/20060728 Firefox/1.5.0 Opera 9.10
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 9.10

Because some of these strings contain text that you might use to inspect for a
Mozilla-based browser or IE, it is important to look for Opera prior to the other
browser types. The following script fragment extracts the version number from any
of the above navigator.userAgent strings:

var ua = navigator.userAgent;
var operaVersion = null;
if (ua.indexOf("Opera") != -1) {
 var re = /(Opera\W)(\d*\.\d*)/;
 var operaVersion = re.exec(ua)[2];
}

If you are interested only in the major version, you can apply the parseInt() global
function to the extracted version, and perform numeric comparisons for branching.

Discussion
Be sure not to rely on the navigator.appName or navigator.appVersion properties
when inspecting Opera. The appName property value reflects the user preference
choice, offering values of Opera, Netscape, and Microsoft Internet Explorer based on
user settings.

Also, exercise caution with the version string. Applying parseFloat() to version 9.10
returns 9.1, not the actual sub-version. To numerically compare the sub-version, use
string extraction routines to obtain the characters to the right of the decimal; then
use parseInt() to obtain an arithmetically friendly value.

See Also
Recipe 5.1 for primary browser brand detection; Recipes 5.3, 5.4, and 5.5 for detect-
ing other browser brands; Recipe 3.3 for converting between arrays and strings.

120 | Chapter 5: Browser Feature Detection

5.7 Detecting the Client Operating System

Problem
You want to apply styles or other content features tailored to a particular operating
system.

Solution
The string returned by the navigator.userAgent property usually contains informa-
tion about the basic operating system platform on which the browser is running.
Unfortunately, there is no standard nomenclature that you can search the userAgent
string for a particular operating system. The values are not only different with each
browser brand, but have evolved over time and may be different for OEM versions of
the browser.

The widest difference is in the depiction of the Windows platforms in various brows-
ers, in which Windows 98, for example, might be displayed as “Win98” or “Win-
dows 98.” A better solution is to test for the presence of strings that identify other
operating systems more uniformly. For instance, all Macintosh versions have the
string “Mac” somewhere in the navigator.userAgent property. By the same token, all
Windows versions have the string “Win” in them, but that could represent anything
from Windows 3.1 to Windows Vista. Furthermore, all Unix versions of Navigator
have the string “X11”. If you’re just looking for a rough cut, the following global
variable assignment statements will do the job of setting Boolean flags:

var isWin = (navigator.userAgent.indexOf("Win") != -1);
var isMac = (navigator.userAgent.indexOf("Mac") != -1);
var isUnix = (navigator.userAgent.indexOf("X11") != -1);

Browsers running under Linux include both “X11” and “Linux” in the navigator.
userAgent property.

Discussion
As you can see, operating-system detection is a tricky business and should be used
with care. While some OEM versions of a browser might have more specific informa-
tion about the operating system in the navigator.userAgent property (such as the
specific release number of the operating system), you are not assured of this informa-
tion being there for all browsers on a given operating system. For example, Win-
dows XP and Vista identify themselves as versions of Windows NT.

Mozilla includes a new navigator object property, oscpu, that returns that portion of
the userAgent value containing as much operating system and CPU information as is
revealed by the browser. When running under Windows, the property conveys only
the operating system information, such as “Win98” or “Windows NT 5.1.” For the
Mac, the property always returns the CPU class (“Intel”) and the operating system
for Mac OS X (as “Mac OS X”).

5.8 Detecting Object Support | 121

Once you are satisfied that the global variables you set for operating system versions
are doing what you need, you can use them efficiently in making operating system-
dependent settings for page characteristics such as font size. For example, it is well-
known by designers that a given font point size looks smaller on a Macintosh screen
than on a Windows display. If you are intent on specifying font sizes in point units,
you can make the content look more similar across operating systems by dynami-
cally writing the style sheet, using the operating system global variables to set the
desired font size:

<script language="JavaScript" type="text/javascript">
document.write("<style type='text/css'>");
document.write("body {font-size:" + ((isMac) ? "12" : "10") + "pt}");
document.write("</style>");
</script>

Similar decision constructions can be used to apply operating system-specific ele-
ment position coordinates if your design requires it. In fact, you can nest inline if
constructions to get three-way switching. For example, if you need to establish a
variable for a pixel offset between elements, you can set an offset for each of the
three major OS categories as follows:

var elemOffset = (isMac) ? 15 : ((isWin) ? 12 : 10);

After execution, the elemOffset variable is 15 for the Mac, 12 for all Windows fla-
vors, and 10 for all others (presumably Unix).

See Also
Recipe 5.1, particularly if one operating system version of a particular browser brand
is giving you design headaches; Recipe 11.5 for importing operating system-specific
style sheet definitions; Recipe 4.6 for conditional branching.

5.8 Detecting Object Support

Problem
You want scripts to run on all browsers that support the objects that your scripts
address, and to degrade gracefully in other browsers.

Solution
Surround the script statements that reference potentially incompatible objects with
if statements that test for the existence of the objects. The objects you test for can
be core JavaScript language objects, as well as DOM objects. Facilitating this kind
of condition testing is the fact that a reference to a nonexistent object inside an if
condition evaluates to the equivalent of false. A very common usage of object detec-
tion from earlier scriptable browsers is in scripts that work with img elements as

122 | Chapter 5: Browser Feature Detection

objects for rollover image swaps (covered in depth in Chapter 12). Support for the
img element object was very uneven until the version 4 browsers. Creating browser
version filters for all the possibilities would have been tedious at best. Instead, all
script statements that referenced img element objects were wrapped inside an if con-
struction that looks for the presence of the document.images array:

function rollover(imgName, imgSrc) {
 if (document.images) {
 document.images[imgName].src = imgSrc;
 }
}

This function is invoked by a mouseover event handler associated with a link sur-
rounding an image:

<a href="product.html"
 onmouseover="rollover('products', 'images/products_on.gif'); return false"
 onmouseout="rollover('products', 'images/products_off.gif'); return false">

The check for document.images works conveniently because if a browser recognizes
an img element as a scriptable object, the document object always has an images[]
array associated with it. If there are no images on the page, the array is empty—but it
still exists with length zero. If the browser has no document.images array, however,
the if condition fails, and no internal statements of the function execute. Browsers
that would otherwise choke on the invalid reference to the img element object glide
past the offensive statements.

Discussion
Object detection frees you from the tyranny and tedium of browser-version sniffing,
but you must also deploy this technique in such a way that browsers not supporting
your desired objects degrade gracefully. This means that you must anticipate what
will happen to a script that runs in a browser that supports only some, but not all,
desired objects. For example, consider the scenario in which you have a complex
operation running under script control, and execution branches periodically to other
functions to retrieve a calculated value. If one of those remote functions performs
object detection, how well does your main execution thread respond to the inability
of one remote function to return a suitable value?

The following two functions are written without the benefit of object detection. After
the main function invokes a subroutine function to calculate the area of all images on
the page, the main function enters the values into a form field:

function getImgAreas() {
 // initialize return value so we can add to it
 var result = 0;
 // loop through all img objects on the page
 for (var i = 0; i < document.images.length; i++) {

5.8 Detecting Object Support | 123

 // accumulate image areas
 result += (document.images[i].width * document.images[i].height);
 }
 return result;
}

function reportImageArea() {
 document.reportForm.imgData.value = getImgAreas();
}

A browser that does not know about the img element object would report a script
error when executing the getImgAreas() function. Even if the errors were hidden
from view (see Recipe 4.8), the user might expect some information to appear in the
text box, but none would come.

A smarter scripter would recognize that the preceding scripts might fail in very old
browsers, where script errors tend to be rather invasive. To prevent such errors, the
author makes two modifications. First, the potentially offending script statements in
the getImgAreas() function wrap themselves in an object detection block. Second,
the main function intelligently accommodates the possibility that the getImgAreas()
function won’t be doing any calculations at all:

function getImgAreas() {
 var result;
 // make sure browser supports img element objects
 if (document.images) {
 // initialize return value so we can add to it
 result = 0;
 // loop through all img objects on the page
 for (var i = 0; i < document.images.length; i++) {
 // accumulate image areas
 result += (document.images[i].width * document.images[i].height);
 }
 }
 // returned value is either a number or null
 return result;
}
function reportImageArea() {
 // grab result so we can verify it
 var imgArea = getImgAreas();
 var output;
 if (imgArea == null) {
 // message for browsers not supporting img object
 output = "Unknown";
 } else {
 output = imgArea;
 }
 document.reportForm.imgData.value = output;
}

Notice that the main function does not perform any object detection for the form-
related statement at the end. A knowledgeable scripter (or one with a good DOM

124 | Chapter 5: Browser Feature Detection

reference resource) knows that the syntax used to reference the form’s text field is
completely backward-compatible to the very earliest browsers.

Object detection alone is not always a savior, however. Sometimes you must also
employ property and method detection. For example, in the preceding subroutine
function, there was no compatibility problem with accessing the height and width
properties of the img element object, since these properties have been available for
this object since the first implementation of that object in the various DOMs. But
some other properties, such as the alt property, are not supported in all browsers
that support the img object. If the subroutine function needed the alt property, fur-
ther object property detection, as shown in Recipe 5.9, would be in order.

See Also
Recipe 5.9 to test for the presence of an object property or method; Recipe 4.6 for
special values you can use in condition statements that evaluate to true and false.

5.9 Detecting Object Property and Method Support

Problem
You want scripts to run on all browsers that support the object properties and/or
methods that your scripts address, and to degrade gracefully in other browsers.

Solution
Surround the script statements that reference potentially incompatible object proper-
ties or methods with if statements that test for the existence of the objects and their
properties or methods. The items you test for can belong to core JavaScript language
objects, as well as to DOM objects. Testing for the existence of a property or method
is a little more complicated than testing for the object alone. If your condition
expression references a property of a nonexistent object, a script error results.
Therefore, you must precede your property/method test with a test for the object
(assuming the object is not one that is fully backward-compatible):

if (objectTest && objectPropertyTest) {
 // OK to work with property
}

This combination works smoothly because if the first condition test fails, JavaScript
short-circuits the rest of the expression, bypassing the second condition.

It is not advisable, however, to use the simple existence test for an object’s property
in an if condition. The main reason is that some legitimate property values are zero
or empty strings. A conditional test with these values evaluates the same as false,
which gives an incorrect reading about support for the property (see Recipe 4.6). The
best way around this problem is to test for the data type of the property being some-
thing other than undefined:

5.9 Detecting Object Property and Method Support | 125

if (objectReference && typeof objectReference.propertyName != "undefined") {
 // OK to work with property
}

References to object methods take the same form as references to functions: the
name of the method without the parentheses. If the method exists, the reference
evaluates to a valid object type and the conditional test succeeds:

if (objectReference && objectReference.methodName) {
 // OK to work with method
}

For example, to protect scripts written with W3C DOM element referencing from
tripping up older browsers, you can wrap function execution inside conditions that
test for the existence of the document.getElementById() method:

function myFunction() {
 if (document.getElementById) {
 // OK to use document.getElementById() here
 }
}

To save some bytes on the page and extraneous expression evaluation, you can also
set a Boolean global variable as the page loads to use in later condition statements:

var isW3 = (document.getElementById) ? true : false;
...
if (isW3) {
 // OK to use document.getElementById() here
}

Discussion
Be careful about the assumptions you make when you qualify a browser for an object
and one of its properties or methods. For instance, it would be a mistake to assume
that because the browser indicates support for the document.getElementById()
method that it supports the rest of the W3C DOM Core module objects, properties,
and methods. With experience, however, you will gain the knowledge that all brows-
ers that recognize the all-important method also know about the basic element node
properties, such as nodeType, nodeName, and nodeValue. Again, a good DOM reference
will help you with those kinds of decisions.

Don’t be afraid to nest multiple levels of object and property/method detection in a
function. You can see examples of this when processing events for the incompatible
IE and W3C event models (Recipe 9.1). But always make sure that your functions are
structured in such a way that any one condition failure is handled gracefully so that
no script errors accrue in the absence of support for your desired object, property, or
method.

If your scripts or pages are pre-screened to work only in IE 6 or later and other mod-
ern browsers, you can consider using the document.implementation.hasFeature()
method (see Recipe 5.10) to query about support for numerous related DOM

126 | Chapter 5: Browser Feature Detection

objects, properties, and methods. You should still test this approach extensively,
especially on early versions of browsers that support the method to make sure the
browsers are telling the whole truth about support for a particular W3C DOM
module.

See Also
Recipe 5.8 for detecting object support; Recipe 4.6 for special condition expressions
that evaluate to true and false; Recipe 9.1 for nested object detection in event pro-
cessing; Recipe 5.10 for using the hasFeature() method.

5.10 Detecting W3C DOM Standard Support

Problem
You want to know if the current browser supports a particular W3C DOM module.

Solution
The W3C DOM provides the hasFeature() method of the implementation object.
The method lets scripts query the browser about its support for any of several mod-
ules in the W3C specification. For example, if you wish to load a more complex style
sheet for any browser that claims to support scripting of CSS Level 2, you could add
the following code to the document’s head portion:

var cssFile;
if (document.implementation.hasFeature("CSS2", "2.0")) {
 cssFile = "styles/corpStyle2.css";
} else {
 cssFile = "styles/corpStyle1.css";
}
document.write("<link rel='stylesheet' type='text/css' href='" + cssFile + "'>");

This feature is implemented in IE 6 or later, as well as Mozilla, Safari, and Opera 7 or
later.

Discussion
Beginning with Level 2, the W3C DOM was compartmentalized into modules of
related functionality so that browser makers could elect to implement only selected
segments of the W3C DOM and still claim standard support. You can view a list of
all Level 2 modules at http://www.w3.org/TR/DOM-Level-2-Core/introduction.
html#ID-Conformance.

You can therefore query the browser for any of the following case-sensitive Level 2
module names: Core, XML, HTML, Views, StyleSheets, CSS, CSS2, Events, UIEvents,
MouseEvents, MutationEvents, HTMLEvents, Range, Traversal, and Views. DOM Level 3

5.11 Detecting the Browser Written Language | 127

offers the following additional modules: BasicEvents, TextEvents, KeyboardEvents,
and LS (Load and Save module).

The second parameter of the hasFeature() method is a string of the DOM level
whose module is under test. For example, if you wanted to see if the browser sup-
ports the full Core module of Level 3, the method would be invoked as follows:

document.implementation.hasFeature("Core", "3.0")

Note that when the module refers to a standard that the DOM addresses, the ver-
sion referenced in the method’s second parameter is of the DOM module, not the
external standard. Therefore, although the HTML module of DOM Level 2 is in
support of HTML 4.01, your test is whether the current browser supports all the
DOM-accessible features of HTML as defined in the Level 2 specification.

5.11 Detecting the Browser Written Language

Problem
You wish to direct users automatically to a path in your web site tailored for a spe-
cific written language.

Solution
Current browsers provide properties of the navigator object that let you read the
code for the native language for which the user’s browser was developed. Unfortu-
nately, the property names are different for each browser, so you must perform some
object property detection in the process. The solution below assumes that all users
will be shunted to the English page unless their browsers indicate that the native lan-
guage is German:

// verify browser language
function getLang(type) {
 var lang;
 if (typeof navigator.userLanguage != "undefined") {
 lang = navigator.userLanguage.toUpperCase();
 } else if (typeof navigator.language != "undefined") {
 lang = navigator.language.toUpperCase();
 }
 return (lang && lang.indexOf(type.toUpperCase()) == 0)
}
...
location.href = (getLang("de")) ? "de/home.html" : "en/home.html";

The case conversions eliminate potential differences in the case of the letters returned
by the language-related properties of browsers. In the end, the return statement per-
forms string equality testing on all uppercase letters (see Recipes 1.4 and 1.5).

128 | Chapter 5: Browser Feature Detection

Discussion
Language codes consists of a primary two-letter code indicating the basic language.
An optional two-letter subcode may also be used to identify a country or region for
which the primary language is tailored (e.g., “en-us” for United States English).
Therefore, you cannot always rely on the navigator object’s language-related prop-
erty returning only a two-letter code. But since the primary code always comes first,
you can look for the code being at the beginning of whatever string is returned by the
property. Also, be sure to force the case of the values so that your eventual compari-
son operation works on a level playing field, regardless of the case of the returned
data. Nonscriptable browsers will still need links on the page to provide manual
selection of the desired language path through the site. Common two-letter primary
codes are cataloged in ISO-639 (an excerpted list of codes is available at http://www.
ietf.org/rfc/rfc1766.txt).

See Also
Recipes 5.1 and 5.2 for browser brand and version detection; Chapter 1 for string
parsing.

5.12 Detecting Cookie Availability

Problem
You want your scripts to know whether the user’s browser has cookies enabled.

Solution
Current browsers feature the navigator.cookieEnabled property, which you can test
at anyplace within a script:

if (navigator.cookieEnabled) {
 // invoke cookie statements here
}

For early versions of mainstream browsers (pre-Mozilla Netscape Navigator and
before IE 4), you can test whether cookies are enabled by first checking for the pres-
ence of a value stored in the cookie. If no data is there, you can test write a cookie to
see if it “sticks”:

var cookieEnabled = false;
if (typeof document.cookie == "string") {
 if (document.cookie.length == 0) {
 document.cookie = "test";
 cookieEnabled = (document.cookie == "test");
 document.cookie = "";
 } else {
 cookieEnabled = true;
 }
}

5.13 Defining Browser- or Feature-Specific Links | 129

Discussion
The longer solution also works with browsers that have the navigator.cookieEnabled
property, so you can use one solution for all scriptable browsers. The first if con-
struction verifies that the document.cookie property returns a string value, which it
does even when cookies are disabled by the user. If the string has any content, you
know that cookies are enabled and that the cookie is in use for the domain that
served up the current page. But if the string is empty, you can assign a simple value
to it and see if it “sticks.” If the value can be read back, cookies are enabled, and you
empty the cookie so as not to disturb it for regular usage.

See Also
Recipe 1.10 for using client-side cookies; Recipe 10.4 for using cookies to pass data
from document to document.

5.13 Defining Browser- or Feature-Specific Links

Problem
You want a link to navigate to different destinations based on browser or object
model feature support.

Solution
A link can have multiple destinations, usually with one URL hardwired to the href
attribute of the <a> tag, and scripted URLs invoked from the <a> element’s click
event handler. The latter must cancel the default behavior of the href attribute.

In the following example, the scripted navigation goes to one of two destinations: one
for Windows Internet Explorer users and one for all other users who are using brows-
ers capable of referencing elements via the W3C DOM document.getElementById()
syntax. For all other browsers, the hardwired URL is the destination:

function linkTo(ieWinUrl, w3Url) {
 var isWin = (navigator.userAgent.indexOf("Win") != -1);
 // invoke function from Recipe 5.3
 var isIE5Min = getIEVersionNumber() >= 5;
 var isW3 = (document.getElementById) ? true : false;
 if (isWin && isIE5Min) {
 location.href = ieWinUrl;
 return false;
 } else if (isW3) {
 location.href = w3Url;
 return false;
 }
 return true
}

130 | Chapter 5: Browser Feature Detection

...
<a href="std/newProds.html" title="To New Products"
onclick="return linkTo('ieWin/newProds.html', 'w3/newProds.html')">New Products

When the scripted navigation succeeds, the function returns a value of false, which
forces the onclick event handler to evaluate to return false. This automatically can-
cels the default behavior of the <a> tag. But if the browser is scriptable and not in
either of the desired categories, the onclick event handler evaluates to return true,
allowing the default navigation action of the <a> tag to prevail.

Discussion
For a public web site that you hope will be indexed by search engine spiders and
“bots,” make sure that every <a> tag has a default destination assigned to its href
attribute, even if you expect most of your visitors’ browsers to follow the scripted
path. Most automated services don’t interpret JavaScript, but avidly follow href links.

Another technique favored by some developers is to let a script triggered by the
page’s load event handler change the destination of a link based on whatever scripted
criteria you have. One big advantage to this approach is that you don’t need to assign
an event handler to the link. The following example uses the load event routine from
Recipe 9.3 to cause a script to modify a product catalog link to a special section for
Macintosh users:

function setCatalogLink() {
 if (navigator.userAgent.indexOf("Mac") != -1) {
 document.getElementById("catalogLink").href = "products/mac/index.html";
 }
}
addOnLoadEvent(setCatalogLink);

You can go even further along these lines to use scripting to insert new link elements
only for scriptable browser users. Use DOM tree modification (see Chapter 14) to
tailor the page just for scriptable browsers.

See Also
Recipe 10.6 for using URLs to pass data from document to document; Recipe 14.2
for inserting script-generated content into the current page.

5.14 Testing on Multiple Browser Versions

Problem
You want to test a page on as many browser brands, versions, and operating systems
as you can to verify compatibility, but some browsers don’t allow multiple versions
to be installed or run on one computer at the same time.

5.14 Testing on Multiple Browser Versions | 131

Solution
The commercial software program called Virtual PC by Microsoft allows you to cre-
ate multiple instances of a Windows computer on a single computer. Each instance
runs inside its own window and does not conflict with other instances. If you are a
Windows-only user, this means that you can create and run virtual computers for
different Windows and Internet Explorer versions (although Windows Vista is lim-
ited to the Enterprise, Business, or Ultimate versions). Microsoft offers the Windows
version as a free download. On a PowerPC-based Macintosh, you can have the same
multiple-PC setup, as well as your regular Mac OS running at the same time. Since
both the virtual Windows machines and Mac can share common folders, you can
edit an HTML file where you like, and load the same file into many browsers and
versions at once.

Virtual PC 7 for the Macintosh does not run on the newer, Intel-based Macs, nor
does it appear that Microsoft is continuing the product’s development into the
future. A new third-party product, called Parallels, does the job very well. The down-
side is that while Virtual PC for the Mac comes with a licensed copy of Windows, for
Parallels you must buy a separate copy of Windows.

Discussion
As yet there is no Macintosh emulator that runs on Wintel hardware, so virtualizing
Windows on a Mac is a more versatile environment than on the PC. Both are capable
of creating Wintel-based instances of Linux, and both have had the x86 version of
Solaris 8 install successfully (although it is officially supported only on Virtual PC for
Windows).

In 2007, Apple announced a Windows version of Safari. That should help Windows-
only developers test basic compatibility on that browser without owning a Mac OS X
computer.

If you are in search of older browser versions to install on your virtual machines, you
have a few online resources to help. The biggest repository of past browsers of many,
many brands can be found at evolt’s Browser Archive (http://browsers.evolt.org). For
more recent versions of Firefox and Mozilla, visit the Mozilla.org FTP server (ftp://
ftp.mozilla.org/pub/mozilla.org). Recent Netscape versions can be found at
Netscape’s FTP server (ftp://ftp.netscape.com/pub). Opera 8 and later versions are
available at Opera’s FTP server (ftp://ftp.opera.com/pub/opera). With the exception of
Internet Explorer, you can install multiple versions (even incremental bug fix ver-
sions) on the same computer (virtual or otherwise), provided you create a separate
directory for each version in the Program Files folder. You may, however, find some
browsers not wanting to run simultaneously with other versions of itself on the same
computer.

132

Chapter 6CHAPTER 6

Managing Browser Windows 6

6.0 Introduction
Perhaps the most controversial aspect of applying DHTML techniques to web sites is
messing with the browser window or windowing system. On the one hand, win-
dows are pretty much outside the scope of Dynamic HTML, inasmuch as windows
are merely containers for documents that adhere to one object model or another.
But since the earliest days, windows have been part of the scripter’s bag of tricks,
standing ready to enhance a user’s experience or torment the user with a variety of
unexpected nonsense.

Most activity surrounding windows involves the window object. Although the window
object has gained a large number of properties and methods over the years, the
implementation across browsers is far from uniform. Part of the reason behind the
disparity of window object features in browsers is that the window object is the most
global context for scripting tasks. Browsers such as Internet Explorer for Windows
take advantage of this context to embed numerous properties and methods that are
tied to the browser application and the Windows operating system. In contrast,
Mozilla empowers the window object with properties that are so potentially threaten-
ing to user privacy that they are accessible only through scripts that are electronically
tagged on the server as being from a source to whom the user has explicitly given per-
mission to operate (called signed scripts).

Window Abuse
It’s unfortunate that unscrupulous web sites have abused the privilege of opening
one or more additional windows automatically with JavaScript. The result has been
the dreaded “pop-up” or “pop-under” advertisement that so many users find annoy-
ing. Most of us at one time or another have accidentally arrived at a web site that
drops us into “pop-up hell,” where each window you close opens one or more addi-
tional windows of equally unwanted content. The problem has gotten so out of
hand that some Internet service providers filter web pages to strip out the offending

Introduction | 133

JavaScript code that opens subsidiary windows. Additionally, most of today’s brows-
ers build in user-selectable pop-up blocking, which intercepts some scripted attempts
to open subwindows. Also, some users go so far as to turn off scripting in their
browsers, thus preventing them from gaining any advantages added to sites employ-
ing Dynamic HTML. As often happens with anti-abuse software, however, these
kinds of “pop-up blockers” can also block well-intentioned and otherwise harmless
secondary windows.

Pop-up blocking is becoming so prevalent these days, it may be sending you a mes-
sage with regard to your own development: do your best to keep everything in a sin-
gle window. If a user wishes to open one of your links in a new window, a choice
from the browser’s context menu allows this without any difficulty. Or, you can sim-
ulate a window in modern browsers with positioned elements (see Recipe 6.11).

Window No-Nos
The more you might like to control the user’s window line up to control the viewing
experience of your web site, the less that browsers allow such activity. Numerous
security holes would exist if browsers and scripting engines didn’t have substantial
safeguards built into them (some holes did exist in earlier browsers, but they are
patched in the predominant versions surfing the Web today). Therefore, before you
get any big ideas about window trickery, here is a compendium of the things you
cannot do with scripted windows, even if your intentions are good ones:

Modifying main window chrome
While you can resize and reposition the main browser window (Recipes 6.2, 6.3,
and 6.4), you cannot add or remove window chrome—the menu bar, status bar,
scrollbars, resizing widgets, toolbars, and titlebar. Mozilla lets you do this with
signed scripts, but the user is queried for permission first, so you won’t be able
to do this without the user’s knowledge. The only way to customize a window
with regard to window chrome is by opening a brand new window. As you can
see in Recipe 6.5, you can choose the chrome features that you want on or off in
the new window.

Closing the main window from a script in a subwindow
If you attempt to close the main window via the close() method (specifically,
the opener.close() method), the user sees an alert dialog that requests permis-
sion to let the main window be closed. This warning prevents a script in a sub-
window from automatically closing the main window that contains recent
browser history. If the subwindow has no menu bar or titlebar, automatically
closing the main window could leave the casual browser user in a pickle.

134 | Chapter 6: Managing Browser Windows

Closing other windows not created by the main window document’s script
As yet, none of the browser object models provides a property that returns an
array of available window references. If your page arrives in someone’s browser,
but is in one of several open windows, scripts in your document cannot refer-
ence the other windows, or even know how many windows are open.

Accessing document properties from other windows served by other domains
It could be potentially nasty business if a script in one window could look into
another window and retrieve its URL or any of its HTML content. Browsers
implement what is known as a same-origin security policy, which means that a
script in one window (or frame) cannot access critical details (URL, DOM struc-
ture, form control settings, text content) from another window (or frame) unless
both pages are delivered by the same domain and server and arrived via the same
protocol (such as HTTP or HTTPS, but not both).

Intercepting or activating most browser application window buttons
Many scripters would like to intercept the Back and Forward buttons to control
navigation, but these user actions do not expose themselves to the window object.
At most, JavaScript can re-create the equivalent of clicking the Print button, but
the Print dialog window always appears, and the user must click the appropriate
button in that dialog box to begin actual printing.

Changing the content of the Address/Location text field
Scripts cannot override the browser’s display of the current page’s URL as
requested from the server. The only change scripts can make in this regard is to
load another page into the window (via the location.href property), but then
the window’s rendered content changes to the new destination URL.

Adding or removing entries in the Favorites/Bookmarks list
The closest one can come to automatically adding the current page to the Favor-
ites list is in IE for Windows (via the window.external.AddFavorite("URL",
"title") method). But even then, the browser asks for the user’s permission
before adding the item to the Favorites list. This list is private to the user, and is
not exposed to scripts.

Modifying browser preferences
Mozilla lets signed scripts (again, with the user’s permission) modify application
preferences. This was built in as a networked administrative function, and is not
intended for web site scripts.

The list of things you cannot do with the window object is long, but if you study the
items carefully, you’ll realize that although these taboo tasks may be common in
standalone applications, they can be downright dangerous in an Internet environ-
ment. Respect every visitor’s right to privacy and window layout.

6.1 Living with Browser Window Control Limitations | 135

6.1 Living with Browser Window Control Limitations

Problem
You or your site visitors encounter various difficulties when scripting multiple
windows.

Solution
It’s a sign of the times: thanks to so much abuse by pesky web sites and adware,
browser makers now give substantial control over window behavior to the user.
Although the scripting powers are still in the browsers, your scripts cannot determine
at a glance whether the user allows pop-up windows to open or the main window to
be move or resized. Designing a site that relies on these capabilities is an extremely
risky proposition these days. You must assume that a visitor has every malleable fea-
ture disabled.

An all-too-common situation is that the page author creates scripts with pop-up
blocking turned off in the test browser. But when the page loads into a browser with
pop-up blocking turned on, the scripting fails to work, and the scripter is flummoxed.
It’s best to design in a restricted environment because increasingly, your visitors will
be arriving the same way. Several recipes in this chapter provide scripts that may not
work in a restricted environment.

Discussion
A large percentage of attempts to open subwindows occur in response to the main
window’s load or unload events. It is these events’ trigger of the window.open()
method that has caused the most pop-up window grief among browser users (see
Recipe 6.5). It is precisely this activity that browser pop-up blockers prevent from
executing. You may find that invoking window.open() in other event contexts (such
as clicking a button) still works, but you need to test on a wide variety of browsers,
each set to all possible pop-up blocker settings in their preferences.

Even if you are successful at opening a subwindow or convincing your visitors to
allow scripted window movement and resizing for your site (if the browser allows
domain-specific settings), other restrictions may apply. For example, Mozilla and
Safari do not allow moving a browser window off the screen by way of scripts.

See Also
Recipes 6.2 through 6.5 for various window control solutions whose success may be
influenced by user preference settings.

136 | Chapter 6: Managing Browser Windows

6.2 Setting the Main Window’s Size

Problem
You want to resize the browser window that contains the current page.

Solution
Ever since version 4 of Internet Explorer and Netscape, scripters have been able to
adjust the pixel size of the browser window with two window object methods:
resizeTo() and resizeBy(). To resize the window to a specific pixel size, use the
resizeTo() method:

window.resizeTo(800, 600);

To increase or decrease the size of the window by a fixed pixel amount, use the
resizeBy() method:

window.resizeBy(50, -10);

Adjustments affect the outside measure of the browser window.

Discussion
Both parameters are in pixel measures and are required for both methods. The first
value affects the width of the window, and the second value affects the height. In the
case of the resizeBy() method, if you want to modify only one axis value, pass a
value of 0 as the other parameter.

When you resize a window, the position of the top-left corner of the window does
not change. Instead, the right and bottom edges of the window move to meet the
requirements of the method parameters. See Recipes 6.3 and 6.4 for ways to move
and maximize the window.

These two window object methods may also be applied to subwindows that your
scripts open (see Recipe 6.5). As long as the script that creates the new window
maintains a reference to the subwindow in a global variable, you can reference that
window’s resizeTo() and resizeBy() methods.

Resizing the window to accommodate content of a known size isn’t as easy to do
across browsers as it might seem. Only Mozilla, Safari, and Opera provide a pair of
read/write properties—innerHeight and innerWidth—that let you specifically control
the content region of the browser window. Internet Explorer provides no comparable
scriptable feature (the dimensions are read-only via document.body.parentNode.
clientHeight and document.body.parentNode.clientWidth). Trying to use the outer
window dimensions as a guide to the content region size is not reliable. Users can
select different sets of toolbars and toolbar settings that can throw off careful calcula-
tions you make on test browsers.

6.3 Positioning the Main Window | 137

Whether you should script the size of a window that is already open is hotly debated
among user interface designers. By and large, users are not fond of web pages hijack-
ing their browser windows. It’s not uncommon, especially for experienced users, to
have a carefully customized layout of application windows on the desktop. Along
comes a maverick web page that makes the browser window take over nearly the
entire screen. Upon leaving the site, the web browser window remains in its giant
size, and the user must reconstruct the desktop arrangement. Take these consider-
ations into account before you deploy window resizing.

See Also
Recipe 6.1 for potential problems adjusting a window’s size; Recipe 6.3 for setting
the position of the window on the screen; Recipe 6.4 for a way to approximate a
maximized window; Recipe 6.5 for how to open a new window.

6.3 Positioning the Main Window

Problem
You want to move the top-left corner of the browser window to a specific point on
the screen.

Solution
Modern browsers provide two window object methods that adjust the position of the
browser window: moveTo() and moveBy(). To move the window to a screen coordi-
nate point, use the moveTo() method:

window.moveTo(10, 20);

To shift the position of the window by a known pixel amount, use the moveBy()
method:

window.moveBy(0, 10);

The window remains the same size when you move it.

Discussion
The coordinate space of the screen is laid out such that the top-left corner of the
video display area is point 0,0. The viewable area of your screen has positive coordi-
nate values for both numbers. Negative values are “off the screen,” as are values that
are larger than the number of pixels displayed on the screen.

While Internet Explorer used to allow scripts to move the window completely off
screen if the parameters dictate it, Mozilla and Safari resist doing so, and IE’s recent
security upgrades turn off that option by default. In fact, the browsers resist mov-
ing any portion of the window out of view if at all possible. Moving the browser

138 | Chapter 6: Managing Browser Windows

window completely out of view is an unfriendly thing to do, especially in Windows,
where the window will reveal its existence in the Taskbar, but the user won’t be able
to see its contents. The user must then use the Taskbar’s context menu to close the
window and application. Hidden windows such as this have, in the past, been used
to exploit security flaws in Internet Explorer to carry out such nefarious tasks as
monitoring activity in another window.

While you can set the position of a window created by a script (see Recipe 6.5), you
can also modify the position after the window has appeared. As long as the script
that creates the new window maintains a reference to the subwindow in a global
variable, you can reference that window’s moveTo() and moveBy() methods.

See Also
Recipe 6.5 for resizing a script-generated window.

6.4 Maximizing the Main Window

Problem
You want to expand the browser window so that it occupies the same screen real
estate as a maximized (Windows) application window.

Solution
Use the following function, which operates best in Internet Explorer 5 or later,
Mozilla, and Safari:

function maximizeWindow() {
 window.moveTo(0, 0);
 window.resizeTo(screen.availWidth, screen.availHeight);
}

Although the window may occupy the entire screen and appear to be maximized (in
the Windows OS sense), the browser is not officially maximized.

Discussion
The notion of maximizing (and minimizing) a window is primarily a Windows phe-
nomenon. Macintosh windows, for example, have an icon that performs an optimi-
zation for window size, but it tends to leave a space along the right edge of the screen
so that a portion of the underlying Desktop is still visible. A maximized window
under Windows, however, occupies the entire screen except for the Taskbar (if the
Taskbar is visible in your preferences settings).

Scripts can, at best, simulate a maximized window, but even then, there are some
limitations for one browser or another. First of all, a truly maximized window in
Windows XP is not positioned at point 0,0 of the screen. Instead, the top-left corner

6.5 Creating a New Window | 139

of the window is located at point -4,-4, which is just slightly off-screen. This hides
the four-pixel border around the window, and lets the active part of the window
(including titlebar, toolbars, and scrollbars) “bleed” right to the edge of the video
screen. The Macintosh doesn’t behave this way, choosing instead to allow the thin
window border to be visible at all times.

Due to security restrictions (or preferences) in current browsers, it is not good to rely
on moving the pseudo-maximized window outside the bounds of the display by
script. Old techniques of faking the “bleed” beyond the screen in IE no longer work
everywhere.

To determine the space available for a simulated maximized window, the screen
object’s availWidth and availHeight properties provide sufficient detail for most
operating systems and browsers. In the case of Windows, these properties return
dimensions of the space other than that occupied by the Taskbar. The only detail
you cannot deduce is whether the Taskbar is in its default location at the bottom of
the screen or the user has moved it to the top. On the Macintosh side, the screen.
availHeight property begins its measure immediately below the universal menu bar.
In fact, browsers treat the screen space so that coordinate 0,0 is at the top-left corner
of the available space. Thus, positioning the window at 0,0 to simulate a maximized
window does not slip the window underneath and make it partially obscured by the
menu bar. To make a pseudomaximized window appear more Mac-friendly, con-
sider altering the width component of the resizeTo() method to leave about 100
horizontal pixels uncovered on the right side.

Just as there is no scripted way to officially maximize a window, there is no equiva-
lent to minimizing the window either. IE for Windows no longer allows scripts to
move a window off-screen.

See Also
Recipe 6.2 for other window resizing advice.

6.5 Creating a New Window

Problem
You want to open a separate subwindow based on scripted action in the main
window.

Solution
To generate a new window, use the window.open() method, passing parameters for
the (absolute or relative) URL of the page to occupy the new window, a text name
for the window, and a comma-delimited string of parameters that specify the win-
dow’s physical characteristics. For example:

140 | Chapter 6: Managing Browser Windows

var newWind = window.open("subDoc.html", "subWindow",
 "status,menubar,height=400,width=300");

Preserve the value returned by the method (a reference to the subwindow object) in a
global variable if you intend to reference the subwindow from the main window’s
scripts in other functions later on.

Discussion
If you are not loading an existing document (or one returned by a server process)
into the new window, pass an empty string as the first parameter to open the win-
dow with a blank content region (so that you can later write dynamic content to it).
The window name in the second parameter is the same kind of name that a hyper-
link or form’s target attribute points to. You should always provide a unique name,
to keep multiple subwindows from accidentally colliding with each other in the glo-
bal naming scope.

Probably the trickiest part of creating a new window is defining the third parameter,
a comma-delimited string of window properties. If you omit the third parameter alto-
gether, the browser creates a window of the same dimensions and characteristics as
the one that it would create if the user were to select New Window from the File
menu (which is not necessarily the same size as the current window). But more typi-
cally, you want to control attributes such as size, location, and the amount of win-
dow “chrome” displayed in the window. Table 6-1 lists all of the window attributes
that you can specify as part of the third parameter to window.open(), and the browser
versions that support them.

Table 6-1. Window attributes for window.open() method

Attribute IE Mozilla Safari Opera Description

alwaysLowered n/a <1.7 n/a n/a Always behind all other browser windows.
Signed script required.

alwaysRaised n/a <1.7 n/a n/a Always in front of all other browser windows.
Signed script required.

channelMode 4 n/a n/a n/a Show in theater mode with channel band.

chrome n/a 1.7 n/a n/a Displays content with no chrome, user interface
features, or keyboard commands. Signed script
required.

close n/a all n/a n/a For dialog type, set to no to remove close box.
Signed script required.

copyhistory 3 all n/a n/a Copy history listing from opening window to new
window.

dependent n/a all n/a n/a Subwindow closes if the window that opened it
closes.

dialog n/a 1.2 n/a n/a Window controls for minimize and maximize
hidden.

6.5 Creating a New Window | 141

directories 3 all n/a n/a Display directory buttons.

fullscreen 4 n/a n/a n/a Display no titlebar or menus.

height 3 all all 7 Window height in pixels.

hotkeys n/a all n/a n/a Disables menu keyboard shortcuts (except Quit
and Security Info).

innerHeight n/a all n/a n/a Content region height. Signed script required for
very small measures.

innerWidth n/a all n/a n/a Content region width. Signed script required for
very small measures.

left 4 all all n/a Offset of window’s left edge from left edge of
screen.

location 3 all all n/a Display Location (or Address) text field.

menubar 3 all n/a n/a Display menubar (a menubar is always visible on
Mac).

minimizable n/a 1.2 n/a n/a For dialog type, includes minimize control.

modal n/a 1.2 n/a n/a Open window as a modal. Signed script required.

outerHeight n/a all n/a n/a Total window height. Signed script required for
very small measures.

outerWidth n/a all n/a n/a Total window width. Signed script required for
very small measures.

personalbar n/a all n/a n/a Mozilla-specific alternative to the directories
attribute.

resizable 3 all all n/a Allow window resizing (always allowed on Mac).

screenX n/a all n/a n/a Offset of window’s left edge from left edge of
screen. Signed script required to move window
off-screen.

screenY n/a all n/a n/a Offset of window’s top edge from top edge of
screen. Signed script required to move window
off-screen.

scrollbars 3 all all n/a Display scrollbars if document is too large for
window.

status 3 all n/a n/a Display status bar.

titlebar n/a all n/a n/a Displays titlebar. Set this value to no to hide the
titlebar. Signed script required.

toolbar 3 all n/a n/a Display toolbar (with Back, Forward, and other
buttons).

top 4 all all 7 Offset of window’s top edge from top edge of
screen.

width 3 all all n/a Window width in pixels.

z-lock n/a all n/a n/a New window is fixed below browser windows.
Signed script required.

Table 6-1. Window attributes for window.open() method (continued)

Attribute IE Mozilla Safari Opera Description

142 | Chapter 6: Managing Browser Windows

You can include attributes supported by some browsers but not others in the
attribute string. Browsers that don’t know about a particular attribute simply ignore
the attribute. Most of the attributes are Boolean types, indicating whether the fea-
ture should be turned on in the new window. For these attributes, you can either
assign them values (yes or 1 to switch them on; no or 0 to switch them off), or simply
include the attribute name by itself to signify that the feature should be turned on.
The following two examples display the menu bar and status bar and allow the win-
dow to be resized:

window.open("someDoc.html", "newWind", "menubar,status,resizable");
window.open("someDoc.html", "newWind", "menubar=1,status=1,resizable=1");

For Boolean attributes that control window chrome (such as location, resizable,
and status), the features are turned on by default; other Booleans (such as
alwaysRaised and fullscreen) are turned off by default. An important point to
remember is that if you specify even just one attribute, all Boolean values are auto-
matically switched off. Therefore, if you assign a height and width for the window,
also turn on the window chrome features you wish to appear in the window. Also,
for optimum backward-compatibility, assemble the string of attributes and their val-
ues without any spaces after the commas.

In addition to controlling the window chrome that appears in the window, you can
set the location of the window on the screen. For example, you can come close to
centering the window with a little bit of calculation prior to assigning a value to the
left and top attributes (in browsers that support them). The hedge is that the dimen-
sions you can specify for the window across browsers control only the content region
of the window, and not any chrome. Thick toolbars of unknown height can throw
off the calculations just a bit. Here is a function that opens a new window to a fixed
interior size and centers that space on the screen:

var myWindow;
function openCenteredWindow(url) {
 var width = 400;
 var height = 300;
 var left = parseInt((screen.availWidth/2) - (width/2));
 var top = parseInt((screen.availHeight/2) - (height/2));
 var windowFeatures = "width=" + width + ",height=" + height +
 ",status,resizable,left=" + left + ",top=" + top +
 ",screenX=" + left + ",screenY=" + top;
 myWindow = window.open(url, "subWind", windowFeatures);
}

If it’s possible for the user to open the window more than once, there are other fac-
tors to consider when creating the window. See Recipe 6.6 for the case in which the
user has hidden the subwindow, and all your script needs to do is bring it in front of
the main window.

The issue of whether you should open a subwindow automatically for a visitor is
another one of those hotly contested user interface design topics. Unfortunately for

6.6 Bringing a Window to the Front | 143

scripters who may have valid reasons for opening a secondary window, the world of
the “pop-up” advertisement has turned many users against any web site that starts
opening multiple windows. A case that used to be made for using secondary win-
dows as the targets for hyperlinks and form submissions was that the site developer
didn’t want to lose the visitor to another site in the course of web surfing, for fear
that the visitor would not come back quickly. The result, however, was that users
could find themselves with many windows open on their desktop, cluttering up their
workspace.

Cases against opening secondary windows abound. For one, users who know about
their browser’s context menu (right-click in Windows and Unix, Ctrl-click in Mac
OS X) can choose to open a new window on any link they see. That puts the visitor
in control of the window madness. Another case from the document markup purist
point of view is that secondary windows (and even frames) have no place in elec-
tronic documents. It is no accident, for instance, that the target attribute is removed
from the strict XHTML specification for hyperlinks and forms. And one final case,
which may have the most impact on the development world, is a result of the back-
lash against pop-up ads. Many service providers use a variety of techniques to filter
the window.open() method from pages they serve or pass through to their users.

If you decide to use secondary windows, apply them judiciously and only when they
add value to the visitor’s experience or solve some other technical requirement of
your application. The more you try to trap your visitors with tricks, the less likely it
is that they’ll come back or recommend the site to others.

See Also
Recipe 6.6 for controlling window layering; Recipes 6.7 and 6.8 for script communi-
cation between a main window and script-generated window; Recipe 6.10 to use a
subwindow as a simulated cross-browser modal window.

6.6 Bringing a Window to the Front

Problem
You want to bring a window that is buried beneath other windows back to the top of
the pile.

Solution
For any window to which you have a valid reference, invoke the focus() method.
The following function expands on topics addressed in Recipe 6.5. This expanded
function not only opens a subwindow, but brings it forward if it was previously
opened, and is currently hidden behind the main window:

var newWindow;
function makeNewWindow(url) {

144 | Chapter 6: Managing Browser Windows

 if (!newWindow || newWindow.closed) {
 newWindow = window.open(url,"subwind","status,height=200,width=300");
 } else {
 // window is already open, so bring it to the front
 newWindow.focus();
 }
}

Thus, if you have a link, button, or other script action that invokes makeNewWindow()
after the window has been created and (accidentally or intentionally) hidden, the
next activation of the function brings the new window into view.

Discussion
A global variable, newWindow in the preceding example, is initialized as null when the
main page loads. The first time the makeNewWindow() method is called, the first condi-
tional expression evaluates to true because the variable is still null. The new win-
dow is created, and the variable now holds a reference to the subwindow. Let’s say
that rather than closing the subwindow, the user clicks somewhere on the main win-
dow, causing the subwindow to submarine underneath the main window. If the user
clicks on the button that invokes makeNewWindow() again, the first if condition fails
(because newWindow contains an object reference), but a test of the closed property of
the subwindow returns false. Execution branches to the alternate section, invoking
the focus() method on the new window.

You can begin to see in this example how valuable it is to maintain a reference to the
subwindow when you create it with window.open(). But you also have to be careful
to check with the closed property before referencing the object to do things like giv-
ing it focus or closing it via the close() method. Once you assign the subwindow’s
reference to the variable, the reference doesn’t go away when the window closes. The
variable still contains what it thinks is a valid window object reference. But when you
attempt to use that reference in a statement to access one of its methods or proper-
ties, the reference fails, leading to a script error. And, since you cannot control
whether a user closes a subwindow or leaves it open, it’s up to your scripts to do the
checking behind the scenes.

See Also
Recipe 6.5 for opening multiple windows by script; Recipe 6.10 for a simulated
cross-browser modal window that always stays on top.

6.7 Communicating with a New Window

Problem
You want to access the subwindow and its document from scripts in the main
window.

6.7 Communicating with a New Window | 145

Solution
Provided you preserve the reference to the subwindow returned by the window.open()
method, and if the content of the subwindow is served by the same domain and server
as the main window document, you can access any property or method that you are
able to from scripts within the subwindow.

The following complete HTML page contains two functions that create a new win-
dow and populate its content with dynamically written content:

<html>
<head>
<title>A New Window</title>
<script type="text/javascript">
// global variable for subwindow reference
var newWindow;
// generate and fill the new window
function makeNewWindow() {
 // make sure it isn't already opened
 if (!newWindow || newWindow.closed) {
 newWindow = window.open("","sub","status,height=200,width=300");
 // delay writing until window exists in IE/Windows
 setTimeout("writeToWindow()", 50);
 } else if (newWindow.focus) {
 // window is already open and focusable, so bring it to the front
 newWindow.focus();
 }
}
function writeToWindow() {
 // assemble content for new window
 var newContent = "<html><head><title>Secondary Window</title></head>";
 newContent += "<body><h1>This is a script-created window.</h1>";
 newContent += "</body></html>";
 // write HTML to new window document
 newWindow.document.write(newContent);
 newWindow.document.close(); // close layout stream
}
</script>
</head>
<body>
<form>
<input type="button" value="Create New Window" onclick="makeNewWindow();" />
</form>
</body>
</html>

Discussion
The example in the Solution points out an important aspect of referencing a newly
created window. Internet Explorer for Windows tends to race ahead of script execu-
tion (presumably to improve performance). The downside of this feature is that in
the case of a newly created external object, a reference to the new object may not be

146 | Chapter 6: Managing Browser Windows

valid when the subsequent statements execute in the shadows. To prevent this race-
ahead execution from causing script errors, you need to place statements referencing
the object in a separate function that begins executing after the current function
thread completes. The setTimeout() method is the mechanism that assists in this
task.

How much time you build into the setTimeout() delay is not important. The 50
milliseconds shown in the example is an exceptionally small amount of time (from
the user’s perspective), but it’s enough to keep processing in order, and allow global
variable references to the new window to be valid when needed. You can use this
same technique for any kind of immediate access to a newly created window. But if,
for example, you have two distinct user actions (e.g., two buttons)—one to create the
window and one to populate it—you don’t need the setTimeout() because the sec-
ond button’s event handler function will be executing in a separate thread anyway.

Some versions of IE for Windows are particularly sensitive to potential cross-domain
security breeches. Moreover, the results can be different when the main page is
hosted on a local hard disk (for testing) and a web server (for deployment). You’ll
know if you’re having the problem when a reference to the subwindow or one of its
properties results in an “Access is denied” script error.

Because a subwindow reference returned from the window.open() method is an
object reference (with no string equivalent), you cannot pass this reference between
pages that occupy the main window. In other words, do not expect to open a sub-
window from one page and have a script in a subsequent main window page be able
to reference it. The only possible workaround is to display your main window docu-
ment in a frame of a frameset (with the other frame hidden if you don’t want the user
to see the frames). When you create the new window, copy the returned reference to
a global variable either in the frameset (parent window) or the other child frame. A
new visible document in the main window can then read that global variable to
obtain a reference to the subwindow.

Regard a reference to a subwindow just like any window or frame reference. Any glo-
bal variables defined in the subwindow’s document scripts are accessible from the
main window in the subwindow’s global variable space:

var remoteValue = newWind.someVar;

Access to the document’s contents goes through the document object of the sub-
window, as in the following examples:

var remoteBody = newWind.document.body;
newWind.document.getElementById("myTextBox").value = "fred";

Adjusting the URL of the subwindow is just like doing the same for the main win-
dow, but with the leading subwindow reference:

newWind.location.href = "yetAnotherPage.html";

6.8 Communicating Back to the Main Window | 147

Be careful when you start loading new documents into either the main or secondary
window, however. The only error-free way to close a subwindow from a script in the
main window is if the document invoking close() is also the document that opened
the window. Plus, if your script or the user loads a document into the subwindow
from a different server and domain, your main window scripts lose the ability to
read the location object or any document content objects in the subwindow—all in
the name of securing the browser from nefarious scripts capable of tracking surfing
habits.

See Also
Recipe 6.8 to see how scripts in a subwindow talk to the main window; Recipe 10.5
for passing data between pages via frames.

6.8 Communicating Back to the Main Window

Problem
You want a script in a subwindow to access variables or document content in the
main window.

Solution
With one very early exception (Netscape 2), all scriptable browsers automatically
assign an opener property to a window created via the window.open() method. Scripts
in the subwindow can reach the main window or frame via this opener property.
Here is an example of a subwindow script that copies a text box value from the sub-
window to a hidden input field in the main window:

opener.document.forms["userData"].age.value = document.forms["entry"].userAge.value;

The opener property references the window or frame whose script executed the
window.open() method.

Discussion
Any window opened by the user reports that the opener property is null. Therefore,
your scripts can test whether the current window was opened by script or manually
by comparing the value or type of opener:

if (typeof window.opener == "object") {
 // current subwindow opened by script
}

If the subwindow is opened by a script running inside a frame, the opener property of
the subwindow points to the frame holding the document whose window.open()
method created the window. This means that you can still script your way through

148 | Chapter 6: Managing Browser Windows

the main frameset, if needed. For example, a subwindow can access a form value in
another frame of the main window frameset with syntax like the following:

opener.parent.frames["prefs"].document.dataForm.colorChoice.value = "#66eeff";

The same-origin security policy observed in access to a subwindow (Recipe 6.7) also
applies going in the other direction. If the document in the main window or frame
changes to one from a different server and domain, attempted access to details of
that document via the opener property fails with security errors.

See Also
Recipe 6.7 to see how scripts in the main window communicate with content in a
script-generated window.

6.9 Using Internet Explorer Modal/Modeless
Windows

Problem
You want to stop script processing while a modal dialog window appears, and then
capture user-entered values from the dialog window to continue processing.

Solution
Internet Explorer 4 or later (both Windows and Macintosh versions) and Safari 2.01
or later provide a window object method that displays a true modal dialog window
(preventing user access to the main window until the dialog window closes). IE 5 or
later for Windows provides an additional choice that creates a modeless window,
which always stays in front of the main window, but allows access to the main win-
dow’s user interface elements. The methods are called window.showModalDialog()
and window.showModelessDialog(), respectively.

To use either method, begin by assembling the data or object references you wish to
pass to the dialog window (if any) as a JavaScript object (of any data type) in a vari-
able. We use dialogArgs here. Find the place in your script where you need to query
the user for input, and then invoke the method:

var dialogAnswer = window.showModalDialog("dialog.html", dialogArgs,
 "dialogWidth:300px; dialogHeight:201px; center:yes");

Scripts in the document loaded into the dialog window can access the passed argu-
ments by reading the window.dialogArguments property. To get values back to the main
window’s script from a modal dialog, assign those values (again, of any JavaScript data
type) to the window.returnValue property of the dialog window’s document. When the
user closes the dialog window, the returned value is assigned to the variable at the left
side of the expression (dialogAnswer in the preceding example).

6.9 Using Internet Explorer Modal/Modeless Windows | 149

Discussion
IE modal dialog windows do not maintain the same kind of live connection between
main and dialog windows as you use with full windows created via window.open().
But the chord between main and dialog windows isn’t entirely broken, either.

For example, a script in the main window can pass a reference to one of the main
document’s element objects to the showModalDialog() method; a script in the dialog
window can then use the passed reference as a way to inspect a property of that
object. Here is a simple example, starting with the main window that passes a refer-
ence to a form element to the modal dialog window:

<html>
<head>
<title>Launch a Modal Dialog</title>
<script type="text/javascript">
function openDialog(form) {
 var result = window.showModalDialog("dialogDoc.html", form,
 "dialogWidth:300px; dialogHeight:201px; center:yes");
}
</script>
</head>
<body>
<form name="sample" action="#" onsubmit="return false">
Enter your name for the dialog box:<input name="yourName" type="text" />
<input type="button" value="Send to Dialog" onclick="openDialog(this.form)" />
</form>
</body>
</html>

The document in the dialog window can read the value of the main window’s text
box as needed:

<html>
<head>
<title>Modal Dialog</title>
</head>
<body>
<script type="text/javascript">
document.write("Greetings from " + window.dialogArguments.yourName.value + "!");
</script>
</body>
</html>

A modeless dialog window behaves slightly differently from a scripting point of view.
Most important, main document script processing does not stop when the modeless
window appears. This is logical because a modeless window is intended to allow user
interaction in both windows, while the modal dialog window simply stays in front of
the main window. Second, the value returned by the showModelessDialog() method
is a reference to the modeless dialog window. This allows scripts in the main win-
dow to communicate with the modeless dialog after it is created.

150 | Chapter 6: Managing Browser Windows

It’s not uncommon for a call that invokes showModelessDialog() to pass either a ref-
erence to the main window or a reference to a main window function that needs to
be invoked from the dialog window while it is still open (similar to the notion of an
Apply button in many Windows system dialog boxes). Passing the main window ref-
erence looks like the following:

var dialogWind = window.showModelessDialog("myModeless.html", window,
 "dialogWidth:300px; dialogHeight:201px; center:yes");

A script in the dialog window’s document can then use the value of window.
dialogArguments as a starting point to any global variable, function, or element object
in the main window’s context:

var mainWind = window.dialogArguments;
mainWind.document.body.style.backgroundColor = "lightyellow";

The window.returnValue property is not used in the modeless dialog. Communicate
back to the main window directly. In fact, you can invoke main document functions
from the modeless window. One way is to use the window reference passed to the
dialogArguments property:

// in main window script
window.showModelessDialog("myModeless.html", window, "...");

// in dialog window script
var mainWind = window.dialogArguments;
mainWind.myFunction();

Or pass a reference to the main document function:

// in main window script
window.showModelessDialog("myModeless.html", myFunction, "...");

// in dialog window script
var mainFunc = window.dialogArguments;
mainFunc();

When you open either type of dialog window, the optional third parameter is a
comma-delimited string of properties for the window. The syntax for this string is
reminiscent of CSS name:property formatting, as shown in the previous examples.
Table 6-2 lists the properties you can use and a description of their values.

Table 6-2. Properties for showModalDialog() and showModelessDialog()

Property Value Default Description

center yes | no | 1 | 0 | on | off yes Center the dialog

dialogHeight Length/units n/a Outer height of dialog (must be >200 for IE/Mac)

dialogLeft Integer n/a Left pixel offset (overrides center)

dialogTop Integer n/a Top pixel offset (overrides center)

dialogWidth Length/units n/a Outer width of dialog (must be >200 for IE/Mac)

edge raised | sunken raised Transition style between border and content area

6.10 Simulating a Cross-Browser Modal Dialog Window | 151

As with any potentially intrusive user interface element, don’t overuse the modal or
modeless window.

If you intend to use the showModalDialog() window to display a form that is to be
submitted to a server, the default behavior of IE is to open yet another window to
display the page returned by the server. Another problem is that cookies to not carry
over from the main window to the modal window, even when the content of both
windows originate from the same domain and server. Steinar Overbeck Cook has
solved these issues in a library you can download from http://dannyg.com/support/
SOCmodalWindow.js.

See Also
Recipe 6.10 for a way to produce a modal window for IE and NN browsers with a
subwindow; Recipe 6.11 for a layer-based modal window simulator.

6.10 Simulating a Cross-Browser Modal Dialog
Window

Problem
You want to present a consistent modal dialog on multiple browsers.

Solution
Although IE provides the showModalDialog() method, no other browser supports it,
except Safari. This recipe uses a browser subwindow to simulate the behavior of a
modal dialog box. It operates in IE 4 or later, Mozilla, Safari, and Opera 7 or later.
Note that this is a simulation of true modality. Due to some odd behavior in IE for
Windows with respect to disabling hyperlinks in the main window, a determined
user can bypass the modality of this solution. For casual users, however, the window
behaves much like a modal dialog box.

Assemble your main HTML page around the simModal.js script library described in
the Discussion. This library works by disabling form controls and links in the main
page after the modal dialog is displayed and making sure the dialog keeps the focus,
so that the user is forced to deal with the dialog. After the dialog is dismissed, the

help yes | no | 1 | 0 | on | off Yes Display help icon in titlebar

resizable yes | no | 1 | 0 | on | off No Dialog is resizable

status yes | no | 1 | 0 | on | off Yes Display status bar

Table 6-2. Properties for showModalDialog() and showModelessDialog() (continued)

Property Value Default Description

152 | Chapter 6: Managing Browser Windows

form controls and links are enabled again. All of this work occurs through a single
dialogWin object defined in the library.

The following skeletal HTML main page shows the event handler additions that the
simModal.js library relies upon, and a demonstration of how to invoke the function
that displays a simulated modal window (in this example, a Preferences window):

<html>
<head>
<title>Main Application Page</title>
<script type="text/javascript" src="eventsManager.js"></script>
<script type="text/javascript" src="simModal.js"></script>
<script type="text/javascript">
// function to run upon closing the dialog with "OK".
function setPrefs() {
 // Statements here to apply choices from the dialog window
}
</script>
</head>
<body>
<!-- Page Content Here -->
<button onclick="dialogWin.openSimDialog('dialog_main.html', 400, 300, setPrefs)">
Preferences
</button>
<!-- More Page Content Here -->
</body>
</html>

Note that the simModal.js library relies on the eventsManager.js library from Recipe
9.1. No other modifications are needed in the host page.

Call the openSimDialog() function to display the window, passing the URL of the
page to load into the dialog window, the window’s width and height (in pixels), and
a reference to a function in the main page that the modal window invokes when the
window closes (setPrefs() in this case).

In the document that loads into the dialog window, add the closeme(), handleOK(),
and handleCancel() functions shown in the following extract to take care of the
actions from the dialog window’s Cancel and OK buttons. The load and unload event
handlers of the <body> tag trigger essential event-blocking services controlled by the
blockEvents() and unblockEvents() event handlers in the simModal.js library.

<html>
<head>
<title>Preferences</title>
<script language="JavaScript" type="text/javascript">
// close the dialog
function closeme() {
 window.close();
}

// handle click of OK button
function handleOK() {

6.10 Simulating a Cross-Browser Modal Dialog Window | 153

 if (opener && !opener.closed && opener.dialogWin) {
 opener.dialogWin.returnFunc();
 } else {
 alert("You have closed the main window.\n\nNo action will be taken on the " +
 "choices in this dialog box.");
 }
 closeme();
 return false;
}

// handle click of Cancel button
function handleCancel() {
 closeme();
 return false;
}
</script>
</head>
<body onload="if (opener && opener.dialogWin.blockEvents) opener.dialogWin.
blockEvents()" onunload="if
(opener && opener.dialogWin.unblockEvents) opener.dialogWin.unblockEvents()">
<!--- Dialog Window Page Content Here -->
<form>
<input type="button" value="Cancel" onclick="handleCancel()">
<input type="button" value=" OK " onclick="handleOK()">
</form>

</body>
</html>

If the dialog window contains a frameset (where the Cancel and OK buttons are in
one of the frames), locate the load and unload event handlers in the <frameset> tag.
Keep the three functions in the framesetting document, and have the onclick event
handlers of the buttons reference parent.handleCancel() and parent.handleOK().

Discussion
Example 6-1 shows the entire simModal.js library, which you link into the main
HTML page, as shown in the Solution.

Example 6-1. The simulated modal dialog window script library (simModal.js)

// One object tracks the current modal dialog opened from this window.
var dialogWin = {
 // Since links in some browsers cannot be truly disabled, preserve
 // link click & mouseout event handlers while they're "disabled."
 // Restore when re-enabling the main window.
 linkClicks : null,
 // Event handler to inhibit Navigator 4 form element
 // and IE link activity when dialog window is active.
 deadend : function(evt) {
 if (this.win && !this.win.closed) {
 if (evt) {
 evt.preventDefault();
 evt.stopPropagation();

154 | Chapter 6: Managing Browser Windows

 }
 this.win.focus();
 return false;
 }
 },
 // Disable form elements and links in all frames.
 disableForms : function() {
 this.linkClicks = new Array();
 for (var i = 0; i < document.forms.length; i++) {
 for (var j = 0; j < document.forms[i].elements.length; j++) {
 document.forms[i].elements[j].disabled = true;
 }
 }
 for (i = 0; i < document.links.length; i++) {
 this.linkClicks[i] = {click:document.links[i].onclick, up:null};
 this.linkClicks[i].up = document.links[i].onmouseup;
 document.links[i].onclick = dialogWin.deadend;
 document.links[i].onmouseup = dialogWin.deadend;
 document.links[i].disabled = true;
 }
 },
 // Restore form elements and links to normal behavior.
 enableForms : function() {
 for (var i = 0; i < document.forms.length; i++) {
 for (var j = 0; j < document.forms[i].elements.length; j++) {
 document.forms[i].elements[j].disabled = false;
 }
 }
 for (i = 0; i < document.links.length; i++) {
 document.links[i].onclick = this.linkClicks[i].click;
 document.links[i].onmouseup = this.linkClicks[i].up;
 document.links[i].disabled = false;
 }
 },
 // Disable form elements.
 blockEvents : function() {
 this.disableForms();
 window.onfocus = dialogWin.checkModal;
 document.body.onclick = dialogWin.checkModal;
 addEvent(document, "click", dialogWin.checkModal, true);
 addEvent(document, "mousemove", dialogWin.checkModal, true);
 },
 // As dialog closes, restore the main window's original
 // event mechanisms.
 unblockEvents : function() {
 this.enableForms();
 window.onfocus = null;
 removeEvent(document, "click", dialogWin.checkModal, true);
 removeEvent(document, "mousemove", dialogWin.checkModal, true);
 },
 // Generate a modal dialog.

Example 6-1. The simulated modal dialog window script library (simModal.js) (continued)

6.10 Simulating a Cross-Browser Modal Dialog Window | 155

 // Parameters:
 // url -- URL of the page/frameset to be loaded into dialog
 // width -- pixel width of the dialog window
 // height -- pixel height of the dialog window
 // returnFunc -- reference to the function (on this page)
 // that is to act on the data returned from the dialog
 // args -- [optional] any data you need to pass to the dialog
 openSimDialog : function(url, width, height, returnFunc, args) {
 if (!this.win || (this.win && this.win.closed)) {
 // Initialize properties of the modal dialog object.
 this.url = url;
 this.width = width;
 this.height = height;
 this.returnFunc = returnFunc;
 this.args = args;
 this.returnedValue = "";
 // Keep name unique.
 this.name = (new Date()).getSeconds().toString();
 // Assemble window attributes and try to center the dialog.
 if (window.screenX) { // Moz, Saf, Op
 // Center on the main window.
 this.left = window.screenX +
 ((window.outerWidth - this.width) / 2);
 this.top = window.screenY +
 ((window.outerHeight - this.height) / 2);
 var attr = "screenX=" + this.left +
 ",screenY=" + this.top + ",resizable=no,width=" +
 this.width + ",height=" + this.height;
 } else if (window.screenLeft) { // IE 5+/Windows
 // Center (more or less) on the IE main window.
 // Start by estimating window size,
 // taking IE6+ CSS compatibility mode into account

 var CSSCompat = (document.compatMode &&
 document.compatMode != "BackCompat");

 window.outerWidth = (CSSCompat) ?
 document.body.parentElement.clientWidth :
 document.body.clientWidth;
 window.outerHeight = (CSSCompat) ?
 document.body.parentElement.clientHeight :
 document.body.clientHeight;
 window.outerHeight -= 80;
 this.left = parseInt(window.screenLeft+
 ((window.outerWidth - this.width) / 2));
 this.top = parseInt(window.screenTop +
 ((window.outerHeight - this.height) / 2));
 var attr = "left=" + this.left +
 ",top=" + this.top + ",resizable=no,width=" +
 this.width + ",height=" + this.height;
 } else { // all the rest
 // The best we can do is center in screen.
 this.left = (screen.width - this.width) / 2;
 this.top = (screen.height - this.height) / 2;

Example 6-1. The simulated modal dialog window script library (simModal.js) (continued)

156 | Chapter 6: Managing Browser Windows

The library creates one global variable, named dialogWin, which becomes the object
through which all dialog-related operations flow.

The deadend() function is an event handler function that the simModal.js library
assigns to all main page hyperlinks whenever the dialog box is visible. The function
does its best to block the default action of clicking on a hyperlink.

Next are a pair of functions that disable or enable form controls and links. The
disableForms() method is ultimately invoked when the modal window appears (the
dialog window’s onload event handler invokes blockEvents(), which, in turn, calls
disableForms()). Default event handler assignments for hyperlinks are preserved in a
global variable called linkClicks before the links are temporarily assigned the
deadend() function. When the modal window closes, enableForms() restores default
states.

The heart of the dialogWin object is openSimDialog(). This function takes several
parameters that let you specify the URL of the document to occupy the dialog box,
the size of the window, the name of the function from the main document that can
be invoked easily from the dialog, and optional values to be passed directly to the
dialog window (although the traditional subwindow relationships are in force if you
want to communicate between windows that way, as described in Recipe 6.7 and
Recipe 6.8). Most of the code here is devoted to calculating the (sometimes approxi-
mate) center of the browser window to place the dialog window, but the function
also populates numerous properties of the global dialogWin object to maintain
important values that the dialog window’s scripts access (described shortly).

 var attr = "left=" + this.left + ",top=" +
 this.top + ",resizable=no,width=" + this.width +
 ",height=" + this.height;
 }
 // Generate the dialog and make sure it has focus.
 this.win=window.open(this.url, this.name, attr);
 this.win.focus();
 } else {
 this.win.focus();
 }
 },
 // Invoked by focus event handler of EVERY frame,
 // return focus to dialog window if it's open.
 checkModal : function() {
 setTimeout("dialogWin.finishChecking()", 50);
 return true;
 },
 finishChecking : function() {
 if (this.win && !this.win.closed) {
 this.win.focus();
 }
 }
};

Example 6-1. The simulated modal dialog window script library (simModal.js) (continued)

6.10 Simulating a Cross-Browser Modal Dialog Window | 157

After all this setup code, the final two functions, checkModal() and the chained
finishChecking(), force the subwindow to act like a modal window by giving the
subwindow focus whenever the main window tries to come forward. A time-out
takes care of the usual window synchronizing stuff that particularly affects IE for
Windows.

The simulated modal dialog window library is a fairly complex application of Java-
Script. It came into being not so much to get modality for non-IE browsers, but to
work around a problem in earlier IE versions for Windows that prevented scripts in
showModalDialog() windows from working with framesets in the modal window. By
employing regular browser windows, the problem was solved.

One significant way that this simulated modal dialog differs from the IE
showModalDialog() approach is that script execution in the main window does not
halt while the simulated window is open. Instead, the simulated version operates
more like IE’s showModelessDialog(). Notice in the large openSimDialog() function
that several arguments to the function are assigned to properties of the dialogWin glo-
bal object. This object acts as a warehouse for key data about the window, including
a reference to the dialog window itself (the dialogWin.win property). One property,
returnFunc, is a reference to a main window function that the subwindow can invoke
easily. Although the syntax, modeled after showModelessDialog(), is intended to be
invoked when the dialog window closes (perhaps the result of a click of an OK but-
ton), a script in the dialog window can reach out to the main window function at
any time. It’s just that handling it in batch mode as the dialog closes reinforces the
modality you’re trying to convey to the user. Invoking the function from the sub-
window is as easy as:

opener.dialogWin.returnFunc();

If the function takes parameters, you can include them in the call as well:

opener.dialogWin.returnFunc(document.myForm.myTextBox.value);

Going in the direction of passing data to the dialog window, the optional fifth
parameter to openSimDialog() is a value of any JavaScript data type that you want
scripts in the dialog to access easily. You can pack a bunch of values together as an
array or custom object. Access the value via the dialogWin.args property. Thus, a
script in the dialog window can read the value as follows:

var passedValue = opener.dialogWin.args;

A typical modal dialog window asks the user to make some settings or entries that
affect the main window and its document or data. Good user interface design sug-
gests that you always include a way for the user to back out of the dialog box with-
out making any changes to the main document. As shown in the Solution, a pair of
buttons (or button equivalents) that connote Cancel and OK should let users choose
between aborting the dialog or committing the data to the application. Notice that

158 | Chapter 6: Managing Browser Windows

the code watches out for the possibility that the user has closed the main window
(because scripts cannot block access to the main browser window’s Close button).

See Also
Recipe 6.9 for the IE proprietary (and more robust) modal and modeless window
methods; Recipe 6.11 for using layers to simulate an overlaid window; Recipe 3.1
and Recipe 3.7 for creating an array or custom object as a chunk of data to be passed
as arguments to the modal window; Recipe 9.1 for the eventsManager.js library.

6.11 Simulating a Window with Layers

Problem
You want to create the impression of a separate draggable window but without actu-
ally creating a new window.

Solution
This solution consists of many individual files, including four .js JavaScript library
files and several .css style sheet files. Two the library files, eventsManager.js and
DHTML3API.js, are applied directly from Recipes 9.1 and 13.3, respectively; the
other libraries, layerDialog.js and layerDialogDrag.js, which take care of creating the
window and making it draggable are shown in the Discussion. The .css files provide
different looks for the window on different operating systems; they are also shown in
the Discussion.

The following skeletal HTML main page shows the JavaScript libraries as they are
linked into the page, the makeup of the required elements (some div, span, and
iframe elements) that comprise the pseudowindow, and a sample button element
that invokes the openLayerDialog() function to display the modeless, draggable
pseudowindow (in this example, a Preferences window):

<html>
<head>
<title>Main Application Page</title>
<script src="eventsManager.js"></script>
<script src="DHTML3API.js"></script>
<script src="layerDialog.js"></script>
<script src="layerDialogDrag.js"></script>
<script language="JavaScript" type="text/javascript">
// function to run upon closing the dialog with "OK".
function setPrefs() {
 // Statements here to apply choices from the dialog window
}
</script>
</head>
<body>

6.11 Simulating a Window with Layers | 159

<!-- PAGE CONTENT HERE -->
<button onclick="dialogLayer.openLayerDialog('dialog_main.html', 'User Preferences',
 setPrefs, null);return false">
Preferences
</button>
<!-- More Page Content Here -->
<div id="pseudoWindow">

<div id="titlebar" class="draggable"><img id="closebox"
src="closeBox_win9x.jpg" onclick="closeLayerDialog()" />
Titlebar</div>

<iframe id="contentFrame" src="" frameborder="0" vspace="0" hspace="0"
marginwidth="14" marginHeight="14" width="100%" height="480" scrolling="auto">
</iframe>

</div>
</body>
</html>

All library initialization routines are self-invoked by way of the addOnLoadEvent()
function in eventsManager.js (described in Recipe 9.3).

Discussion
Specifying the functional characteristics of a positioned element acting as a simu-
lated window gets a bit complicated if you wish to take into account the wide vari-
ety of looks and feels of popular operating systems. A window design tailored for
Windows 98 won’t look anything like a Windows XP window. Even in the Mac
world, the looks of titlebars have evolved with subsequent releases of Mac OS X.
This recipe makes the following assumptions about the pseudowindow constructed
from positioned elements:

• The window is a fixed size, governed by style sheets (the example shows approx-
imately 600 × 500).

• Titlebars and close boxes are customized for Windows 9x, Windows XP, and
one version of Mac OS X.

• Other operating systems default to the Windows 9x look.

• The content of the window can be loaded from any URL.

• The window is draggable, behaving like a modeless dialog window.

The element-based pseudowindow is a draggable composite object. An outer wrap-
per div (pseudoWindow) is the overall container for the pseudowindow. Nested inside
are two child elements. The first represents the pseudowindow’s titlebar. Two child
nodes of the titlebar div element are an image for the window’s close box and a span
for the window’s text title. The second is an iframe element, which holds the con-
tent in two nested subframes.

160 | Chapter 6: Managing Browser Windows

At the core of the interactivity built into the pseudowindow are four JavaScript
libraries: eventsManager.js, DHTML3API.js, layerDialog.js, and layerDialogDrag.js.
Because the eventsManager.js and DHTML3API.js libraries (Recipes 9.3 and 13.3)
contain numerous cross-browser functions for element positioning, the current recipe
loads these libraries to support the positioning tasks required of the pseudowindow.

Example 6-2 shows the code for the layerDialog.js library, which has two important
jobs: linking in the OS-specific style sheets for the pseudowindow, and controlling
the creation, initial position, and display of the pseudowindow.

Example 6-2. layerDialog.js library

// Help choose from four UI pseudowindow flavors
function getCurrOSUI() {
 var ua = navigator.userAgent;
 if (ua.indexOf("Mac") != -1) {
 if (ua.indexOf("OS X") != -1 || ua.indexOf("MSIE 5.2") != -1) {
 return "macosX";
 } else {
 return "win9x";
 }
 } else if (ua.indexOf("Windows XP") != -1 || ua.indexOf("NT 5.1") != -1) {
 return "winxp";
 } else if ((document.compatMode && document.compatMode != "BackComp") ||
 (navigator.product && navigator.product == "Gecko")) {
 // Win9x and CSS-compatible
 return "win9x";
 } else {
 // default for Windows 9x in quirks mode, Unix/Linux, & unknowns
 return "win9xQ";
 }
}
var currOS = getCurrOSUI();
// Load OS-specific style sheet for pseudo dialog layer
document.write("<link rel='stylesheet' type='text/css' href='dialogLayer_" + currOS + ".
css'>");

//******************************
// BEGIN LAYER DIALOG CODE
//******************************/
// Requires DHTML3API.js library pre-loaded
// One object tracks the current pseudowindow layer.
var dialogLayer = {
 layer : null,
 visible : false,
 // Center a positionable element whose name is passed as
 // a parameter in the current window/frame, and show it
 centerOnWindow : function(elemID) {
 // 'obj' is the positionable object
 var obj = DHTMLAPI.getRawObject(elemID);
 // window scroll factors
 var scrollX = 0, scrollY = 0;

6.11 Simulating a Window with Layers | 161

 if (document.body && typeof document.body.scrollTop != "undefined") {
 scrollX += document.body.scrollLeft;
 scrollY += document.body.scrollTop;
 if (document.body.parentNode &&
 typeof document.body.parentNode.scrollTop != "undefined") {
 scrollX += document.body.parentNode.scrollLeft;
 scrollY += document.body.parentNode.scrollTop
 }
 } else if (typeof window.pageXOffset != "undefined") {
 scrollX += window.pageXOffset;
 scrollY += window.pageYOffset;
 }
 var x = Math.round((DHTMLAPI.getInsideWindowWidth()/2) -
 (DHTMLAPI.getElementWidth(obj)/2)) + scrollX;
 var y = Math.round((DHTMLAPI.getInsideWindowHeight()/2) -
 (DHTMLAPI.getElementHeight(obj)/2)) + scrollY;
 DHTMLAPI.moveTo(obj, x, y);
 },
 initLayerDialog : function() {
 document.getElementById("closebox").src = "closeBox_" + currOS + ".jpg";
 dialogLayer.layer = document.getElementById("pseudoWindow");
 },
 // Set up and display pseudowindow.
 // Parameters:
 // url -- URL of the page/frameset to be loaded into iframe
 // returnFunc -- reference to the function (on this page)
 // that is to act on the data returned from the dialog
 // args -- [optional] any data you need to pass to the dialog
 openLayerDialog : function(url, title, returnFunc, args) {
 if (!this.visible) {
 // Initialize properties of the modal dialog object.
 this.url = url;
 this.title = title;
 this.returnFunc = returnFunc;
 this.args = args;
 this.returnedValue = "";

 // Load URL
 document.getElementById("contentFrame").src = url;

 // Set title of "window"
 document.getElementById("barTitle").firstChild.nodeValue = title;

 // Center "window" in browser window or frame
 this.layer.style.visibility = "hidden";
 this.layer.style.display = "block"
 this.centerOnWindow("pseudoWindow");

 // Show it and set visibility flag
 this.layer.style.visibility = "visible"
 this.visible = true;
 }
 },

Example 6-2. layerDialog.js library (continued)

162 | Chapter 6: Managing Browser Windows

Because this solution links in several libraries with a fair amount of code in them,
they feature heavy use of custom objects that encapsulate functions and properties
(Recipe 3.10). Only a tiny handful of objects are exposed to the global naming space.

The layerDialog.js library begins by loading the external style sheet file matching the
user’s operating system. The getCurrOSUI() function uses browser operating system
detection to determine which of the four supported styles applies to the current
browser. Then the function dynamically writes the <link> tag with the desired URL.
The code for the four .css files can be found in Examples 6-4 through 6-7 later in this
recipe.

The library continues by defining a global variable—dialogLayer—that acts as an
abstract object holding various pieces of information about the actual pseudowin-
dow. A utility function adapted from Recipe 13.7 (centerOnWindow()) centers the
layer in the current browser window when asked to by the function that prepares
the window for display. This application of the recipe, however, removes the final
show() function call (to the DHTML API) because another function of the library
controls the pseudowindow’s visibility.

A brief initialization routine in initLayerDialog() runs just after the page loads so
that the correct close box art is downloaded at the outset. The dialogLayer global
object also is assigned a reference to the layer for a shortcut reference in functions
that operate on the layer.

The main method of the dialogLayer object, openLayerDialog(), is invoked by your
scripts when they need to display the pseudowindow. This function shares many
arguments with the functions in Recipe 6.10 that are used for simulating a modal
dialog. However, the dimensions of the window are not needed here, since the
pseudowindow is a fixed size. One final method, closeLayerDialog(), is invoked
when the user clicks on the pseudowindow’s close box.

If you’re wondering why the openLayerDialog() function includes code that modi-
fies both the style.display and style.visibility properties to show the layer, it is
a result of a rendering bug in IE 6 for Windows. Using only the style.visibility
property to hide the pseudowindow can leave the rectangular area of the iframe

 closeLayerDialog : function() {
 this.layer.style.display = "none"
 this.visible = false;
 }
};

addOnLoadEvent(dialogLayer.initLayerDialog);

//**************************
// END LAYER DIALOG CODE
//**************************/

Example 6-2. layerDialog.js library (continued)

6.11 Simulating a Window with Layers | 163

completely blank (white) after the layer hides itself. Using the style.display settings
takes care of the bug. But this introduces a different problem with positioning the
layer prior to showing it. The odd combination of turning the layer’s visibility to
hidden and the display to block before centering the window does the trick. Then it’s
safe to use the visibility property to present the layer to the user.

Because this pseudowindow does not pick up the title from the document loaded
into the iframe (security restrictions prevent such actions if the pseudowindow con-
tent is served from a different domain and server), you must pass the desired win-
dow titlebar text as the parameter to the openLayerDialog() function. The third
parameter is a reference to a function that you want to invoke when the user clicks
on an OK or Apply button in the window—very much like the function passed to the
simulated dialog window in Recipe 6.10. This reference is also available as a prop-
erty of the global dialogLayer object. The same is true for the fourth parameter of
openLayerDialog(), which you can use to pass data to the pseudowindow. Be aware,
however, that the document in the pseudowindow’s iframe won’t be able to access
the dialogLayer object if the content arrives from another domain and server. To dis-
play a new document in the pseudowindow without passing any function reference
or arguments, supply a null parameter, as in:

openLayerDialog("prefs.html", "User Preferences", null, null);

Example 6-3 shows the layerDialogDrag.js library, which provides support for drag-
ging the pseudowindow around by the element standing in for the titlebar.

Example 6-3. layerDialogDrag.js library

// dragObject contains data for currently dragged element
var dragObject = {
 selectedObject : null,
 offsetX : 0,
 offsetY : 0,
 // invoked onmousedown
 engageDrag : function(evt) {
 evt = (evt) ? evt : window.event;
 dragObject.selectedObject = (evt.target) ? evt.target : evt.srcElement;
 var target = (evt.target) ? evt.target : evt.srcElement;
 var dragContainer = target;
 // in case event target is nested in draggable container
 while (target.className != "draggable" && target.parentNode) {
 target = dragContainer = target.parentNode;
 }
 // modification for pseudowindow use
 if (target.id == "titlebar") {
 target = dragContainer = target.parentNode;
 }
 if (dragContainer) {
 dragObject.selectedObject = dragContainer;
 DHTMLAPI.setZIndex(dragContainer, 100);
 dragObject.setOffsets(evt, dragContainer);

164 | Chapter 6: Managing Browser Windows

 dragObject.setDragEvents();
 evt.cancelBubble = true;
 evt.returnValue = false;
 if (evt.stopPropagation) {
 evt.stopPropagation();
 evt.preventDefault();
 }
 }
 return false;
 },
 // calculate offset of mousedown within draggable element
 setOffsets : function (evt, dragContainer) {
 if (evt.pageX) {

dragObject.offsetX = evt.pageX - ((typeof dragContainer.offsetLeft =="number") ?
 dragContainer.offsetLeft : dragContainer.left);

dragObject.offsetY = evt.pageY - ((typeof dragContainer.offsetTop == "number") ?
 dragContainer.offsetTop : dragContainer.top);
 } else if (evt.offsetX || evt.offsetY) {
 dragObject.offsetX = evt.offsetX - ((evt.offsetX < -2) ?
 0 : document.body.scrollLeft);
 dragObject.offsetY = evt.offsetY - ((evt.offsetY < -2) ?
 0 : document.body.scrollTop);
 }
 },
 // invoked onmousemove
 dragIt : function (evt) {
 evt = (evt) ? evt : window.event;
 var obj = dragObject;
 if (evt.pageX) {
 DHTMLAPI.moveTo(obj.selectedObject, (evt.pageX - obj.offsetX),
 (evt.pageY - obj.offsetY));
 } else if (evt.clientX || evt.clientY) {
 DHTMLAPI.moveTo(obj.selectedObject, (evt.clientX - obj.offsetX),
 (evt.clientY - obj.offsetY));
 }
 evt.cancelBubble = true;
 evt.returnValue = false;
 },
 // invoked onmouseup
 releaseDrag : function (evt) {
 DHTMLAPI.setZIndex(dragObject.selectedObject, 0);
 dragObject.clearDragEvents();
 dragObject.selectedObject = null;
 },
 // set temporary events
 setDragEvents : function () {
 addEvent(document, "mousemove", dragObject.dragIt, false);
 addEvent(document, "mouseup", dragObject.releaseDrag, false);
 // make sure nested frames react to events for Mozilla
 if (window.frames.length > 0) {
 var i, j;
 for (i = 0; i < window.frames.length; i++) {

Example 6-3. layerDialogDrag.js library (continued)

6.11 Simulating a Window with Layers | 165

 if (window.frames[i].frames.length == 0) {
 addEvent(window.frames[i], "mousemove", top.dragObject.dragIt, false);
 addEvent(window.frames[i], "mouseup", top.dragObject.releaseDrag,
 false);
 } else {
 for (j = 0; j < window.frames[i].frames.length; j++) {
 addEvent(window.frames[i].frames[j], "mousemove",
 top.dragObject.dragIt, false);
 addEvent(window.frames[i].frames[j], "mouseup",
 top.dragObject.releaseDrag, false);
 }
 }
 }
 }
 },
 // remove temporary events
 clearDragEvents : function () {
 removeEvent(document, "mousemove", dragObject.dragIt, false);
 removeEvent(document, "mouseup", dragObject.releaseDrag, false);
 if (window.frames.length > 0) {
 var i, j;
 for (i = 0; i < window.frames.length; i++) {
 if (window.frames[i].frames.length == 0) {
 removeEvent(window.frames[i], "mousemove", top.dragObject.dragIt,
 false);
 removeEvent(window.frames[i], "mouseup", top.dragObject.releaseDrag,
 false);
 } else {
 for (j = 0; j < window.frames[i].frames.length; j++) {
 removeEvent(window.frames[i].frames[j], "mousemove",
 top.dragObject.dragIt, false);
 removeEvent(window.frames[i].frames[j], "mouseup",
 top.dragObject.releaseDrag, false);
 }
 }
 }
 }
 },
 // initialize, assigning mousedown events to all
 // elements with class="draggable" attributes
 init : function (tagName) {
 var elems = [];
 if (document.all) {
 // IE 5 & 5.5 don't know wildcard for getElementsByTagName
 // so use document.body.all, which lets IE 4 work OK
 elems = document.body.all;
 } else if (document.body && document.body.getElementsByTagName) {
 elems = document.body.getElementsByTagName("*");
 }

Example 6-3. layerDialogDrag.js library (continued)

166 | Chapter 6: Managing Browser Windows

The layerDialogDrag.js library is identical to the element-dragging library from Rec-
ipe 13.11, with two small modifications. The setSelectedElement() function needs
to acknowledge events only from the titlebar layer, but it must set the draggable
layer to be the outer pseudoWindow layer. Thus, when the user drags the titlebar, the
entire pseudowindow div element moves.

The other modification occurs in the setDragEvents() and clearDragEvents()
method definitions. Because the primary content of this pseudowindow loads into
frames, and because Mozilla and IE don’t let mousemove or mouseup events bubble to
the main window, we must define event handlers to these nested frame elements.
Thus, when a user drags the titlebar in a downward motion quickly—causing the
cursor to momentarily slide into the frame region—the frame events will cause the
pseudowindow to move downward with the cursor.

You may experience a cosmetic annoyance in some circumstances, however. If the
content of the pseudowindow has form controls, browsers running on slow comput-
ers don’t refresh the screen promptly, leading to temporary ghosts while the
pseudowindow is dragged. You’ll have to evaluate how troubling this might be to
your users based on the types of pages you load into the iframe.

Let’s now come back to the issue of style sheets and their influence on the
pseudowindow elements. When style sheets are applied to the basic HTML of the
pseudoWindow div element, you get a range of looks, as shown in Figure 6-1.

One of the stated goals of this application was to have the pseudowindow blend into
the operating system look and feel as much as possible. The example shown in
Figure 6-1 tries to match the look and feel of three different operating system ver-
sions. To that end, a set of four separate external style sheets are created to handle
the specific art files and sizes to come close to simulating the native look and feel of
the host operating system. This assumes, of course, that you have available to you
the art files for titlebar backgrounds (just small vertical slices are needed because the
backgrounds repeat to fit the space) as well as close boxes. So that you can compare
the subtle differences needed between the versions, we’ll begin with dialogLayer_
win9xQ.css (shown in Example 6-4), which is the style sheet used for backward-
compatible IE versions (IE 5, 5.5, and 6 running in quirks mode).

 for (var i = 0; i < elems.length; i++) {
 if (elems[i].className.match(/draggable/)) {
 addEvent(elems[i], "mousedown", dragObject.engageDrag, false);
 }
 }
 }
};
addOnLoadEvent(function() {dragObject.init("div");});

Example 6-3. layerDialogDrag.js library (continued)

6.11 Simulating a Window with Layers | 167

Figure 6-1. Pseudowindows of Window9x, XP, and Mac OS X designs

Example 6-4. dialogLayer_win9xQ.css for backward-compatible IE/Windows versions

#pseudoWindow {position:absolute;
 top:0px;
 left:0px;
 width:600px;
 height:502px;
 border:2px solid black;
 background-color:#ffffff;
 border-top:3px solid #cccccc;
 border-left:3px solid #cccccc;
 border-right:3px solid #666666;
 border-bottom:3px solid #666666;
 display:none
 }

#titlebar {position:absolute;
 top:0px;
 left:0px;
 height:16px;
 width:596px;
 background-image:url(titlebar_win9x.jpg);
 color:#ffffff;
 border-bottom:2px solid #666666;

168 | Chapter 6: Managing Browser Windows

Only minor differences in dimensions accrue to the CSS and Windows 9x-compatible
versions of the style sheet: dialogLayer_win9x.css (shown in Example 6-5). This varia-
tion is needed to account for the different ways that CSS-compatible browsers mea-
sure element widths when borders, margins, and padding are involved. The titlebar
background art file is the same for both Windows 9x versions, as is the entire look of
the pseudowindow.

 font-family:Tahoma;
 font-size:8pt;
 font-weight:bold;
 padding:2px;
 text-align:left
 }

#closebox {position:absolute;
 right:0px;
 top:1px
 }

#barTitle {padding-left:3px}

#contentFrame{position:absolute;
 top:19px;
 left:0px;
 height:477px;
 width:594px;
 background-color:#ffffff;
 margin-left:0px;
 margin-top:0px;
 overflow:visible
 }

Example 6-5. dialogLayer_win9x.css CSS-compatible stylesheet for Windows 9x

#pseudoWindow {position:absolute;
 top:0px;
 left:0px;
 width:600px;
 height:502px;
 border:2px solid black;
 background-color:#ffffff;
 border-top:3px solid #cccccc;
 border-left:3px solid #cccccc;
 border-right:3px solid #666666;
 border-bottom:3px solid #666666;
 display:none
 }

#titlebar {position:absolute;
 top:0px;
 left:0px;

Example 6-4. dialogLayer_win9xQ.css for backward-compatible IE/Windows versions (continued)

6.11 Simulating a Window with Layers | 169

The Windows XP version, dialogLayer_winxp.css (shown in Example 6-6), adjusts its
dimensions to accommodate a thicker titlebar.

 height:16px;
 width:596px;
 background-image:url(titlebar_win9x.jpg);
 color:#ffffff;
 border-bottom:2px solid #666666;
 font-family:Tahoma;
 font-size:8pt;
 font-weight:bold;
 padding:2px;
 text-align:left
 }

#closebox {position:absolute;
 right:0px;
 top:1px
 }

#barTitle {padding-left:3px}

#contentFrame{position:absolute;
 top:22px;
 left:0px;
 height:480px;
 width:600px;
 background-color:#ffffff;
 margin-left:0px;
 margin-top:0px;
 overflow:visible
 }

Example 6-6. dialogLayer_winxp.css for browsers running in Windows XP

#pseudoWindow {position:absolute;
 top:0px;
 left:0px;
 width:600px;
 height:502px;
 border:2px solid black;
 background-color:#ffffff;
 border-top:3px solid #cccccc;
 border-left:3px solid #cccccc;
 border-right:3px solid #666666;
 border-bottom:3px solid #666666;
 display:none
 }

#titlebar {position:absolute;
 top:0px;
 left:0px;

Example 6-5. dialogLayer_win9x.css CSS-compatible stylesheet for Windows 9x (continued)

170 | Chapter 6: Managing Browser Windows

For Mac OS X, dialogLayer_macosX.css (shown in Example 6-7), the close box is on
the left side of the titlebar, and minor dimensional differences are needed for the user
interface elements.

 height:26px;
 width:596px;
 background-image:url(titlebar_winxp.jpg);
 color:#ffffff;
 border-bottom:2px solid #666666;
 font-family:Tahoma;
 font-size:10pt;
 font-weight:bold;
 padding:2px;
 text-align:left
 }

#closebox {position:absolute;
 right:1px;
 top:1px
 }

#barTitle {padding-left:3px}

#contentFrame{position:absolute;
 top:30px;
 left:0px;
 height:472px;
 width:600px;
 background-color:#ffffff;
 margin-left:0px;
 margin-top:0px;
 overflow:visible
 }

Example 6-7. dialogLayer_macosX.css for Macintosh browsers in Mac OS X

#pseudoWindow {position:absolute;
 top:0px;
 left:0px;
 width:600px;
 height:502px;
 border:2px solid black;
 background-color:#ffffff;
 border-top:3px solid #cccccc;
 border-left:3px solid #cccccc;
 border-right:3px solid #666666;
 border-bottom:3px solid #666666;
 display:none
 }

#titlebar {position:absolute;
 top:0px;

Example 6-6. dialogLayer_winxp.css for browsers running in Windows XP (continued)

6.11 Simulating a Window with Layers | 171

One could also make a legitimate argument that attempting to simulate the user
interface of the hosting operating system is not worth the effort. User interface
details change over time, but a solid, independent design for all visitors may do the
job equally well with less maintenance.

Perhaps the most significant advantage of using a positioned element as a pseudo-
window is that no extraneous pop-up windows are spawned. Not only do some pop-
up ad blockers prevent window.open() from working for some users, but multiple
windows can get lost behind others, causing confusion among casual web surfers.
Another, more philosophical, advantage is that the W3C DOM Level 2 pays only
slight recognition to the window as an object. XHTML specifications recommend
against the usage of multiple frames or windows (target attributes of form or a ele-
ments are not valid in strict XHTML 1.0, for example). Keeping everything in one
browser window appeals to one-window designers.

 left:0px;
 height:16px;
 width:596px;
 background-image:url(titlebar_macosX.jpg);
 color:#000000;
 border-bottom:2px solid #666666;
 font-family:Charcoal;
 font-size:9pt;
 font-weight:normal;
 padding:2px;
 text-align:center
 }

#closebox {position:absolute;
 left:0px;
 top:0px;
 padding-left:5px
 }

#barTitle {padding-right:6px
 background-color:transparent
 padding-left:6px
 }

#contentFrame{position:absolute;
 top:22px;
 left:0px;
 height:480px;
 width:600px;
 background-color:#ffffff;
 margin-left:0px;
 margin-top:0px;
 overflow:visible
 }

Example 6-7. dialogLayer_macosX.css for Macintosh browsers in Mac OS X (continued)

172 | Chapter 6: Managing Browser Windows

At the same time, however, using a layer to simulate a window presents disadvan-
tages over and above the dragging issue noted earlier. The foremost concern is that a
layer is confined to the window or frame boundaries in which it resides. Unlike a
true window, the user cannot drag the layer to a position such that it can be viewed
beyond the main window or frame edges. If the main window’s content is scrollable,
the layer moves with the page when the user scrolls the main window while the
pseudowindow is visible.

Although the example shown here is for a fixed-size pseudowindow, you could
expand upon the existing code to let the openLayerDialog() function receive and
operate on two more parameters that specify the layer size. This gets more complex
in a version that needs to support the same range of operating-system user inter-
faces, as this example does. If you compare the style sheet settings that control div
element widths and some div heights and top measures, you can see that you must
account for a wide variety of tweaks for a number of UIs. For example, the height,
width, and top style sheet properties for the iframe vary between the CSS- and back-
ward-compatible versions of the Windows 9x specifications. If you are prepared to
uncover the factors affecting various elements in this pseudowindow, as well as apply
them to a fresh window size passed as parameters to openLayerDialog(), you can
make the function more malleable than shown here. The ideal scenario is deploy-
ment on an intranet where the browsers and operating systems that need supporting
are strictly limited to a tolerable handful (or one!).

Another expansion on the pseudowindow is to fashion the equivalent of a modal
window, where the user is blocked from clicking on underlying links or form con-
trols. You can accomplish this by wrapping the current pseudoWindow div inside yet
another div whose background is a transparent image. The tricky part is sizing the
outer wrapper to the dimensions of the document so that it doesn’t extend to such
an arbitrarily large size that the browser window’s scrollbars let users scroll the page
into blank space. You must then position the pseudoWindow div within the outer
wrapper, taking the page scrolling into account. Trap all events in the outer div, and
assign the dragging event handlers to that div as well (instead of the base docu-
ment). The more browser types you want to support for this kind of feature, the
greater the challenge. But it’s doable if you are persistent and patient.

See Also
Recipe 6.9 for proprietary IE modal and modeless dialog windows; Recipe 6.10 for a
cross-browser simulated modal window using a subwindow; Recipe 11.5 for import-
ing OS-specific style sheets; Recipe 13.3 for details of the DHTML API library; Recipe
13.7 for centering an element in a window; Recipe 13.11 for creating a draggable ele-
ment; Recipe 14.15 for dynamically replacing a portion of body content; Recipe 9.1
and Recipe 9.3 for an event management library.

173

Chapter 7 CHAPTER 7

Managing Multiple Frames7

7.0 Introduction
As with multiple windows, multiple frames are controversial among experienced web
designers. Some love them, others refuse to use them. Dislike for framesets has a
couple of origins. One dates back many years, when not all browsers supported
them. Many veteran designers refused to accept framesets then and the prejudice
continues. More recently, however, the pure and strict XHTML implementations
omit frames from the document markup vocabulary. Forms and hyperlinks in vali-
dating documents cannot even include a target attribute that loads the result of a
form submission or a linked document into another frame.

But the frames concept is not disappearing into oblivion. The XHTML specification
includes a frame-specific version, and future work at the W3C may provide a fresh,
XML-based frame markup vocabulary (currently called XFrames). At the same time, vir-
tually every graphical user interface browser in use today supports HTML frames, and
will do so for a long time to come. By setting the frameset element’s border attribute to
zero to create a seamless space, users may not even be aware of your frame structure.

Frames are especially useful in a few specific instances. The most common applica-
tion is dividing a page into a large content frame and a smaller frame that acts as an
index, table of contents, or site navigation menu. Such small frames might be along
the left or right edge of the window, or sometimes as a horizontal slice at the top of
the window. As the user scrolls and navigates content in the large frame, the smaller
frame remains fixed and in position, ready for the next action. With the navigation
frame remaining stable as the larger frame moves from page to page, the user does
not have to wait for the navigation frame content to reload at every content page
refresh. Another advantage to this relative stability is that you can use the framesetting
document or other frame as a temporary repository of JavaScript data that persists
while content pages change.

Frames can also present user interface design challenges. For example, the browser’s
Back button steps backward through the history of individual frame changes, which is
something the user may not expect. Also, the browser’s titlebar description is governed

174 | Chapter 7: Managing Multiple Frames

by the title element of the frameset, and therefore does not change with each
frame’s navigation. This behavior might be an advantage for some UI designs, but
not others. Users, unfamiliar with the context menu available within a frame, may
also become frustrated trying to print the content of only one frame of a frameset.
Weigh these considerations when looking at a frame-based application.

Frames As Window Objects
Since the days of the earliest scriptable browsers, the browser’s object model exposed
frames to scripts, but not in the supplemental way that the latest W3C DOM does.
Each frame in the original system (still very valid in today’s browsers) is treated as a
window. After all, a frame contains a document just like a regular browser window.
If you can gain scriptable access to the frame, most window object properties and
methods apply directly to the frame as well.

The model for visualizing the relationships between frames in this manner uses a
parent-child metaphor. The initial document that loads into the browser—the one
containing the frameset element and all specifications for the frameset’s makeup—is
the parent of the frames containing documents that the user sees. Parent and individ-
ual child frames are all treated as window objects.

A script running in the framesetting document can reference any of the child frames,
and thus their documents, via the frames property of the parent window. The frames
property contains a collection (array) of frame elements belonging to the parent:

window.frames[i]
window.frames["frameName"]
window.frameName

Two of the reference syntaxes rely on the name attribute of the frame elements being
set. As for the numeric index, it is zero-based and follows the source code order of
the frame elements, even if the frames are nested deeply in framesets defined in the
same top-level frameset document. In other words, regardless of the number of
frameset elements defined in a framesetting document, there is only one parent, and
as many child frames as there are frame elements defined in the document.

A more complex relationship exists, however, if one of the documents assigned to a
frame’s src attribute is, itself, another frameset. A script in the top-level frameset
accesses this kind of nested frame through the following hierarchy:

window.frames["anotherFramesetName"].frames["nestedFrameName"]

Scripts operating inside a frame can reference both the parent frameset as well as sib-
ling frames, but references must follow the hierarchy rather strictly. The parent key-
word is the gateway to the parent framesetting document. For example, if the
framesetting document contains a global variable named allLoaded, a script in one of
the frames can read that value this way:

parent.allLoaded

Introduction | 175

For a script to access one of its siblings, the reference must include a parent frameset
that both siblings have in common. For example, consider the following simple
frameset:

<frameset cols="90, *">
 <frame name="navigation" src="navbar.html">
 <frame name="content" src="frameHome.html">
</frameset>

A script in the navigation frame can access the content frame with any of the follow-
ing references:

parent.frames[1]
parent.frames["content"]
parent.content

Thus, a script in the navigation frame can instruct the content frame to scroll to the
top as follows:

parent.frames["content"].scrollTo(0,0);

If the document loaded into the content frame was, itself, a framesetting document,
the reference lengthens to include the pathway to one of its nested frames:

parent.frames["content"].frames["main"].scrollTo(0, 0);

To simplify references between frames within deeply nested framesets, you can
always begin a reference from the topmost frameset, and then work your way down
to the desired frame. That’s where the top keyword is most useful:

top.frames["content"].frames["main"].scrollTo(0, 0);

A script in the deeply nested main frame can gain ready access to the highest naviga-
tion frame as follows:

top.frames["navigation"]

Perhaps more important than all of these referencing scenarios is the concept that
referencing frames as windows gives you immediate access to the document of that
window. For example, if a script in one frame wants to read the value of a text box in
a sibling frame, the following backward-compatible syntax uses all original Java-
Script and DOM Level 0 conventions:

var val = parent.frames["content"].document.entryForm.entryField.value;

Don’t forget to include the document reference after the frame reference (a common
mistake).

Framesets and Frames As Elements
In contrast to the frame-as-window scenario, the Internet Explorer and W3C object
models allow scripts to reference the elements that create the framesets and frames.
These objects have nothing to do with windows, per se, but everything to do with
the ways the object models treat elements. Thus, these objects grant your scripts
access to properties that mirror the tag attributes, such as a frameset’s cols and rows

176 | Chapter 7: Managing Multiple Frames

properties and a frame’s src and noResize properties. Access to these properties is
handy when your scripts need to read or modify the attribute values. For example,
Recipes 7.7 and 7.9 demonstrate how to adjust the dimensions of frames and even
the column and row makeup of a frameset under script control.

The question that arises, however, is how a script that has a reference to a frame ele-
ment can reach the document inside the frame. For this, you need to access a special
property of the frame element—more accurately, one of two possible properties,
depending on the object model you are using. The IE 5.5 and later model features a
contentWindow property of a frame element, through which you can get to the docu-
ment. For the W3C DOM, the contentDocument property references the document
object inside the frame. Mozilla, Safari, and Opera have implemented both proper-
ties, but if you need solid cross-browser support including IE 4, use the following
equalizer utility function:

function getFrameDoc(frameElem) {
 var doc = (frameElem.contentDocument) ? frameElem.contentDocument :
 ((frameElem.contentWindow) ? frameElem.contentWindow.document : null);
 return doc;
}

Frames and Events
One common problem facing scripters who are new to frames is that cross-frame
scripts almost always rely on the other frame being loaded to operate correctly. If one
frame loads quickly and references a form in a sibling frame but that form’s document
has not yet loaded, a script error greets the user. To compensate for this behavior, you
must be mindful of the load event handler characteristics for frames and framesets.

Just like a window, each frame element can have a load event handler. The load event
for a frame fires when the complete contents of that frame’s document have reached
the browser. The frameset element, too, receives a load event, but only after all of the
nested frames’ documents have loaded (and each of their load events has fired).
Therefore, the only sure way to trigger functions that operate across frames is to do
so via the frameset’s load event handler (which you can bind as an attribute to the
actual <frameset> tag).

Don’t confuse this behavior with the kind of event bubbling that graces the IE and
W3C DOM event models. The frameset element’s load event handler fires only the
first time the frameset and its child frames load. If the user or a script changes the
URL of one of the frames, that frame’s load event fires, but the frameset’s load event
does not fire again. If you assign a load event handler to the <frame> tag in the frame-
setting document, it executes each time the content of that frame changes (but only
in IE 5.5 or later and other modern browsers). For older browsers, the load event
handler must be defined in the body of the loaded document.

When documents in your framesets change a lot, and when they have substantial
dependence on each other’s scripting, you can also use another less elegant, but

Introduction | 177

effective, technique to poll for the availability of another frame’s document. Assum-
ing that each document is served from the same domain and server (to satisfy the
same-origin security policy), the load event handler in each document sets a global
Boolean variable, which acts as a flag for other frames’ access. The variable is initial-
ized at the top of the script as false, but the load event handler sets it to true:

<script type="text/javascript">
var loaded = false;
...
</script>
...
<body onload="loaded = true">

Any script that needs to access content or scripts in this document can check first for
the value of the loaded variable, and check it every second or so until it is true or the
number of permitted attempts reaches your maximum tolerance level:

// count attempts to reach other frame
var tries = 0;
// the function that needs info from the other frame
function someFunc() {
 if (parent.otherFrameName.loaded) {
 // OK, other frame is ready; use it in this branch
 tries = 0; // prepare for next access
 ...
 } else if (tries < 5) {
 tries++;
 // try again in 1 second
 setTimeout("someFunc()", 1000);
 } else {
 tries = 0;
 alert("Sorry, we could not complete this task.");
 }
}

Frame No-Nos
Just as windows and window objects could expose users to unscrupulous sites if secu-
rity precautions were not in place, frames could offer a similar range of holes. But
those, too, are blocked. Because frames are not as rich as windows with respect to
their impact on the browser application, the list of things you can’t do with frames is
much shorter than for windows. Regardless of your good intentions, you cannot do
the following things with frames:

Access document properties from other frames served by other domains
It could be potentially nasty business if a script in one frame could look into
another frame and retrieve its URL or any of the HTML content. Browsers imple-
ment what is known as a same-origin security policy, which means that a script in
one frame (or window) cannot access critical details (URL, DOM structure, form

178 | Chapter 7: Managing Multiple Frames

control settings, text content) from another frame (or window) unless both
pages are delivered by the same domain and server, and arrived via the same pro-
tocol (such as HTTP or HTTPS, but not both).

Change the content of the Address/Location text field
The URL shown in the field is of the framesetting document. You cannot place,
say, the main content frame’s URL in the field.

Set a Favorites/Bookmarks entry to maintain the precise frameset composition
If a user navigates through your framed web site, the browser’s own bookmark-
ing facilities will preserve either the frameset or (through a contextual menu) a
single frame’s document. See Recipe 7.6 to assist in reconstructing a frameset
from one frame’s bookmark.

7.1 Creating a Blank Frame in a New Frameset

Problem
You want a frameset definition to include a blank frame (as a clean slate, awaiting a
menu selection), but without having to create a blank HTML document on the server.

Solution
The following framesetting page demonstrates the technique of using a script-generated
blank page in one of two frames:

<html>
<head>
<script type="text/javascript">
function blankFrame() {
 return "<html><body></body></html>";
}
</script>
</head>
<frameset rows="50, *">
 <frame name="frame1" id="frame1" src="navSlice.html">
 <frame name="frame2" id="frame2" src="javascript:parent.blankFrame()">
</frameset>
</html>

You can apply the javascript: pseudo-URL to the src attribute of any frame element.

Discussion
As you can probably deduce from the example in the Solution, you can use Java-
Script to create any HTML as the initial content of a frame. For example, if you
wanted to use a special background color of the blank frame to be the same as your
HTML pages in the frameset, you could include the bgcolor attribute of the <body>
tag inside the blankFrame() function:

7.2 Changing the Content of One Frame from Another | 179

function blankFrame() {
 return "<html><body bgcolor='#ccee99'></body></html>";
}

Using the javascript: protocol with a src attribute is a somewhat controversial sub-
ject. On the one hand, it is the only backward-compatible way to let dynamic con-
tent fill an element that normally gets its content from a file or CGI process on the
server. But this kind of URL fails if the user has JavaScript disabled or the browser
doesn’t support JavaScript. Most browsers with JavaScript disabled will simply leave
the frame area blank, but the browser may be in an unstable state. Therefore, deploy
this technique only if you know your audience has script-enabled browsers.

Notice that the reference to the function points to the parent frame. This is required
because the execution of the javascript: pseudo-URL occurs inside the context of
the frame. In the frame’s eyes, the function is located in the parent, and the refer-
ence must include that pointer.

As an aside, a common mistake for scripting beginners is to replicate the javascript:
URL in event handler tag attributes. I don’t know where this came from, but it is
wrong, redundant, and sometimes disastrous. The javascript: protocol belongs only
where a URL is normally assigned. Thus, it is appropriate in assignments to src and
href attributes in tags. Do not use it in event handler assignments. Period.

See Also
Recipe 7.2 for modifying a frame’s content after the frameset loads; Recipe 14.1 for
creating dynamic content during the loading of a single page.

7.2 Changing the Content of One Frame from
Another

Problem
You want a script in one frame to change the document in another frame.

Solution
Assign the URL to the location.href property of the sibling frame with the follow-
ing syntax:

parent.otherFrameName.location.href = "newPage.html";

Replace otherFrameName with the name assigned to the name attribute of the <frame>
tag designated for that other frame in the framesetting document.

180 | Chapter 7: Managing Multiple Frames

Discussion
You don’t need JavaScript at all to load a page into another frame if the user is click-
ing on a hyperlink. Instead, assign the frame’s name to the target attribute of the <a>
tag, and let the href assignment handle the navigation part:

Product Catalog

On the other hand, if you want your pages to validate under strict XHTML, the
target attribute is not allowed for hyperlink elements (your framesetting document
also wouldn’t validate under strict XHTML, but you might be satisfied with letting
that document validate under the frameset version of XHTML 1.0).

If you need a target attribute but can’t use it due to validation conflicts, you can use
scripts to fill in the target attribute values after the page loads. Assign a load event
handler to the page so that a function assigns frame names to the target properties
of all links on the page. Thanks to the document.links collection found in every
HTML page, a script can easily loop through them all and assign the values as
needed. You can even segregate links that are to be loaded into another frame from
those that are to replace the current frame: use the class attribute of the a elements
to divide the elements into two classes. The following function assigns the content
frame target to those links whose class attributes are set to other:

function setLinkTargets() {
 for (var i = 0; i < document.links.length; i++) {
 if (document.links[i].className == "other") {
 document.links[i].target = "content";
 }
 }
}

Bear in mind that client-side image map area elements are also counted among the
document.links collection. Include them or not in this scripted assignment task, as
your design requires, by choosing which area elements have their class attributes
assigned in the HTML code.

Technically speaking, using scripts to add invalid attributes to XHTML-strict source
code breaks the page’s validation. It’s just that validators typically do not execute
JavaScript, and therefore see only the markup delivered by the server. You’ll have to
determine whether such workarounds violate validation policies (if any) imposed by
the site and application design.

See Also
Recipe 7.3 to change multiple frames from one user action; Recipe 7.4 for replacing
the current frameset with an entirely new document or frameset.

7.3 Changing the Content of Multiple Frames at Once | 181

7.3 Changing the Content of Multiple Frames at
Once

Problem
You want a single button or hyperlink to change the content of two or more frames
of the frameset.

Solution
Scripting is required for two frame changes at once. It is best to define a generalized
function that performs the navigation, and invoke that function from a click event
handler of a button or hyperlink. A function format that works for both interface ele-
ments is like the following:

function loadFrames(url1, url2) {
 parent.otherFrameName.location.href = url1;
 location.href = url2;
 return false;
}

The hyperlink tag that invokes this function looks as follows:

<a href="content12.html" target="content" onclick="return
loadFrames('content12.html', 'navbar12.html')">...

A default navigation path for the link is provided to accommodate visitors who have
scripting disabled.

Discussion
There are numerous variations on the solution script. Your choice depends on your
design and the audience for the pages. Let’s examine some other scenarios and alternate
approaches.

As indicated in Recipe 5.13, your site design can allow for nonscripted access to be
controlled strictly by the standard hyperlink href and target attributes, but a script-
enhanced presentation takes advantage of the click event handler of the link to sup-
plement or replace the default hyperlink action. You can even go so far as to have the
default action navigate to one part of your web site, while the scripted action goes
down an entirely different path suited to scriptable browsers.

The example shown in the Solution is tailored to a link that changes documents in
both the current frame and one other. You aren’t limited to this combination. If
you’d rather keep the current frame intact (perhaps it is a static navigation bar), but
multiple other frames are to be updated with each navigation bar click, change the
references in the loadFrames() function to point to the desired frames in the order
the URLs arrive from the event handler calls. When using hyperlinks as the user
interface element, however, be sure to use the technique shown in the example so

182 | Chapter 7: Managing Multiple Frames

that the click event handler ultimately evaluates to return false to prevent the
default link action from operating.

If access by nonscriptable browsers is a significant issue for your design, and you
have a complex frameset consisting of several frames, you can still offer the equiva-
lent of changing multiple frames, but do it for scriptable browsers more quickly. For
nonscriptable browser users, you have to define a different framesetting document
for each combination of frame content you offer from your navigation menu. Assign
the framesetting document to the href attribute of a link, with the target pointing to
the special _top window. Continue to use the loadFrames() function for the click
event handler of the link:

<a href="frameset12.html" target="_top" onclick="return
loadFrames('content12.html', 'navbar12.html')">...

The advantage for the scriptable browser user is that the frames that don’t have to
change stay right where they are, and the browser doesn’t have to compare the cache
for those frames against the server’s document. Thus, navigation is faster for script-
able browsers, but just as complete for nonscriptable browsers. This is the ideal
value-added proposition that DHTML brings to a web page.

See Also
Recipe 7.2 for changing the content of one sibling frame.

7.4 Replacing a Frameset with a Single Page

Problem
You want a script statement in one frame to replace the frameset with a new docu-
ment, such as removing your frameset to make way for an entirely different web site.

Solution
Assign the URL to the topmost parent of the frame hierarchy:

top.location.href = "newPage.html";

This is the scripted equivalent of the following hyperlink specification:

...

Use the scripted version only if you are performing some other script activity leading
up to the replacement, or you need your page to validate to the XHTML strict DTD,
which forbids the target attribute.

Discussion
You could reference the parent frameset instead of the top in a simple frameset. In
this instance, a reference to the top and parent framesets points to the same object.

7.5 Avoiding Being “Framed” by Another Site | 183

But if you specify the topmost frameset, you are guaranteed removal of any vestiges of
earlier framesets, especially if the script is potentially running within a nested frameset.
That includes a frameset from an origin other than your own domain and server.

Be aware that if your frameset should be embedded within another site’s frameset,
the top reference points to the other site’s frameset. To limit the scope of your calls
to only your frames, use parent references.

See Also
Recipe 7.5 for how to use this technique to prevent your site from being displayed in
another site’s frameset.

7.5 Avoiding Being “Framed” by Another Site

Problem
You want to prevent your site from appearing within another site’s frameset.

Solution
Include the following script statements at the very top of a script appearing in the
head portion of the document:

if (top != self) {
 top.location.href = location.href;
}

If you are using a frameset, include this script only in the framesetting document’s
script, and not in the documents that appear in the frames.

Discussion
The act of framing someone else’s site is less prevalent than it was some years ago,
but it can still happen. Sometimes it occurs innocently enough, when another site
includes a pointer to your site but the link is part of a frameset navigation system,
where all link destinations are loaded into a content frame of the site. Whether you
are concerned that your site appears in a frame of someone else’s site is a personal
issue. A corporate site usually desires control of the user’s experience at the site, and
doesn’t wish to have someone else’s banner advertising appear in the same browser
window as its own pages. Also, being in someone else’s frameset makes it less likely
that the visitor will correctly bookmark your site. Not all users—especially nontech-
nical casual web surfers—know that the browser’s contextual menu includes an
option to bookmark just one frame.

The script in this recipe compares the current window object against whatever window
object is reflected by the top window reference. A window object has four different
ways to be referenced: window, self, parent, and top. There is no difference between

184 | Chapter 7: Managing Multiple Frames

window and self: they always refer to the current window regardless of the window’s
relationship among frames and framesets. Sometimes, as in this case, using self is
more descriptive when you read the script. When the browser window contains no
framesets, the current window object is also the parent and top object. If that condi-
tion isn’t met when the page with the script shown in the Solution loads, the
frameset gets replaced by the page running the script.

Because the unknown outer frame is undoubtedly originating from another domain
and server, you cannot dig too deeply into the details of the top window, such as its
URL. Security restrictions prevent that. But comparing the window object references
does not violate the same origin policy.

See Also
Recipe 7.6 for a way to guarantee that a URL to one of your framed documents loads
in its frameset.

7.6 Ensuring a Page Loads in Its Frameset

Problem
You want a page bookmarked from a frame within a frameset to load within its
frameset.

Solution
For a frameset that always consists of the same framed documents, include a script
patterned on the one below in each frame’s document. This solution includes a test
for a peculiarity of the Netscape Navigator 4 browser described in the Discussion
section:

var isNav4 = (navigator.appName == "Netscape" &&
 parseInt(navigator.appVersion) == 4);
if (top.location.href == self.location.href) {
 if (isNav4) {
 if (window.innerWidth != 0) {
 top.location.href = "frameset12.html";
 }
 } else {
 top.location.href = "frameset12.html";
 }
}

If a user has bookmarked a page with the previous script in it, the page will begin to
load, but will then load the frameset that normally houses the page.

7.6 Ensuring a Page Loads in Its Frameset | 185

Discussion
The Navigator 4 issue affects the Windows version in particular. In that browser,
when a user prints a frame, the page is automatically loaded into a temporary win-
dow of zero width. Scripts run when the page loads into that invisible window, so it’s
important to bypass the frameset-loading routine when the page is being printed or
else you’ll land in an infinite loop. If Navigator 4 is not used among your target audi-
ence, you can simplify the script to just one branch:

if (top.location.href == self.location.href) {
 top.location.href = "frameset12.html";
}

This script compares the URLs of the windows referred to as top and self. If they are
the same, it means that the document is loading as the only one in the browser win-
dow. You’ll have to tailor the URL assignment for each document containing this
script so that the desired frameset loads.

For a more fluid frameset, where one or more frames change in response to user
action, you need more intelligence built into the scripts and documents. At the core,
each page’s document needs a script not only to load the frameset, but to convey the
URL of the page that needs loading into one of the frames. For example, if a frameset
contains a fixed navigation frame through a product catalog, and the content frame’s
document changes with each menu choice, you want a bookmark to one of the prod-
uct frames to load the frameset with that product showing.

To make this intelligent frame loading proceed correctly requires scripts in each
bookmarkable page and one in the frameset. Each page sends information about
itself by way of a search string appended to the frameset page’s URL; the frameset’s
script receives that information and loads the content frame accordingly.

Let’s start with a content document. The script gets all of its information from the
page itself, so you can write this script once as an external library and link it into
each content page. Here is the library script, which runs as the page loads:

var isNav4 = (navigator.appName == "Netscape" &&
 parseInt(navigator.appVersion) == 4);
if (parent == window) {
 // Don't do anything if NN4 is printing frame
 if (!isNav4 || (isNav4 && window.innerWidth != 0)) {
 if (location.replace) {
 // Use replace(), if available, to keep current page out of history
 location.replace("masterFrameset.html?content=" + escape(location.href));
 } else {
 location.href = "masterFrameset.html?content=" + escape(location.href);
 }
 }
}

The current page’s URL is attached to the URL of the frameset in the form of a
name/value pair, just like a typical form submission search string. All browsers

186 | Chapter 7: Managing Multiple Frames

except some early ones apply the location.replace() method so that the current
page won’t be added to the browser’s history. If the page were to be part of the his-
tory, a user clicking the Back button could get into an infinite backward loop
because the button would never be able to go any earlier than this page.

Code for the frameset consists of two functions, one of which is triggered by the load
event handler of the <frameset> tag. The key supporting function converts the search
string from the URL into an object whose property name is the name part of the
name/value pair passed in the search string. The function also accommodates multi-
ple name/value pairs embedded in the search string in case you wish to pass addi-
tional information to the frameset:

function getSearchData() {
 var results = new Object();
 if (location.search.substr) {
 var input = unescape(location.search.substr(1));
 if (input) {
 var srchArray = input.split("&");
 var tempArray = new Array();
 for (var i = 0; i < srchArray.length; i++) {
 tempArray = srchArray[i].split("=");
 results[tempArray[0]] = tempArray[1];
 }
 }
 }
 return results;
}

The load event handler of the frameset invokes the following loadFrame() function,
which reads the search string data and applies the URL to the content frame:

function loadFrame() {
 if (location.search) {
 var srchArray = getSearchData();
 if (srchArray["content"]) {
 self.content.location.href = srchArray["content"];
 }
 }
}

This example uses the same frame name (content) as the property name in the name/
value pair of the search string. Theoretically, you could generalize the loadFrame()
function to assign the URL to the frame whose name arrives in the name/value pair.
That design choice, however, places the burden of knowing the destination frame at
the individual frame level. By leaving the specification to the frameset script, the des-
tination frame’s name is kept within the context of the affected frameset.

Assuming that the framesetting document contains a default URL for the content
frameset (i.e., for when the visitor first arrives to the frameset), that default page
stays in place if no search string containing a content property name arrives with the
frameset URL. If a search string accompanies the URL, the default page appears
momentarily, until the passed URL is loaded into the frame.

7.7 Reading a Frame’s Dimensions | 187

See Also
Recipe 7.5 for a script that keeps your site from being encapsulated in someone else’s
frameset; Recipe 10.6 for more examples of passing data between pages via URLs.

7.7 Reading a Frame’s Dimensions

Problem
You want to know the precise pixel dimensions of a frame after the frameset is rendered.

Solution
Because it is not uncommon to specify a percentage or * wildcard character for one
or more frame size specifications, the actual rendered size is unknown until the
browser completes all of its calculations for rendering. A script running in one of the
frames can access the interior dimensions of any sibling frame (and its own frame)
with the following function:

function getFrameSize(frameID) {
 var result = {height:0, width:0};
 if (document.getElementById) {
 var frame = parent.document.getElementById(frameID);
 if (frame.scrollWidth) {
 result.height = frame.scrollHeight;
 result.width = frame.scrollWidth;
 }
 }
 return result;
}

The function returns an object with height and width properties containing the ren-
dered pixel measures of the frame whose ID is passed as a parameter. You get accu-
rate readings in IE 4 or later for Windows, Mozilla, Safari, and Opera. IE for
Macintosh through version 5.x provides accurate readings when the frame in ques-
tion does not have scrollbars. When scrollbars are present, the returned sizes are
reduced by the thickness of the scrollbars. Unfortunately, no property reveals
whether a scrollbar is visible in the frame if the frame’s scroll attribute defaults to
the auto setting.

Discussion
The keys to making the function work include referencing the parent (or top) of the
individual frames and the actual frame element as opposed to the frame-as-window
object. Thus, the more common parent.frameName or parent.frames["frameName"]
type of reference will not suffice. By referencing the frame element directly, you get
the browser to report the rendered size of the element, irrespective of the content of
the frame.

188 | Chapter 7: Managing Multiple Frames

You can also install this function inside the frameset document’s script. But you
must then remove the reference to the parent in the fourth line of the function.
Because the script already operates in the parent, its own element collection includes
the frame elements. You can install this function in the frameset, yet still invoke it
from one of the frames, as in:

var frameSize = parent.getFrameSize("myFrame4");

The parent window is part of the equation in one form or another.

See Also
Recipe 7.8 for resizing a frame under script control.

7.8 Resizing Frames

Problem
You want a script to adjust the size of one or more frames in a frameset, including
resizing a frame to zero width or height to hide a frame.

Solution
Apply a variation of the script shown in Example 7-1 in the Discussion to your
frameset (customized with your frameset element’s ID). The script goes in the frame-
setting document and is invoked by a user interface element in one of the frames. For
example, a button specification in one of the frames invokes the toggleFrame() func-
tion as follows:

<button onclick="parent.toggleFrame()">Hide/Show Navbar</button>

You could also use hyperlinks or linked images to act as clickable triggers for the
action.

Discussion
In browsers whose object models support access to all element types (IE 4 and later,
Mozilla, Safari, and Opera), you can control the values of the cols and rows
attributes of the frameset element via properties of the same names. The
frameResize.js code library shown in Example 7-1 adjusts only the cols property of a
typical two-column frameset. In this case, the width of the lefthand frame is set to
zero, effectively hiding the frame from view.

Example 7-1. Frame-resizing functions in frameResize.js

// global to save previous setting
var origCols;

// resize lefthand frame
function resizeLeftFrame(left) {

7.8 Resizing Frames | 189

The code begins by declaring a global variable, origCols, that preserves the original
cols attribute setting so it can be used later to restore the previous setting. Next, the
resizeLeft() function is wired to apply a numeric value (arriving as an argument) to
the first of two values of the frameset’s cols property. Before doing so, the function
stores a copy of the property value in the origCols variable. To return the frameset to
its previous state, invoke the restoreFrame() function. These two functions are con-
trolled through a master function, toggleFrame(), invoked from user interface ele-
ments located in one or more of the visible frames.

A logical user interface idea behind the frame toggle is to change the text or image signi-
fying the purpose of the click action. For example, when the frame is showing, the label
says something like “Hide Navbar”; when the bar is invisible, the label says “Show
Navbar.” You can do this quite easily on IE browsers, but not some early Mozilla ver-
sions. Here’s how to implement the toggleFrame() function to work this IE magic:

function toggleFrame(elem) {
 if (origCols) {
 restoreFrame();
 elem.innerHTML = "<<Hide Navbar";
 } else {
 resizeLeftFrame(0);
 elem.innerHTML = "Show Navbar>>";
 }
}

The button in the frame is:

<button onclick="parent.toggleFrame(this)"><<Hide Navbar</button>

Figure 7-1 shows the two states of the button with respect to the frameset.

The reason some early Mozilla-based browsers won’t let you handle the UI portion
so elegantly is that when the frameset resizes itself to the new specifications, the
browser automatically reloads the pages (needlessly, in my opinion). Thus, the
default value for the UI element reverts to the value as delivered from the server.

 var frameset = document.getElementById("masterFrameset");
 origCols = frameset.cols;
 frameset.cols = left + ", *";
}
function restoreFrame() {
 document.getElementById("masterFrameset").cols = origCols;
 origCols = null;
}
function toggleFrame() {
 if (origCols) {
 restoreFrame();
 } else {
 resizeLeftFrame(0);
 }
}

Example 7-1. Frame-resizing functions in frameResize.js (continued)

190 | Chapter 7: Managing Multiple Frames

To counteract the problem—and provide a cross-browser service to all users—you
can preserve the state of the frame’s visibility in a cookie, and use the cookie to deter-
mine the text of the button (or image URL if you prefer) each time the frame loads.
This added work lets the user’s preference persist from session to session, thus
enhancing the visitor’s enjoyment of the site.

Coding for this enhancement has to work around an unfriendly bug in some versions
of IE, where an event handler invoking a function in the parent provides incorrect
information about the actual target of the event. The solution requires a little bit of
indirection, but the result works in all browsers that support W3C DOM syntax.

The page in the frame that always stays visible defines a placeholder span element
whose content is filled only if the browser is of a required minimum scriptability:

Scripts include a linked cookieManager.js library (see Recipes 1.10 and 3.14):

<script src="cookieManager.js"></script>

Figure 7-1. Hiding and showing a frame in a frameset

7.8 Resizing Frames | 191

A load event handler in that frame’s page initiates the creation of the UI element for
the frame state toggle:

function setToggleUI() {
 var label = "<<Hide Navbar";
 if (document.getElementById) {
 if (cookieMgr.getCookie("frameHidden") == "true") {
 label = "Show Navbar>>";
 }
 var newElem = document.createElement("button");
 newElem.onclick = initiateToggle;
 var newText = document.createTextNode(label);
 newElem.appendChild(newText);
 document.getElementById("togglePlaceholder").appendChild(newElem);
 }
}

Notice that the button element’s click event handler invokes the local function
initiateToggle() in the same frame. This indirection allows the accurate event tar-
get to be reported in IE. That function reads the target and sends it along to the
revised toggleFrame() function in the parent frame:

function initiateToggle(evt) {
 evt = (evt) ? evt : event;
 var elem = (evt.target) ? evt.target : evt.srcElement;
 if (elem.nodeType == 3) {
 elem = elem.parentNode;
 }
 parent.toggleFrame(elem);
}

In the parent frame (which must also link in the cookieManager.js library from Recipe
3.14), the toggleFrame() function now not only adjusts the cols setting of the
frameset, but it also saves the current state value to a cookie and sets the button’s label
to the new version (since IE doesn’t reload the frameset, it needs the new values
directly):

function toggleFrame(elem) {
 if (origCols) {
 elem.firstChild.nodeValue = "<<Hide Navbar";
 cookieMgr.setCookie("frameHidden", "false", cookieMgr.getExpDate(180, 0, 0));
 restoreFrame();
 } else {
 elem.firstChild.nodeValue = "Show Navbar>>";
 cookieMgr.setCookie("frameHidden", "true", cookieMgr.getExpDate(180, 0, 0));
 resizeLeftFrame(0);
 }
}

All other functions in the parent stay the same as in the original solution.

192 | Chapter 7: Managing Multiple Frames

See Also
Recipe 7.7 for reading the current pixel dimensions of a frame; Recipe 1.10 and Rec-
ipe 3.14 for details on the cookieManager.js library.

7.9 Setting Frameset Specifications Dynamically

Problem
You want to use a script to build an entirely new set of frames within the current
frameset.

Solution
Use either of the makeNewFrameset() functions described in the Discussion to empty the
current set of frames and install a new set. The current framesetting document’s scripts
and variables remain intact throughout the process. Invoke the function from a user
interface element (button or link) or from any other function in one of the frames:

parent.makeNewFrameset();

This solution works only with IE 5.5 or later and Mozilla 1.7 or later (but see the
Discussion for a workaround in older browsers).

Discussion
The makeNewFrameset() function shown in Example 7-2 converts a frameset that is
initially delivered as one set up in two columns to a frameset with different docu-
ments in a two-row frameset.

Example 7-2. A function to generate a new frameset for IE 5.5 or later

function makeNewFrameset() {
 var newFrame1 = document.createElement("frame");
 newFrame1.id = "newFrame1";
 newFrame1.name = "newFrame1";
 newFrame1.src = "altNavBar.html"
 var newFrame2 = document.createElement("frame");
 newFrame2.id = "newFrame2";
 newFrame2.name = "newFrame2";
 newFrame2.src = "altHome.html"

 var frameset = document.getElementById("masterFrameset");
 while (frameset.childNodes.length > 0) {
 frameset.removeChild(frameset.firstChild);
 }
 frameset.cols = null;
 frameset.rows = "80, *";
 frameset.appendChild(newFrame1);
 frameset.appendChild(newFrame2);
}

7.9 Setting Frameset Specifications Dynamically | 193

It is important to clean out the existing node tree and associated properties before
repopulating it with new elements. In this function, the new frame elements are cre-
ated in memory only. While they stand by, the original frameset is first cleansed of its
previous child nodes. Thus, even if the main frameset has a more complex frame
construction inside it, everything is gone after the while loop does its job. Because
we’re changing the main frameset from a column- to row-oriented frameset, the orig-
inal setting for the cols attribute is cleared out before assigning fresh values to the
rows property. At last, the new frame elements are appended to the frameset.

If IE 6 and Mozilla are your only target browsers for this kind of application, you
might consider using a W3C DOM DocumentFragment object as a temporary con-
tainer for the frame elements. The revised function is shown in Example 7-3.

For a backward-compatible solution, you can always fall back on the document.
write() method of the parent or top frame. Assemble the entire contents of a new
framesetting document as one string. Then issue one top.document.write() method
followed by a top.document.close() method. All vestiges of the original frameset
(including script variables in the frameset and frames) disappear and are replaced by
the new frameset.

See Also
Recipe 7.8 for resizing frames; Recipe 14.2 for using document.write() to generate a
new page (and techniques for including script libraries in such a page).

Example 7-3. A function to generate a new frameset for W3C browsers and IE 6 or later

function makeNewFrameset() {
 var frag = document.createDocumentFragment();
 var newFrame= document.createElement("frame");
 newFrame.id = "newFrame1";
 newFrame.name = "newFrame1";
 newFrame.src = "altNavBar.html"
 frag.appendChild(newFrame);
 newFrame = document.createElement("frame");
 newFrame.id = "newFrame2";
 newFrame.name = "newFrame2";
 newFrame.src = "altHome.html"
 frag.appendChild(newFrame);

 var frameset = document.getElementById("masterFrameset");
 while (frameset.childNodes.length > 0) {
 frameset.removeChild(frameset.firstChild);
 }
 frameset.cols = null;
 frameset.rows = "30%, *";
 frameset.appendChild(frag);
}

194

Chapter 8CHAPTER 8

Dynamic Forms 8

8.0 Introduction
Giving scripted intelligence to web forms was the impetus that led to the develop-
ment of the JavaScript language and the notion of a document object model. While a
lot has happened to scripting in the meantime, forms still make frequent use of
scripts to assist with user-friendly instantaneous interaction that otherwise requires a
two-way trip to the server (and delays for the user) to accomplish.

Because of the comparatively long history of scriptable forms and form controls, it is
comforting to know that most such scripts work with a wide range of browsers, and
not just those that implement the W3C DOM. Even so, there are some misunder-
standings about the combination of scripts and forms that I’ll attempt to clear up in
this chapter.

Referencing Forms and Controls
Before the W3C DOM, scripts used what is now known as DOM Level 0 syntax to
reference form objects and the form controls (input and textarea elements) within
them. This long-time convention relies for the most part on the form and controls
having name attributes assigned to them. In fact, even today’s browsers won’t submit
form control values to the server unless the elements have names assigned to them
(independent of the now ubiquitous id attribute). At the same time, however, the
object model provides arrays of forms and form elements, which can be accessed
through JavaScript array syntax and numerical index values. For example, if a docu-
ment contains a single form whose name is userInfo, backward-compatible scripts
can reference the form object in any of the following ways:

document.forms[0]
document.forms["userInfo"]
document.userInfo

Each form element object also contains an elements array that contains references to all
of the recognized form controls nested inside the form. For example, if the second

Introduction | 195

input element of the userInfo form is a text box named age, you have three ways to
reference that text box for each of the three ways you can use to reference the con-
taining form. Using just one containing form reference, here is an example of three
equivalent references to the age text box:

document.userInfo.elements[1]
document.userInfo.elements["age"]
document.userInfo.age

Notice how this syntax follows the element containment hierarchy: document to
form to control. This allows for the possibility of a form control’s name being reused
in multiple forms on the page—something not possible (or at least not encouraged)
with id attributes.

In browsers supporting scriptable id attributes of elements, you can also reference a
form directly by way of the object model syntax(es) supported by the browser. For
example, in IE 4 and later, you can use the Microsoft DOM reference syntax:

document.all.formID
document.all.formControlID

For W3C DOM syntax (IE 5 or later, Mozilla, and Safari), use the regular element-
referencing syntax:

document.getElementById("formID")
document.getElementById("formControlID")

Even though your scripts can use only the ID to build references, you’ll want to
assign an identifier to both the name and id attributes of each element if the form is to
be submitted to the server. You can use the same identifier for both attributes of an
element and not risk collisions:

<input type="text" id="firstName" name="firstName" />

Browser versions that you need to support with your scripts should dictate the syn-
tax you use to address forms and controls. If backward-compatibility is of any con-
cern with your audience (including the now ancient Navigator 4), stick with the
DOM Level 0 syntax. It will continue to be supported in new mainstream browsers
for a long time to come. This book uses DOM Level 0 syntax in numerous examples
to remind you that we’re addressing form controls.

Form Validation Strategies
Client-side form validation is a helpful service that speeds the correction of poten-
tial errors in forms before they ever reach the server. That is not meant to imply that
client-side validation can replace server-side validation. Far from it. But, like most
DHTML applications, client-side validation helps your users be more efficient when
filling out complex forms.

Even on the client, however, you have two types of validation strategies to con-
sider: real-time and batch mode. In real-time validation, a script looks for signs of

196 | Chapter 8: Dynamic Forms

activity—such as change events in text boxes—to immediately validate an entry
against whatever data restrictions apply to the field. The advantage of instantaneous
validation feedback is that the user’s mind is still fresh about the information filled
into a field. In other words, when the user has just entered an address into an email
address field, it’s more helpful to bring the user immediately back to that field and
correct the error, rather than wait until later. On the other hand, in most situations,
you should not be so dogmatic as to absolutely require that a form be filled out in
order, which can happen when you use blur events of text boxes to trigger valida-
tion. Give the user a chance to tab through and skip over a text box while filling out
a form.

But then be sure to catch any missed or passed text boxes with a batch validation
right before the form gets submitted. This offers a last-chance review of data before
sending it to the server. In most cases, the same routines you use for the real-time
field checking can be reused by the batch validation routines triggered either by the
submit event of the form object or by a regular button-type input element that invokes
validation routines and form submission.

Additionally, you will have to decide whether your text box inspections will use old-
fashioned string parsing or the more modern regular expression facilities of Java-
Script. Regular expressions provide powerful and quick ways of looking for patterns
in a text box entry, but the syntax for using regular expressions is rather terse and
cryptic. You will see some examples of both forms in Recipe 8.2. The introduction to
Chapter 1 presents a brief overview of regular expressions in JavaScript, but you’ll
need a solid JavaScript tutorial or reference to understand the full scope of regular
expressions.

Email Submissions and Return Pages
A traditional HTML form submits its data to a program running on the server. That
program can be in a variety of languages (Perl, Java, Visual Basic, C, C++, C#, Tcl,
and more), but the client never knows or cares what happens on the server. In typi-
cal operation, the server program receives the data, tears it apart, stuffs it into data-
base tables, or otherwise manipulates the data for storage on the server. When the
data is processed correctly, the server then returns an HTML page back to the client.
By default, that return page displays in the same window or frame as the form.
There’s nothing particularly special about this transaction.

But many scripters don’t have access to server scripting, either because they host on
closed systems, or the technology is beyond their field of expertise. To fill in the gap
and still capture the data submitted by a form, they have resorted to assigning a
mailto: URL to the action attribute of a form element. When this approach first
appeared in browsers, the form’s data was quietly emailed to the address assigned to
the mailto: URL. But as security consciousness overtook the Web (especially with
the advent of scripting), such surreptitious emailing came to an end. Instead, a more

8.1 Auto-Focusing the First Text Field | 197

explicit email process took hold, whereby the user with a properly configured
browser and email client sees the email message before it is sent.

A problem with this scenario is that a significant number of users either don’t have
their email clients configured correctly and matched to their browser, or they are
intimidated by the appearance of the email window. The result is that using a
mailto: URL to submit forms is less likely to capture all submissions that you might
otherwise receive.

However, should you persist with your usage of the mailto: URL, be aware that this
kind of submission does not return any kind of page to the browser. There is no con-
firmation that the mail was submitted correctly or completely. Moreover, there is no
absolutely reliable way to script a dummy confirmation page. To do so reliably
requires that the browser receive some notification of completion so that the page
could be displayed in place of the form’s page. If you or a script removes the form’s
page before the actual submission completes its task, the submission may be aborted
on the network—losing even more potential submissions before they reach you.

The solution is to search the Web for a third-party host for a Unix program called
FormMail. This program lets you submit a form to a genuine server program that
forwards the content to a mail address you supply in the setup process.

Many examples in this chapter show event handlers being bound to
form and form control elements by way of inline attributes (e.g.,
onchange). This approach simplifies the demonstrations—you can
clearly see what events and functions are being assigned to an ele-
ment. In practice, however, it is better to remove these event bindings
from inside elements and employ scripted event bindings, as shown in
Recipes 9.1 and 9.3 (built into the eventsManager.js library described
in those recipes).

8.1 Auto-Focusing the First Text Field

Problem
You want the user to begin typing into the first text box of a form without having to
physically bring focus to the box.

Solution
Assuming that the page always contains a form and text field with the same names,
use an onload event handler to invoke the focus() method of the text box:

<body onload="document.formName.fieldName.focus()">

Substitute the name of your form and text box for the two placeholders in this code.

198 | Chapter 8: Dynamic Forms

Discussion
As simple as this solution is, you’ll be amazed how much it helps casual users get
faster results from a page’s form. The Google search form uses a similar technique so
that all a user needs to do is select the Google.com site from the Favorites/Book-
marks list and start typing the query string. Without this scripted assistance, users of
most browsers have to click on the text box or press the Tab key a couple of times to
bring focus to the text box. You must wait for the page to complete its loading pro-
cess before giving the text box focus, or some browsers will grab focus away from the
box.

If you deliver the text box with default or sample text that is to be replaced by the
user, you should also invoke the select() method of the box:

<body onload=
 "document.formName.fieldName.focus();document.formName.fieldName.select()">

This action also selects the text in the box, such that the next keyboard key that gets
pressed removes the default text.

See Also
Recipe 8.4 for auto-selecting a form field that fails validation; Recipe 8.10 for auto-
tabbing between text boxes with fixed-length entries.

8.2 Performing Common Text Field Validations

Problem
You want to verify that a text box contains one of the following: any text, a number,
a string of a fixed length, or an email address.

Solution
Apply the library of text field validation routines shown in the Discussion (Examples
8-1 and 8-2) to your form. The library includes the following functions:

isNotEmpty()
The field has one or more characters in it.

isNumber()
The value is a number.

isLen16()
The field contains exactly 16 characters.

isEMailAddr()
The field contains a likely email address.

8.2 Performing Common Text Field Validations | 199

For real-time validation of text box entries, use a change event handler in the input
element and pass a reference to the element by way of the this keyword. For exam-
ple, the following input element could be used for an email address:

<input type="text" size="30" name="eMail" id="eMail"
 onchange="isEMailAddr(this)" />

See Recipe 8.3 for an example of how these validation functions can be linked
together in batch validation prior to submitting the form. The return values from the
validation functions are vital for successful operation triggered by the form’s submit
event handler.

Discussion
Example 8-1 shows a set of fully backward-compatible text validation functions. All
of these functions are to be invoked by both the change event handler of the text box
and a batch validation function triggered by the submit event handler of the enclos-
ing form. All functions are passed references to the form control invoking the event
handler.

Example 8-1. Backward-compatible text field validation functions

// validates that the field value string has one or more characters in it
function isNotEmpty(elem) {
 var str = elem.value;
 if(str == null || str.length == 0) {
 alert("Please fill in the required field.");
 return false;
 } else {
 return true;
 }
}

// validates that the entry is a positive or negative number
function isNumber(elem) {
 var str = elem.value;
 var oneDecimal = false;
 var oneChar = 0;
 // make sure value hasn't cast to a number data type
 str = str.toString();
 for (var i = 0; i < str.length; i++) {
 oneChar = str.charAt(i).charCodeAt(0);
 // OK for minus sign as first character
 if (oneChar == 45) {
 if (i == 0) {
 continue;
 } else {
 alert("Only the first character may be a minus sign.");
 return false;
 }
 }
 // OK for one decimal point

200 | Chapter 8: Dynamic Forms

 if (oneChar == 46) {
 if (!oneDecimal) {
 oneDecimal = true;
 continue;
 } else {
 alert("Only one decimal is allowed in a number.");
 return false;
 }
 }
 // characters outside of 0 through 9 not OK
 if (oneChar < 48 || oneChar > 57) {
 alert("Enter only numbers into the field.");
 return false;
 }
 }
 return true;
}

// validates that the entry is 16 characters long
function isLen16(elem) {
 var str = elem.value;
 if (str.length != 16) {
 alert("Entry does not contain the required 16 characters.");
 return false;
 } else {
 return true;
 }
}

// validates that the entry is formatted as an email address
function isEMailAddr(elem) {
 var str = elem.value;
 str = str.toLowerCase();
 if (str.indexOf("@") > 1) {
 var addr = str.substring(0, str.indexOf("@"));
 var domain = str.substring(str.indexOf("@") + 1, str.length);
 // at least one top level domain required
 if (domain.indexOf(".") == -1) {
 alert("Verify the domain portion of the email address.");
 return false;
 }
 // parse address portion first, character by character
 for (var i = 0; i < addr.length; i++) {
 oneChar = addr.charAt(i).charCodeAt(0);
 // dot or hyphen not allowed in first position; dot in last
 if ((i == 0 && (oneChar == 45 || oneChar == 46)) ||
 (i == addr.length - 1 && oneChar == 46)) {
 alert("Verify the user name portion of the email address.");
 return false;
 }
 // acceptable characters (- . _ 0-9 a-z)
 if (oneChar == 45 || oneChar == 46 || oneChar == 95 ||

Example 8-1. Backward-compatible text field validation functions (continued)

8.2 Performing Common Text Field Validations | 201

Regular expression versions of the validation functions are more compact when the
validation is complex (as in the case of email addresses), but they require great care
and stress testing to make sure they are doing what you expect. Example 8-2 shows
the equivalent validation functions using regular expressions.

 (oneChar > 47 && oneChar < 58) || (oneChar > 96 && oneChar < 123)) {
 continue;
 } else {
 alert("Verify the user name portion of the email address.");
 return false;
 }
 }
 for (i = 0; i < domain.length; i++) {
 oneChar = domain.charAt(i).charCodeAt(0);
 if ((i == 0 && (oneChar == 45 || oneChar == 46)) ||
 ((i == domain.length - 1 || i == domain.length - 2) && oneChar == 46)) {
 alert("Verify the domain portion of the email address.");
 return false;
 }
 if (oneChar == 45 || oneChar == 46 || oneChar == 95 ||
 (oneChar > 47 && oneChar < 58) || (oneChar > 96 && oneChar < 123)) {
 continue;
 } else {
 alert("Verify the domain portion of the email address.");
 return false;
 }
 }
 return true;
 }
 alert("The email address may not be formatted correctly. Please verify.");
 return false;
}

Example 8-2. Text field validation functions with regular expressions

// validates that the field value string has one or more characters in it
function isNotEmpty(elem) {
 var str = elem.value;
 var re = /.+/;
 if(!str.match(re)) {
 alert("Please fill in the required field.");
 return false;
 } else {
 return true;
 }
}

//validates that the entry is a positive or negative number
function isNumber(elem) {
 var str = elem.value;
 var re = /^[-]?\d*\.?\d*$/;
 str = str.toString();

Example 8-1. Backward-compatible text field validation functions (continued)

202 | Chapter 8: Dynamic Forms

Notice that the validation done in these functions provides the user with less detailed
information about the more complex data entries than the backward-compatible ver-
sions. It is possible to provide more information, but this involves pulling apart the
regular expressions to test for subsets of matches. In the first one, isNotEmpty(), the
regular expression pattern looks for a string with one or more characters of any kind
(.+). To test for a number in isNumber(), the pattern looks for a string that begins
with (^) zero or one minus sign ([-]?), followed by zero or more numerals (\d*), zero
or one decimal (\.?), and zero or more numerals (\d*) on the tail end ($). A fixed-
length string pattern in isLen16() looks for word boundaries on both ends (\b) and
any characters (.) appearing exactly 16 times ({16}). To ensure the user keeps to the
16-character length, limit the text-type input element to a maximum length of 16.

The gnarled email pattern inside isEMailAddr() looks for a match that begins (^) with
one or more letters, numerals, underscores, or hyphens ([\w-]), followed by zero or
more combinations of a period, letter, numeral, underscore, or hyphen ((\.[\w-]+)*),
followed by the @ sign, followed by one or more computer or domains (([\w-]+\.
)+), followed by two to seven upper- or lowercase letters for the top-level domain

 if (!str.match(re)) {
 alert("Enter only numbers into the field.");
 return false;
 }
 return true;
}

// validates that the entry is 16 characters long when
// input field's maxlength attribute is set to 16
function isLen16(elem) {
 var str = elem.value;
 var re = /\b.{16}\b/;
 if (!str.match(re)) {
 alert("Entry does not contain the required 16 characters.");
 return false;
 } else {
 return true;
 }
}

// validates that the entry is formatted as an email address
function isEMailAddr(elem) {
 var str = elem.value;
 var re = /^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]{2,7}$/;
 if (!str.match(re)) {
 alert("Verify the email address format.");
 return false;
 } else {
 return true;
 }
}

Example 8-2. Text field validation functions with regular expressions (continued)

8.2 Performing Common Text Field Validations | 203

name ([a-zA-Z]{2,7}) on the tail end ($). The pattern does not match the use of
straight IP addresses for the portion after the @ sign, but the email message specifica-
tion (Internet Engineering Task Force RFC 822) frowns on such usage anyway.

In addition to individual validation routines, you sometimes need to cascade them.
For example, none of the functions that validate numbers, fixed-length strings, or
email addresses performs any checking that ensures the field has something in it. For
example, if the email address field is a required field in the form, you would wire the
change event handler for that input element to pass the values first to the
isNotEmpty() function and then the isEMailAddr() function—but in such a way
that if the first fails, the second one does not execute. That’s where the returned
Boolean values of the functions come into play:

<input type="text" size="30" name="eMail" id="eMail"
 onchange="if (isNotEmpty(this)) {isEMailAddr(this)}" />

Not shown among the text field validation routines here is one that validates a date
entry. Validating date entries is tricky business due to the wide range of date formats
and sequences of numbers used around the world. Except for intranet applications
where everyone standardizes on a single date format, I recommend implementing
date input as three distinct fields (or select elements) for entry of month, date, and
year. Use the submit event handler to combine the values into a single string for a
hidden input element whose value the server can pass directly to the database. You
can also use the pop-up calendar shown in Recipe 15.10 to help a user select a date,
leaving the formatting up to your scripts. Or if all of your users follow a fixed date
format, you can try the date validation techniques described in Recipe 2.12.

Although in general I advocate binding event handler functions to HTML elements
away from the HTML markup, I find the opposite to be more easily maintainable for
form validations. Each form control has its own validation needs, served by one or
more generic validation routines, such as those shown in this recipe. It seems more
logical to me to encapsulate the calls to the required validation behaviors within the
element markup (e.g., via an onchange event attribute). If you add or delete elements
in the form design, you don’t have to go hunting around your scripts to insert or
remove event assignments—they’re right there, in plain view of the element source
code. It also simplifies cascading multiple validations for a field, as you have just
seen.

If you evolve into a large set of validation functions, it is a good idea to wrap them up
in a custom JavaScript validation object (see Recipe 8.5). The functions become
methods of the custom object, and are invoked throughout that object, as follows:

<input type="text" size="30" name="eMail" id="eMail"
 onchange="if (validator.isNotEmpty(this)) {validator.isEMailAddr(this)}" />

204 | Chapter 8: Dynamic Forms

See Also
Recipe 8.3 for a batch validation structure that uses the functions just described;
Recipe 8.1 for automatically focusing and selecting a text field that fails validation;
Recipe 2.12 for date validation ideas; Recipe 8.5 for design ideas for a custom valida-
tion object.

8.3 Preventing Form Submission upon Validation
Failure

Problem
You want a validation function that detects incorrect data entry to halt the submis-
sion of the form until the user corrects the data entry.

Solution
Batch validation checking typically operates from the submit event handler of the
form element. Submission is aborted if the event handler evaluates to return false.
Include the return statement in the event handler assignment, and let the validation
function supply the Boolean value based on its findings:

<form ... onsubmit="return validateForm(this)">

Discussion
You can implement batch validation by way of a master function that calls the indi-
vidual validation functions as needed. To demonstrate, let’s create a small form with
numerous control types in it. Text fields execute real-time validation, while the
form’s submit event handler performs the batch validation. Both validation types use
the validation functions shown in Recipe 8.2 (either the string parsing or regular
expression varieties). Here’s the form’s HTML:

<form method="GET" action="cgi-bin/register.pl"
 name="sampleForm" onsubmit="return validateForm(this)">
First Name: <input type="text" size="30" name="name1" id="name1"
 onchange="isNotEmpty(this)" />

Last Name: <input type="text" size="30" name="name2" id="name2"
 onchange="isNotEmpty(this)" />

Email Address: <input type="text" size="30" name="eMail" id="eMail"
 onchange="if (isNotEmpty(this)) {isEMailAddr(this)}" />

Your Region: <select name="continent" id="continent">
 <option value="" selected>Choose One:</option>
 <option value="Africa">Africa</option>
 <option value="Asia">Asia</option>
 <option value="Australia">Australia/Pacific</option>

8.3 Preventing Form Submission upon Validation Failure | 205

 <option value="Europe">Europe</option>
 <option value="North America">North America</option>
 <option value="South America">South America</option>
</select>

Licensing Terms:
 <input type="radio" name="accept" id="accept1" value="agree" />I agree
 <input type="radio" name="accept" id="accept2" value="refuse" />I do not agree

<input type="reset" /> <input type="submit" />
</form>

You can see the form in Figure 8-1. As the user tabs and clicks through the form, typ-
ically the only validation taking place is in the email text box. Tabbing through the
empty name fields without making any changes won’t trigger the change event han-
dlers there (another reason why batch validation is needed). In this form, we also
want to make sure that a choice is made from a select element, and that a member
of the radio button group is clicked (some designers might question delivering radio
buttons without a default selection, but this example requires no initial selection).

When the user clicks the Submit button, the validateForm() function executes to
perform validations of all required form controls. The calls to the validations are cas-
caded so that if there are multiple errors and the user corrects the first one to be

Figure 8-1. A form of mixed input types

206 | Chapter 8: Dynamic Forms

reported, subsequent clicks of the Submit button find an error lower in the form than
a previous one:

function validateForm(form) {
 if (isNotEmpty(form.name1)) {
 if (isNotEmpty(form.name2)) {
 if (isNotEmpty(form.eMail)) {
 if (isEMailAddr(form.eMail)) {
 if (isChosen(form.continent)) {
 if (isValidRadio(form.accept)) {
 return true;
 }
 }
 }
 }
 }
 }
 return false;
}

Validation functions for a select element and radio button group are not among rou-
tines in Recipe 8.2, but are shown here:

// validate that the user made a selection other than default
function isChosen(select) {
 if (select.selectedIndex == 0) {
 alert("Please make a choice from the list.");
 return false;
 } else {
 return true;
 }
}

// validate that the user has checked one of the radio buttons
function isValidRadio(radio) {
 var valid = false;
 for (var i = 0; i < radio.length; i++) {
 if (radio[i].checked) {
 return true;
 }
 }
 alert("Make a choice from the radio buttons.");
 return false;
}

Note that the select element design assumes that the first item is an invalid choice.

All of the functions feed back to the main dispatching function. If any one validation
fails, the dispatching function returns false to the submit event handler, forcing it to
evaluate to return false and thus aborting the submission. But if all validations
return true, the dispatching function also returns true to the event handler, allowing
the submission to continue normally.

8.4 Auto-Focusing an Invalid Text Field Entry | 207

Relying on the submit event handler means that the user could disable JavaScript in
the client to bypass client-side validation. This is a good reason to duplicate valida-
tion on the server. But if you’d rather perform all validation on the client and you
know that all users have scriptable browsers, consider using a button-type input ele-
ment instead of a true submit-type input element. Let the button’s click event han-
dler invoke the batch validation function and (if validation succeeds) the submit()
method of the form object. Under these conditions, the user can’t submit the form
with JavaScript turned off.

See Also
Recipe 8.2 for individual data validation functions; Recipe 8.4 for focusing and
selecting text in an invalid text field; Recipe 2.12 for date field validation suggestions.

8.4 Auto-Focusing an Invalid Text Field Entry

Problem
You want to bring focus to an errant or missing text field entry and select all text in
the text field for quick replacement.

Solution
The basic solution is to invoke the focus() and select() methods of the text box
under inspection. An unfortunate timing bug (primarily affecting IE for Windows)
prevents these calls from occurring immediately in the validation function. An arbi-
trary time-out is needed to let the failed validation alert window disappear and the
rest of the page to settle down before focusing and selecting the text box.

Here’s a generic function that can handle any field:

function focusElement(formName, elemName) {
 var elem = document.forms[formName].elements[elemName];
 elem.focus();
 elem.select();
}

Next, modify each text field validation routine so that immediately after the error-
reporting alert dialog—but before the return false statement—you invoke the above
function through a setTimeout() call. Here is the regular expression version of the
email address validation function (from Recipe 8.2) with the modification installed
and highlighted in bold:

function isEMailAddr(elem) {
 var str = elem.value;
 var re = /^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]{2,7}$/;
 if (!str.match(re)) {
 alert("Verify the email address format.");
 setTimeout("focusElement('" + elem.form.name + "', '" + elem.name + "')", 0);
 return false;

208 | Chapter 8: Dynamic Forms

 } else {
 return true;
 }
}

Because the first parameter of the setTimeout() function is a string, you can pass the
necessary information about the form and input elements by way of their string
names.

Discussion
You can also invoke the focus() (but not the select()) method on other types of
input elements, such as radio buttons and selects, but you’ll have to make sure you
are invoking the method on the correct element. In the case of a radio button group,
the name attribute is the same for all related buttons. You can give focus to only one
radio button, so you will need to reference one of the radio buttons of the group by
array index (or via unique ID if your scripts have that information).

To differentiate among the different form control types, you can use the type prop-
erty. For input elements, the type property can return any of the following: button,
checkbox, file, hidden, image, password, radio, reset, submit, or text (older browsers
do not treat the image type as a scriptable object). A select element can return
select-multiple or select-one. Therefore, you can branch a function such as
focusElement() to invoke the focus() method only on those element types that don’t
provide text input.

See Also
Recipe 8.2 for validation functions that can be adapted to the auto-focus technique;
Recipe 8.3 for batch validation techniques that automatically employ the focusing
embedded in the individual validation functions.

8.5 Using a Custom Validation Object

Problem
You want to encapsulate a large set of reusable form validation routines into a global
object.

Solution
Use the code in Example 8-3 (shown in the Discussion section) as a model for design-
ing a single object that contains methods for each of your validation routines. The
example goes one step further in using modern event techniques for the form ele-
ment’s submit event binding and processing. With the help of the eventsManager.js
library from Recipes 9.1 and 9.3, you can create a handy validation dispatching mech-
anism that can easily accommodate multiple forms on the same page.

8.5 Using a Custom Validation Object | 209

Discussion
Example 8-3 is a revised version of various components shown in recipes earlier in
this chapter, bringing together all of the operations you would typically perform on a
form for client-side validation. Two primary differences are: 1) creation of a single
validator object whose methods take the place of the individual validation func-
tions described in Recipe 8.2; and 2) binding the submit event handler to the form
element via modern event model practices. Similarly, the modern event model is
taken into account during the validation process.

Example 8-3. Validation via a global object

<html>
<head>
<title>Recipe 8.5</title>
<link rel="stylesheet" id="mainStyle" href="../css/cookbook.css" type="text/css" />
<script src="../js/eventsManager.js"></script>
<script type="text/javascript">
// global validation object encapsulates validation routines
var validator = {
 // validates that the field value string has one or more characters in it
 isNotEmpty : function(elem) {
 var str = elem.value;
 var re = /.+/;
 if(!str.match(re)) {
 alert("Please fill in the required field.");
 setTimeout("validator.focusElement('" + elem.form.name +
 "', '" + elem.name + "')", 0);
 return false;
 } else {
 return true;
 }
 },
 //validates that the entry is a positive or negative number
 isNumber : function(elem) {
 var str = elem.value;
 var re = /^[-]?\d*\.?\d*$/;
 str = str.toString();
 if (!str.match(re)) {
 alert("Enter only numbers into the field.");
 setTimeout("validator.focusElement('" + elem.form.name +
 "', '" + elem.name + "')", 0);
 return false;
 }
 return true;
 },
 // validates that the entry is 16 characters long
 isLen16 : function(elem) {
 var str = elem.value;
 var re = /\b.{16}\b/;
 if (!str.match(re)) {
 alert("Entry does not contain the required 16 characters.");

210 | Chapter 8: Dynamic Forms

 setTimeout("validator.focusElement('" + elem.form.name +
 "', '" + elem.name + "')", 0);
 return false;
 } else {
 return true;
 }
 },
 // validates that the entry is formatted as an e-mail address
 isEMailAddr : function(elem) {
 var str = elem.value;
 var re = /^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]{2,7}$/;
 if (!str.match(re)) {
 alert("Verify the e-mail address format.");
 setTimeout("validator.focusElement('" + elem.form.name +
 "', '" + elem.name + "')", 0);
 return false;
 } else {
 return true;
 }
 },
 // validate that the user made a selection other than default
 isChosen : function(select) {
 if (select.selectedIndex == 0) {
 alert("Please make a choice from the list.");
 return false;
 } else {
 return true;
 }
 },
 // validate that the user has checked one of the radio buttons
 isValidRadio : function(radio) {
 var valid = false;
 for (var i = 0; i < radio.length; i++) {
 if (radio[i].checked) {
 return true;
 }
 }
 alert("Make a choice from the radio buttons.");
 return false;
 },
 focusElement : function(formName, elemName) {
 var elem = document.forms[formName].elements[elemName];
 elem.focus();
 elem.select();
 }
}

// batch validation router tailored for "sampleForm"
function validateSampleForm(form, evt) {
 if (validator.isNotEmpty(form.name1)) {
 if (validator.isNotEmpty(form.name2)) {
 if (validator.isNotEmpty(form.eMail)) {

Example 8-3. Validation via a global object (continued)

8.5 Using a Custom Validation Object | 211

 if (validator.isEMailAddr(form.eMail)) {
 if (validator.isChosen(form.continent)) {
 if (validator.isValidRadio(form.accept)) {
 return true;
 }
 }
 }
 }
 }
 }
 if (evt.preventDefault) {
 evt.preventDefault();
 }
 evt.returnValue = false;
 return false;
}

// dispatcher, in case of multiple forms
function dispatchValidation(evt) {
 evt = (evt) ? evt : window.event;
 if (evt) {
 var elem = (evt.target) ? evt.target : evt.srcElement;
 if (elem.name == "sampleForm") {
 validateSampleForm(elem, evt);
 }
 }
}

function setElementEvents() {
 addEvent(document.getElementById("sampleForm"), "submit", dispatchValidation, false);
 // set more element events here, if needed
}
// from eventsManager.js
addOnLoadEvent(setElementEvents);
</script>
</head>
<body>
<h1>Form Validations</h1>
<hr />
<form method="GET" action="cgi-bin/register.pl"
 name="sampleForm" id="sampleForm">
First Name: <input type="text" size="30" name="name1" id="name1"
 onchange="validator.isNotEmpty(this)" />

Last Name: <input type="text" size="30" name="name2" id="name2"
 onchange="validator.isNotEmpty(this)" />

E-mail Address: <input type="text" size="30" name="eMail" id="eMail"
 onchange="if (validator.isNotEmpty(this)) {validator.isEMailAddr(this)}" />

Your Region: <select name="continent" id="continent">
 <option value="" selected>Choose One:</option>
 <option value="Africa">Africa</option>
 <option value="Asia">Asia</option>
 <option value="Australia">Australia/Pacific</option>

Example 8-3. Validation via a global object (continued)

212 | Chapter 8: Dynamic Forms

Because the specific validation routines are discussed in Recipe 8.2, I will focus here
on the differences between Example 8-3 and the component pieces described in Reci-
pes 8.2 through 8.4. The individual validation routines are now methods of the
validator object. There are no changes to the internal workings of the validations.

At the bottom of the script, the addOnLoadEvent() function (from Recipe 9.3) forces
the page’s load event to invoke the setElementEvents() function. In this example, we
assign only one event to a single element, a call to dispatchValidation() for the
submit event of the form named sampleForm. This is where other scripted event bind-
ings should be placed.

The dispatchValidation() function uses modern event processing (see Recipe 9.1) to
derive a reference to the form from which the submit event fired. There is only one
form in this page, but the function accommodates additional forms by branching
code to a specific validation router customized for the details of a particular form.
Notice that a reference to the event object is passed to the validation router, along
with a reference to the form element.

For this example, the form named sampleForm is validated through the
validateSampleForm() function. The function is identical to the one shown in Recipe
8.3 until we get to the end, where the function, upon finding a problem with one of
the form controls, prevents the form from submitting itself. Because this version uses
modern event binding and processing, it includes both the W3C DOM and IE event
model ways of preventing the form’s default action from occurring. This is different
from the way shown in Recipe 8.2, which relied on the onsubmit attribute of the
<form> tag to evaluate to return false. Binding events away from the element
requires the slightly more cumbersome (and not cross-browser compatible) syntax.

See Also
Recipe 8.2 for the operations occurring inside the individual validation routines;
Recipe 8.3 for validation routing discussions; Recipes 9.1 and 9.3 for using modern
event binding and processing practices; Recipe 3.14 for converting related func-
tions into methods of a custom object.

 <option value="Europe">Europe</option>
 <option value="North America">North America</option>
 <option value="South America">South America</option>
</select>

Licensing Terms:
 <input type="radio" name="accept" id="accept1" value="agree" />I agree
 <input type="radio" name="accept" id="accept2" value="refuse" />I do not agree

<input type="reset" /> <input type="submit" />
</form>
</body>
</html>

Example 8-3. Validation via a global object (continued)

8.6 Changing a Form’s Action | 213

8.6 Changing a Form’s Action

Problem
You want to submit a form to a different action depending on user activity in the
page.

Solution
The most common scenario is a form with two or more buttons that submit the
form, but each button directs the form to a different CGI program on the server. If
you use submit-type input elements, use the click event handlers to assign the
desired CGI URL to the action property of the form:

<input type="submit" value="Send To HeadQuarters"
onclick="this.form.action='http://main.megacorp.com/submitSpecs.asp'" />
<input type="submit" value="Send For Peer Review"
onclick="this.form.action='http://eng.megacorp.com/reviewComm.asp'" />

Any function executing before the form submits itself can assign a URL to the form
element’s action property to influence where the form goes.

Discussion
Deploying this solution to a browser base that may include nonscriptable browsers
(including browsers with scripting turned off) should be done with care. Your first
inclination might be to assign a default action URL in the form that receives the form
if scripting is not available. But if you use two submit-type input elements, as shown
in the example, both buttons will submit the form to the default action, regardless of
the label in the button. This could mislead your scriptless visitors.

You aren’t limited to using submit-type input elements, of course. For example, your
form may contain a checkbox that acts as a signal for which action the form should
follow. In this case, the submit event handler of the form can inspect the checked
property of the checkbox button, and set the action property’s URL before allowing
the submission to continue:

form.action = (form.myCheckbox.checked) ? "cgi-bin/special.pl" : "normal.jsp";

With modern W3C DOM-capable browsers, it is also feasible to use scripting to
replace entire elements after the page has loaded. For example, if a web site contact
page gets hammered by blog spammers who harvest form action URLs to send auto-
mated guestbook or blog comment spam, you can serve up the page initially without
a Submit button. If a human visitor has scripting enabled, the load event can insert a
script-generated Submit button and assign the URL to the form element’s action
property. If the script is loaded from an external .js file, the spammer’s web crawlers
won’t find your form’s URL.

214 | Chapter 8: Dynamic Forms

Bear in mind that the action attribute is required in a form element under all recent
HTML and XHTML validation scenarios.

See Also
Recipe 8.3 for using the submit event handler to perform last-instant processing
before form submission.

8.7 Blocking Submissions from the Enter Key

Problem
You want to prevent a press of the Enter/Return key from submitting the form.

Solution
The default behavior of IE and Mozilla browsers (but this is not specified in any
HTML standard) is that a form consisting of a single text input element submits the
form when the field has focus and the user presses the Enter/Return key. Although
this behavior is a convenience for some forms, it may prematurely submit a form that
has other kinds of elements that need attention. Other major browsers don’t exhibit
the same behavior. Safari submits with the Enter key regardless of the number of text
fields; Opera never submits from a text field.

To prevent premature submission, you can block any standard form submission by
short-circuiting the submit event handler in the <form> tag:

onsubmit="return false"

This means, however, that you need to script the submission in a button or link that
inovkes the form’s submit() method:

<input type="button" value="Submit" onclick="if (validateForm(this.form))
{this.form.submit()}" />

Discussion
Using a form object’s submit() method does not trigger the submit event of the form.
If additional scripting must execute prior to the form being submitted, invoke those
script statements before calling submit().

Blocking sumissions comes in handy when you are using JavaScript for some strictly
client-side calculations that rely on text field input (e.g., a mortgage calculator). If
the form has no action attribute value, a submission reloads the current page, ruin-
ing any client-side calculations you intend to carry out.

8.8 Advancing Text Field Focus with the Enter Key | 215

See Also
Recipe 8.8 for using the Enter key to advance focus to the next field in sequence;
Recipe 8.13 for automatically advancing focus to an adjacent text box in fixed-length
fields.

8.8 Advancing Text Field Focus with the Enter Key

Problem
You want to use the Enter/Return key in a text field to give focus to the next text
field in the form.

Solution
Include a keypress event handler in each field that needs to advance focus to another
field in the form. The event handler should invoke the focusNext() function
described in the Discussion. The event handler must pass arguments for the form ref-
erence, the name of the next field in sequence, and (for the W3C event model in NN)
the event object. For example, the event handler in a field called name1 directs focus
to field name2 in the following:

<input type="text" name="name1" id="name1"
 onkeypress="return focusNext(this.form, 'name2', event)">

Discussion
Although HTML forms don’t normally follow the user interface behavior of stand-
alone database form programs, you can script text input fields to advance focus to
the next field when the user presses the Enter/Return key. The scripting task is a bit
tedious because each event handler must be tailored to focus a specific field that is
next in the sequence. First, block all submissions using onsubmit="return false" in
the <form> tag. The following function is invoked from each text field:

function focusNext(form, elemName, evt) {
 evt = (evt) ? evt : event;
 var charCode = (evt.charCode) ? evt.charCode :
 ((evt.which) ? evt.which : evt.keyCode);
 if (charCode == 13 || charCode == 3) {
 form.elements[elemName].focus();
 return false;
 }
 return true;
}

Continue to use the change event handlers in the text boxes to perform real-time vali-
dations as well as the auto-focusing via keypress. Note that you are not restricted to
advancing to text fields in source code order. If a form is laid out such that it is more
efficient to enter data out of source code order, this solution does the trick.

216 | Chapter 8: Dynamic Forms

See Also
Recipe 8.13 for automatically advancing focus to an adjacent text box in fixed-length
fields.

8.9 Submitting a Form by an Enter Key Press in Any
Text Box

Problem
You want a press of the Return/Enter key in one or more text fields to submit the
form.

Solution
To simulate a standalone database entry form, you might implement the auto-focus-
ing technique in Recipe 8.8 for all but the last test box, which instead uses the
keypress event handler to invoke the following function:

function submitViaEnter(evt) {
 evt = (evt) ? evt : event;
 var target = (evt.target) ? evt.target : evt.srcElement;
 var form = target.form;
 var charCode = (evt.charCode) ? evt.charCode :
 ((evt.which) ? evt.which : evt.keyCode);
 if (charCode == 13 || charCode == 3) {
 if (validateForm(form)) {
 form.submit();
 return false;
 }
 }
 return true;
}

Omit the change event handler that performs real-time validation. The above func-
tion triggers the batch validation (which alerts the user to any problems in the last
field) and submits the form via the submit() method. The event handler of the last
field of the form looks like the following:

onkeypress="return submitViaEnter(event)"

This technique also assumes that the form element has the onsubmit="return false"
event handler in place so that only the scripted submit() method submits the form
(as discussed in Recipe 8.7).

Discussion
To help summarize some of the form enhancements described in Recipes 8.7 and 8.8,
as well as this recipe, the following text field form incorporates event handlers that

8.10 Disabling Form Controls | 217

invoke several functions described earlier in this chapter. Guiding the design of this
form are requirements that the Return key advance focus to the next text field until
the last field is reached, where Return submits the form:

<form action="..." method="GET" name="sampleForm" onsubmit="return false">
First Name: <input type="text" size="30" name="name1" id="name1"
 onkeypress="return focusNext(this.form, 'name2', event)"
 onchange="isNotEmpty(this)" />

Last Name: <input type="text" size="30" name="name2" id="name2"
 onkeypress="return focusNext(this.form, 'eMail', event)"
 onchange="isNotEmpty(this)" />

Email Address: <input type="text" size="30" name="eMail" id="eMail"
 onkeypress="return submitViaEnter(event)" />

<input type="reset" /> <input type="button" value="Submit"
 onclick="if (validateForm(this.form)) {this.form.submit()}" />
</form>

Notice that the Submit button is a regular button-type input element. This prevents
nonscriptable browsers from submitting the form. If you’d like nonscriptable brows-
ers to be able to submit the form (presumably to let server-side validation catch any
errors), use a modified submit-type input element as follows:

<input type="submit" onclick="if (validateForm(this.form)) {this.form.submit()}" />

For scripted browsers, the default action of the submit-type input element is can-
celled by the form’s submit event handler, but nonscriptable browsers will submit the
form like an ordinary form.

See Also
Recipe 8.7 for blocking unintended form submission through the press of the
Return/Enter key; Recipe 8.8 for using the Enter key to advance focus to the next
field in the sequence.

8.10 Disabling Form Controls

Problem
You want to temporarily lock down a form control to prevent user access to the control.

Solution
In IE 4 or later and modern browsers, form controls provide a Boolean disabled
property that scripts can change at any time. Use any valid reference to the form con-
trol to set its disabled property to true:

document.myForm.myFirstTextBox.disabled = true;

To restore functionality to the control, set its disabled property to false:

document.myForm.myFirstTextBox.disabled = false;

218 | Chapter 8: Dynamic Forms

A disabled form control generally displays a grayed-out appearance and does not per-
mit user modification of the setting.

Discussion
Figure 8-2 shows the form from Figure 8-1 with form controls disabled. While scripts
can still read and write values in disabled controls, a disabled form control’s name/
value pair does not submit to the server at submission time.

IE 4 and later for Windows provides a more pervasive disabled property, available to
all renderable element objects. But the property is not fully inheritable. For example,
if you set the disabled property of a form element object to true, the nested controls
might look disabled (as will their text labels), but users can still access the controls to
modify their content. If you want to disable both the labels and controls in IE for
Windows, disable the controls and the containing form at the same time. Mozilla,
Safari, and Opera do not support disabling of nonform rendered elements.

See Also
Recipe 8.11 for hiding portions of a form until they’re needed; Recipe 12.10 for hid-
ing and showing elements.

Figure 8-2. A form with disabled controls

8.11 Hiding and Showing Form Controls | 219

8.11 Hiding and Showing Form Controls

Problem
You want to keep subsidiary form controls hidden until they are needed in response
to other control settings.

Solution
You can keep more detailed controls hidden from view until a user chooses an item
in a select element or turns on a checkbox using a function that is similar to the
togglePurDec() function shown in the Discussion to hide and show a relevant group
of form controls.

Discussion
An alternative to disabling form controls (Recipe 8.10) is to hide subsidiary groups of
controls until they are needed. For example, the following excerpt from a magazine
subscription form has nested controls that remain hidden until the user answers Yes
to question number 3:

<form name="survey" ...>
...
<p>3. Do you make purchase decisions for your company?

<input type="radio" id="purDecFlag0" name="purchaseDecision"
 onclick="togglePurDec(event)" />No
<input type="radio" id="purDecFlag1" name="purchaseDecision"
 onclick="togglePurDec(event)" />Yes
<div id="purchaseDecisionData" style="display:none; margin-left:20px">
</p>
<p>
3a. What is your purchase budget for the current fiscal year?
<select name="PurBudget">
 <option value="">Choose One:</option>
 <option value="1">Less than $50,000</option>
 <option value="2">$50,000-100,000</option>
 <option value="3">$100,000-500,000</option>
 <option value="4">$500,000+</option>
</select>
</p>
<p>
3b. What role do you play in purchase decisions? (check all that apply)

<input type="checkbox" name="purRole1" />Research

<input type="checkbox" name="purRole2" />Recommend

<input type="checkbox" name="purRole3" />Review Recommendations of Others

<input type="checkbox" name="purRole4" />Sign Purchase Orders

<input type="checkbox" name="purRole5" />None of the above

</p>
</div>
</p>
<p>4. How long have you been at your current employment position?

220 | Chapter 8: Dynamic Forms

<select name="emplLen">
 <option value="">Choose One:</option>
 <option value="1">Less than 6 months</option>
 <option value="2">6-12 months</option>
 <option value="3">1-2 years</option>
 <option value="4">2+ years</option>
</select>
</p>
...
</form>

Figure 8-3 shows the two states of this segment of the form.

The click event handlers of the two radio buttons insert or remove the optional block
from the renderable content as needed, using the following togglePurDec() function:

function togglePurDec(evt) {
 evt = (evt) ? evt : event;
 var target = (evt.target) ? evt.target : evt.srcElement;
 var block = document.getElementById("purchaseDecisionData");
 if (target.id == "purDecFlag1") {
 block.style.display = "block";
 } else {
 block.style.display = "none";
 }
}

Figure 8-3. Hiding and showing subsidiary form controls

8.12 Allowing Only Numbers (or Letters) in a Text Box | 221

See Also
Recipe 8.10 for disabling form controls; Recipe 12.10 for more examples of hiding
and showing elements.

8.12 Allowing Only Numbers (or Letters) in a Text Box

Problem
You want to restrict a text field’s data entry to numbers only, letters only, or charac-
ters from a fixed set.

Solution
You can allow keypress events to succeed only if the desired character keys are
pressed. The following function, invoked from a text field’s keypress event, allows
only numerals 0 through 9 (no decimals or minus signs):

function numeralsOnly(evt) {
 evt = (evt) ? evt : event;
 var charCode = (evt.charCode) ? evt.charCode : ((evt.keyCode) ? evt.keyCode :
 ((evt.which) ? evt.which : 0));
 if (charCode > 31 && (charCode < 48 || charCode > 57)) {
 alert("Enter numerals only in this field.");
 return false;
 }
 return true;
}

The field’s event handler would be configured like the following:

onkeypress="return numeralsOnly(event)"

Use the charCode values derived in the numeralsOnly() function just shown to make
your own variations that permit your desired characters to be entered into the field.

Discussion
Observe the logic of the if condition in the numeralsOnly() function just shown.
Restated in English, it blocks any character code greater than 31 and any code that is
outside the ASCII value of the 10 numerals. It’s important to allow ASCII values
below 32 to pass through the field for most entries. All characters below 32 are non-
alphanumeric characters, including the Backspace (8), Tab (9), and Return (13) keys.
You usually don’t want to block users from editing their entries.

You can cascade more character value comparisons as needed. For example, if you want
to allow a decimal in the number, you’d add one more condition to the expression to
block characters that met earlier conditions and were not the period’s value of 46:

if (charCode > 31 && (charCode < 48 || charCode > 57) && charCode != 46) {...}

222 | Chapter 8: Dynamic Forms

You should still perform validation on the entry to make sure the user hasn’t entered
more than one decimal.

When it comes to text box filtering that permits one or more letters, you must take
upper- and lowercase letters into account. Upper- and lowercase versions of a char-
acter have their own ASCII values, and the two ranges are not contiguous (see
Appendix A). Although you can go to great lengths to convert the ASCII value to a
character and force its evaluation in strictly upper- or lowercase characters, it’s eas-
ier to run your comparisons against two ranges of ASCII values. The following func-
tion permits letters of both cases (but no punctuation) to pass to the text box:

function lettersOnly(evt) {
 evt = (evt) ? evt : event;
 var charCode = (evt.charCode) ? evt.charCode : ((evt.keyCode) ? evt.keyCode :
 ((evt.which) ? evt.which : 0));
 if (charCode > 31 && (charCode < 65 || charCode > 90) &&
 (charCode < 97 || charCode > 122)) {
 alert("Enter letters only.");
 return false;
 }
 return true;
}

Recipe 9.9 contains a function that works only in IE to convert characters that are
typed as lowercase Latin letters to uppercase Latin characters by the time they reach
the text box. If your database requires uppercase characters, you can also consider
using the field’s client-side validation routine to change the value of the text box to a
string of all uppercase letters:

form.field.value = form.field.value.toUpperCase();

Finally, here’s a function that allows only a limited list of characters to be entered.
For example, a database table may be set up to require a string entry of Y or N (for Yes
or No). To make sure only those characters are entered into the field, the key filter-
ing function (allowing upper- and lowercase letters) looks like the following:

function ynOnly(evt) {
 evt = (evt) ? evt : event;
 var charCode = (evt.charCode) ? evt.charCode : ((evt.keyCode) ? evt.keyCode :
 ((evt.which) ? evt.which : 0));
 if (charCode > 31 && charCode != 78 && charCode != 89 &&
 charCode != 110 && charCode != 121) {
 alert("Enter \"Y\" or \"N\" only.");
 return false;
 }
 return true;
}

In this case, you could add some more protection against incorrect entries by limit-
ing the text box to a single character:

Signature Present: <input type="text" name="signature" size="2" maxlength="1"
onkeypress="return ynOnly(event)" /> (Y/N)

8.13 Auto-Tabbing for Fixed-Length Text Boxes | 223

See Also
Recipe 9.9 for tips on examining the character the user typed before the character
reaches the text field.

8.13 Auto-Tabbing for Fixed-Length Text Boxes

Problem
You want to advance the text cursor from one field to the next in a sequence of fixed-
length boxes.

Solution
The following form excerpt requests the customer’s credit card number in four seg-
ments of four characters each:

Credit Card Number:
<input type="text" name="cc1" size="5" maxlength="4"
 onkeypress="return numeralsOnly(event)"
 onkeyup="autofocus(this, 'cc2', event)" />
<input type="text" name="cc2" size="5" maxlength="4"
 onkeypress="return numeralsOnly(event)"
 onkeyup="autofocus(this, 'cc3', event)" />
<input type="text" name="cc3" size="5" maxlength="4"
 onkeypress="return numeralsOnly(event)"
 onkeyup="autofocus(this, 'cc4', event) /">
<input type="text" name="cc4" size="5" maxlength="4"
 onkeypress="return numeralsOnly(event)" />

The keypress event handler for each field restricts entry to numerals (see Recipe 8.12),
while the keyup event handlers invoke the following function, which advances focus to
a named form field after a set number of characters:

function autofocus(field, next, evt) {
 evt = (evt) ? evt : event;
 var charCode = (evt.charCode) ? evt.charCode : ((evt.keyCode) ? evt.keyCode :
 ((evt.which) ? evt.which : 0));
 if (charCode > 31 && field.value.length == field.maxLength) {
 field.form.elements[next].focus();
 }
}

In this example, the final field does not advance focus, but you can add a keyup event
handler that passes the name of the next form field to the autofocus() function.

Discussion
Many variations on the themes presented in the autofocus() function are possible
with this application. While it could be customized to work with a known set of
fields (tearing apart the name of the event-processing field and incrementing the

224 | Chapter 8: Dynamic Forms

numeral portion to derive the name of the next field—cc1, cc2, etc.), it is usually best
to generalize the function so that it may be reused with other field sets on the same
page or some other application later on. Thus, the second argument to autofocus()
is the number of characters to act as the upper limit of acceptable length. The same
function could be used for the segments of a U.S. Social Security number, which is in
segment lengths of three, two, and four.

The reason for the initial character code analysis (charCode > 31) is to allow Shift-Tab
to move focus in the reverse direction through these fields for the user’s conve-
nience. If you include the low-order ASCII characters in the four-character limit, the
user could become lost in a frustrating focus circle.

See Also
Recipe 8.12 for limiting real-time text field entries to a subset of characters.

8.14 Changing select Element Content

Problem
You want to change the options in a select element in response to other form con-
trol settings.

Solution
Begin by removing all option elements from the desired select element:

document.myForm.mySelect.options.length = 0;

Then repopulate the option elements with new option objects:

document.myForm.mySelect.options[0] = new Option("Extra Fine", "xf", false, false);
document.myForm.mySelect.options[1] = new Option("Fine", "f", false, false);
document.myForm.mySelect.options[2] = new Option("Medium", "m", false, false);

This syntax works for all browsers back to IE 4 and even NN 4 (but Navigator 4 does
not resize the width of the select element to fit new, wider option text, and gener-
ally requires a call to history.go(0) to force the revised options to appear).

Discussion
The constructor function syntax for the option object is as follows:

var newOpt = new Option("text", "value", isDefaultSelectedFlag, isSelectedFlag);

The text parameter is a string containing the item’s label as seen by the user in the
select list, while the value parameter is the otherwise hidden string that is submit-
ted with the form if the option is selected. The two Boolean parameters let you set
whether the option is the default selected option (i.e., the equivalent of having the
selected attribute set in the HTML for the option element), and whether the option
is currently selected.

8.14 Changing select Element Content | 225

You can replace individual options by assigning a new option object to one of the
elements in the options array. But if you need to change multiple items, it’s cleaner
to remove all of the old ones and start the list fresh.

Data for the new option elements can come from sources such as JavaScript custom
objects embedded within the page’s script. This means that you have to include all
possible data choices within the page’s scripts. You’ll also have to devise a data
structure that works for the kind of data you want to convey via the select ele-
ment. For example, consider a page that displays two select elements, from which
users select the nearest city around the world to which to submit a form. The first
select element lists regions of the world. With the choice of each region, the sec-
ond select element lists the cities belonging only to that region. The HTML for the
two select elements is as follows:

Submit Request to: <select name="continent" onchange="setCities(this)">
 <option value="" selected>Choose a Region:</option>
 <option value="africa">Africa</option>
 <option value="asia">Asia</option>
 <option value="australia">Australia/Pacific</option>
 <option value="europe">Europe</option>
 <option value="noamer">North America</option>
 <option value="soamer">South America</option>
</select>
<select name="city">
 <option value="" selected>Choose a City:</option>
</select>

A custom object contains all of the data required for the setCities() event handler
function to modify the contents of the second select element. Here is the data struc-
ture for the data, delivered as a custom JavaScript object:

var regiondb = new Object()
regiondb["africa"] = [{value:"102", text:"Cairo"},
 {value:"88", text:"Lagos"},
 {value:"80", text:"Nairobi"},
 {value:"55", text:"Pretoria"}];
regiondb["asia"] = [{value:"30", text:"Ankara"},
 {value:"21", text:"Bangkok"},
 {value:"49", text:"Beijing"},
 {value:"76", text:"New Delhi"},
 {value:"14", text:"Tokyo"}];
regiondb["australia"] = [{value:"64", text:"Suva"},
 {value:"12", text:"Sydney"}];
regiondb["europe"] = [{value:"11", text:"Athens"},
 {value:"35", text:"Frankfurt"},
 {value:"3", text:"London"},
 {value:"15", text:"Madrid"},
 {value:"1", text:"Paris"},
 {value:"10", text:"Rome"},
 {value:"6", text:"Stockholm"},
 {value:"97", text:"St. Petersburg"}];
regiondb["noamer"] = [{value:"73", text:"Dallas"},
 {value:"71", text:"Los Angeles"},

226 | Chapter 8: Dynamic Forms

 {value:"5", text:"New York"},
 {value:"37", text:"Toronto"}];
regiondb["soamer"] = [{value:"65", text:"Buenos Aires"},
 {value:"31", text:"Caracas"},
 {value:"66", text:"Rio di Janeiro"}];

Each time the user makes a new selection from the first select element, the
onchange event handler triggers the following function that repopulates the second
select element:

function setCities(chooser) {
 var cityChooser = chooser.form.elements["city"];
 // empty previous settings
 cityChooser.options.length = 0;
 // get chosen value to act as index to regiondb hash table
 var choice = chooser.options[chooser.selectedIndex].value;
 var db = regiondb[choice];
 // insert default first item
 cityChooser.options[0] = new Option("Choose a City:", "", true, false);
 if (choice != "") {
 // loop through array of the hash table entry, and populate options
 for (var i = 0; i < db.length; i++) {
 cityChooser.options[i + 1] = new Option(db[i].text, db[i].value);
 }
 }
}

You can use the XMLHttpRequest object to retrieve data in XML or JSON format from
the server. In the case of JSON, the string data would be structured so that an eval()
method applied to the string creates a JavaScript object such as the regiondb exam-
ple object shown earlier. This type of Ajax call makes the most sense when the possi-
ble choices for the second select element are lengthy.

In place of the DOM Level 0 syntax shown thus far, you may instead use the W3C
DOM style of node tree modification syntax. You are free to use it for option ele-
ment modification, but an inconsistency in the implementations between IE
(through version 6) and the W3C DOM (as implemented in Mozilla) complicates the
matter. The W3C DOM provides two methods of the select element, add() and
remove(), that slightly simplify the usual node tree modification sequence for this
element. The following function is a W3C DOM version of the setCities() func-
tion shown earlier. It accounts for the browser differences in the second parameter of
the add() method:

function setCities(chooser) {
 var newElem;
 var where = (navigator.appName == "Microsoft Internet Explorer") ? -1 : null;
 var cityChooser = chooser.form.elements["city"];
 while (cityChooser.options.length) {
 cityChooser.remove(0);
 }
 var choice = chooser.options[chooser.selectedIndex].value;
 var db = regiondb[choice];
 newElem = document.createElement("option");

8.15 Copying Form Data Between Pages | 227

 newElem.text = "Choose a City:";
 newElem.value = "";
 cityChooser.add(newElem, where);
 if (choice != "") {
 for (var i = 0; i < db.length; i++) {
 newElem = document.createElement("option");
 newElem.text = db[i].text;
 newElem.value = db[i].value;
 cityChooser.add(newElem, where);
 }
 }
}

The second parameter of the add() method determines the location of the added
option element. The W3C DOM expects either a reference to an existing option ele-
ment or null. The latter signifies that the added element goes to the end of the list.
IE’s second parameter is optional, but when supplied, it is supposed to be an integer
pointing to the zero-based index of the options array where the added element is to
go. If you omit the second parameter or supply a -1, the new option goes to the end
of the list. That is the reason for the brief browser sniffing near the beginning of the
function to set the second parameter value.

See Also
Recipe 3.8 for creating custom object data structures.

8.15 Copying Form Data Between Pages

Problem
You want to convey all form control settings from one page to another.

Solution
Use the stringForms.js library shown in the Discussion to convert all values in a form
to a string that can be passed to another page via URLs or cookies. Invoke the
form2ArrayString() function, passing as an argument a reference to the form in need
of conversion. The function returns a string whose format is of a shortcut constructor
of an array of objects. Each object represents a form control in the following format:

{name:'elemName',id:'elemID',type:'elemType',value:value}

To distribute the values to a form with the same control structure, invoke
string2FormObj(), passing parameters for a reference to the destination form and to
the string originally created by the form2ArrayString() function.

Discussion
Example 8-4 shows the code for the stringForms.js library (applied in Recipe 10.6).
The library provides two main functions that your scripts invoke: form2ArrayString(),

228 | Chapter 8: Dynamic Forms

which converts a form’s content to a string formatted like a JavaScript array of
objects, and string2FormObj(), which copies values from the array to form controls
in another page that have the same names or IDs.

Example 8-4. The stringForms.js library

// Read the name, id, type, and value of one form control element
// as requested by form2ArrayString()
function formObj2String(obj) {
 var output = "{";
 if (obj.name) {
 output += "name:'" + obj.name + "',";
 }
 if (obj.id) {
 output += "id:'" + obj.id + "',";
 }
 output += "type:'" + obj.type + "',";
 switch (obj.type) {
 case "radio":
 if (obj.name) {
 obj = document.forms[0].elements[obj.name];
 var radioVal = "value:false,index:-1";
 for (var i = 0; i < obj.length; i++) {
 if (obj[i].checked) {
 radioVal = "value:true,index:" + i;
 i = obj.length;
 }
 }
 output += radioVal;
 } else {
 output += "value:" + obj.checked;
 }
 break;
 case "checkbox":
 output += "value:" + obj.checked;
 break;
 case "select-one":
 output += "value:" + obj.selectedIndex;
 break;
 case "select-multiple":
 output += "value:" + obj.selectedIndex;
 break;
 case "text":
 output += "value:'" + escape(obj.value) + "'";
 break;
 case "textarea":
 output += "value:'" + escape(obj.value) + "'";
 break;
 case "password":
 output += "value:'" + escape(obj.value) + "'";
 break;
 case "hidden":
 output += "value:'" + escape(obj.value) + "'";
 break;

8.15 Copying Form Data Between Pages | 229

 default:
 output += "";
 }
 output += "}"
 return output;
}
// Convert a passed form reference to a string formatted like
// a JavaScript array of objects
function form2ArrayString(form) {
 var elem, lastName = "";
 var output = "[";
 for (var i = 0; i < form.elements.length; i++) {
 elem = form.elements[i];
 if (elem.name && (elem.name != lastName)) {
 output += formObj2String(form.elements[i]) + ",";
 lastName = elem.name;
 }
 }
 output = output.substring(0, output.length-1) + "]";
 return output;
}

// Distribute form control values from another source to the
// controls in this page's form, whose names/ids match those
// of the original form controls
function string2FormObj(form, str) {
 var elem, objArray = eval(str);
 for (var i = 0; i < objArray.length; i++) {
 elem = (objArray[i].name) ? form.elements[objArray[i].name] :
 document.getElementById(objArray[i].id);
 switch (objArray[i].type) {
 case "radio":
 if (objArray[i].name && objArray[i].value && objArray[i].index >= 0) {
 elem = elem[objArray[i].index];
 }
 elem.checked = objArray[i].value;
 break;
 case "checkbox":
 elem.checked = objArray[i].value;
 break;
 case "select-one":
 elem.selectedIndex = objArray[i].value;
 break;
 case "select-multiple":
 elem.selectedIndex = objArray[i].value;
 break;
 default:
 elem.value = unescape(objArray[i].value);
 }
 }
}

Example 8-4. The stringForms.js library (continued)

230 | Chapter 8: Dynamic Forms

The form2ArrayString() function manages the conversion process by iterating
through all elements of a form. For each element, it invokes the support function,
formObj2String(), which does the hard work of this library. The purpose of the
formObj2String() function is to convert basic specifications about a passed form
control element to a string formatted as a shortcut object creation sequence. Each of
these objects contains four properties: name, id, type, and value. Each control type
that accepts user input and can be read without security violations is accounted for.

Your scripts invoke the form2ArrayString() function to obtain the string specification
of the form’s controls. Pass a reference to the form on the source page whose values
you want to preserve. The function returns a string that looks like shortcut array nota-
tion. Each array entry is a string representation of an object whose properties define a
single form control. This string may be passed as a search string in a URL or saved as a
cookie for reading by another page from the same server and domain.

When it’s time to reapply the values to a form on another page, use the
string2FormObj() function of this library. Pass to this function a reference to the form
on the current page and the string containing the array syntax. Although normally
avoided for performance reasons, you need the eval() function here to convert the
array string into an actual array object. Form controls with the same name (or, lack-
ing a name, the ID) of the original form are populated with the same values reported
previously. Other form controls with unique names are not disturbed.

While the stringForms.js library takes into account the peculiar ways that radio but-
tons share the same name, it does not preserve multiple selection values of a select-
multiple type of select element. Instead, the function relies exclusively on the
selectedIndex property of the element. You could modify the library to accommo-
date multiple selections by preserving the value as an array (in string format, of
course) of options whose selected property is true.

The importance of preserving form specifications in string format becomes evident
when you need to convey the data across pages. As described in Recipe 10.4 and
Recipe 10.6, two of the three ways to pass data from one page to the next (URLs and
cookies) require that the data be in string format. The JavaScript shortcut syntax for
creating arrays and objects comes in very handy here, because the strings are very com-
pact (compared to other kinds of formats), making it less likely that you’ll overrun the
512-character limit of URLs, or the practical 2 KB limit of a single cookie value.

See Also
Recipes 3.1 and 3.8 for more about shortcut array and object creation syntax; Rec-
ipe 3.13 for a similar type of object-to-string conversion for custom objects; Recipe
10.4 for passing string data between pages via cookies; Recipe 10.6 for data passing
via URL search strings.

231

Chapter 9 CHAPTER 9

Managing Events9

9.0 Introduction
Without events, there would be no Dynamic HTML. A strong statement, perhaps,
but given the kinds of document object models we have inherited, it’s true. For any
dynamism to occur in an HTML page, some kind of trigger is needed.

Two categories of triggers are available: user-generated actions and system-gener-
ated actions. Direct user-generated actions are those caused by mouse and keyboard
activity. System-generated actions occur when something significant occurs in the
browser, such as the document completing its loading into the browser or an image
failing to retrieve its data from the server.

One of your jobs as a DHTML scripter is to determine which events on which ele-
ments or objects should trigger scripted actions. Any kind of form button, for exam-
ple, will usually have some script action associated with it (unless it is just the default
actions of submit and reset input element types). Less obvious, perhaps, are events
that inspect the characters being typed into a text box, to make sure only allowed
characters are permitted to pass. Very common mouse-oriented events detect when
the cursor rolls atop an image element (or an a hyperlink element surrounding the
image) so that a script can change the image to a highlighted version during this
“rollover.” A corresponding event for when the cursor rolls off the image reverts the
image back to its default version. Even the background processing of the
XMLHttpRequest object fires events while it is in the process of receiving data from a
server.

The Event-Scripting Process
In scripting terms, you need a way to connect the occurrence of an event to some
function that carries out tasks for that event. Events are said to be bound to an ele-
ment or object. You instruct an element or object to be on the lookout for an event
of a particular type that comes its way. For example, you can instruct a button to
respond to a mouse click on it, while all surrounding elements ignore clicks on them.

232 | Chapter 9: Managing Events

Syntax for event binding takes on many forms (see the Discussion for Recipe 9.1),
but the basic task for the scripter is to assign a function to a particular event of a par-
ticular element or object. The assignment statement is sometimes called an event
handler, and the function assigned to the event handler is called an event handler
function. Thus, when the user clicks on a button that has pre-assigned the
handleClick() function to the click event, that event handler function runs when-
ever the user clicks on the button.

You can assign functions to as many event types on as many elements and objects as
your content and interface design require. For example, you can instruct an image to
change its picture to a highlighted version when the user rolls the cursor atop the img
element on the page, and then change to a concave image of itself when the user
presses down on the image via the mouse button. Upon release of the mouse button,
the image goes back to the rollover highlight color. When the cursor leaves the rect-
angle of the image, the image reverts to its original file. In this case, the img element
might have four event handlers assigned to it (for the mouseover, mousedown, mouseup,
and mouseout events, respectively) and a different event handler function assigned to
each event.

Event Types
Knowledge of the range of event types available to you will have a substantial impact
on the amount and kind of user interaction you design into your pages. Several event
types have been around since at least the days of IE 4 and NN 4 browsers. These
generic events act as a lowest common denominator of events that do not depend on
any particular browser or operating system. Table 9-1 lists these event types and
their browser compatibility ratings, as well as whether the HTML 4 standard recog-
nizes the event handler as a tag attribute (the event type with the “on” prefix). Mod-
ern browsers (Mozilla, Safari, and Opera) support all of the types shown in
Table 9-1. While most of these event types can be bound to any rendered element in
the latest browsers, events in earlier browsers (especially IE 3 and Navigator through
version 4) were limited to a handful of elements.

Table 9-1. Event types for early DHTML browsers

Event type NN IE/ Win IE/ Mac HTML Description

abort 3 4 3.01 n/a The user has interrupted the transfer of an image to
the client.

blur 2 3 3.01 4 An element has lost the input focus because the user
clicked out of the element or pressed the Tab key.

change 2 3 3.01 4 An element has lost focus and the content of the ele-
ment has changed since it gained focus.

click 2 3 3.01 4 The user has pressed and released a mouse button
(or keyboard equivalent) on an element.

Introduction | 233

Beyond the cross-browser events in Table 9-1, Microsoft implements an additional
set that allows DHTML scripts to react to more specific user and system actions.
Table 9-2 lists the IE events that may assist a DHTML application—almost all of
them assist only the Windows version because of IE’s tight integration with the oper-
ating system. Apple has implemented several of these events in recent versions of
Safari, as shown. Not listed in Table 9-2 are the many event types that apply only to
Internet Explorer’s data binding facilities, which allow form elements to be bound to
server database sources.

dblclick 4 4 3.01 4 The user has double-clicked a mouse button on an
element.

error 3 4 4 n/a An error has occurred in a script or during the load-
ing of some external data.

focus 2 3 3.01 4 An element has received the input focus.

keydown 4 4 4 4 The user has begun pressing a keyboard character
key.

keypress 4 4 4 4 The user has pressed and released a keyboard char-
acter key.

keyup 4 4 4 4 The user has released a keyboard character key.

load 2 3 3.01 4 A document or other external element has com-
pleted downloading all data into the browser.

mousedown 4 4 4 4 The user has begun pressing a mouse button.

mousemove 4 4 4 4 The user has rolled the mouse (irrespective of mouse
button state).

mouseout 3 3 3.01 4 The user has rolled the mouse out of an element.

mouseover 2 3 3.01 4 The user has rolled the mouse atop an element.

mouseup 4 4 4 4 The user has released the mouse button.

move 4 3 4 n/a The user has moved the browser window.

reset 3 4 4 4 The user has clicked a Reset button in a form.

resize 4 4 4 n/a The user has resized a window or object.

select 2 3 3 4 The user is selecting text in aninput ortextarea
element.

submit 2 3 3.01 4 A form is about to be submitted.

unload 2 3 3.01 4 A document is about to be unloaded from a window
or frame.

Table 9-1. Event types for early DHTML browsers (continued)

Event type NN IE/ Win IE/ Mac HTML Description

234 | Chapter 9: Managing Events

Table 9-2. Internet Explorer DHTML events

Event type IE/ Win IE/ Mac Safari Description

activate 5.5 n/a n/a An object has become active (but not necessarily focused).

afterprint 5 n/a n/a Data has been sent to the pringer.

beforeactivate 6 n/a n/a An object is about to become the active object.

beforecopy 5 n/a 1.3/2 The user has issued a Copy command, but the operation
has not yet begun.

beforecut 5 n/a 1.3/2 The user has issued a Cut command, but the operation has
not yet begun.

beforedeactivate 5.5 n/a n/a The active object is about to yield to a different object.

beforepaste 5 n/a 1.3/2 The user has issued a Paste command, but the operation
has not yet begun.

beforeprint 5 n/a n/a The user has issued a Print command, but the document
has not yet been sent to the printer.

contextmenu 5 n/a all The user has pressed the context menu (i.e., “right-click”)
mouse button.

copy 5 n/a 1.3/2 The user has initiated a Copy command, but the operation
has not yet begun.

cut 5 n/a 1.3/2 The user has issued a Cut command, but the operation has
not yet begun.

deactivate 5.5 n/a n/a An object has yielded to another active object.

drag 5 n/a 1.3/2 The user is dragging the element.

dragend 5 n/a 1.3/2 The user has completed dragging the element.

dragenter 5 n/a 1.3/2 The user has dragged an element into the space of the cur-
rent element.

dragleave 5 n/a 1.3/2 The user has dragged an element out of the space of the
current element.

dragover 5 n/a 1.3/2 The user is dragging an element through the space of the
current element.

dragstart 5 n/a 1.3/2 The user has begun dragging a selection.

drop 5 n/a 1.3/2 The user has dropped a dragged element atop the current
element.

focusin 6 n/a n/a The user has acted to give focus to the element, but the
actual focus has not yet occurred; the event fires before
onfocus.

focusout 6 n/a n/a The user has given focus to another element; the event
fires before onblur.

help 4 4 n/a The user has pressed the F1 key or chosen Help from the
browser menu.

mouseenter 5.5 n/a n/a The user has moved the cursor into the space of the
element.

mouseleave 5.5 n/a n/a The user has moved the cursor to outside the space of the
element.

mousewheel 6 n/a n/a The user is rolling the mouse wheel.

Introduction | 235

Keeping all of these events and their idiosyncrasies straight is not an easy task. To get
into the depths of the more esoteric events, find a good DHTML reference (such as
my book Dynamic HTML: The Definitive Reference [O’Reilly]).

Event Models
The key to working with events over the long term is knowing how to take advan-
tage of the abstract event object that is created each time an event registers with the
browser. An event object contains numerous properties that describe the details of
the event, such as the identity of the element receiving the event, mouse coordinates,
keyboard characters, and even a self-descriptive property revealing the type of the
event. The purpose of this event object is to let event handler functions derive details
that could be useful for processing the event. For example, if a mousemove event han-
dler is being programmed to reposition an element along with the cursor, the event
handler function needs to know the coordinates of the mouse at each firing of the
mousemove event.

Complicating matters, however, is the fact that the event model that defines what an
event object should be and how it should behave is not the same across all DHTML
browsers. As of Internet Explorer 7, Microsoft has not yet implemented the W3C
DOM Level 2 event model. Mozilla, Safari, and Opera, however, have followed the
W3C DOM event model, adopting only a couple of IE convenience properties along
the way. Each model supports a different way of communicating the event object to
an event handler function, so Recipe 9.1 demonstrates how to equalize that discrep-
ancy. You may also need to equalize the properties of the two event objects to make
one function operate in both worlds. Table 9-3 provides an overview of the compara-
tive event object properties in the two object models.

moveend 5.5 n/a n/a A positioned element has completed its motion.

movestart 5.5 n/a n/a A positioned element is starting its motion.

paste 5 n/a 1.3/2 The user has issued a Paste command, but the operation
has not yet begun.

scroll 4 4 n/a The user has adjusted an element’s scrollbar.

selectstart 4 4 1.3/2 The user is beginning to select an element.

Table 9-3. Equivalent properties of the IE and W3C DOM event objects

IE property Description W3C property or method

altKey The Alt key was pressed during the event (Boolean). altKey

button The mouse button was pressed in the mouse event (integer,
but different numbering systems per model).

button

cancelBubblea Whether the event should bubble further. stopPropagation()

Table 9-2. Internet Explorer DHTML events (continued)

Event type IE/ Win IE/ Mac Safari Description

236 | Chapter 9: Managing Events

A few of the recipes in this chapter demonstrate how to equalize the most com-
monly accessed properties of the IE and W3C DOM event objects.

9.1 Equalizing the IE and W3C Event Models

Problem
You want a script to inspect details about a particular event when the page is loaded
in Internet Explorer and in a W3C DOM browser that supports only the W3C DOM
event model.

Solution
Because Internet Explorer (at least through version 7) does not implement the W3C
DOM event model, and because pure W3C DOM browsers such as Mozilla and

clientX, clientY The horizontal and vertical coordinates of the event in the
content region of the browser window.

clientX, clientY

ctrlKey The Ctrl key was pressed during the event (Boolean). ctrlKey

fromElement The object or element from which the pointer moved for a
mouseover or mouseout event.

relatedTarget

keyCode The keyboard character code of a keyboard event (integer). keyCode

offsetX, offsetY The horizontal and vertical coordinates of the event within
the element space.

(calculated from other
properties)

(calculated from other
properties)

The horizontal and vertical coordinates of the event within
the document space.

pageX, pageYb

returnValue The value returned to the system by the event (used to pre-
vent default action in IE).

preventDefault()

screenX, screenY The horizontal and vertical coordinates of the event relative
to the screen.

screenX, screenY

shiftKey The Shift key was pressed during the event (Boolean). shiftKey

srcElement The object or element intended to receive the event. target

toElement The object or element to which the pointer moved for a
mouseover or mouseout event.

relatedTarget

type The name of the event (without “on” prefix). type

x, y The horizontal and vertical coordinates of the event within
the body element (for unpositioned target) or the posi-
tioned element.

layerX, layerYc

a Supported in Mozilla-based browsers for convenience.
b Not part of the W3C DOM spec, but supported by Mozilla, Safari, and Opera.
c Not part of the W3C DOM spec, but supported by Mozilla and Safari.

Table 9-3. Equivalent properties of the IE and W3C DOM event objects (continued)

IE property Description W3C property or method

9.1 Equalizing the IE and W3C Event Models | 237

Safari implement only the W3C DOM event model, you must use model-specific
ways to derive a common reference to the event to assist further processing.

Event handlers receive a reference to the W3C DOM event object as a parameter (see
the Discussion), whereas the IE event object is a property of the window object. To
accommodate both and end up with a single reference that subsequent statements
can use to examine the event object, use the following skeletal structure in every
event-invoked function:

function functionName(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 // perform processing here
 }
}

This structure uses object detection, rather than browser version sniffing, to not only
extract the event model-specific reference, but also guard against script errors if the
browser does not support either event model (i.e., much older browsers responding
to simple events).

If your script structure prevents older browsers from invoking event handler func-
tions (e.g., you use object detection to make sure only newer browsers bind events to
elements), the first statement of the handler function can use shortcut notation—via
the OR (||) JavaScript operator—to assign the browser-supported event object to the
evt variable, as follows:

function functionName(evt) {
 evt = (evt) || window.event;
 // perform processing here
}

You will see this notation used in several scripts later in this book.

Discussion
Getting a non-IE event model browser to pass the event object to the event handler
function requires either a little planning ahead or none whatsoever, depending on the
way you bind your event handlers to element objects. The W3C DOM specification
formally supports event binding only via the addEventListener() method of any ele-
ment, as in the following example:

document.getElementById("myButton").addEventListener("click", processClick, false);

A function triggered by an event bound to the element in this fashion automatically
passes the event object as the sole parameter to the function. All you need to do is
catch the parameter by assigning a function parameter variable at the start of the
function definition (i.e., the evt inside parentheses in the skeletal structure shown in
the Solution).

238 | Chapter 9: Managing Events

IE’s preferred event binding is through the attachEvent() method. Its syntax, how-
ever, is different from that of the W3C’s addEventListener() method. In a moment,
you’ll see how to reconcile the differences.

Fortunately for cross-platform developers, two pre-W3C DOM ways of binding
events to elements work without a problem in all modern browsers—and will likely
do so for a long time to come. Those two approaches are assigned as element object
properties, and assigned the original way, as attributes inside the element’s tag.

Assigning an event as a property of an object is performed in one JavaScript state-
ment. The left side of the statement is a reference to the element object and a property
consisting of the event handler name (with the “on” prefix) in lowercase letters; the
right side is a reference to the function to be invoked when that element receives the
event. A function reference is just the function’s name without parentheses, as in:

document.getElementById("myButton").onclick = processClick;

Events bound this way in browsers such as Mozilla automatically pass the event
object as the sole parameter to the function.

Although at first the event property binding technique appears to preclude passing
parameters, you can use an anonymous function (Recipe 4.4) to fill the gap. The fol-
lowing example passes both the W3C DOM event object and a timestamp of the
event to the processClick() function:

document.getElementById("myButton").onclick = function(evt) {processClick(new Date(),
evt);};

You can pass any literal values or variables within the scope of the assignment state-
ment (e.g., a local variable if this statement appears inside a function).

Despite the number of competing binding techniques, save yourself a lot of anguish
by combining three techniques (W3C standard, IE proprietary, and event proper-
ties) into a library, such as eventsManager.js. Two of the library’s three functions (the
third is described in Recipe 9.3) are as follows:

function addEvent(elem, evtType, func, capture) {
 capture = (capture) ? capture : false;
 if (elem.addEventListener) {
 elem.addEventListener(evtType, func, capture);
 } else if (elem.attachEvent) {
 elem.attachEvent("on" + evtType, func);
 } else {
 // for IE/Mac, NN4, and older
 elem["on" + evtType] = func;
 }
}

function removeEvent(elem, evtType, func, capture) {
 capture = (capture) ? capture : false;
 if (elem.removeEventListener) {
 elem.removeEventListener(evtType, func, capture);

9.1 Equalizing the IE and W3C Event Models | 239

 } else if (elem.attachEvent) {
 elem.detachEvent("on" + evtType, func);
 } else {
 // for IE/Mac, NN4, and older
 elem["on" + evtType] = null;
 }
}

These two functions offer a simple interface for your code to bind and unbind events
to element objects. For example, the button event example used so far would be han-
dled by the following:

addEvent(document.getElementById("myButton"), "click", processClick, false);

The library applies the preferred binding syntax to each browser class, including a
version for older browsers.

One other cross-platform (and fully backward-compatible) event binding mecha-
nism is through an attribute embedded in the element’s tag. You see a lot of this in
code around the Internet because it was the original way event binding took place
when scripting started. It is also a convenient way to pass one or more parameters of
your choosing to the function. Therefore, it’s common to see input form controls
pass a reference to the element itself (this) or the containing form element (this.
form) to make it easier for the function to work directly with the element’s value or
other controls in the form. But to convey the W3C DOM event object to the handler
function, events bound this way must also explicitly include the keyword event as
one of the parameters:

<input type="button" name="myButton" id="myButton" value="Process"
onclick="processClick(event)" />

You can pass multiple parameters if you like, but the position of the parameters
being passed must be the same in the parameter variable definitions in the function.
For example, the event handler defined as:

onclick="processClick(this.form, event)"

must have a function defined with two parameter variables to catch the passed
arguments:

function processClick(form, evt) {...}

When you include the explicit event object as a parameter, IE also passes its version of
the event object, so the syntax does double duty. But the trend in scripting and docu-
ment markup in general is to get away from this in-tag event binding and gravitate
toward other approaches exemplified by the eventsManager.js library, earlier—all in
the name of separating content from style and processing.

Binding events by a process other than in-tag attributes, however, has its own gotchas
to be aware of. The most significant is that you cannot simply bind events to objects
while the page loads but before the objects are loaded into the browser. The Java-
Script interpreter attempts to resolve all assignment statements when they execute. If

240 | Chapter 9: Managing Events

the object is not yet known to the object model, the assignment fails (with a script
error). This goes even for the body element: assigning an event handler property to
document.body in the head portion of the document triggers script errors in some
browsers.

To work around this conundrum, you can place (almost) all of your event assign-
ments in a function that gets invoked after the entire page has loaded. See Recipes 9.2
and 9.3 for more details.

If you use the event object equalization routine shown in the Solution, you may still
have to perform additional platform-specific equalizations in your handler function.
This occurs whenever the property you’re looking for is known by different names
(see Recipes 9.4 and 9.7 for examples). But there is also a sufficient amount of simi-
larity between the two objects’ properties that they are quite useful blended into a
single event handler function.

See Also
Table 9-3 in the introduction of this chapter for a comparative list of event object
properties; all other recipes throughout this book that process events using the event
object equalization technique shown here; Recipe 9.2 for triggering a function (for
event handler property assignments) after the page loads; Recipes 9.4 and 9.7 for
equalizing disparate event object properties.

9.2 Initiating a Process After the Page Loads

Problem
When a new page loads into the browser, you want to execute script statements
requiring that all content, including images and plug-ins or ActiveX controls, be
loaded and ready to go.

Solution
The load event of the window object fires after all content and processes coded in the
HTML have finished loading and self-initializing. Use this event to trigger the func-
tion(s) needed to complete the initialization of your scripted objects. All scriptable
browsers support the following syntax:

<body onload="myInitFunction()"> ... </body>

All browsers back to Navigator 3 and Internet Explorer 4 support the following
script syntax, which may be included in a script located in the head portion of the
document:

window.onload = myInitFunction;

9.2 Initiating a Process After the Page Loads | 241

In this latter case, make sure the myInitFunction() is defined earlier in the script
code than the event assignment statement.

Discussion
Do not, under any circumstances, bind load events both by script and onload
attribute in the <body> tag. If the scripts execute in the head, the attribute binding
overwrites the earlier property assignments.

Event binding via property assignment does not allow multiple function assignments
to the same event. If you include a second statement for the same object and event, it
overrides the first. Therefore, if you need multiple functions initialized for window.
onload, direct the event to fire a dispatcher-like function that then invokes each of
your detailed initialization functions in the desired sequence:

function startup() {
 initDHTMLAPI();
 setHeights();
}
window.onload = startup;

Recipe 9.3 shows an even more flexible way to handle multiple initializations.

Initializing event handlers after the document has loaded brings you and your users
one extra benefit: events do nothing until all of the page’s content is loaded into the
browser. This is especially helpful if your page includes scripts that communicate
with plug-ins or ActiveX controls. If a user clicks on a button that triggers a script
before the ancillary machinery is in place, script errors will occur.

Using the load event handler as a trigger for scripted event binding offers some
intriguing benefits. First of all, you automatically ensure that very old browsers won’t
respond to events because they don’t understand the event name properties. The
result is that you filter out browsers that choke on function handlers intended for
more modern browsers. Second, you can filter out even more browsers with the help
of object detection. For example, if you wish to limit event function access to brows-
ers that support the basic W3C DOM element object reference syntax, you can sur-
round the event assignment statements by conditional statements that validate
browser support for your requirements:

function initEvents() {
 // these events OK with all but NN2 and IE3
 document.forms[0].onsubmit = validateMainForm;
 document.forms[0].elements["email"].onchange = validateEmail;
 if (document.getElementById) {
 // these work only when W3C DOM is supported
 document.getElementById("logo").onclick = goHome;
 document.body.onclick = blockEvent;
 }
}
window.onload = initEvents;

242 | Chapter 9: Managing Events

This approach is far superior to wrapping script statement blocks in <script> tags
that define the JavaScript version through the language attribute (e.g.,
language="JavaScript1.2"). Using the core JavaScript language versions as a predic-
tor of things such as document object model version and support is foolhardy. Use
object detection instead.

See Also
The Discussion in Recipe 9.1 on event binding types; Recipe 9.3 for managing multi-
ple load events, even when they are specified in multiple library files.

9.3 Appending Multiple Load Event Handlers

Problem
You have multiple .js library or other initializations that need to execute after the
page loads.

Solution
Use a generic load event queue manager as part of the eventsManager.js file intro-
duced in Recipe 9.1. Each library can self-initialize itself by including a call to the
addOnLoadEvent() function of the library, such as the following:

addOnLoadEvent(initMyLib);

Because succeeding calls to addOnLoadEvent() append the passed function to the end
of the load event queue, you can invoke addOnLoadEvent() as often as needed in
external libraries and main page scripts.

Discussion
The addOnLoadEvent() function relies on the addEvent() function from the
eventsManager.js library shown in Recipe 9.1. Therefore, it makes sense to band all
of these functions into the eventsManager.js library.

The code for addOnLoadEvent() is as follows:

function addOnLoadEvent(func) {
 if (window.addEventListener || window.attachEvent) {
 addEvent(window, "load", func, false);
 } else {
 var oldQueue = (window.onload) ? window.onload : function() {};
 window.onload = function() {
 oldQueue();
 func();
 }
 }
}

9.3 Appending Multiple Load Event Handlers | 243

For browsers that support either the W3C DOM event model or IE proprietary
model, the function invokes addEvent() from Recipe 9.1. This recipe uses the object-
model-appropriate syntax for binding the function reference to the event type. Both
the addEventListener() and attachEvent() methods accept multiple invocations on
the same element and event type, keeping each event binding (event type-to-function)
separate.

If the order of initializations is critical to the successful operation of your systems, be
aware of a significant difference between the addEventListener() and attachEvent()
methods. Functions bound via addEventListener() are invoked in the order in which
they were bound (first in, first executed); functions bound via attachEvent() are
invoked in the reverse order (last in, first executed) when the load event fires.

For older browsers that don’t support the advanced event binding syntax, the
addOnLoadEvent() function creates its own queue of load event function calls. The
queue is built by assembling a chain of nested anonymous function calls (facilitated
by JavaScript closures).

Initialization methods of custom objects exhibit what may appear to be odd behav-
ior when they are invoked from the load event. For example, consider the
DHTML3API.js library described in Recipe 13.3. This library creates a single object,
named DHTMLAPI, whose definition includes an init() method. The init() method
sets some property names that other methods of the object rely on later. The normal
way of referring to properties within the DHTMLAPI object is via the this keyword. The
keyword points to the context in which the current object runs. During initialization
triggered by the load event, however, the context is the window object, not the
DHTMLAPI object. References to this.propertyName fail to refer to properties within the
custom object.

To circumvent this potential problem, you can, in a sense, decouple the object from
the window object whose load event invokes the init() method. Do so by defining
the function parameter of addOnLoadEvent() as an anonymous function that wraps
around the call to the init() method:

addOnLoadEvent(function() {DHTMLAPI.init()});

This syntax forces the DHTMLAPI.init() method to execute within the context of the
DHTMLAPI object. References to the this keyword point to the object, and not the win-
dow whose load event causes the method to execute.

See Also
Recipe 9.1 for other parts of the eventsManager.js library; Recipe 3.8 for creating cus-
tom objects; Recipe 4.4 for more on anonymous functions.

244 | Chapter 9: Managing Events

9.4 Determining the Coordinates of a Click Event

Problem
You want to read the x,y coordinates of a click (or other) event with respect to the
coordinate plane of the entire page or just the element being clicked.

Solution
This recipe presents solutions for two situations because each has its own idiosyn-
crasies when trying to merge event coordinates with page coordinates typically used
for positioning elements. The same scenario is assumed: a user clicks somewhere
on the page to point to a location where a positioned element is to be placed. Imag-
ine the user clicking on a map to position an arrow graphic. Differences accrue as
to whether the positioning is relative to the page or to the rectangle occupied by a
positioned element. Use one of two functions described in the Discussion,
getPageEventCoords() or getPositionedEventCoords(), to obtain coordinates that
coincide with the event’s coordinates. Both functions return an object with left
and top properties whose values represent position coordinates.

The basis for this example’s user interface is one of two versions of the moveToClick()
function, which relies on the moveTo() method of the DHTML API (Recipe 13.3).
When the user clicks anywhere within the scope of the event binding with the Shift
key down, the top-left corner of a positioned element is brought to the click spot.

The first case we’ll cover obtains coordinates relative to the space occupied by the
entire page, so you can position the top-left corner of a first-level (i.e., nonnested)
positioned element at the spot of a user click. The event binding can be assigned to
the document object:

document.onmousedown = moveToClick;

For this version, the moveToClick() function calls upon getPageEventCoords().
Returned values are applied as arguments to the shiftTo() function:

function moveToClick(evt) {
 evt = (evt) ? evt : event;
 if (evt.shiftKey) {
 var coords = getPageEventCoords(evt);
 DHTMLAPI.moveTo("mapArrow", coords.left, coords.top);
 }
}

For the second click-positioning case, the task is to locate a nested-positioned ele-
ment inside its parent-positioned element. In other words, the goal is to get the coor-
dinates of the click within the outer-positioned element because the outer element
defines its own rectangle as the coordinate plane for its children. It’s best in this situ-
ation to bind the event handler to the outer-positioned element, although it’s not a
requirement. It just makes it easier to confine processing to clicks on that element

9.4 Determining the Coordinates of a Click Event | 245

rather than the entire document. In an initialization routine triggered by the load
event, bind the event accordingly:

document.getElementById("myMap").onmousedown = moveToClick;

moveToClick() calls upon getPositionedEventCoords() to read the nested coordinates:

function moveToClick(evt) {
 evt = (evt) ? evt : event;
 if (evt.shiftKey) {
 var coords = getPositionedEventCoords(evt);
 DHTMLAPI.moveTo("mapArrow", coords.left, coords.top);
 }
}

Discussion
To determine the mouse event location in the coordinate plane of the entire docu-
ment, the getPageEventCoords() function shown in the following example has two
main branches. The first gets the simpler pageX and pageY properties of the event
object supported in Mozilla, Safari, and Opera. For IE, many more calculations need
to be carried out to derive the coordinates to accurately position an element at the
specified location. The clientX and clientY properties need additional factors for
any scrolling of the body content and some small padding that IE automatically adds
to the body (normally two pixels along both axes). In the case of IE 6 or later run-
ning in CSS-compatibility mode, the html element’s small padding must also be fac-
tored out of the equation.

function getPageEventCoords(evt) {
 var coords = {left:0, top:0};
 if (evt.pageX) {
 coords.left = evt.pageX;
 coords.top = evt.pageY;
 } else if (evt.clientX) {
 coords.left =
 evt.clientX + document.body.scrollLeft - document.body.clientLeft;
 coords.top =
 evt.clientY + document.body.scrollTop - document.body.clientTop;
 // include html element space, if applicable
 if (document.body.parentElement && document.body.parentElement.clientLeft) {
 var bodParent = document.body.parentElement;
 coords.left += bodParent.scrollLeft - bodParent.clientLeft;
 coords.top += bodParent.scrollTop - bodParent.clientTop;
 }
 }
 return coords;
}

Deriving the event coordinates inside a positioned element is the job of the
getPositionedEventCoords() function, shown in the following code listing. Mozilla
and Safari provide special event object properties (layerX and layerY) which pro-
vide the desired offset values within a positioned element. Adjustments are needed,

246 | Chapter 9: Managing Events

however, if the positioned element has borders. The IE branch (for Opera, too),
which supports the offsetX and offsetY properties of the event object, is the easy
one here. Those values are relative to the coordinate plane of the positioned element
target. To prevent the event from propagating any further (and possibly conflicting
with other mousedown event targets), the event’s cancelBubble property is set to true:

function getPositionedEventCoords(evt) {
 var elem = (evt.target) ? evt.target : evt.srcElement;
 var coords = {left:0, top:0};
 if (evt.layerX) {
 var borders = {left:parseInt(DHTMLAPI.getComputedStyle("progressBar",
 "border-left-width")),
 top:parseInt(getElementStyle("progressBar",
 "border-top-width"))};
 coords.left = evt.layerX - borders.left;
 coords.top = evt.layerY - borders.top;
 } else if (evt.offsetX) {
 coords.left = evt.offsetX;
 coords.top = evt.offsetY;
 }
 evt.cancelBubble = true;
 return coords;
}

A compatibility complication must be accounted for, however. If the outer element
has a CSS border assigned to it, Mozilla and IE (in any mode) disagree whether the
coordinate plane begins where the border starts or where the content rectangle starts.
Mozilla includes the border; IE does not. Therefore, along the way, the situation is
equalized by factoring out the border in the Mozilla calculations. This is done with
the help of the getComputedStyle() method from Recipe 13.3:

 // return computed value for an element's style property
 getComputedStyle : function (elemRef, CSSStyleProp) {
 var elem = this.getRawObject(elemRef);
 var styleValue, camel;
 if (elem) {
 if (document.defaultView && document.defaultView.getComputedStyle) {
 // W3C DOM version
 var compStyle = document.defaultView.getComputedStyle(elem, "");
 styleValue = compStyle.getPropertyValue(CSSStyleProp);
 } else if (elem.currentStyle) {
 // make IE style property camelCase name from CSS version
 var IEStyleProp = CSSStyleProp;
 var re = /-\D/;
 while (re.test(IEStyleProp)) {
 camel = IEStyleProp.match(re)[0].charAt(1).toUpperCase();
 IEStyleProp = IEStyleProp.replace(re, camel);
 }
 styleValue = elem.currentStyle[IEStyleProp];
 }
 }
 return (styleValue) ? styleValue : null;
 }

9.4 Determining the Coordinates of a Click Event | 247

It may seem odd that deriving these kinds of event coordinates should be so labori-
ous in one circumstance or the other. There is little justification for this, except per-
haps that those who designed the event object and content-coordinate systems didn’t
envision how DHTML designers might utilize these features. The W3C DOM Level
2 event model is only partially helpful by defining two pairs of coordinate-related
properties of the event object: clientX/clientY and screenX/screenY. But even then,
the formal descriptions of the clientX and clientY properties—a coordinate at which
the event occurred relative to the DOM implementation’s client area—leave a lot to
interpretation. Is the “client area” the page or just the visible portion of the page?
Mozilla, Safari, and Opera interpret it as being the entire page, but IE’s clientX and
clientY properties (admittedly not based on the W3C DOM event model) are mea-
sures within the visible space of the document, thus requiring adjustments for docu-
ment scrolling.

The W3C DOM Level 2 is mum on event coordinates within a positioned element.
Of course, with some more arithmetic and element inspection, you can figure out
those values from the style properties of the element and the event’s clientX and
clientY properties. The proprietary properties for offsetX/offsetY in IE and layerX/
layerY in Mozilla (a convenience holdover from Navigator 4) partially pick up the
slack, but as you’ve seen, they’re not universally perfect.

Even with the adjustments shown in the examples for this recipe, you may still
encounter combinations of CSS borders, margins, and padding that throw off these
careful calculations. If these CSS-style touches are part of the body element or the ele-
ment you’re positioning, you will probably have to experiment with adjustment val-
ues that work for the particular design situation of the page. In particular, inspect the
offsetLeft, offsetTop, clientLeft, and clientTop properties of not only the direct
elements you’re working with, but also those within the containers that impact ele-
ments’ offset measures (usually reachable through the offsetParent property, and
further offsetParent chains outward to the html element). Also, don’t overlook CSS
border, margin, and padding thicknesses that might impact coordinate measures of
the elements. Look for values that represent the number of pixels that your calcula-
tions miss. It’s a tedious process, so be prepared to spend some time figuring it out.
One size does not fit all.

See Also
Recipe 9.5 for cancelling event bubbling; Recipe 11.12 for a utility function that
reveals values from imported style sheets; Recipe 13.8 for determining the pixel posi-
tion of an element within the normal flow of a document.

248 | Chapter 9: Managing Events

9.5 Preventing an Event from Performing Its Default
Behavior

Problem
You want to prevent an event from triggering its default behavior.

Solution
Although it is a fruitless endeavor to use scripts to block users from, say, right-clicking
on an image to save a copy of the image on the local hard disk, this recipe shows
how to use event blocking to discourage casual users who may be dissuaded by an
alert message.

The primary event to block in this case is the contextmenu event, which is imple-
mented in IE 5 or later for Windows, Mozilla, and Safari. Assign a function to the
event at the document level. The following function blocks the event for all img
elements:

function blockEvents(evt) {
 evt = (evt) ? evt : event;
 var elem = (evt.target) ? evt.target : ((evt.srcElement) ?
 evt.srcElement : null);
 if (elem && elem.tagName && elem.tagName.toLowerCase() == "img") {
 if (evt.cancelBubble) {
 evt.cancelBubble = true;
 }
 alert("Sorry, feature not available.");
 return false;
 }
}
document.oncontextmenu = blockEvents;

Discussion
Inhibiting an event’s default action can give your dynamic pages powers they
couldn’t have on their own. For example, if you want to limit text field entry to num-
bers only, examine the event object details and block nonnumeric characters from
reaching the field. Similarly, if you are performing client-side form validation (see
Chapter 8) when the user submits the form, you want to block the submit event from
carrying out its default behavior if the validation fails.

Before browsers had the sophisticated event models of today, events could be
blocked, although on a more limited basis. The basic technique was to make sure
that the event handler’s last in-line statement evaluated to the expression:

return false;

9.5 Preventing an Event from Performing Its Default Behavior | 249

For example, in Recipe 5.13, you see how an a element can link to one document
through its traditional href reference when the browser isn’t scriptable, but navigate
to another page when scripting is available:

<a href="std/newProds.html" title="To New Products"
 onclick="return linkTo('ieWin/newProds.html', 'w3/newProds.html')">New
 Products

In this case, the linkTo() function returns a value of false so that the click event
handler evaluates to return false. The a element never acts on the href link when
scripting is enabled because as far as the element is concerned, the click never hap-
pened. You could also format the click event handler as two separate statements in a
series:

onclick="linkTo('ieWin/newProds.html', 'w3/newProds.html'); return false"

The first format is ideal when the function invoked by the event handler processes
the event with the goal of discovering whether the default action of the event should
be permitted to pass to the element. See Recipe 8.3 for this technique to be used with
form validation and Recipe 8.12 to allow only desired characters in a text field.

As the event models increased in sophistication, the old ways still worked (and still
do), but events were also being bound to elements in ways that did not permit the
direct inclusion of a return false statement in the binding assignment. Instead, when
events are bound to an element by way of property assignment, the last executing
statement of the handler function dictates whether the default action of the event
passes to the element. Therefore, if the last statement of the function is return true,
the default action is processed normally; a final return false prevents the default
action.

This technique was improved syntactically in the IE 4 event model with the addition
of the event object’s returnValue property. You can set this property to true or false
to direct the target element to process or ignore the default behavior, respectively. A
side benefit of this extra property is that you can return something other than a Bool-
ean value from the function, yet the default behavior is controlled independently.

Comparable capabilities are built into the W3C DOM event model by way of a
method of the event object passed to the handler function. Invoke the event object’s
preventDefault() method (no parameters) to tell the target element to ignore the
event. Calling this method in Mozilla, for instance, is the same as setting the event.
returnValue property to false in IE 4 or later. Of course, the cross-browser choice is
the old-fashioned return false approach if it’s applicable to your coding style.

Consider event propagation in your event processing. The IE 4 and W3C DOM
event models allow events to propagate up the document node tree. For example, a
click event on a form’s button fires on the button, on the form element, on the
body element, and on the root document node. You might wish to take advantage of
this feature if you have a series of similar objects and want a single event handler to

250 | Chapter 9: Managing Events

process a particular event on all of those elements—let the events from the individ-
ual elements bubble up to a container node, whose event handler for that event type
triggers a function.

Event propagation in the direction of the document node is called event bubbling (i.e.,
the event “bubbles” upward through the node tree). If you have event handler defini-
tions assigned for nodes high up on the tree, you may need to block events of the
same type from bubbling beyond the elements in which they do their work. Other-
wise, the events will trigger those higher-up event handler functions and mess up
your processing goals.

To help control event bubbling, IE 4 implemented the cancelBubble property of the
event object. Mozilla, Safari, and Opera implement this property, too, as a cross-
browser convenience (it’s not part of the W3C DOM Level 2 event model). If you set
this property to true, the event does not bubble beyond the node that is processing
the event at the time. The W3C DOM version of this feature is the
stopPropagation() method of the event object. This method is implemented only in
Mozilla, Safari, and Opera.

Here’s an object model-specific revised version of the blockEvents() function for IE:

function blockEvents() {
 var elem = event.srcElement;
 if (elem && elem.tagName && elem.tagName.toLowerCase() == "img") {
 event.cancelBubble = true;
 event.returnValue = false;
 alert("Sorry, feature not available.");
 }
}

In pure W3C DOM syntax, the function becomes:

function blockEvents(evt) {
 var elem = (evt.target) ;
 if (elem && elem.tagName && elem.tagName.toLowerCase() == "img") {
 evt.preventDefault();
 evt.stopPropagation();
 alert("Sorry, feature not available.");
 }
}

Despite all the best efforts of web content developers, there is no defense against the
determined page visitor who wants to view your page source code (including linked
JavaScript libraries and CSS style sheets) or capture a copy of an image file showing
in the page. That’s not the only reason to block events, but it is perhaps the most
common request among content providers. Any scripted technique is immediately
defeatable by the user turning off scripting in the browser. Even if you try to disguise
things by opening the page in a menu bar-less window, the URL to that page is
accessible in the loading page so that the URL can be opened manually in a regu-
lar browser window. As weak as this level of “right-click” protection is, plenty of

9.6 Blocking Duplicate Clicks | 251

content developers observe the technique on other pages and are convinced it offers
genuine blockage. They frequently inquire in online forums for guidance in imple-
menting what they’ve seen. This provides anecdotal evidence that even many experi-
enced developers can be dissuaded by this simple event trick.

See Also
Other recipes that control event propagation or default actions: Recipe 5.13 for
hyperlinks; Recipe 8.3 for form submissions; Recipe 8.12 for text boxes.

9.6 Blocking Duplicate Clicks

Problem
You want to prevent a second click on a button or link.

Solution
Use the click event handler of the button or link to carry out the intended single-
click action, and then redirect the event handler for any subsequent click. For exam-
ple, the following link submits a form by way of the submitForm() function:

Submit

In the event handler function, reassign the function to a second function that per-
forms no action:

function submitForm() {
 document.forms["myForm"].submit();
 submitForm = blockIt;
 return false;
}
function blockIt() {
 return false;
}

Discussion
Notice that this recipe makes no mention of the doubleclick event handler. That’s
because the event is irrelevant for this kind of blocking operation. If you don’t script
a doubleclick event handler, nothing happens when that event fires. You want to
prevent a subsequent click event. This is especially important for form submissions
in applications such as e-commerce transactions. If the user clicks the Submit button
a second time while the form page is still visible, the server may process both submis-
sions and store the order in the database twice.

The technique shown in the Solution is deceptively simple. The second statement of
the submitForm() function equates the submitForm() function with the blockIt()
function. The next time that submitForm() is invoked, the blockIt() function is

252 | Chapter 9: Managing Events

invoked in its place. Bear in mind that this function reassignment stays in force
unless the page reloads.

If you wish to script an action to occur upon double-clicking an element, you can use
the doubleclick event handler. But attempting to script both the click and
doubleclick event handlers for the same element will lead to unsatisfactory results.
At best, you can combine doubleclick event handlers with mousedown or mouseup
event handlers, just like real applications do.

See Also
Recipe 9.5 for blocking the default behavior of an event.

9.7 Determining Which Element Received an Event

Problem
You want to obtain a reference to the element receiving the most recent event.

Solution
The IE and W3C DOM event models offer properties of their respective event
objects that return a reference to the element initially receiving an event. Although
the syntax is different, you can equalize IE’s srcElement and the W3C DOM’s target
event properties to achieve a single reference valid in both browser classes. The tech-
nique also requires equalizing the event objects, as shown in Recipe 9.1.

A typical event handler function that degrades gracefully in older browsers starts this
way:

function myFunction(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target :
 ((evt.srcElement) ? evt.srcElement : null);
 if (elem) {
 // perform all event processing here
 }
 }
}

Discussion
The W3C DOM event model presents one extra wrinkle to the solution if the target
element acts as an HTML container of one or more text nodes. In the W3C DOM,
text nodes can be targets. Therefore, if you bind a click event handler to an a ele-
ment that surrounds hyperlinked text, the event object passed to the handler func-
tion regards the text node nested inside the a element as the target. More than likely,
however, your function is interested in the surrounding a element and its properties.

9.7 Determining Which Element Received an Event | 253

If the elements you’re assigning events to are containers, and if your function must
obtain a reference to the element containing that text, modify the template shown in
the Solution to the following:

function myFunction(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target :
 ((evt.srcElement) ? evt.srcElement : null);
 if (elem.nodeType == 3) {
 elem = elem.parentNode;
 }
 if (elem) {
 // perform all event processing here
 }
 }
}

Acknowledging the potential headache that can accrue to text nodes being the target
of events, Mozilla (starting with version 1.4) and Safari (starting with version 2.02)
changed their behaviors so that an event initially targeting a text node is automati-
cally redirected to the element containing the text node—and the target property
changes accordingly. If, on the other hand, you really want to know the text node
that was the actual target, Mozilla 1.4 and later provide the explicitOriginalTarget
property of the event object to obtain that information.

Not all event functions need a reference to the target element, but the technique is
important if you are using event handler property binding techniques for elements
that normally need some kind of connection to the context of the event. For exam-
ple, say you assign a change event handler to a text input field through property syn-
tax such as:

document.getElementById("emailAddress").onchange = validateEmail;

In this case, the function needs to get information from the element to complete its
job. In the following fragment, the value and form properties of a text input box are
retrieved as properties of the target element:

function validateEmail(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target :
 ((evt.srcElement) ? evt.srcElement : null);
 if (elem.nodeType == 3) {
 elem = elem.parentNode;
 }
 if (elem) {
 var val = elem.value;
 var form = elem.form;
 // perform more event processing here
 }
 }
}

254 | Chapter 9: Managing Events

Get to know these techniques of reading the event object for information about the
target element. As the trend continues to move away from in-tag event handler bind-
ing, the element reference becomes increasingly important for effective event han-
dler functions.

See Also
Recipe 9.1 for equalizing IE and W3C DOM event objects in event handler functions.

9.8 Determining Which Mouse Button Was Pressed

Problem
You want your event handler function to read which mouse button or button combi-
nation was used for a click-related mouse event.

Solution
Both the IE and W3C DOM event models agree that the button property of the event
object is the one that holds information about the button or buttons used to gener-
ate a mousedown event (button values don’t always come with mouseup or click
events). Unfortunately, this is where the similarity ends.

Some of the integer values associated with the button property differ between the two
event models. But they do agree that a value of 2 means that the right (nondomi-
nant) mouse button was used for the event. Here is a template for an event handler
function that branches into separate processing paths for the right button and all
other buttons:

 function myFunction(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 if (typeof evt.button != "undefined") {
 if (evt.button == 2) {
 // process right-click here
 return false;
 } else {
 // process all other clicks here
 }
 }
 }
}

Discussion
The reason that the example function tests for the presence of the button property is
for the sake of graceful degrading with Navigator 4, which has an entirely different
property and value range for the mouse button information. The property is called

9.8 Determining Which Mouse Button Was Pressed | 255

which, and the value for the right button is 3. If you need to support Navigator 4, you
can rework the skeletal structure in the Solution to accommodate the differences:

 function myFunction(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 var rightButton = false;
 if ((typeof evt.button != "undefined" && evt.button == 2) ||
 (evt.which && evt.which == 3)) {
 rightButton = true;
 }
 if (rightButton) {
 // process right-click here
 return false;
 } else {
 // process all other clicks here
 }
 }
}

Again, I cannot emphasize enough that checking for buttons is most reliably per-
formed with mousedown events only.

As for all the possible values of the button property, Table 9-4 shows the possibili-
ties, which are far more extensive in IE. Mozilla, Safari, and Opera 7 or later support
the W3C DOM value.

If Macintosh users are in your target audience, limit right-click actions to nonmis-
sion critical actions. Macs traditionally have used single-button mice, although this
may change in the future. Although some browsers simulate the right-click when the
user holds down one of the keyboard modifier keys (usually Ctrl) while pressing the
mouse button, you cannot guarantee that users even know to do this. Additionally,
only Mozilla sets the button property correctly to 2. Therefore, if you intend to offer
some special action with a right-click for Windows and Unix users, be sure to offer a
suitable alternative for Mac users. Otherwise, change your interface to make the

Table 9-4. Possible values of button property

Button(s) IE 4+ W3C DOM

No button 0 null

Left (primary) 1 0

Middle 4 1

Right 2 2

Left + Right 3 n/a

Left + Middle 5 n/a

Right + Middle 6 n/a

Left + Middle + Right 7 n/a

256 | Chapter 9: Managing Events

extra functionality available by clicking while holding down one of the modifier keys
for all operating systems.

See Also
Recipe 9.1 for equalizing the IE and W3C DOM event objects in event handler
functions.

9.9 Reading Which Character Key Was Typed

Problem
You want to inspect each alphanumeric key typed by the user before the character
reaches a form field.

Solution
The following function should be invoked by a keypress event handler bound to a
text input field in which you want to limit characters to the digits 0 through 9, a
minus sign, and a decimal:

function numberOnly(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target :
 ((evt.srcElement) ? evt.srcElement : null);
 if (elem) {
 var charCode = (evt.charCode) ? evt.charCode;
 if ((charCode < 32) ||
 (charCode > 44 && charCode < 47) ||
 (charCode > 47 && charCode < 58)) {
 return true;
 } else {
 evt.returnValue = false;
 if (evt.preventDefault) evt.preventDefault();
 return false;
 }
 }
 }
}

Discussion
Of the three keyboard-related events—keydown, keyup, and keypress—the keypress
event is used to examine a typed character. See Recipe 9.10 for using the other two
events.

Details about the typed character are contained in event object properties of differ-
ent names depending on the event model used in the browser. Internet Explorer 4
and later use only the keyCode property for all keyboard-related event details. In

9.10 Reading Which Noncharacter Key Was Pressed | 257

response to a keypress event, the keyCode property contains the Unicode integer
value of the character being typed. Safari and Opera also support the keyCode prop-
erty in this fashion. Mozilla, however, reserves the keyCode property for a different
purpose (see Recipe 9.10), and presents the charCode property to return the same
Unicode integer that IE’s keyCode property returns. (The now defunct Navigator 4
event model uses the which property [the same one that reports mouse button num-
bers] to return the character value.)

For English-language characters, the Unicode values are the same as those of the
ASCII-character set. Appendix A contains a list of ASCII characters and their corre-
sponding codes. Notice that upper- and lowercase letters have different codes; stan-
dard punctuation symbols also have codes. In addition, some control character keys
(Tab, Space, Backspace, and Enter/Return) have low number codes.

The complexity of the numberOnly() function is in the combination of comparison
expressions in the if statement. The comparisons state that the function should
allow the default action of the character reaching the field if its character code falls
into any of these categories:

• It’s below the first true typeable character (the Space character, with a value of
32).

• It’s equal to 45 or 46 (the hyphen or period characters).

• It’s one of the digits 0 through 9 (Unicode values 48 through 57, inclusive).

All other values force the function to block default behavior, which prevents the
character from reaching the text field.

See Also
Recipe 9.10 for examining events of noncharacter keys; Recipe 9.11 for reading mod-
ifier keys used with other character keys; Recipe 8.12 for more about prefiltering
characters typed into text boxes.

9.10 Reading Which Noncharacter Key Was Pressed

Problem
You want to initiate a script action based on whether the user pressed one of the
noncharacter keyboard keys.

Solution
Use a keydown or keyup event handler to read the code number associated with the
noncharacter key. You can read this value from the event object’s keyCode property.

258 | Chapter 9: Managing Events

The following function (which also invokes the getComputedStyle() function from
Recipe 11.12) moves an absolute-positioned element in five-pixel increments in the
direction of the keyboard arrow key that the user presses:

function handleArrowKeys(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 var top = DHTMLAPI.getComputedStyle("moveableElem", "top");
 var left = DHTMLAPI.getComputedStyle("moveableElem", "left");
 var elem = document.getElementById("moveableElem");
 switch (evt.keyCode) {
 case 37:
 elem.style.left = (parseInt(left) - 5) + "px";
 break;
 case 38:
 elem.style.top = (parseInt(top) - 5) + "px";
 break;
 case 39:
 elem.style.left = (parseInt(left) + 5) + "px";
 break;
 case 40:
 elem.style.top = (parseInt(top) + 5) + "px";
 break;
 }
 }
}

document.onkeyup = handleArrowKeys;

This example uses the keyup event handler because the keydown event was broken in
Mozilla prior to version 1.4. If you can target Mozilla versions starting with 1.4 or
later, you can use the keydown event, which may benefit IE users. In IE, holding the
key down until it goes into auto-repeat causes the keydown event to fire repeatedly,
moving the positioned element in the same direction over and over (a desirable user
interface behavior).

Discussion
Key codes are different from character codes. Each physical key on the keyboard has
a code associated with it. For example, while the “2” key in the top row of character
keys and the “2” key on the numeric keypad generate the same character codes, each
key creates a distinct key code during keydown and keyup events. Key codes for regu-
lar alphanumeric keys are the same regardless of whether the Shift key is down at the
time. Appendix B lists the key codes for a typical English-language PC keyboard.

Designing an application around the noncharacter keys is tricky because each
browser and operating system has its own default behavior for things like function
and navigation keys. To prevent scripts from hijacking the application entirely, brows-
ers do not let you block events that are native to the application or operating system.
Thus, in the function shown in the Solution, where the four arrow navigation keys are

9.10 Reading Which Noncharacter Key Was Pressed | 259

used to move an element, if the page is scrollable at all, the default scrolling action
also occurs in addition to the repositioning of the element. No amount of returning
false or cancelling event bubbling prevents the normal action from taking place.
(Although in this case, if you assign focus to an empty text input field, the default of
moving the cursor has no apparent action, and the page doesn’t scroll.)

If you wish to program a function key to initiate some action, you should plan to do
so only on one browser platform on one operating system whose key behaviors you
can predict. Even in just the Windows environment, you need to make sure that a
function key you wish to program truly has no default action—something that isn’t
always apparent just by trolling through the browser’s menus. Some function key
assignments are implemented to perform actions not listed in any menu. Test, test,
test!

These same kinds of cautions apply to attempts at scripting keyboard combinations
to act as scripted shortcuts. You cannot override browser-defined keyboard short-
cuts, and finding unused two-key combinations across browsers will be a challenge.
It is easier to find accelerator combinations utilizing two or more modifier keys. For
example, the following keyup event handler function invokes the runSpecial() func-
tion when the user holds down Ctrl-Alt and then presses and releases the “P” key:

function handleAccelerator(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 if (evt.keyCode == 80 && evt.ctrlKey && evt.altKey) {
 runSpecial();
 }
 }
}
document.onkeyup = handleAccelerator;

When coding accelerator key behavior, it is best to bind the keyboard event to the
document node because that node has the greatest scope across browsers. Keyboard
events that occur inside nested nodes (such as text input fields or text areas) will
bubble up to the document node unless cancelled along the way. If such an event
occurs inside an editable text field, the target of the event is the text field element.
Thus, you could create a context-sensitive help feature with Ctrl-Alt-F2 providing
details about the field while the user is editing it:

function showHelp(elem) {
 var elemID = elem.id;
 switch (elemID) {
 case "name":
 alert("Enter your full name.");
 break;
 case "email":
 alert("We will be contacting you with your access code. \n" +
 "Make sure the address is accurate and up to date.");

260 | Chapter 9: Managing Events

 break;
 ...
 }
}

function handleAccelerator(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 var elem = (evt.target) ? evt.target :
 ((evt.srcElement) ? evt.srcElement : null);
 if (evt) {
 // for Ctrl+Alt+F2
 if (evt.keyCode == 113 && evt.ctrlKey && evt.altKey) {
 showHelp(elem);
 }
 }
}
document.onkeyup = handleAccelerator;

You can’t use F1 in this case, because IE for Windows triggers the application help
system with any keyboard combination involving the F1 function key.

See Also
Recipe 9.1 for equalizing disparate event model objects; Recipe 9.7 for equalizing
event target references; Recipe 9.9 for reading character key values; Recipe 9.11 for
reading modifier key status during keyboard-event processing.

9.11 Determining Which Modifier Keys Were Pressed
During an Event

Problem
You want to know if the Ctrl, Alt, or Shift modifier keys were being held down dur-
ing the last event.

Solution
Both the IE and W3C DOM event models use the same set of event object proper-
ties to report whether the modifier keys were pressed during the event. The property
names are:

• altKey

• ctrlKey

• shiftKey

Another property, metaKey, is active on the Macintosh keyboard as the Command
key (but is not supported by IE/Mac). Each property has a value of true or false

9.11 Determining Which Modifier Keys Were Pressed During an Event | 261

when an event fires. If the property value is true, the corresponding key was held
down at the instant the event fired. The following event function performs one set of
actions during an unmodified click, and another action if the Shift key is held down
during the click:

function handleClick(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 if (evt.shiftKey) {
 // process Shift-Click here
 } else {
 // process normal Click here
 }
 }
}

Discussion
Limiting event processing to cases in which multiple modifier keys are held down is
as easy as increasing the test applied to the event object. For example, if you want a
branch of your event handler function to operate only when the Shift and Ctrl keys
are pressed, the if condition becomes:

if (evt.shiftKey && evt.ctrlKey) {...}

You can easily get carried away designing several possible execution branches based
on combinations of modifier keys being held down during the event. From a user
interface design point of view, however, it’s best to limit the number of choices you
offer to prevent the user from getting completely confused about what the event
does. Because users have different experience with modifier keys from other pro-
grams, you might consider offering just one alternative execution branch, and let any
modifier key act as the gateway to that branch. To accomplish this, use the Boolean
OR (||) operator in your if condition, and include all modifier key properties:

if (evt.altKey || evt.ctrlKey || evt.metaKey || evt.shiftKey) {...}

The issue about the metaKey property for Macintosh keyboards is important to
understand if you have not had experience on a Mac. Macintosh programs provide
the same kind of accelerator keyboard combinations as in Windows and other plat-
forms. But instead of the ubiquitous Ctrl-key combinations in Windows programs,
the Macintosh uses the Command key (the one with the c symbol on it if you’ve
ever seen it). In other words, as comfortable as a Windows or Unix user is with Ctrl-
key combinations, Mac users are comfortable with Command-key combinations.
The Alt key (called the Option key on a Mac) is also commonly used in programs
and user interface tasks (such as Option-dragging on the desktop to move a copy of a
file from one folder to another). Note that Windows browsers do not treat the Win-
dows key (the one with the Windows logo on it) as a Meta key.

262 | Chapter 9: Managing Events

See Also
Recipe 9.8 for handling mouse events; Recipe 9.9 for reading the character key (per-
haps in concert with a modifier key); Recipe 9.10 for reading navigation and function
key event values.

9.12 Determining the Element the Cursor Rolled
From/To

Problem
You want to know the element from which the cursor rolled into the current ele-
ment or the element to which the user rolled the cursor.

Solution
The IE event model supplies two different property names—fromElement and
toElement—to convey references to the relevant elements. In contrast, the W3C
DOM event model lets one property—relatedTarget—handle both chores because
the reference depends entirely upon which event is being processed. A mouseover
event reveals the element from which the cursor came; a mouseout event reveals the
element to which the cursor has gone. For example, the following element has
mouse event handlers to invoke separate functions for cursor rolls into and out of
the element:

The following incoming() function applies event-property equalization to obtain a
reference to the element from which the cursor rolled:

function incoming(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 var from = (evt.relatedTarget) ? evt.relatedTarget :
 ((evt.fromElement) ? evt.fromElement : null);
 if (from) {
 // work with adjacent "from" element
 }
 }
}

The parallel outgoing() function obtains a reference to the element to which the cur-
sor has already rolled:

function outgoing(evt) {
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 var to = (evt.relatedTarget) ? evt.relatedTarget :
 ((evt.toElement) ? evt.toElement : null);

9.12 Determining the Element the Cursor Rolled From/To | 263

 if (to) {
 // work with adjacent "to" element
 }
 }
}

Discussion
To provide a more concrete example of the interaction between the mouse events
and the event properties, Figure 9-1 shows a table containing one central cell and
four “hot” cells, one on each side. As you roll the cursor to the center cell, the page
indicates which cell the cursor rolled from; conversely, if you roll the cursor out of
the center cell, you get a reading of the cell to which the cursor rolled.

The HTML for the table, center cell event handlers, and the text box is as follows:

<table cellspacing="0" cellpadding="25">
<tr><td></td><td class="direction">North</td><td></td></tr>
<tr><td class="direction">West</td>
<td id="main" onmouseover="showArrival(event)"

Figure 9-1. Table with “hot” cells

264 | Chapter 9: Managing Events

 onmouseout="showDeparture(event)">Roll</td>
<td class="direction">East</td></tr>
<tr><td></td><td class="direction">South</td><td></td></tr>
</table>

<form name="output">
<input id="direction" type="text" size="30" />
</form>

A CSS style sheet sets cell background colors to distinguish the outer cells from the
center one:

<style type="text/CSS">
.direction {background-color:#00ffff;
 width:100px;
 height:50px;
 text-align:center
 }
#main {background-color:#fff6666; text-align:center}
</style>

The two functions read the event model-specific properties of the event object, and
display the results in the text box:

function showArrival(evt) {
 var direction = "";
 evt = (evt) ? evt : ((window.event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target : ((evt.srcElement) ?
 evt.srcElement : null);
 if (elem) {
 // limit processing to element nodes
 if (elem.nodeType == 1) {
 // for W3C DOM property
 if (evt.relatedTarget) {
 if (evt.relatedTarget != elem.firstChild) {
 direction = (evt.relatedTarget.firstChild) ?
 evt.relatedTarget.firstChild.nodeValue : "parts unknown";
 }
 // for IE DOM property
 } else if (evt.fromElement) {
 direction = (event.fromElement.innerText) ?
 event.fromElement.innerText : "parts unknown";
 }
 // display results
 document.getElementById("direction").value = "Arrived from: " +
 direction;
 }
 }
 }
}

function showDeparture(evt) {
 var direction = "";
 evt = (evt) ? evt : ((window.event) ? event : null);

9.12 Determining the Element the Cursor Rolled From/To | 265

 if (evt) {
 var elem = (evt.target) ? evt.target : ((evt.srcElement) ?
 evt.srcElement : null);
 if (elem) {
 // limit processing to element nodes
 if (elem.nodeType == 1) {
 // for W3C DOM property
 if (evt.relatedTarget) {
 if (evt.relatedTarget != elem.firstChild) {
 direction = (evt.relatedTarget.firstChild) ?
 evt.relatedTarget.firstChild.nodeValue : "parts unknown";
 }
 // for IE DOM property
 } else if (evt.toElement) {
 direction = (event.toElement.innerText) ?
 event.toElement.innerText : "parts unknown";
 }
 // display results
 document.getElementById("direction").value = "Departed to: " +
 direction;
 }
 }
 }
}

Because the W3C DOM event model processes events for text nodes in some brows-
ers (see Recipe 9.7), the functions above limit their processing to the td element that
contains the text label. If we do nothing to filter the event processing, the mouseover
event of the text node bubbles up to the td element (assuming that no event handler
is attached to the text node to cancel event bubbling), and the relatedTarget value
points to the central td element itself. In other words, the text node’s event regards
the surrounding central td element as the node from which the cursor came. This is
one case (in contrast to the example in Recipe 9.4) where automatically referencing
the parent node of the text node doesn’t work, since the event object properties for
the two node types have different values for the relatedTarget property.

The complexity of the elements for which you’re using this event object feature may
have an impact on how successful you are in achieving your goal. This is especially
true in the W3C DOM event model, but it isn’t limited to there. If the container ele-
ment has a lot of nested elements that don’t supply sufficient padding or margin
space to allow the mouseover or mouseout events to fire in a timely fashion, you may
miss events that you believe should occur. The problem occurs when users are fast
with the mouse, and the cursor skips over the container’s exposed area so quickly
that no event fires.

All of these cautions point to deployment of this technique in carefully controlled envi-
ronments. The ideal situation has large elements abutting each other, and none with
nested content. A table full of images acting as a rectangular mosaic, for example,

266 | Chapter 9: Managing Events

should work well. Assuming, of course, that you have an application-specific need to
capture adjacent element information during mouse events.

See Also
Recipe 9.1 for equalizing event objects of disparate event models.

9.13 Synchronizing Sounds to Events

Problem
You want to play a sound associated with the occurrence of an event on an element.

Solution
For the sake of simplicity, this solution works only in Internet Explorer for Win-
dows, with its ability to control the Windows Media Player. The hard work goes in
the HTML, making sure the object element has the correct information to load the
player.

We’ll add a pair of subtle sounds to the drop-down menu navigation interface
described in Recipe 10.8. A higher tone sounds when the menu header is high-
lighted; a lower tone sounds when an item in the menu is highlighted. Browsers do
not offer any built-in sounds, so this recipe assumes that you have recorded or
acquired two short and small sound files, called hi.wav and lo.wav.

Starting with the HTML, add two <object> tags, one for each sound:

<object id="hiPing" width="1" height="1"
 classid="CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95"
 codebase="#Version=6,0,0,0">
 <param name="FileName" value="hi.wav">
 <param name="AutoStart" value="false">
</object>

<object id="loPing" width="1" height="1"
 classid="CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95"
 codebase="#Version=6,0,0,0">
 <param name="FileName" value="lo.wav">
 <param name="AutoStart" value="false">
</object>

Next, add the following function to the page’s scripts:

function playSound(id) {
 if (document.all && document.all[id].FileName) {
 document.all[id].Play();
 }
}

9.13 Synchronizing Sounds to Events | 267

Finally, wherever you want one of the sounds to play, invoke the function and pass
the ID of the sound object you wish to play:

playSound("hiPing");

In the case of the drop-down menu of Recipe 10.8, you should add
playSound("hiPing"); to the swap() function just before the call to showMenu(). Then
add playSound("loPing"); to the toggleHighlight() function immediately before the
keepMenu() statement.

Discussion
Details in the <object> tag shown in the Solution are for a relatively early version of
Windows Media Player (6.4), to ensure it works with IE 5 and later. The Play()
command is forward-compatible with newer versions of the player, but the classid
attribute loads the old player anyway. By repeating the tag for each sound, you help
preload both sounds as the page loads, minimizing any delay in the first utterance of
both sounds.

It’s tricky to truly synchronize a sound with a rapidly occurring event. First, the
sound file must be of extremely short duration, with virtually no attack delay or
decay to it. A short sound makes it more likely that the player is ready for the next
command to play the sound while the user quickly rolls the mouse pointer through a
menu list. Even so, you may still not achieve pinpoint precision in the attempted syn-
chronicity. Controlling the Media Player adds some latency to the equation. That’s
why it’s a good idea to issue the Play() command prior to a visual change triggered
by the event.

Adding sound of any kind is a controversial topic among web designers. Gratuitous
background music that accompanies someone reading a web site may be distracting,
and perhaps enough to get an employee in trouble for visiting your site during work-
ing hours. Treat sound like any DHTML enhancement: something that should add
value to the presentation for those users equipped to take advantage of it. This fre-
quently means giving the user the opportunity to turn off sound effects (or better yet,
start with sound effects off, and provide a button to turn them on).

Controlling sounds through other plug-ins or ActiveX controls is also possible, but
the range of browsers that support such activity is somewhat limited. IE for the Mac-
intosh (through version 5.x) provides no connection between scripts and plug-ins.
Mozilla browsers do provide such connections, but the mechanism for communicat-
ing with plug-ins is entirely different than shown in the Media Player example in the
Solution.

See Also
Recipe 10.8 for the drop-down navigation menu used for this example.

268

Chapter 10CHAPTER 10

Page Navigation Techniques 10

10.0 Introduction
No web page is (or should be) an island. Just as there is a way to reach the page, so
should there be one or more ways to navigate to other destinations, either within the
same site or outside. The HTML hyperlink element—embedded in pages as the
rather nondescript <a> tag—is the conventional, nonscripted way to provide a click-
able avenue for the user to navigate to another page. But more sophisticated user
interface designs frequently require Dynamic HTML to assist with the presentation
of navigation options and the very act of navigating.

The location Object
Each window (and frame) object in every scriptable browser has a location object
whose properties contain information about the URL of the page currently loaded
into the browser. This is an abstract object, meaning that the object has no particu-
lar physical presence visible on the page—except perhaps the URL that appears in
the browser’s Location or Address field. But the location object does not control
what the user sees in the Location/Address field unless the browser succeeds in navi-
gating to a page you assign to the location object.

Properties of the location object are read/write. The individual properties reveal
components of the URL (and even the entire URL) of the loaded page. Without any
restrictions to this information, however, scripts could spy on your browser activity
without you knowing it. For example, imagine entering an unscrupulous web site
that looks like the Google search page. In fact, you could be viewing the actual Goo-
gle search page within a frameset whose second frame is hidden from view. A script
in the framesetting document or the other frame could inspect the location object of
the visible frame every 10 seconds, accumulating a record of every page visited in
that frame. The information could then be sent back to the spoofer’s server without
the user’s knowledge or permission.

Introduction | 269

Despite the fact that, in some situations, knowing the URL of another frame or win-
dow could enhance the user experience, the potential for invasion of privacy has
forced browser makers to clamp down on the reading power of location object prop-
erties. Browsers observe various types of security policies to help protect a user’s pri-
vacy. The policy that applies to the location object is known as the same origin
policy. If a script running in a page served by one server and domain wishes to
inspect the location object of another frame or window, the document in the other
frame or window must also be served by the same server and domain. If the user nav-
igates in one of the frames to another domain or server, the same origin policy fails
(even though the frameset is still served within the policy), and the location informa-
tion is not accessible to the other frame.

Partially as a result of a variety of security holes in Internet Explorer for Windows,
Microsoft occasionally clamps down so tightly on a potential threat that attempts to
read location object properties of another window or frame—even from the same
origin—resulting in a security-related script error (such as “Access denied.”). From a
reliability standpoint, reading the location object is best done in the same page as
the script doing the reading. As you’ll see in a few recipes in this chapter, there are
some good reasons to do this.

All this security stuff, however, applies only to reading the location object’s prop-
erty values. You can assign new values to the properties across window and frame
boundaries with impunity.

Passing Data Between Pages
A very common model in the web-application world is essentially a forms-based nav-
igation system, in which virtually every page is a form whose values are submitted as
a way to progress to the next page. When the submitted form reaches the server, pro-
gramming on the server dissects the form controls’ name/value pairs. Some of the
pairs may get shunted off to a backend database. Other bits may be reformulated as
values of hidden input elements in the page that get assembled for return as the next
page. Once the second page is served up, the server doesn’t know whether the user is
still connected to the site or has perhaps navigated off somewhere else. In other
words, the server simply reacts to requests from a browser, returning a page in
response.

The server may be programmed to keep some temporary information about the user
on hand, identified by a session ID. That session ID is passed down to the browser
with each returned page so that when the next request arrives, the server program
can tie together requests that come from a single browser. Some server programs that
assemble pages on the fly for each visitor (such as Amazon.com) populate the href
attributes of all intrasite links with the session ID so that the server can keep passing
the ID along from page to page. It may sound a bit crude, but it is much more band-
width-efficient than maintaining a full-time connection between server and browser
(or between thousands of browsers at any instant for a popular public site).

270 | Chapter 10: Page Navigation Techniques

However, not everyone has the requisite programming skills or server access to
accomplish this server-based way of passing along live information from one page to
another. By the same token, security restrictions in browsers prevent the random
reading and writing of data to the local hard drive of users. Fortunately, with the
help of JavaScript and various pieces of the object models, you do have a few differ-
ent ways to get information from one page to another without having to involve the
server. Recipes 10.4 through 10.6 show these approaches using cookies, frames, and
URLs. For example, consider the case in which a user has bookmarked just one con-
tent page from a frameset whose other frames provide vital site navigation tools. If
the user loads the bookmarked page into the browser, a simple script in that page
can make sure that not only the complete frameset loads, but also that the book-
marked page appears in the content frame, rather than the default pages of the
frameset.

Pop-Up/Drop-Down Navigation Menus
Navigation menus that pop up or drop down from some steady user interface ele-
ment (such as a pseudo-menu bar or tab) are incredibly space-efficient. Rather than
list dozens of choices in a navigation panel on a page, only top-level categories are
visible by default. Rolling the mouse over one of the category names makes a nested
list of relevant destinations suddenly appear out of the ether. This is a user interface
concept that all Windows, Mac, and X Window System users can readily identify
and know how to use.

Every DHTML guru and his cat has created a menuing system that takes advantage
of element visibility and positioning in Version 4 browsers and later. I don’t know if
the world needs yet another pop-up menu system, but a DHTML cookbook would
not be complete without one. One insurmountable hurdle is that a single design can-
not fit all situations. Every site designer has a different look in mind when envision-
ing a menu system, and design requires far more fiddling with cookbook-style code
than applying a different style sheet set. The goal, then, is not to create a be-all, end-
all menuing system. Instead, focus on producing standards-compatible code for as
simple a system as possible (using a DHTML library described more fully in
Chapter 13), which is flexible enough to be tweaked for lots of different looks and
situations.

Before you decide to deploy a pop-up menu system, especially in a public site, be
sure to treat it as a value-added interface element, rather than as a mission-critical
element. You should make it possible for a user with JavaScript disabled or unavail-
able to navigate through your site, even if it requires one or more extra page loads to
reach the destinations listed in the pop-up menus. By relying on traditional links for
nonscripted backup navigation, you also ensure that search engine spiders and bots
will be able to reach the inner depths of your site and index those pages as well.

10.1 Loading a New Page or Anchor | 271

Default Data Delivery to a Page
Some of the recipes in this and subsequent chapters rely on a body of unseen data
being accessible to the page’s scripts. Depending on your specific application, the
data may be static, or it may be dynamic data pulled from a database and assembled
into a form suitable for download to the browser.

You now have two well-supported ways to get data into the hands of your browser
scripts. The time-tested way is by embedding JavaScript objects or arrays (see Recipe
14.5) directly into .html pages on the server or blending them into server-generated
page content on the fly.

But what’s “all the rage” these days is to use the XMLHttpRequest object to create what
are known as Ajax applications (see Recipe 14.4). This object can download XML
data to the browser into an unseen virtual document without disturbing the current
page. Scripts in the main page then access the XML data using DOM standards-
based document tree-access techniques. With more and more database data being
stored and easily delivered in XML format, this latter technique is undoubtedly one
to consider for your applications.

10.1 Loading a New Page or Anchor

Problem
You want a script (instead of a hardwired link) to perform the navigation to another
page or anchor.

Solution
To load a different page into the current window or frame, assign the new page’s
URL string to the location.href property:

location.href = "http://www.megacorp.com/products/framistan309.html";

To navigate to an anchor on the current page, assign the anchor’s name string (the
value assigned to the a element’s name attribute) to the location.hash property:

location.hash = "section03";

Discussion
The URL value you assign to the location.href property can be a relative or com-
plete URL, in string form. A relative URL is influenced by any <base> tag that may be
delivered with the page (sometimes a server is configured to deliver this tag with all
pages, and it is occasionally visible in a browser’s source view). Because an assign-
ment statement using location.href unloads the current page, you cannot count on
any script statements below this one to execute before the page and all its variables
and values disappear (although some browsers seem to operate a little bit ahead).

272 | Chapter 10: Page Navigation Techniques

Knowing how popular scripted navigation could become, Brendan Eich (JavaScript’s
creator) built a shortcut into the location object that forces it to receive any string
assigned to the object as being the equivalent of assigning the value to the href prop-
erty. Thus, the following statements perform the same action:

location = "someplaceElse.html";
location.href = "someplaceElse.html";

Even so, it is good practice to utilize the location.href property approach to avoid
any potential snafus in future implementations.

Some other ways to navigate via scripting have been supported in varying degrees in
earlier browsers, presented here primarily for historical accuracy, but also to let you
know what the code means if you encounter it in existing scripts. In addition to the
location object, the document object was also, especially in the early days, an alterna-
tive object for navigation. The document object is more concrete than the abstract
location object, which may have had some part in the document object’s origin.

At one time, the document object also bore a location property (document.location),
whose value is a relative or complete URL string. Due to potential internal semantic
confusions with the location object, the document.location property was deprecated
starting in Navigator 3. In its place came the read/write document.URL property. This
property’s value, too, is a URL string.

The structure of the W3C DOM, however, made it untenable for document.URL to act
as a navigation device (in fact, there is explicitly no navigation mechanism in the
DOM Level 2 specification). While the URL property is still included as a property of
the HTMLDocument object (the root document node of an HTML document), the prop-
erty is read-only in that specification. Thus, going forward, you can expect that prop-
erty to be read-only (as it is in Mozilla-based browsers), and no longer usable as a
navigation property.

One final bit of arcana on the subject is that Microsoft implemented a window.
navigate() method in the earliest scriptable IE version, and it persists to this day in
all platform versions of IE. The sole parameter to the method is a string of the URL.
Don’t use this method unless your code will be used forever in the future only by
Internet Explorer.

When scripting navigation to an anchor in the current page via the location.hash
property, do not include the # delimiter character that normally goes between the
page URL and anchor name. This behavior differs from the location.search prop-
erty, which requires the ? delimiter character that starts the search string portion of a
URL. Navigation to an anchor on the same page should be nearly instantaneous. If
you are seeing the browser (notably IE for Windows) hit the server each time you
assign a value to the location.hash property, the server is most likely configured to
convey page headers that expire the page immediately or don’t cache the page. If you
allow the page to cache, the anchor navigation should be speedy.

10.2 Keeping a Page Out of the Browser History | 273

Also, be aware that you can navigate to any element on the page via the location.
hash property. Simply assign the element’s id attribute value (as a string) to the
location.hash property:

location.hash="heading4";

The page scrolls as needed to bring the element into view.

See Also
Recipe 5.13 for navigating to different pages from a link based on browser capabili-
ties; Recipes 7.2 and 7.3 for scripting the navigation of other frames in a frameset;
Recipe 7.4 for navigating from a frameset to a page without a frameset.

10.2 Keeping a Page Out of the Browser History

Problem
You want to remove the current page from the browser history so that the Back but-
ton does not take the user back to the current page after a script navigates to some
other page.

Solution
Navigate to the next page via the location.replace() method:

location.replace("http://www.megacorp.com/indexDHTML.html");

Discussion
The capability of keeping a page out of the browser’s history can come in handy
when your site contains a page that includes automatic forwarding under script con-
trol. Recipe 5.13 is a typical situation that benefits from keeping a temporary page
out of the history. If the user reaches the real home page, a click of the browser’s
Back button normally brings the user back to the temporary page, and the user is
essentially trapped in an infinite loop from which escape can only occur by going
forward.

You can also use this technique if you do not want a user to come back to a form
after submitting it. But in this case, you must assemble the form data yourself,
appending it to the URL string passed with the replace() method. The page
returned from your server program replaces the form page in the browser history. Be
aware, however, that this works only for form submissions that can be accomplished
with the GET method, rather than the POST method. Invoking the location.
replace() method causes the browser to request a page through a GET method just
like a regular web page.

274 | Chapter 10: Page Navigation Techniques

See Also
Recipe 5.13 for a likely scenario for using location.replace(); Recipe 10.6 to see
how to assemble form data as part of a URL.

10.3 Using a select Element for Navigation

Problem
You want users to choose a destination from a pop-up list originating from a
<select> tag.

Solution
You have a few scripting possibilities for this solution, depending on your design and
scripting style, but they all rely on the select element having been outfitted with
option elements containing the URL for each destination. You can display any text
you like that is visible in the list, but assign the URL for each item to the value
attribute of each option:

<select name="chooser" id="chooser">
 <option value="">Choose a Destination:</option>
 <option value="http://www.megacorp.com/index.html">Home</option>
 <option value="http://www.megacorp.com/products/index.html">Products</option>
 <option value="http://www.megacorp.com/support/index.html">Support</option>
 <option value="http://www.megacorp.com/contact.html">Contact Us</option>
</select>

Some event must trigger the navigation action. The most backward-compatible
approach is to locate a clickable button or “Go” icon next to the select element. The
click event handler of that button or link-surrounded image invokes a function that
reads the selected option’s value property:

function navigate() {
 var choice = document.forms[0].chooser;
 var url = choice.options[choice.selectedIndex].value;
 if (url) {
 location.href = url;
 }
}

Perhaps more convenient for users is to trigger the navigation by making the choice
from the list in which case, you can create a generic (reusable) function that receives
as an argument a reference to a select element:

function navigate(choice) {
 var url = choice.options[choice.selectedIndex].value;
 if (url) {
 location.href = url;
 }
}

10.3 Using a select Element for Navigation | 275

The event handler in the select element should be as follows:

<select name="chooser" id="chooser" onchange="navigate(this)">...</select>

Discussion
The myriad ways to translate a select element’s choice into a navigation command
depend primarily on the browser versions you need to support and your coding style,
particularly with respect to event processing. For example, in IE 4 or later and mod-
ern W3C DOM browsers, you can access the value property of the chosen option by
simply retrieving the value property of the select element directly. This cuts down
on all the options array referencing shown in the Solution. On the other hand, if you
wish to bind the change (or other) event to the select element through other means,
the event handler function cannot receive a reference to the select element as an
argument. Instead, the function has to derive that information from the event object
in a way that applies to both the IE and W3C DOM event models:

function navigate(evt) {
 evt = (evt) ? evt : ((event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target : ((evt.srcElement) ?
 evt.srcElement : null);
 if (elem && elem.tagName.toLowerCase() == "select" && elem.value) {
 location.href = elem.value;
 }
 }
}

You can then bind the event handler within the tag:

<select name="chooser" id="chooser" onchange="navigate(event)">...</select>

Or in a script statement that executes after the page loads:

document.getElementById("chooser").onchange = navigate;

Or via the eventsManager.js library function:

addEvent(document.getElementById("chooser"), "change", navigate, false);

The scheme presented thus far has a significant flaw, however. If the user navigates
from the current page to a choice in the select element and then returns to this page
via the Back button, most browsers display the page just as it was the instant it
unloaded—with the last choice preselected. The problem is that if the user wants to
make the same selection again, the select element will not fire a change event (in
most browsers). In other words, the user won’t be able to duplicate the choice a sec-
ond time without first making some other choice. You might think to bind any
mouse-related events to trigger the navigation, but this is fraught with peril, because
users can mouse down, mouse up, and click on a select element just to look through
it, or (in some operating systems) keep a sticky list showing to view the list. Thus,
mouse events are not suitable substitutes.

276 | Chapter 10: Page Navigation Techniques

To force the user to make a selection that fires the change event, script the page to
restore the select element (or perhaps all form controls) to its default state either via
the load or unload event for the document or window objects. Either invoke the reset()
method of the containing form element object, or set the selectedIndex property of
the select element to zero. Notice that the select element shown in the Solution
contains an initial choice that has no value—just a text label with instructions. All of
the navigation event handler functions shown here assign a value to the location.
href property only if there is, indeed, a value (other than an empty string) associated
with the selected option.

You may wonder why, with the efficiency of the change event handler, a designer
would include a “Go” button next to a select element. There are two primary rea-
sons. First, some user interface designers don’t like the idea of a select element trig-
gering as drastic an action as navigating to another page. In other words, they
intentionally separate the actions of choosing and going. Second, special browsers
designed to assist vision- and motor skill-impaired visitors may work more predict-
ably when the selection and “go” action are separate controls. Additionally, you can
code the HTML and server to make this navigation queue workable for visitors with
scripting turned off: The “Go” button submits the form containing the select ele-
ment; the server reads the value and delivers the desired page. How much each of
these reasons influences today’s designs is hard to say. If I want to make a page that
provides select list navigation, yet can also work with nonscriptable browsers, I
would include a “Go” button, but use scripted feature detection and style sheets to
hide the button in scriptable, CSS-capable browsers.

See Also
Recipes 7.2 and 7.3 for controlling navigation of other frames; Recipe 14.1 for ideas
about using scripts to add content to a page dynamically during page loading.

10.4 Passing Data Between Pages via Cookies

Problem
You want to move user-influenced data from one of your pages to another without
server intervention using browser cookies.

Solution
Using the cookies.js library from Recipe 1.10, you can use the unload event handler of
one page to store from one to twenty name/value pairs on the user’s machine. The
following example captures a text input field’s value and saves it to a cookie that
stays on the visitor’s computer for 180 days:

<script src="cookies.js"></script>
<script type="text/javascript" >

10.4 Passing Data Between Pages via Cookies | 277

function saveData() {
 var data = document.forms[0].userName.value;
 var expDate = cookieMgr.getExpDate(180, 0, 0);
 cookieMgr.setCookie("userName", data, expDate);
}
</script>
...
<body onunload="saveData()">

In the second document, a load event handler retrieves the cookie data and assigns
the value to a text input field with the same name located on the second page:

<script src="cookies.js"></script>
<script type="text/javascript" >
function readData() {
 var data = cookieMgr.getCookie("userName");
 document.forms[0].userName.value = data;
}
</script>
...
<body onload="readData()">

You can embed both event handlers and functions into all related pages to keep the
data moving through all page visits.

Discussion
Unlike the other client-side persistence techniques described in this chapter, only the
cookie approach preserves the data on the user’s computer even after the user visits
other sites and, if you assign an expiration date in the future, turns off the computer.
If you don’t specify an expiration date, the cookie remains in place only until the
user quits the browser.

Cookie data may contain only strings. Therefore, if you wish to preserve information
that your scripts have accumulated into arrays or custom objects, you must convert
those items to strings (Recipes 3.3 and 3.13) before they may be saved as cookies.
Upon reading the values, you may then re-create the arrays or objects from the string
values.

To move all the data from a form containing multiple elements (and different types
of elements) requires extracting the form control values individually. You can per-
form this task manually, assigning each control’s value to a separate name/value pair
for each cookie. Or you can use a utility script (Recipe 8.15) that systematically
extracts all malleable form control names and values and combines them into a sin-
gle string; a companion function extracts the data and repopulates an identical form
in another page.

Carrying over data via cookies is an efficient procedure that is completely invisible to
most users. They won’t even know you’re reading and writing cookies on their com-
puters. But users can also modify the default behavior of cookies in their browsers,
which can disrupt or ruin the silent data passage from page to page. For instance,

278 | Chapter 10: Page Navigation Techniques

users may set their browsers to alert them whenever a cookie is accessed. With
cookie usage so high across the Web these days, there are not too many users likely
have this annoying preference style in place. More common is the user who has
turned off cookies entirely. Some organizations install browsers for their employees
with cookies turned off by default. Use cookie detection (Recipe 5.12) to ensure that
your scripts can use cookies for passing data.

Bear in mind that there are physical limits to cookie data, particularly in earlier
browsers. No more than 20 name/value pairs may be saved from one server and
domain. If you need to store the equivalent of more than 20 entries, you must devise
a data structure that can be represented in string form. For example, you could cre-
ate a custom object with 25 properties, and then use Recipe 3.13 as a model to con-
vert that object to a string for storage in a single name/value pair cookie. Another
limitation comes into play when storing a lot of data. The total storage space avail-
able per server and domain is 4,000 characters, and the safe range per name/value
pair is less than 2,000 characters. When calculating data length, take into account
that values go through the escape() function, which expands some characters to a
total of three characters (e.g., a space becomes %20).

See Also
Recipe 1.10 for cookie utilities; Recipe 3.13 for converting custom objects to strings;
Recipe 5.12 for detecting whether cookies are enabled; Recipe 8.15 for extracting all
form control data for passage as string data.

10.5 Passing Data Between Pages via Frames

Problem
You want to move user-influenced data from one of your pages to another without
server intervention while using a frameset.

Solution
The window object representing the frameset remains fixed while documents move in
and out of child frames. This top window is capable of storing JavaScript data of all
types in global variables. Use an unload event handler of a framed page to preserve
the data in a global variable of the frameset’s window. In the following example, a
string from a text input element is stored in a global variable called userName:

<script type="text/javascript" >
function saveData() {
 top.userName = document.forms[0].userName.value;
}
</script>
...
<body onunload="saveData()">

10.5 Passing Data Between Pages via Frames | 279

In the second document, an onload event handler retrieves the data and assigns the
value to a text input field on the second page:

<script type="text/javascript" >
function readData() {
 if (typeof top.userName != "undefined") {
 document.forms[0].userName.value = top.userName;
 }
}
</script>
...
<body onload="readData()">

You can embed both event handlers and functions into all related pages to keep the
data moving through all page visits.

Discussion
Some significant benefits accrue to the frameset approach of passing data, but you
should also be aware of potential downsides. One of the biggest benefits is that you
can store any JavaScript data type in a variable. Conversion of objects or arrays to
strings is not necessary. At the same time, the typical data-length limits that confine
the amount of data transferable via cookies or URLs do not apply. You also don’t
have to predefine variables in the framesetting document. JavaScript automatically
declares and initializes a global variable when you assign a value to a variable name
as a property of a window (or frame) object.

A value assigned to a top window variable remains in effect as long as the frameset-
ting document remains loaded in the browser. Therefore, if the site design allows
users to navigate one of the frames to a destination outside of the frameset’s server
and domain, the value will still be there when navigation in that frame returns to the
original server and domain. Scripts from outside the frameset’s server and domain do
not have access to the top window’s variables because of blockades formed by the
same-origin security policies in force in today’s browsers.

Perhaps the most vulnerable aspect of using window global variables as temporary
data stores is that they generally do not survive reloading of the page. If the user
intentionally or accidentally clicks the Refresh or Reload button of the browser, the
entire frameset reloads, causing all variable values to disappear. This is the reason the
solution’s readData() function checks for the existence of the variable in the frame-
setting window before accessing its value. By relying on the data to persist no longer
than a change of documents in one frame, this potential problem does not loom so
large.

Another consideration is that not every web designer is enamored with frames, for a
variety of reasons. Users probably don’t care one way or the other unless the
frameset design (and navigation system within the frameset) makes Back and For-
ward button navigation confusing. One way to minimize this confusion while still

280 | Chapter 10: Page Navigation Techniques

deriving the advantage of a relatively stable framesetting window is to create a
frameset consisting of two frames, one visible and the other invisible:

<frameset rows="100%, *" border="0">
 <frame name="main" src="content.html">
 <frame name="hidden" src="blank.html">
</frameset>

With this arrangement, you have two window objects to use as temporary data
repositories: the top window and the hidden frame (parent.hidden). Some designers
use this hidden frame scheme to let a faceless Java applet reside in the hidden frame,
maintaining an open connection with the server, while the visible frame’s document
feeds off real-time data that arrives to the applet.

You can use this hidden frame scheme to further minimize the delicate state of vari-
able data stored in a window object. Many (but not all) browsers preserve form con-
trol settings and values during page reloads. Therefore, instead of saving the data to
window variables, save them as strings for text input or textarea elements. For
example, if you are creating a shopping cart for a web site, you can accumulate
ordered items in fields of a hidden frame as the user navigates the visible frame to
various product pages. At checkout time, the visible shopping cart page retrieves the
data from the hidden frame’s form fields, and generates a nicely formatted page (per-
haps using document.write() statements to assemble the HTML for the cart page). If
you attempt this kind of persistence—especially for an e-commerce site—be sure to
test the reliability of the hidden field data during reloads of the frameset on as many
browsers and operating systems as possible. In your tests, include navigating out of
the site via the browser’s Back button, and then returning to the site via the Forward
button. If the data in the hidden text boxes survives, that’s a good sign.

See Also
Chapter 7 on managing frames and framesets.

10.6 Passing Data Between Pages via URLs

Problem
You want to move user-influenced data from one of your pages to another without
server intervention, cookies, or frames.

Solution
Pass the data as a search string appended to the URL of the next page and include a
script in the next page to read the search string to retrieve the data. As a simple case,
the following code passes a single value retrieved from a text input field as a search
string:

10.6 Passing Data Between Pages via URLs | 281

<script type="text/javascript">
function goNext(url) {
 var data = document.forms[0].userName.value;
 location.href = url + "?" + encodeURIComponent(data);
}
</script>
...
...

In the second document, a load event handler retrieves the search string data and
assigns the value to a text input field with the same name located on the second
page:

<script type="text/javascript" >
function readData() {
 var srchString = decodeURIComponent(location.search.substring(1, location.search.
length));
 if (srchString.length > 0) {
 document.forms[0].userName.value = srchString;
 }
}
</script>
...
<body onload="readData()">

You can embed both event handlers and functions into all related pages to keep the
data moving through all page visits.

Discussion
The magic behind the URL scheme is that all modern browsers retain the search
string that comes back from a server, even if the server doesn’t use the information.
A search string begins with a question mark delimiter following the address of the
page. When assembling the URL for the next page, you must include this delimiter.
At the same time, the function that reads the data must start with the first character
following the delimiter.

Code shown in the Solution employs two global JavaScript methods—
encodeURIComponent() and decodeURIComponent()—which are available in IE 5.5 or
later, as well as Mozilla, Safari, and Opera. For earlier browsers, you can substitute
the escape() and unescape() methods, but they have been deprecated in the current
ECMAScript standard (they also operate slightly differently from the newer versions).

The Solution demonstrates a very simple case of passing a single value from page to
page. You can pass far more complex string data across pages. More typically, you
assemble this data in the same kind of name/value pair format that browsers submit
as form data, with an equals sign between the name and value and an ampersand
character delimiting multiple name/value pairs:

pageURL?name1=value1&name2=value2&name3=value3

282 | Chapter 10: Page Navigation Techniques

Take into account, however, that the purpose of passing data from page to page is to
be able to use that data in the subsequent page. Since the name/value pair format of
the typical search string is distinct from the syntax used by JavaScript, you’ll need
some conversion code that encodes JavaScript objects or arrays into the search string
form prior to leaving the first page, and reconverts that search string into usable
objects or arrays upon arriving at the second page.

For this purpose, you can use the same object-to-string library shown in Recipe 3.13.
Both cookie data and search string data can (and some would say should) be format-
ted as name/value pairs that can then be reassembled in convenient JavaScript object
form for distribution through form controls or just kept in global variables ready for
other scripts to pluck their values. The following script segments demonstrate how a
custom object’s values can be passed and reassembled via URLs with the help of the
objectsArraysStrings.js library from Recipe 3.13:

<script src="objectsArraysStrings.js">
</script>
<script type="text/javascript">
var customObject;
function goNext(url, obj) {
 srchString = object2String(obj);
 url += "?" + encodeURIComponent(srchString);
 location.href = url;
}
function readData() {
 var srchString = decodeURIComponent(location.search.substring(1, location.search.
length));
 if (srchString.length > 0) {
 customObject = string2Object(srchString);
 }
}
// other functions that create and/or modify
// customObject in response to user action...
</script>
...
<body onload="readData()">
...
...

If your goal is to pass values of a form’s entire control set from page to page, you can
use the stringForms.js library from Recipe 8.15 to simplify the gathering and rede-
ployment of form values on both ends:

<script src="stringForms.js">
</script>
<script type="text/javascript" >
function goNext(url, form) {
 srchString = form2ArrayString(form);
 url += "?" + encodeURIComponent(srchString);
 location.href = url;
}

10.7 Creating a Contextual (Right-Click) Menu | 283

function applyValues(form) {
 var srchString = decodeURIComponent(location.search.substring(1, location.search.
length));
 if (srchString.length > 0) {
 string2FormObj(form, srchString);
 }
}
// other functions that create and/or modify
// customObject in response to user action...
</script>
...
<body onload="applyValues(document.forms[1])">
...

...

Notice how both functions are generalized to accept form object references. This
allows the invoking call to determine which of the page’s forms (if there are more
than one) are to be gathered or populated. Don’t be fooled, however, by the appar-
ent simplicity of the examples shown here; they rely on libraries that perform some
heavy lifting with respect to converting objects to strings and manipulation of form
data. Yet that’s the purpose of a reusable utility library.

See Also
Recipe 3.13 for object and string conversions; Recipe 7.6 for an example of using
URL data passing to ensure that a bookmarked page from a frameset always loads
into that frameset; Recipe 8.15 for extracting all form control data for passage as
string data.

10.7 Creating a Contextual (Right-Click) Menu

Problem
You want to display a customized menu of navigation or other options when the user
right-clicks (Windows) or Ctrl-clicks (on the Mac)—actions that normally trigger the
browser’s internal context menu.

Solution
Use the contextmenu event handler that is part of modern browsers (except Opera
through version 9) to intercept the normal browser action and display a menu of
your own design. The example page described in the Discussion demonstrates one
way to let scripts create a menu out of standard HTML elements and control each
menu’s visibility, positioning, and interactivity. Only browsers capable of displaying
the context menus assign an identifiable style to the words featuring the menus.
Figure 10-1 shows the finished results.

284 | Chapter 10: Page Navigation Techniques

To deploy this recipe on a page of your own design, you need to customize the
following items in the HTML page:

• A CSS class rule for the highlighted body text

• IDs for the span elements surrounding the words and phrases to be highlighted

• Data in the page-specific cMenu object, particularly the IDs you wish to assign to
each menu and both the labels and link destinations for entries in each menu

All code for creating and managing the context menus is contained in the
contextMenus.js library. A single library object, named cMenuMgr, holds all the
methods that create the menus and make them run. The show gets started by a
self-initialization statement in the library that relies on the eventsManager.js library
from Recipe 9.3:

addOnLoadEvent(function() {cMenuMgr.initContextMenus()});

To simplify numerous references inside the object to other methods of the object, the
load event utilizes an anonymous function call to the initialization routine.

Discussion
Example 10-1 shows the HTML page and embedded CSS style sheet that uses cus-
tom context menus powered by the scripts in Example 10-2. The page is designed
around body text containing highlighted words or phrases for which you want to

Figure 10-1. A context-sensitive pop-up menu

10.7 Creating a Contextual (Right-Click) Menu | 285

offer two or more navigation links per entry in a context-sensitive pop-up menu.
Figure 10-1 shows a contextual menu for this solution.

Example 10-1. HTML and CSS portions of the contextual menu recipe

<html>
<head>
<title>Recipe 10.7</title>
<link rel="stylesheet" id="mainStyle" href="../css/cookbook.css" type="text/css" />

<style type="text/css">
.contextMenus {position:absolute; background-color:#cfcfcf;
 border-style:solid; border-width:1px;
 border-color:#efefef #505050 #505050 #efefef;
 display:block; padding:3px;
 visibility:hidden}
.menuItem {cursor:pointer; font-size:9pt;
 font-family:Arial, Helvetica, sans-serif;
 color:black; padding:2px;
 background-color:transparent;
 text-decoration:none;
 height:1.4em; display:block; line-height:1.4em}
.menuItemOn {cursor:pointer; font-size:9pt;
 font-family:Arial, Helvetica, sans-serif;
 color:red; padding:2px;
 background-color:yellow;
 text-decoration:underline;
 height:1.4em; display:block; line-height:1.4em}
.contextEntryLive {font-weight:bold; color:darkred; cursor:pointer}
</style>
<script src="../js/eventsManager.js"></script>
<script type="text/javascript">
// page-specific context menu data objects
var cMenu = new Object();
cMenu["lookup1"] = {menuID:"contextMenu1",
 menuItems:[{label:"Merriam-Webster Dictionary", href:"http://www.m-w.com/cgi-bin/
dictionary?book=Dictionary&va=sesquipedalian"},
 {label:"Merriam-Webster Thesaurus", href:"http://www.m-w.com/cgi-bin/
dictionary?book=Thesaurus&va=sesquipedalian"}]};

cMenu["lookup2"] = {menuID:"contextMenu2",
 menuItems:[{label:"Wyoming Tourist Info", href:"http://www.wyomingtourism.org/"},
 {label:"State Map", href:"http://www.pbs.org/weta/thewest/places/states/
wyoming/"},
 {label:"cnn.com", href:"http://cnn.looksmart.com/r_
search?l&izch&pin=020821x36b42f8a561537f36a1&qc=&col=cnni&qm=0&st=1&nh=10&rf=1&venue=all&
keyword=&qp=&search=0&key=wyoming"},
 {label:"Google Maps", href:"http://maps.google.com/
maps?f=q&hl=en&q=wyoming&layer=&ie=UTF8&z=7&ll=42.916206,-107.226562&spn=4.56153,10.
623779&om=1"},
 {label:"Yahoo Search", href:"http://search.yahoo.com"}]};
</script>
<script src="contextMenus.js"></script>

286 | Chapter 10: Page Navigation Techniques

Note that no HTML for the context menus is included with the page. Those ele-
ments get created in supporting browsers based on data you supply to the cMenu cus-
tom JavaScript object delivered with the page. Each menu is defined as an object
within the cMenu object, defined in the order in which the designated words or
phrases appear in the source code. Names for these subobjects (lookup1 and lookup2
in the example) must match the IDs assigned to spans surrounding the words or
phrases to be associated with a context menu. Each subobject, in turn, has two prop-
erties. The first, menuID, is the string value that will be assigned to the element that
will contain the context menu’s pieces; the second, menuItems, is an array of objects,
each object pertaining to a choice in the context menu. Each choice has two proper-
ties associated with it. The label property is a string of the text to appear for that
item in the context menu; the href property is a string of the URL destination when a
user chooses that item in the menu.

Data from the cMenu object must be in place before the contextMenu.js library loads.
Therefore, the <script> tag that loads the library comes after the cMenu object cre-
ation in source code order.

Scripts for the contextual menus are contained in the contextMenus.js library, shown
in Example 10-2.

</head>
<body>
<h1>Custom Contextual Menu</h1>
<hr />

<p>This sentence has at least one sesquipedalian</
span> word and mention of the state of Wyoming</
span>, both of which could have additional lookups.</p>

</body>
</html>

Example 10-2. contextMenus.js library

var cMenuMgr = {
 // position and display context menu
 showContextMenu : function(evt) {
 this.hideContextMenus();
 evt = (evt) ? evt : ((event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target : evt.srcElement;
 if (elem.nodeType == 3) {
 elem = elem.parentNode;
 }
 if (elem.className == "contextEntryLive") {
 var menu = document.getElementById(cMenu[elem.id].menuID);
 // turn on IE mouse capture

Example 10-1. HTML and CSS portions of the contextual menu recipe (continued)

10.7 Creating a Contextual (Right-Click) Menu | 287

 if (menu.setCapture) {
 menu.setCapture();
 }
 // position menu at mouse event location
 var coords = this.getPageEventCoords(evt);
 menu.style.left = coords.left + "px";
 menu.style.top = coords.top + "px";
 menu.style.visibility = "visible";
 if (evt.preventDefault) {
 evt.preventDefault();
 }
 evt.returnValue = false;
 }
 }
 },
 // hide all context menus
 hideContextMenus : function() {
 if (document.releaseCapture) {
 // turn off IE mouse event capture
 document.releaseCapture();
 }
 for (var i in cMenu) {
 var menu = document.getElementById(cMenu[i].menuID)
 menu.style.visibility = "hidden";
 }
 },
 // rollover highlights of context menu items
 toggleHighlight : function(evt) {
 evt = (evt) ? evt : ((event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target : evt.srcElement;
 if (elem.nodeType == 3) {
 elem = elem.parentNode;
 }
 if (elem.className.indexOf("menuItem") != -1) {
 elem.className = (evt.type == "mouseover") ? "menuItemOn" : "menuItem";
 }
 }
 },
 // navigate to chosen menu item
 execMenu : function(evt) {
 evt = (evt) ? evt : ((event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target : evt.srcElement;
 if (elem.nodeType == 3) {
 elem = elem.parentNode;
 }
 if (elem.className == "menuItemOn") {
 location.href = this.getHref(elem);
 }
 this.hideContextMenus();
 }
 },

Example 10-2. contextMenus.js library (continued)

288 | Chapter 10: Page Navigation Techniques

 // retrieve URL from cMenu object related to chosen item
 getHref : function(menuItemElem) {
 for (var i in cMenu) {
 // find the cMenu object
 if (cMenu[i].menuID == menuItemElem.parentNode.id) {
 for (var j = 0; j < cMenu[i].menuItems.length; j++) {
 // find the item whose label matches the menu item text
 if (menuItemElem.firstChild.nodeValue == cMenu[i].menuItems[j].label) {
 return cMenu[i].menuItems[j].href;
 }
 }
 }
 }
 return "";
 },
 // returns event coordinates on the page (for showContextMenu())
 getPageEventCoords : function(evt) {
 var coords = {left:0, top:0};
 if (evt.pageX) {
 coords.left = evt.pageX;
 coords.top = evt.pageY;
 } else if (evt.clientX) {
 coords.left =
 evt.clientX + document.body.scrollLeft - document.body.clientLeft;
 coords.top =
 evt.clientY + document.body.scrollTop - document.body.clientTop;
 // include html element space, if applicable
 if (document.body.parentElement && document.body.parentElement.clientLeft) {
 var bodParent = document.body.parentElement;
 coords.left += bodParent.scrollLeft - bodParent.clientLeft;
 coords.top += bodParent.scrollTop - bodParent.clientTop;
 }
 }
 return coords;
 },
 // get all elements within document having a particular class name
 getElementsByClassName : function(className) {
 var allElements = (document.all) ? document.all :
 document getElementsByTagName("*");
 var results = new Array();
 var re = new RegExp("\\b" + className + "\\b");
 for (var i = 0; i < allElements.length; i++) {
 if (re.test(allElements[i].className)) {
 results.push(allElements[i]);
 }
 }
 return results;
 },
 // generate context menu elements associated with each "contextEntry" class element
 createContextMenus : function() {
 var hotItems = this.getElementsByClassName("contextEntry");
 for (var i = 0; i < hotItems.length; i++) {

Example 10-2. contextMenus.js library (continued)

10.7 Creating a Contextual (Right-Click) Menu | 289

The cMenuMgr object consists of nine methods, divided into three categories:

 appendContextMenu(hotItems[i].id);
 hotItems[i].className = "contextEntryLive";
 var menuAction = (navigator.userAgent.indexOf("Mac") != -1) ? "Ctrl-click " :
 "Right click ";
 hotItems[i].title = menuAction + "to view relevant links";
 addEvent(hotItems[i], "contextmenu",
 function(evt) {cMenuMgr.showContextMenu(evt)}, false);
 }
 // build ul/li elements and put into body
 function appendContextMenu(id) {
 var cMenuData = cMenu[id];
 var ul = document.createElement("ul");
 var li;
 ul.id = cMenuData.menuID;
 ul.className = "contextMenus";
 for (var j = 0; j < cMenuData.menuItems.length; j++) {
 li = document.createElement("li");
 li.className = "menuItem";
 li.appendChild(document.createTextNode(cMenuData.menuItems[j].label));
 ul.appendChild(li);
 }
 document.body.appendChild(ul);
 }
 },
 // bind events and initialize tooltips
 initContextMenus : function() {
 var isNotOpera = navigator.userAgent.indexOf("Opera") == -1;
 if (cMenu && document.getElementById && isNotOpera) {
 // generate context menu elements
 this.createContextMenus();
 // click outside of context menu hides menu
 addEvent(window, "click", function() {cMenuMgr.hideContextMenus()}, false);
 // set events for items inside context menu
 var contextMenuList = this.getElementsByClassName("contextMenus");
 for (var i = 0; i < contextMenuList.length; i++) {
 addEvent(contextMenuList[i], "click",
 function() {cMenuMgr.hideContextMenus()}, false);
 addEvent(contextMenuList[i], "mouseup",
 function(evt) {cMenuMgr.execMenu(evt)}, false);

 addEvent(contextMenuList[i], "mouseover", cMenuMgr.toggleHighlight, false);
 addEvent(contextMenuList[i], "mouseout", cMenuMgr.toggleHighlight, false);
 }
 }
 }
};

addOnLoadEvent(function() {cMenuMgr.initContextMenus()});

Example 10-2. contextMenus.js library (continued)

290 | Chapter 10: Page Navigation Techniques

At load time, the initContextMenus() method filters out execution if the browser
doesn’t support basic W3C DOM element referencing terminology, if the HTML
page doesn’t define a cMenu object, and if the browser is Opera. Because Opera (at
least through version 9) does not support the contextmenu event, the script will not
highlight the designated words or phrases so as not to frustrate such users.

The first major task of the initContextMenus() method is to invoke
createContextMenus(). This method gathers a list of all HTML elements that have
been designated menu-able items by their contextEntry class name. See Recipe 14.14
for details of the getElementsByClassName() method. In a loop through all menu-able
elements, the script creates HTML elements (as ul and li elements) for the corre-
sponding menu via the nested appendContextMenu() function. Details about each
menu and item within the menu are captured from the cMenu object defined in the
HTML page. Once the menu containers are appended to the body (their CSS rules
make them positionable elements, so their source code placement is not important),
the body text spans for the menuable elements are changed to the contextEntryLive
class, which picks up the highlighted style sheet rule in the HTML page. As we con-
tinue the loop through menuable elements, we assign instructional titles to the ele-
ments for Windows and Mac users. Finally, each of these menuable items is bound
to a contextmenu event handler, which invokes the showContextMenu() method of the
cMenuMgr object.

The job of showing the context menu begins by hiding any other context menu that
may be visible. Next, after verifying that the event target was one we’re interested in
(whose class name is contextEntryLive), we use the ID of that element (lookup1 and
lookup2 in the example) to fetch the cMenu object associated with that element. That
lets us grab the ID of the context menu ul element to help us position it in the vicin-
ity of the contextmenu mouse event. We use the getPageEventCoords() function
described in Recipe 9.4 to obtain the location.

For IE, we can limit event processing while a context menu is visible by temporarily
turning on event capture (which works only for mouse events). In capture mode,
mouse events are directed to the element for which the setCapture() method is
invoked. The browser goes into a kind of modal state, during which the user cannot
access other page elements by the mouse because the events on elements outside of
the invoking element automatically go to the invoking element. Thus, each ul menu
element has a click event handler assigned that hides the context menus. With a con-
text menu showing, if the user clicks anywhere outside of the menus, they disappear,

Initialization Operation Support

initContextMenus() showContextMenu() getHref()

createContextMenus() hideContextMenus() getPageEventCoords()

toggleHighlight() getElementsByClassName()

execMenu()

10.8 Creating Drop-Down Navigation Menus | 291

just like a browser-based context menu. Hiding the context menus disengages cap-
ture mode in IE, returning mouse activity to normal. For non-IE browsers, the click
event bound to the window during initialization does the job.

As the user rolls the cursor up and down a context menu, mouseover and mouseout
events trigger the toggleHighlight() method. This method simply switches the class
name of the items between menuItem and menuItemOn (highlighted version) to act as
visual feedback to the active choice in the menu.

If the user clicks on one of the choices in the menu, the mouseup event invokes the
execMenu() method. With the help of the getHref() method, the script obtains the
URL associated with that menu item from the cMenu object, and navigates to that
page (see Recipe 10.1).

Just because the recipe shown here uses the contextmenu event handler to display the
menu doesn’t mean that you are limited to employing that event as the trigger. A
rollover (mouseover event handler) for the highlighted entries works just as well.

See Also
Recipe 13.1 for positioning an element on the page; Recipe 12.10 for changing the
visibility of an element; Recipe 3.14 for the benefits of encapsulating functions as
custom object methods; Recipes 9.1 and 9.3 for details on the eventsManager.js
library; Recipe 11.8 for toggling between style sheet rules.

10.8 Creating Drop-Down Navigation Menus

Problem
You want navigation menus to drop down from a menu bar on the page.

Solution
This solution demonstrates one of dozens of ways to implement drop-down menus.
It relies on some simple images for the always visible menu headers, a single external
style sheet called menus.css (shown in Example 10-3 in the Discussion), and an exter-
nal JavaScript library called menus.js (shown in Example 10-4 in the Discussion).
You can see the results in Figure 10-2.

To implement this solution, you must create (or borrow) menu header images for
normal and highlighted versions. In several places within the menus.js library, you fill
in the text and links for the menu items. The library does the rest to assemble the
DHTML components for the menus, under guidance of the menus.css style sheets.

292 | Chapter 10: Page Navigation Techniques

Discussion
The menu bar is hardwired into the page’s HTML as a single div containing three
img elements. Each img element is surrounded by a hyperlink (a) element containing
basic navigation action for use by drop-down menu users and simple clicking. Mouse
event handlers for the img elements are assigned later by a script:

<div id="menubar">
<img id="menuImg_1" class="menuImg"
src="home_off.jpg" border="0" height="20"
width="80"><img id="menuImg_2"
class="menuImg" src="catalog_off.jpg" border="0" height="20"
width="80"><img id="menuImg_3"
class="menuImg" src="about_off.jpg" border="0"
height="20" width="80">
</div>

An imported style sheet, menus.css, shown in Example 10-3, contains specifications for
the drop-down menu containers (class menuWrapper, which is assigned by script during
initialization) and the individual items in the menus in both normal and highlighted
states.

Figure 10-2. Drop-down menus in action

Example 10-3. menus.css style sheet

.menuWrapper {
 position:absolute;
 width:162px;
 background-color:#ff9933;

10.8 Creating Drop-Down Navigation Menus | 293

Example 10-4 shows the menus.js library for all the scripts used with the menus.

 visibility:hidden;
 border-style:solid;
 border-width:2px;
 border-color:#efefef #505050 #505050 #efefef;
 padding:3px;
 }
.menuItem {
 cursor:pointer;
 font-size:16px;
 font-family:Arial, Helvetica, sans-serif;
 border-bottom:1px solid #505050;
 border-top:1px solid #efefef;
 padding-left:10px;
 color:black;
 background-color:#ff9933;
 text-decoration:none;
 position:absolute;
 left:0px;
 width:159px;
 height:22px;
 line-height:1.4em
 }
.menuItemOn {
 cursor:pointer;
 font-size:16px;
 font-family:Arial, Helvetica, sans-serif;
 border-bottom:1px solid #505050;
 border-top:1px solid #efefef;
 padding-left:10px;
 color:#0099ff;
 background-color:#ffcc99;
 text-decoration:underline;
 position:absolute;
 left:0px;
 width:159px;
 height:22px;
 line-height:1.4em
 }

Example 10-4. menus.js drop-down menu library

// global menu state
var menuReady = false;

// pre-cache menubar image pairs
if (document.images) {
 var imagesNormal = new Array();
 imagesNormal["home"] = new Image(20, 80);
 imagesNormal["home"].src = "home_off.jpg";
 imagesNormal["catalog"] = new Image(20, 80);
 imagesNormal["catalog"].src = "catalog_off.jpg";

Example 10-3. menus.css style sheet (continued)

294 | Chapter 10: Page Navigation Techniques

 imagesNormal["about"] = new Image(20, 80);
 imagesNormal["about"].src = "about_off.jpg";

 var imagesHilite = new Array();
 imagesHilite["home"] = new Image(20, 80);
 imagesHilite["home"].src = "home_on.jpg";
 imagesHilite["catalog"] = new Image(20, 80);
 imagesHilite["catalog"].src = "catalog_on.jpg";
 imagesHilite["about"] = new Image(20, 80);
 imagesHilite["about"].src = "about_on.jpg";
}

function getElementStyle(elem, CSSStyleProp) {
 var styleValue, camel;
 if (elem) {
 if (document.defaultView && document.defaultView.getComputedStyle) {
 // W3C DOM version
 var compStyle = document.defaultView.getComputedStyle(elem, "");
 styleValue = compStyle.getPropertyValue(CSSStyleProp);
 } else if (elem.currentStyle) {
 // make IE style property camelCase name from CSS version
 var IEStyleProp = CSSStyleProp;
 var re = /-\D/;
 while (re.test(IEStyleProp)) {
 camel = IEStyleProp.match(re)[0].charAt(1).toUpperCase();
 IEStyleProp = IEStyleProp.replace(re, camel);
 }
 styleValue = elem.currentStyle[IEStyleProp];
 }
 }
 return (styleValue) ? styleValue : null;
}

// carry over some critical menu style sheet attribute values
var CSSRuleValues = {menuItemHeight:"18px",
 menuWrapperBorderWidth:"2px",
 menuWrapperPadding:"3px",
 defaultBodyFontSize:"12px"
 };

// specifications for menu contents and menubar image associations
var menus = new Array();
menus[0] = {mBarImgId:"menuImg_1",
 mBarImgNormal:imagesNormal["home"],
 mBarImgHilite:imagesHilite["home"],
 menuItems:[],
 elemId:""
 };
menus[1] = {mBarImgId:"menuImg_2",
 mBarImgNormal:imagesNormal["catalog"],
 mBarImgHilite:imagesHilite["catalog"],
 menuItems:[{text:"Deluxe Line", href:"catalog_deluxe.html"},

Example 10-4. menus.js drop-down menu library (continued)

10.8 Creating Drop-Down Navigation Menus | 295

 {text:"Budget Line", href:"catalog_budget.html"},
 {text:"Export", href:"catalog_export.html"},
 {text:"Order Print Catalog", href:"catalog_order.html"}
],
 elemId:""
 };
menus[2] = {mBarImgId:"menuImg_3",
 mBarImgNormal:imagesNormal["about"],
 mBarImgHilite:imagesHilite["about"],
 menuItems:[{text:"Press Releases", href:"press.html"},
 {text:"Executive Staff", href:"staff.html"},
 {text:"Map to Our Offices", href:"map.html"},
 {text:"Company History", href:"history.html"},
 {text:"Job Postings", href:"jobs.html"},
 {text:"Contact Us", href:"contact.html"}
],
 elemId:""
 };

// create hash table-like lookup for menu objects with id string indexes
function makeHashes() {
 for (var i = 0; i < menus.length; i++) {
 menus[menus[i].elemId] = menus[i];
 menus[menus[i].mBarImgId] = menus[i];
 }
}

// assign menu label image event handlers
function assignLabelEvents() {
 var elem;
 for (var i = 0; i < menus.length; i++) {
 elem = document.getElementById(menus[i].mBarImgId);
 elem.onmouseover = swap;
 elem.onmouseout = swap;
 }
}

// invoked from init(), generates the menu div elements and their contents.
// all this action is invisible to user during construction
function makeMenus() {
 var menuDiv, menuItem, itemLink, mbarImg, textNode, offsetLeft, offsetTop;

 // determine key adjustment factors for the total height of menu divs

 var menuItemH = 0;
 var bodyFontSize = parseInt(getElementStyle(document.body, "font-size"));
 // test to see if browser's font size has been adjusted by the user
 // and that the new size registers as an applied style property
 if (bodyFontSize == parseInt(CSSRuleValues.defaultBodyFontSize)) {
 menuItemH = (parseFloat(CSSRuleValues.menuItemHeight));
 } else {
 // works nicely in Mozilla

Example 10-4. menus.js drop-down menu library (continued)

296 | Chapter 10: Page Navigation Techniques

 menuItemH = parseInt(parseFloat(CSSRuleValues.menuItemLineHeight) * bodyFontSize);
 }
 var heightAdjust = parseInt(CSSRuleValues.menuWrapperPadding) +
 parseInt(CSSRuleValues.menuWrapperBorderWidth);
 if (navigator.appName == "Microsoft Internet Explorer" &&
 navigator.userAgent.indexOf("Win") != -1 &&
 (typeof document.compatMode == "undefined" ||
 document.compatMode == "BackCompat")) {
 heightAdjust = -heightAdjust;
 }

 // use menus array to drive div creation loop
 for (var i = 0; i < menus.length; i++) {
 menuDiv = document.createElement("div");
 menuDiv.id = "popupmenu" + i;
 // preserve menu's ID as property of the menus array item
 menus[i].elemId = "popupmenu" + i;
 menuDiv.className = "menuWrapper";
 if (menus[i].menuItems.length > 0) {
 menuDiv.style.height = (menuItemH * menus[i].menuItems.length) -
 heightAdjust + "px";
 } else {
 // don't display any menu div lacking menu items
 menuDiv.style.display = "none";
 }
 // define event handlers
 menuDiv.onmouseover = keepMenu;
 menuDiv.onmouseout = requestHide;

 // set stacking order in case other layers are around the page
 menuDiv.style.zIndex = 1000;

 // assemble menu item elements for inside menu div
 for (var j = 0; j < menus[i].menuItems.length; j++) {
 menuItem = document.createElement("div");
 menuItem.id = "popupmenuItem_" + i + "_" + j;
 menuItem.className = "menuItem";
 menuItem.onmouseover = toggleHighlight;
 menuItem.onmouseout = toggleHighlight;
 menuItem.onclick = hideMenus;
 menuItem.style.top = menuItemH * j + "px";
 itemLink = document.createElement("a");
 itemLink.href = menus[i].menuItems[j].href;
 itemLink.className = "menuItem";
 itemLink.onmouseover = toggleHighlight;
 itemLink.onmouseout = toggleHighlight;
 textNode = document.createTextNode(menus[i].menuItems[j].text);
 itemLink.appendChild(textNode);
 menuItem.appendChild(itemLink);
 menuDiv.appendChild(menuItem);
 }
 // append each menu div to the body

Example 10-4. menus.js drop-down menu library (continued)

10.8 Creating Drop-Down Navigation Menus | 297

 document.body.appendChild(menuDiv);
 }
 makeHashes();
 assignLabelEvents();
 // pre-position menu
 for (i = 0; i < menus.length; i++) {
 positionMenu(menus[i].elemId);
 }
 menuReady = true;
}

// initialize global that helps manage menu hiding
var timer;

// invoked from mouseovers inside menus to cancel hide
// request from mouseout of menu bar image et al.
function keepMenu() {
 clearTimeout(timer);
}

function cancelAll() {
 keepMenu();
 menuReady = false;
}

// invoked from mouseouts to request hiding all menus
// in 1/4 second, unless cancelled
function requestHide() {
 timer = setTimeout("hideMenus()", 250);
}

// "brute force" hiding of all menus and restoration
// of normal menu bar images
function hideMenus() {
 for (var i = 0; i < menus.length; i++) {
 document.getElementById(menus[i].mBarImgId).src = menus[i].mBarImgNormal.src;
 var menu = document.getElementById(menus[i].elemId)
 menu.style.visibility = "hidden";
 }
}

// set menu position just before displaying it
function positionMenu(menuId){
 // use the menu bar image for position reference of related div
 var mBarImg = document.getElementById(menus[menuId].mBarImgId);
 var offsetTrail = mBarImg;
 var offsetLeft = 0;
 var offsetTop = 0;
 while (offsetTrail) {
 offsetLeft += offsetTrail.offsetLeft;
 offsetTop += offsetTrail.offsetTop;
 offsetTrail = offsetTrail.offsetParent;

Example 10-4. menus.js drop-down menu library (continued)

298 | Chapter 10: Page Navigation Techniques

 }
 if (navigator.userAgent.indexOf("Mac") != -1 &&
 typeof document.body.leftMargin != "undefined") {
 offsetLeft += document.body.leftMargin;
 offsetTop += document.body.topMargin;
 }
 var menuDiv = document.getElementById(menuId);
 menuDiv.style.left = offsetLeft + "px";
 menuDiv.style.top = offsetTop + mBarImg.height + "px";
}

// display a particular menu div
function showMenu(menuId) {
 if (menuReady) {
 keepMenu();
 hideMenus();
 positionMenu(menuId);
 var menu = document.getElementById(menuId);
 menu.style.visibility = "visible";
 }
}

// menu bar image swapping, invoked from mouse events in menu bar
// swap style sheets for menu items during rollovers
function toggleHighlight(evt) {
 evt = (evt) ? evt : ((event) ? event : null);
 if (typeof menuReady != "undefined") {
 if (menuReady && evt) {
 var elem = (evt.target) ? evt.target : evt.srcElement;
 if (elem.nodeType == 3) {
 elem = elem.parentNode;
 }
 if (evt.type == "mouseover") {
 keepMenu();
 elem.className ="menuItemOn";
 } else {
 elem.className ="menuItem";
 requestHide();
 }
 evt.cancelBubble = true;
 }
 }
}

function swap(evt) {
 evt = (evt) ? evt : ((event) ? event : null);
 if (typeof menuReady != "undefined") {
 if (evt && (document.getElementById && document.styleSheets) && menuReady) {
 var elem = (evt.target) ? evt.target : evt.srcElement;
 if (elem.className == "menuImg") {
 if (evt.type == "mouseover") {
 showMenu(menus[elem.id].elemId);

Example 10-4. menus.js drop-down menu library (continued)

10.8 Creating Drop-Down Navigation Menus | 299

Unlike some other related recipes (such as Recipe 10.7), this one does not encapsu-
late its functions within a custom object. It could be converted to that style without
much difficulty.

Scripts begin with one global variable declaration, menuReady, that is ultimately used
as a flag to let other functions know when the menus are available for animation.
Next is code for precaching all menu button images in two states (à la Recipe 12.1). A
utility function, getElementStyle(), is a variation of the function from Recipe 11.12,
which this script uses to keep menu item font sizes in sync with user-selected font
sizes in Mozilla-based browsers.

Because browser security restrictions (at least in IE 6 and 7) prevent scripts from
reading rule property values of style sheets, the script includes a global object that
replicates some key style sheet values that the scripts use for help with menu posi-
tioning and sizing. You can get these values from the style sheet settings.

Next is the creation of objects (inside an array called menus) that contain vital menu
details needed later when they are built. Each object has five properties, which are
described in more detail later.

Scripts for hiding and showing the menus frequently require that a menu’s reference
be capable of pointing to the swappable image at the top of the menu, and vice versa.
To speed this process along (i.e., to avoid looping through all of the menu’s array
items in search of properties that match either the image or menu IDs), it is more
convenient during initialization to create a one time, simulated hash table (in the
makeHashes() function), whose string index values consist of both the image and
menu element IDs (see Recipe 3.9). The result is a hash table that has two pointers to
each menus array entry—one for the image ID and one for the menu ID. Another

 elem.src = menus[elem.id].mBarImgHilite.src;
 } else if (evt.type == "mouseout") {
 requestHide();
 }
 evt.cancelBubble = true;
 }
 }
 }
}

// create menus only if key items are supported
function initMenus() {
 if (document.getElementById && document.styleSheets) {
 setTimeout("makeMenus()", 5);
 window.onunload=cancelAll;
 }
}

addOnLoadEvent(initMenus);

Example 10-4. menus.js drop-down menu library (continued)

300 | Chapter 10: Page Navigation Techniques

function invoked during initialization, assignLabelEvents(), assigns the mouse roll-
over event handlers to the image elements at the top of each menu.

The biggest function of the recipe, makeMenus(), assembles the menu elements, using
W3C DOM node creation syntax. This routine is invoked at initialization time and
depends on the menus array, defined earlier, to help populate each menu with the text
and link for each menu item.

There are two rollover concerns for this application: the menu bar image swapping
and the display of the menus. While their actions are different, the actions work with
each other. But first, some support code to do the dirty work is needed. Because of
the interaction between menu bar image and menus, a setTimeout() timer is used to
assist in cleaning up menus that are no longer necessary. The timer identifier (cre-
ated when setTimeout() is invoked) is preserved as a global variable called timer.

You can’t just hide the menu when a mouseout event occurs in one of the menu bar
images, since the mouse may be headed to the currently displayed menu and you
want that menu to remain in place. To assist with this task is the keepMenu() func-
tion, which cancels a timer set in the requestHide() function, and thus makes sure
the menu stays visible.

A related function, cancelAll(), which is invoked by an unload event handler, guards
against potential problems (particularly in Mozilla) in states between page loadings,
while the cursor may still be rolling around a swappable image. Global variables are
in transient states and may be valid when a function begins, but be gone by the time
the value is needed. The cancelAll() function puts the page in a quiet state during
the transition.

All mouseout events from the menu bar and menus start the 1/4-second delay clock
ticking in the requestHide() function. If the timer is still valid in 1/4 second, the
hideMenus() function runs. The hideMenus() function performs a blanket restoration
of menu bar images and menu display.

A separate positioning function, positionMenu(), is invoked before any menu is dis-
played. Therefore, if the menu bar changes position on the page (perhaps due to
dynamic content or a resized browser window), the menu is displayed correctly with
respect to the menu title image.

Invoked by all mouseover events in menu bar images and menu components, the
showMenu() function turns off the timer so that any pending hideMenu() call won’t
occur. Then it immediately hides all menus (rather than waiting for the timer) and
shows the menu div element whose ID is accessed from the menus array (index
passed as a parameter) elemId property.

As the user rolls the mouse pointer over items within a displayed menu, the
mouseover and mouseout events trigger style sheet changes to the entries (by changing
the element’s class assignment in the toggleHighlight() function). In the case of a
mouseover, the keepMenu() function fires to make sure any pending menu hiding gets

10.8 Creating Drop-Down Navigation Menus | 301

cancelled. For a mouseout, the hide request is made, in case the mouseout motion is
toward some other region on the page.

The swap() function, invoked by the mouse event handlers of the menu bar images,
is the main trigger to display a drop-down menu. In response to a mouseover event,
the menu is displayed, and the menu bar image changes to the highlighted version.
For a mouseout event, a hide request is made. If the hide timer isn’t cancelled in time,
the menu disappears and the menu bar image returns to its default image.

Invoked by the load event handler (via the addOnLoadEvent() function of
eventsManager.js from Recipe 9.3), the initMenus() function certifies that the
browser has the right stuff for the menuing system. It looks not only for basic W3C
DOM support, but also for the more esoteric document.styleSheets property. If the
browser supports the necessary facilities, the makeMenus() function generates the
menu div elements. It also assigns an unload event handler to the window so that any
pending menu-hide request is cancelled before the page goes away.

One of the goals of the design shown in this recipe is to minimize the amount of cus-
tom work needed to implement the drop-down menu in a variety of visual contexts.
Most of the menuing libraries available from other sources go to even further
extremes in this regard, building very complex and thorough systems of custom
objects and dynamically written HTML. General-purpose libraries, especially those
designed to work with outdated object models (e.g., the Navigator 4 DOM), need
the extra complexity to accommodate as wide a range of deployment scenarios as
possible. This example, on the other hand, is pared to a smaller size, and might
require a bit more work to blend into your design (particularly around the images for
the menu bar). But there should be plenty of ideas here that you can use as-is for a
largely automatic menuing system compatible with IE 5 or later, Mozilla, Safari, and
Opera 7 or later.

Reliance on style sheets for the visual aspects of the menus simplifies your experi-
mentation with different looks, such as color combinations, font specifications, and
sizes. The JavaScript code supporting the style sheets makes only a few assumptions:

• All drop-down menus are the same width, regardless of the widths of their menu
title images (which may vary as you see fit).

• Widths of menu items are determined by subtracting the menu wrapper’s pad-
ding from the wrapper’s width (162 pixels for the wrapper and 159 pixels for
menu items in this recipe).

• Style sheets for the two states of menu item (normal and highlighted) should
specify the same dimensions and font sizes.

• Several menu item height and menu wrapper border style sheet properties must
be replicated in the CSSRuleValues object defined in the menu JavaScript code. If
you modify your style sheet, duplicate the changes in CSSRuleValues.

302 | Chapter 10: Page Navigation Techniques

You need to customize a few parts of the JavaScript code to fit the menu system to
your graphical menus. First, establish the image precaching for the individual graph-
ics in your menu bar (your menu bar may be a vertical list of menu titles or other ele-
ment arrangement). Image array string index values and src properties are set just
like they are in Recipe 12.1.

Next are the specifications for the content of the menus. The menus array contains
custom objects corresponding to the menus that get created elsewhere. Each custom
object has numerous properties that get used through various stages of creating, dis-
playing, and hiding the menus:

mBarImgId
String containing the ID of the img element for the menu bar menu title image
associated with this menu.

mBarImgNormal
Reference to the precached image object for the normal state of the menu title
image.

mBarImgHilite
Reference to the precached image object for the highlighted state of the menu
title image.

menuItems
Array of objects, one for each item in the menu (or an empty array if the menu
title has no drop-down menu items). Each object consists of two properties: one
for the text that shows in the drop-down menu; the other with the URL to which
the user will navigate when selecting the menu item.

elemId
Initialized as an empty string, this property gets its value filled in automatically
when the menus are created. Do nothing with this property.

The final item to customize is the menu bar. Each menu title must be its own img ele-
ment (and have two states—normal and highlighted—as fed to the precaching code
earlier). You must add mouseover and mouseout event handlers to each img element’s
HTML code. Both event handlers invoke the same method (swap()), and pass as the
first parameter the zero-based index integer corresponding to the index of the menus
array entry bearing the menu specifications for this menu title.

Although it is not a requirement for the menuing system, I recommend that each
menu title image also be surrounded by a hyperlink. This is so that underpowered
browsers and search engines are able to follow paths to the next lower levels of your
web site, even if the destinations of those links are simple pages offering traditional
links to the same items in your drop-down menus. Users of your menus will be able
to bypass those pages.

10.8 Creating Drop-Down Navigation Menus | 303

All of the other code in the recipe works on its own to build the menus and handle
their display activities. Items in the menus are created as traditional links so that
users who expect to see URLs of links in the status bar will be right at home.

Code in the makeMenus() function assumes that the menus are to be deployed as true
drop-down menus by positioning the menus flush left and just below the images in
the menu bar. If you need the menus to push to the right or upward, you’ll need to
adjust the statements that set values of the menuDiv.style.left and menuDiv.style.
top properties. Notice that in the drop-down recipe, the left position is lined up with
the mBarImg.offsetLeft value, and that the top is pushed to the bottom of the image
by the addition of mBarImg.height. If you want to make the menu push to the right,
the top would be flush with the mBarImg.offsetTop, and the left would be extended
to the right by the amount of mBarImg.width. To make the menu appear to pop
upward, the top of the menu would be at the mBarImg.offsetTop minus the height of
the menuDiv (set earlier in this function). In all cases, leave the plain offsetLeft and
offsetTop variable adjustments in the formulas because they take care of some non-
standard position alignment behaviors of Internet Explorer.

It’s unfortunate that misplaced security restrictions prevent scripts from reading style
sheet rule attributes directly in IE 6 and 7. As a workaround, we have to duplicate
some important values in the script code (in the CSSRuleValues global variable) to
refer to them while sizing the menus. If, in the future, IE is able to access style sheet
rules without offending security restrictions, you should be able to let the definitions
in the style sheet rules govern the menu positioning and sizing. For future reference,
the following function adheres to the W3C DOM (and IE syntax idiosyncrasies) to
read individual rule values from a style sheet embedded in a style or link element
bearing an ID. While the function works as-is from a local hard disk, it generates
security-related errors when the page is accessed from a server in IE:

// utility function invoked from makeMenus()
// returns style sheet attribute value.
// parameters are: ID of <style> element, selector name, and attribute name
function getCSSRuleValue(styleID, selector, attr) {
 var sheet, styleElem, i;
 for (i = 0; i < document.styleSheets.length; i++) {
 sheet = document.styleSheets[i];
 styleElem = (sheet.ownerNode) ? sheet.ownerNode :
 ((sheet.owningElement) ? sheet.owningElement : null);
 if (styleElem) {
 if (styleElem.id == styleID) {
 break;
 }
 }
 }
 var rules = (sheet.cssRules) ? sheet.cssRules : ((sheet.rules) ?
 sheet.rules : null);
 if (rules) {
 for (i = 0; i < rules.length; i++) {
 if (rules[i].selectorText == selector || rules[i].selectorText ==
 "*" + selector) {

304 | Chapter 10: Page Navigation Techniques

 return rules[i].style[attr];
 }
 }
 }
 return null;
}

If you design your menu bar to live in one frame and expect the pop-up menu to
appear in another frame, you have some more coding to do because div elements
exist within the context of a browser window and do not extend into adjacent
frames. To begin, the code that generates the div elements in the changeable frame
has to be incorporated into each document that loads into that other frame. But that
code needs to be modified to look to the menu bar title images in the navigation
frame for position information. You also have to take into account any possible
scrolling that occurs in the changeable frame, since it influences the position of the
menu within the page, even though the menu title is static. Additional cross-frame
communication is needed to synchronize the image swapping and menu showing/
hiding actions.

As a last note, you may be interested in the rationale behind the requestHide() func-
tion and the use of the setTimeout() method to hide a menu. Notice that two differ-
ent elements’ states change: the menu title image’s src and the visibility of the
associated menu. A simple mouseout event handler on the image to swap the image
and hide the menu works only if the user moves the pointer in a direction other than
downward into the menu. In the latter case, you don’t want the menu title to change
back to its original state or hide the menu. Instead, the image’s mouseout event han-
dler sets the timer to execute the restoration process in 250 milliseconds via
setTimeout(). However, the mouseover event handlers of menu components, which
fire before the 250 milliseconds are up, clear the timer so that the state stays the
same, all while the cursor is in the menu (or goes back up to the menu title).

If the user slides over to another menu title, the time-out timer is also cleared so that
the hideMenus() method can restore initial state instantly (which is a little faster than
250 milliseconds, so response feels quicker). Only when the user slides the pointer
out and away from the menu bar or a visible menu does the timer have a chance to
invoke hideMenus(), which puts everything back the way it was when the page
loaded.

With the requestHide() function setting a timer to go off in the future (no matter
how soon the future will be), you must set the unload event handler for the page to
invoke cancelHide(). Failure to do so will allow the hideMenus() function call in the
timer queue to execute after the page has gone away—taking its scripts with it. The
result is a script error. If your pages assign another unload event handler via script
properties for other purposes, you need to define yet another function that invokes
both cancelHide() and your other function, so that the unload event can invoke both
functions (or use the eventsManager.js library to add events to the window object).

10.9 Providing Navigation Trail Menus | 305

See Also
Recipe 3.9 for simulating a hash table; Recipe 12.1 for precaching images; Recipe 12.10
for hiding and showing elements; Recipe 13.1 for creating a positioned element.

10.9 Providing Navigation Trail Menus

Problem
You want the top of every page in a deep and highly structured site to display “bread
crumb trails” of where the user is within a hierarchy path.

Solution
Customize and apply the trail.js library (shown in Example 10-5 in the Discussion) to
a location on your pages where the menu trail is to appear. Figure 10-3 shows one
example on a page that includes the following HTML and script call to the
makeTrailMenu() function in the library:

<div id="trailMenu" style="position:absolute; left:200px; top:200px">
<script language="JavaScript" type="text/javascript">
document.write(makeTrailMenu());
</script>
</div>

Figure 10-3. A “bread crumb trail” menu

306 | Chapter 10: Page Navigation Techniques

Discussion
The sample code of this recipe assumes that the web documents on the server are
structured in a directory hierarchy that matches the conceptual organization of the
site. For example:

index.html (home at the root directory)
 catalog/
 index.html (intro to catalog and links to categories)
 economy/
 [many .html pages for this category]
 deluxe/
 [many .html pages for this category]
 export/
 [many .html pages for this category]
 support/
 index.html (intro to support and links to categories)
 contact.html
 faq/
 downloads/
 manuals/

Example 10-5 shows the code for the trail.js library, which should be linked into
every page of the site that fits within the structural hierarchy.

Example 10-5. The trail.js library

var trailMenu = new Object();
trailMenu["catalog"] = "Product Line";
trailMenu["economy"] = "Budget";
trailMenu["deluxe"] = "Luxury";
trailMenu["export"] = "Export Only";
trailMenu["support"] = "Product Support";
trailMenu["faq"] = "Frequently Asked Questions";
trailMenu["downloads"] = "Free Downloads";
trailMenu["manuals"] = "Manuals";

function makeTrailMenu() {
 for (var i = parseStart; i < parseEnd; i++) {volDelim, parseEnd;
 var output =
 "<span style='font-family:Arial, Helvetica, sans-serif; font-size:12px;" +
 "color:#000000; padding:4px'>";
 var linkStyle = "color:#339966";
 var path = location.pathname;
 var separator = " » ";
 var re = /\\/g;
 path = path.replace(re, "/");
 var trail = location.protocol + "//" + location.hostname;
 var leaves = path.split("/");
 if (location.protocol.indexOf("file") != -1) {
 parseStart = 1;
 volDelim = "/";
 } else {
 parseStart = 0;

10.9 Providing Navigation Trail Menus | 307

The library begins by defining an object whose string property names are the various
directory names of your site (in any order) and the corresponding plain language
label you want to appear in the menus. Next is the makeTrailMenu() function, which
assembles the HTML for the page’s navigation trail menu, based on the path of the
current document and its title. This example uses a guillemet character (») to act as
arrows between levels.

This trail menu system works best on sites that serve up pages from .html files
because the location.pathname property contains a lot of the information that the
code uses to generate the menus. You can also make this work with sites served by
server-side programs (.pl, .asp, .jsp, .php, and others), provided the directory struc-
ture is preserved. Of course, if you are using server programming to generate content
for pages, you might as well use that programming power to assemble the menu trail
before ever leaving the server.

The only implementation and maintenance necessities are as follows:

• Each page must have a descriptive <title> tag.

• Each directory must have a home page (such as index.html or default.html)
served up when the URL points to the directory.

• Each file must include the trail.js library containing the data and routines.

• Changes or additions made to the site’s directory structure need to be noted in
the trailMenu object definition in the trail.js file.

Employing a custom object (trailMenu) for the lookup table of directory names and
user-friendly labels offers a much faster way of performing the lookups than a more

 volDelim = "";
 }
 if (leaves[leaves.length-1] == "" || leaves[leaves.length-1] == "index.html" ||
 leaves[leaves.length-1] == "default.html") {
 parseEnd = leaves.length -1;
 } else {
 parseEnd = leaves.length;
 }
 for (var i = parseStart; i < parseEnd; i++) {
 if (i == parseStart) {
 trail += "/" + leaves[i] + volDelim;
 output += "";
 output += "Home";
 } else if (i == parseEnd - 1) {
 output += document.title;
 } else {
 trail += leaves[i] + "/";
 output += "";
 output += trailMenu[leaves[i]] += "" + separator;
 }
}

Example 10-5. The trail.js library (continued)

308 | Chapter 10: Page Navigation Techniques

typical array. Items do not have to be in any particular order with respect to the
directory structure, but keeping the structures aligned makes it easier to maintain
over time as directories are added, removed, and renamed.

You have virtually unlimited flexibility in the stylesheet attributes that affect the
appearance of the trail menu. It is also possible to remove the style sheet from the tag
and link it into the page from a separate .css file if you prefer, provided you assign an
ID or class identifier to the menu container and associate the container with the
imported style rule. Additionally, the menu can be in the page’s body, in a table, or,
as shown in the recipe, a positioned element unto itself.

Slightly more challenging is implementing this kind of menu within a frameset,
where the menu occupies its own frame and the content that changes is in another
frame. The same algorithms apply, but you have to watch out for two points in par-
ticular. First, you need a way to trigger the rewriting of the menu each time a con-
tent page changes. The way to do this is through the load event of each page. It could
invoke a function (loaded into each page from an external .js library) that assembles
the menu (using the location property of the content window), and writes the con-
tent of the other frame. You also need to modify the links that surround each click-
able item in the menu so that the target is the content-bearing frame.

In the recipe, the separator between hierarchy levels in the menu consists of a charac-
ter that looks like an arrow (a guillemet character is actually a right-pointing double
angle quotation mark). But the separator can be any HTML of your choice, includ-
ing an image. Simply assign the HTML to the separator variable.

See Also
Recipe 1.1 for building long strings from bits and pieces; Recipe 14.1 for using
document.write() while the page loads.

10.10 Creating Expandable Menus

Problem
You want to present a navigation menu that looks and operates like the expandable/
collapsible hierarchy shown in the lefthand frame of many popular products (Win-
dows Explorer, Outlook Express, Adobe Acrobat PDF bookmarks, and so on).

Solution
Use the expandableMenu.js library shown in Example 10-6 in the Discussion to pop-
ulate an HTML container on your page with a collapsible menu like the one shown
in Figure 10-4. A simple, empty div element is all you need in the HTML portion of
the solution:

<div id="content"></div>

10.10 Creating Expandable Menus | 309

Bind the menu initialization function, initExpMenu(), to the load event via the <body>
tag, window.onload property, or the addOnLoadEvent() function of the eventsManager.
js library (Recipe 9.3).

Other pieces that you need to provide or customize, as described in the Discussion,
are the following:

• Images for the outline graphics

• A script global variable value for the outline item link target

• Outline data assigned to the olData object

• A pre-expansion state (optional)

• Style sheet rule dimensions to match your image designs and font specifications

This recipe works with Internet Explorer 5 or later and Netscape 6 or later. It does
not operate as is in Opera, but see the Discussion section for more information.

Figure 10-4. The expandable navigation menu

310 | Chapter 10: Page Navigation Techniques

Discussion
Participating in this recipe are a few style sheet rules that control the appearance and
layout of elements that scripts create on the fly. You may include them in the HTML
page or import them:

<style type="text/css">
 .OLRow {vertical-align: middle;
 font-size: 12px;
 line-height: 11px;
 font-family: Arial,sans-serif
 }
 .OLBlock {display: none}
 .OLBlock a {text-decoration: none}
 img.widgetArt {vertical-align: text-top}
</style>

The expandableMenu.js library is shown in Example 10-6. It is a fairly large library
divided into several labeled sections. The version shown here contains an abbrevi-
ated set of sample data for a menu that displays portions of the W3C HTML 4.01
specification.

Example 10-6. The expandableMenu.js library

/**********************************
 GLOBAL VARIABLES
***********************************/
var expMenuWidgets = {
 height : 16,
 width : 20,
 collapsedWidget : {src : "oplus.gif"},
 collapsedWidgetStart : {src : "oplusStart.gif"},
 collapsedWidgetEnd : {src : "oplusEnd.gif"},
 expandedWidget : {src : "ominus.gif"},
 expandedWidgetStart : {src : "ominusStart.gif"},
 expandedWidgetEnd : {src : "ominusEnd.gif"},
 nodeWidget : {src : "onode.gif"},
 nodeWidgetEnd : {src : "onodeEnd.gif"},
 emptySpace : {src : "oempty.gif"},
 chainSpace : {src : "ochain.gif"},
 preloadImages : function() {
 var img = new Image(this.height, this.width);
 img.src = this.collapsedWidget.src;
 img.src = this.collapsedWidgetStart.src;
 img.src = this.collapsedWidgetEnd.src;
 img.src = this.expandedWidget.src;
 img.src = this.expandedWidgetStart.src;
 img.src = this.expandedWidgetEnd.src;
 img.src = this.nodeWidget.src;
 img.src = this.nodeWidgetEnd.src;
 img.src = this.emptySpace.src;
 img.src = this.chainSpace.src;

10.10 Creating Expandable Menus | 311

 }
}
expMenuWidgets.preloadImages();

// miscellaneous globals
var currState = "";
var displayTarget = "contentFrame";

/**********************************
 DATA COLLECTIONS
***********************************/
var expansionState = "1,3,10";
// constructor for outline item objects
function outlineItem(text, uri) {
 this.text = text;
 this.uri = uri;
}
var olData = {childNodes:
 [{item:new outlineItem("Forms"),
 childNodes:
 [{item:new outlineItem("Introduction",
 "http://www.w3.org/.../forms.html#h-17.1")},
 ...
 {item:new outlineItem("INPUT Element",
 "http://www.w3.org/.../forms.html#h-17.4"),
 childNodes:
 [{item:new outlineItem("INPUT Control Types",
 "http://www.w3.org/.../forms.html#h-17.4.1")},
 {item:new outlineItem("Examples",
 "http://www.w3.org/.../forms.html#h-17.4.2")}
]},
 ...
]},
 {item:new outlineItem("Scripts"),
 childNodes:
 [{item:new outlineItem("Introduction",
 "http://www.w3.org/.../scripts.html#h-18.1")},
 {item:new outlineItem("Designing Documents for Scripts",
 "http://www.w3.org/.../scripts.html#h-18.2"),
 childNodes:
 [{item:new outlineItem("SCRIPT Element",
 "http://www.w3.org/.../scripts.html#h-18.2.1")},
 {item:new outlineItem("Specifying the Scripting Language",
 "http://www.w3.org/.../scripts.html#h-18.2.2"),
 childNodes:
 [{item:new outlineItem("Default Language",
 "http://www.w3.org/.../scripts.html#h-18.2.2.1")},
 {item:new outlineItem("Local Language Declaration",
 "http://www.w3.org/.../scripts.html#h-18.2.2.2")},
 {item:new outlineItem("References to HTML Elements",
 "http://www.w3.org/.../scripts.html#h-18.2.2.3")}
]

Example 10-6. The expandableMenu.js library (continued)

312 | Chapter 10: Page Navigation Techniques

 }
]
 ...
 }
]
 };

/**********************************
 TOGGLE DISPLAY AND ICONS
***********************************/
// invert item state (expanded to/from collapsed)
function swapState(currState, currVal, n) {
 var newState = currState.substring(0,n);
 newState += currVal ^ 1 // Bitwise XOR item n;
 newState += currState.substring(n+1,currState.length);
 return newState;
}

// retrieve matching version of 'minus' images
function getExpandedWidgetState(imgURL) {
 if (imgURL.indexOf("Start") != -1) {
 return expMenuWidgets.expandedWidgetStart.src;
 }
 if (imgURL.indexOf("End") != -1) {
 return expMenuWidgets.expandedWidgetEnd.src;
 }
 return expMenuWidgets.expandedWidget.src;
}

// retrieve matching version of 'plus' images
function getCollapsedWidgetState(imgURL) {
 if (imgURL.indexOf("Start") != -1) {
 return expMenuWidgets.collapsedWidgetStart.src;
 }
 if (imgURL.indexOf("End") != -1) {
 return expMenuWidgets.collapsedWidgetEnd.src;
 }
 return expMenuWidgets.collapsedWidget.src;
}

// toggle an outline mother entry, storing new state value;
// invoked by onclick event handlers of widget image elements
function toggle(img, blockNum) {
 var newString = "";
 var expanded, n;
 // modify state string based on parameters from IMG
 expanded = currState.charAt(blockNum);
 currState = swapState(currState, expanded, blockNum);
 // dynamically change display style

Example 10-6. The expandableMenu.js library (continued)

10.10 Creating Expandable Menus | 313

 if (expanded == "0") {
 document.getElementById("OLBlock" + blockNum).style.display = "block";
 img.src = getExpandedWidgetState(img.src);
 } else {
 document.getElementById("OLBlock" + blockNum).style.display = "none";
 img.src = getCollapsedWidgetState(img.src);
 }
}

function expandAll() {
 var newState = "";
 while (newState.length < currState.length) {
 newState += "1";
 }
 currState = newState;
 var contentImages = document.getElementById("content").getElementsByTagName("img");
 var widgetNum, expanded;
 for (var i = 0; i < contentImages.length; i++) {
 if (contentImages[i].className == "collapsible") {
 widgetNum = contentImages[i].id.substring(6);
 contentImages[i].src = getExpandedWidgetState(contentImages[i].src);
 }
 }
 initExpand();
}

function collapseAll() {
 var newState = "";
 while (newState.length < currState.length) {
 newState += "0";
 }
 currState = newState;
 var contentImages = document.getElementById("content").getElementsByTagName("img");
 var widgetNum, expanded;
 for (var i = 0; i < contentImages.length; i++) {
 if (contentImages[i].className == "collapsible") {
 widgetNum = contentImages[i].id.substring(6);
 contentImages[i].src = getCollapsedWidgetState(contentImages[i].src);
 }
 }
 initExpand();
}

/*********************************
 OUTLINE HTML GENERATION
**********************************/
// apply default expansion state from outline's header
// info to the expanded state for one element to help
// initialize currState variable
function calcBlockState(n) {
 // get default expansionState data
 var expandedData = (expansionState.length > 0) ? expansionState.split(",") : null;

Example 10-6. The expandableMenu.js library (continued)

314 | Chapter 10: Page Navigation Techniques

 if (expandedData) {
 for (var j = 0; j < expandedData.length; j++) {
 if (n == expandedData[j] - 1) {
 return "1";
 }
 }
 }
 return "0";
}

// counters for reflexive calls to drawOutline()
var currID = 0;
var blockID = 0;
// generate HTML for outline
function drawOutline(ol, prefix) {
 var output = "";
 var nestCount, link, nestPrefix, lastInnerNode;
 prefix = (prefix) ? prefix : "";
 for (var i = 0; i < ol.childNodes.length ; i++) {
 nestCount = (ol.childNodes[i].childNodes) ? ol.childNodes[i].childNodes.length : 0;
 output += "<div class='OLRow' id='line" + currID++ + "'>\n";
 if (nestCount > 0) {
 output += prefix;
 currState += calcBlockState(currID-1);
 if (currState.substr(currState.length-1) == "0") {

output += "<img id='widget" + (currID-1) + "' class='collapsible' src='" +
 ((i == ol.childNodes.length-1 && blockID != 0) ?
 expMenuWidgets.collapsedWidgetEnd.src : (blockID == 0) ?
 expMenuWidgets.collapsedWidgetStart.src :
 expMenuWidgets collapsedWidget.src);
 } else {

output += "<img id='widget" + (currID-1) + "' class='collapsible' src='" +
 ((i == ol.childNodes.length-1 && blockID != 0) ?
 expMenuWidgets.expandedWidgetEnd.src : (blockID == 0) ?
 expMenuWidgets.expandedWidgetStart.src :
 expMenuWidgets.expandedWidget.src);
 }
 output += "' height=" + expMenuWidgets.height + " width=" +
 expMenuWidgets.width;
 output += " title='Click to expand/collapse nested items.'" +
 "onClick='toggle(this," + blockID + ") '> ";
 link = (ol.childNodes[i].item.uri) ? ol.childNodes[i].item.uri : "";
 if (link) {
 output += "<a href='" + link + "' class='itemTitle' title='" +
 link + "' target='" + displayTarget + "'>" ;
 } else {
 output += "";
 }
 output += "" +
 ol.childNodes[i].item.text + "";
 output += "<span class='OLBlock' blocknum='" + blockID + "' id='OLBlock" +
 blockID++ + "'>";

Example 10-6. The expandableMenu.js library (continued)

10.10 Creating Expandable Menus | 315

 nestPrefix = prefix;
 nestPrefix += (i == ol.childNodes.length - 1) ?
 "<img src='" + expMenuWidgets.emptySpace.src + "' height=" +
 expMenuWidgets.height + " width=" + expMenuWidgets.width + ">" :
 "<img src='" + expMenuWidgets.chainSpace.src + "' height=" +
 expMenuWidgets.height + " width=" + expMenuWidgets.width + ">"
 output += drawOutline(ol.childNodes[i], nestPrefix);
 output += "</div>\n";
 } else {
 output += prefix;
 output += "<img id='widget" + (currID-1) + "' src='" +
 ((i == ol.childNodes.length - 1) ? expMenuWidgets.nodeWidgetEnd.src :
 expMenuWidgets.nodeWidget.src);
 output += "' height=" + expMenuWidgets.height + " width=" +
 expMenuWidgets.width + ">";
 link = (ol.childNodes[i].item.uri) ? ol.childNodes[i].item.uri : "";
 if (link) {
 output += " <a href='" + link + "' class='itemTitle' title='" +
 link + "' target='" + displayTarget + "'>";
 } else {
 output += " ";
 }
 output += "" +
 ol.childNodes[i].item.text + "";
 output += "</div>\n";
 }
 }
 return output;
}

/*********************************
 OUTLINE INITIALIZATIONS
**********************************/
// expand items set in expansionState var, if any
function initExpand() {
 for (var i = 0; i < currState.length; i++) {
 if (currState.charAt(i) == 1) {
 document.getElementById("OLBlock" + i).style.display = "block";
 } else {
 document.getElementById("OLBlock" + i).style.display = "none";
 }
 }
}

// initialize first time -- invoked onload
function initExpMenu(xFile) {
 // wrap whole outline HTML in a span
 var olHTML = "" + drawOutline(olData) + "";
 // throw HTML into 'content' div for display
 document.getElementById("content").innerHTML = olHTML;
 initExpand();
}

Example 10-6. The expandableMenu.js library (continued)

316 | Chapter 10: Page Navigation Techniques

This script begins by defining and precaching the small images that become compo-
nents of the finished outline display (called widgets in this example). Images created
for this solution are shown in Figure 10-5. All images are the same size.

Some global definitions come first. Images are specified (size and image file URLs)
and preloaded into the expMenuWidgets global object. By assigning the URLs to an
instance of the Image object, the script forces the browser to fetch all of the images
during the page load. The script will use the currState variable to preserve a repre-
sentation of the expanded and collapsed state of various items in the menu. For a
framed layout, you should assign to the displayTarget variable the name of the frame
where content linked from the menu items will appear.

The next code block contains the outline data and some supporting values. One glo-
bal variable, expansionState, contains a comma-delimited list of line numbers (each
entry of the outline is in its own line) of those entries that are to be displayed in their
expanded state when first displayed. If only the top-level items are to be visible (i.e.,
the menus are fully collapsed), assign an empty string to this variable. The
outlineItem() constructor function is invoked repeatedly when the custom Java-
Script object code executes during page loading. Each outline entry has displayable
text and an optional link URL.

Next is the definition of the object (named olData) containing the outline data. For
this recipe, I chose a structure that ultimately simulates the kind of node structure
that an XML data source provides. Thus, a sequence of nested objects and arrays
define the outline. Only a portion of the example outline (links to sections of the
W3C HTML 4.01 recommendation) is shown here. I’ll have more to say about the
formatting later.

Figure 10-5. Images used to assemble the hierarchical path

10.10 Creating Expandable Menus | 317

The section marked “Toggle Display and Icons” includes functions that control the
change of state between expanded and collapsed. A pair of functions named
getExpandedWidgetState() and getCollapsedWidgetState() (both invoked by the
toggle() function discussed later), retrieve one of three expanded or collapsed
images depending on the name (specifically, a portion of the name) of the current
widget image. The swapState() helper function (also invoked from toggle()) per-
forms binary arithmetic on the value of the currState variable to change a specific
character from zero to one or vice versa (these characters represent the state of each
branch node).

At the center of user interaction is the toggle() function, which is activated by click
event handlers assigned to each clickable widget. Because the event handlers are
assigned while a script builds the outline, the event handlers can include parameters
that indicate which item is being clicked. Thus, toggle() receives the widget’s cur-
rent image URL (used to determine which image should take its place) and a numeric
ID associated with the span containing nested items. Although the function is small,
it uses some helper functions to do the job. The two basic tasks of this function are
to change the clicked widget image and display style sheet setting of the element
containing nested items below it.

Two more functions, expandAll() and collapseAll(), stand ready to fully expand
and collapse the entire outline, if your user interface design provides user control of
that feature.

The next-to-last block of code devotes itself to the creation of the HTML for the out-
line menu content. One helper function, calcBlockState(), is invoked repeatedly
during the HTML construction, and looks to see if the particular line number of the
outline is supposed to be expanded by default. The data for these settings consists of
a comma-delimited list of line numbers for expanded items (assigned to global vari-
able expansionState).

Assembly of the outline’s HTML in the drawOutline() function iterates through the
olData object. But a major part of that iteration entails recursive calls to the same
drawOutline() function to build the nested items. Therefore, a pair of counting vari-
ables (used to compose unique IDs for elements) are declared in the global space as
currID and blockID.

Now we reach the drawOutline() function, which acts like a whirling dervish to
accumulate the HTML for the rendered outline. The content is assembled just once,
while all subsequent adjustments to the expanded or collapsed states are controlled
by style sheet settings. Layout of the various widget images is governed by the struc-
ture of the olData objects. Among the more complex tasks that the drawOutline()
recursive code needs to keep track of is whether an image column position requires a
vertical line to signify a later connection with an earlier item or just a blank space.
The regularity of all widget image sizes lets the script build the widget image parts of
each line as if the images were mosaic tiles.

318 | Chapter 10: Page Navigation Techniques

The final code block performs all initializations and gets the ball rolling. First is a
function (initExpand()) that iterates through the currState variable to establish the
expand/collapse state of each nested block. This function is invoked not only by the
following initExpMenu() function, but also by the expandAll() and collapseAll()
functions.

At last we reach the initExpMenu() function, invoked by the load event handler for
the page. This is the driving force behind the creation of the rendered HTML,
embedding it inside a dedicated span element, and then tucking it all into a pre-
existing div element, as shown in the body’s HTML.

To deploy this menu system successfully, you need to create your set of widget
images, like the ones shown in Figure 10-5. All images must be the same size, and
you may have to tweak the style sheet values for the text fonts to achieve a propor-
tioned look with sizes other than those shown in the recipe.

Most code customizations take place at the top of the script area. Start by assigning
URLs for the widget images, image sizes, and target frame for menu links. (This men-
uing system works best in framesets or with content iframes so that the outline
remains unchanged during navigation.)

Perhaps the most complicated part of customizing this collapsible navigation menu is
creating the olData object. Before you begin to plug in your own data, you need to
have a solid hierarchy to map. It doesn’t hurt to literally write it down so you can
visualize the nesting of subjects. For example, the start of the outline shown in the
recipe looks like the following when fully expanded:

Forms
 Introduction
 Controls
 Control Types
 FORM Element
 INPUT Element
 INPUT Types
 Examples
 BUTTON Element

Each line of the outline contains an item. Each item must have text associated with
it, as well as an optional URL for a clickable link associated with the text. If you omit
the URL, the text still appears in the outline, but its content does not link to any
other destination.

To convert the written outline into an olData data set, you recreate the parent-child-
sibling relationships among the entries. Schematically, the above outline fragment in
olData form looks like the following:

olData =
 {childNodes:[{item:"Forms",
 childNodes:[{item:"Introduction"},
 {item:"Controls", childNodes:[{item:"Control Types"}]},
 {item:"FORM Element"},

10.10 Creating Expandable Menus | 319

 {item:"INPUT Element", childNodes[{item:"INPUT Types"},
 {item"Examples"}]},
 {item:"BUTTON Element"}]
 }]
 };

The hard part is keeping all of the array and object containment (the open and close
pairs of braces and square brackets) straight as the outline grows. The use of the
childNodes property name for the nested entries has its roots in the XML version of this
menu (see Recipe 10.11). You can use another name if you prefer. Also, the indented
formatting shown in the recipe may be helpful in aligning the nestings correctly.

The line numbers of the fully expanded outline are significant if you wish the outline
to be partially expanded when it first appears. You can convey a comma-delimited
list of expanded lines in the expansionState global variable. The only line numbers
you need to include here are those that act as branch nodes—items that contain fur-
ther nested items. If you leave the variable an empty string (as shown in this recipe),
only the top-level items appear by default.

Operating slightly differently is the currState variable. This value consists of ones
and zeros in string form; it tracks the expansion state of branch nodes in the outline
only. Thus, an outline consisting of five branch nodes and dozens of leaf nodes
(items containing no further nested items) carries only a five-digit currState value. A
numeric value of zero at any digit means that the corresponding branch node is col-
lapsed, while a one means the branch is expanded. This mechanism makes it easy to
switch the value of an individual branch node (in the swapState() function) in
response to the click of its widget icon. It also means that the currState variable
remembers when more deeply nested branches were expanded previously. If a
branch closer to the top level collapses, any expanded nodes inside it remain
expanded for the next time they’re seen. Also, if you wish to preserve the expansion
state between user visits to the page, the currState value (in string form) is what
you’d preserve in a cookie and read during initialization to restore the previous set-
tings. For first-time visitors, you need to supply a default currState value with the
requisite number of zeros corresponding to branch nodes in your outline.

This recipe shows only text hyperlinks as visible nodes in the outline, but you are not
limited to text. You can reconfigure the olData object’s properties and the
drawOutline() function to accumulate any HTML content you like in place of the
text labels. Iteration through the olData object is still the governing loop control of
drawOutline().

You may be wondering why the first call to drawOutline() from the initExpMenu()
function passes a reference to the olData global variable. Due to the recursive nature
of the drawOutline() function, which calls itself repeatedly, passing nested portions
of olData where needed, it is convenient to let the function assume it will always
receive a parameter containing a valid object from olData. At the start of the pro-
cess, the object is the complete olData object. But as nested nodes are assembled in

320 | Chapter 10: Page Navigation Techniques

recursive calls, only groups of child nodes are passed. No other first-time flags or
other loop-degrading tests get in the way.

If you prefer to deploy this outline so the outline is not dynamically generated but
consists of hardcoded HTML (perhaps to allow search engines to see and follow its
links), you can still perform your development with the olData object and its form of
structuring the outline data. Then, load the page into a browser and capture the
HTML for the entire outline. The quickest way to accomplish this is through a
bookmarklet: a bookmark consisting of a javascript: URL that executes some Java-
Script code. Or, you can simply enter the bookmarklet text into the Address/Location
field of the browser:

javascript: "<textarea cols='120' rows='40'>" +
document.getElementById("content").innerHTML + "</textarea>"

You will then see a textarea element containing the entire outline HTML. Copy and
paste this HTML into the outline page’s div element whose ID is content. This tech-
nique is also a helpful way to examine the HTML generated by drawOutline(), either
for study or debugging. In the global variables, assign an initial zero-filled string
value to the currState variable. You can delete the “Data Collections” and “Outline
HTML Generation” code blocks, as well as all but the initExpand() function call
from the initExpMenu() function. If your outline consists of hundreds of items
(which may indicate an outline is too large), the hardwired HTML will render faster
than the dynamically generated version.

See Also
Recipe 1.1 for building large strings from smaller segments; Recipe 10.11 for an
XML-based outline data source; Recipe 12.1 for precaching images; Recipe 12.10 for
hiding and showing elements.

10.11 Creating Collapsible XML Menus

Problem
You want to present a navigation menu that looks and operates like the collapsible
hierarchy shown in the lefthand frame of many popular products (Windows
Explorer, Outlook Express, Adobe Acrobat PDF bookmarks, and so on), but the
data needs to come from an XML data source.

Solution
Use the XMLoutline.js library shown in Example 10-7 in the Discussion to convert a
specially formatted XML outline document to an interactive collapsible menu like
the one shown in Figure 10-4 of Recipe 10.10. Include a simple, empty div element
in the HTML portion of your page where the outline is to appear:

<div id="content"></div>

10.11 Creating Collapsible XML Menus | 321

Bind the menu initialization function, initXMLOutline(), to the load event via the
<body> tag, window.onload property, or addOnLoadEvent() function from the
eventsManager.js library (Recipe 9.3), specifying the filename of the XML file:

onload="initXMLOutline('SpecOutline.xml')"

Other pieces that you need to provide or customize, as described in the Discussion,
are the following:

• The OPML source for the data

• Images for the outline graphics

• A script global variable value for the outline item link target

• Style sheet rule dimensions to match your image designs and font specifications

This recipe works with Internet Explorer 5 or later for Windows, Mozilla, Safari 1.2
or later, and Opera 8 or later. Note that the code used in this recipe must be accessed
via the HTTP protocol, not the file protocol.

Discussion
The recipe shown here is similar to the JavaScript data-based solution shown in Rec-
ipe 10.10. The difference is that the data is formatted in outline-flavored XML: OPML
(Outline Processing Markup Language) designed by Dave Winer (http://www.opml.
org). Thus, while all of the toggling and state-switching code is identical to Recipe 10.
10, the loading of the external OPML file and creation of the outline is different. For
the sake of completeness and context, however, we treat this recipe separately.

Participating in this recipe are a few style sheet rules that control the appearance and
layout of elements that scripts create on the fly. You may include them in the HTML
page or import them:

 .OLRow {vertical-align: middle;
 font-size: 12px;
 line-height: 11px;
 font-family: Arial,sans-serif
 }
 .OLBlock {display: none}
 .OLBlock a {text-decoration: none}
 img.widgetArt {vertical-align: text-top}

The XMLoutline.js library is shown in Example 10-7. Because all of the data for the
outline comes from a separate file, this library consists entirely of interactive code.

Example 10-7. The XMLoutline.js library

/**********************************
 GLOBAL VARIABLES
***********************************/
var expMenuWidgets = {
 height : 16,
 width : 20,
 collapsedWidget : {src : "oplus.gif"},

322 | Chapter 10: Page Navigation Techniques

 collapsedWidgetStart : {src : "oplusStart.gif"},
 collapsedWidgetEnd : {src : "oplusEnd.gif"},
 expandedWidget : {src : "ominus.gif"},
 expandedWidgetStart : {src : "ominusStart.gif"},
 expandedWidgetEnd : {src : "ominusEnd.gif"},
 nodeWidget : {src : "onode.gif"},
 nodeWidgetEnd : {src : "onodeEnd.gif"},
 emptySpace : {src : "oempty.gif"},
 chainSpace : {src : "ochain.gif"},
 preloadImages : function() {
 var img = new Image(this.height, this.width);
 img.src = this.collapsedWidget.src;
 img.src = this.collapsedWidgetStart.src;
 img.src = this.collapsedWidgetEnd.src;
 img.src = this.expandedWidget.src;
 img.src = this.expandedWidgetStart.src;
 img.src = this.expandedWidgetEnd.src;
 img.src = this.nodeWidget.src;
 img.src = this.nodeWidgetEnd.src;
 img.src = this.emptySpace.src;
 img.src = this.chainSpace.src;
 }
}
expMenuWidgets.preloadImages();

// miscellaneous globals
var currState = "";
var displayTarget = "contentFrame";

/**********************************
 TOGGLE DISPLAY AND ICONS
***********************************/
// invert item state (expanded to/from collapsed)
function swapState(currState, currVal, n) {
 var newState = currState.substring(0,n);
 newState += currVal ^ 1 // Bitwise XOR item n;
 newState += currState.substring(n+1,currState.length);
 return newState;
}

// retrieve matching version of 'minus' images
function getExpandedWidgetState(imgURL) {
 if (imgURL.indexOf("Start") != -1) {
 return expMenuWidgets.expandedWidgetStart.src;
 }
 if (imgURL.indexOf("End") != -1) {
 return expMenuWidgets.expandedWidgetEnd.src;
 }
 return expMenuWidgets.expandedWidget.src;
}

// retrieve matching version of 'plus' images
function getCollapsedWidgetState(imgURL) {

Example 10-7. The XMLoutline.js library (continued)

10.11 Creating Collapsible XML Menus | 323

 if (imgURL.indexOf("Start") != -1) {
 return expMenuWidgets.collapsedWidgetStart.src;
 }
 if (imgURL.indexOf("End") != -1) {
 return expMenuWidgets.collapsedWidgetEnd.src;
 }
 return expMenuWidgets.collapsedWidget.src;
}

// toggle an outline mother entry, storing new state value;
// invoked by onclick event handlers of widget image elements
function toggle(img, blockNum) {
 var newString = "";
 var expanded, n;
 // modify state string based on parameters from IMG
 expanded = currState.charAt(blockNum);
 currState = swapState(currState, expanded, blockNum);
 // dynamically change display style
 if (expanded == "0") {
 document.getElementById("OLBlock" + blockNum).style.display = "block";
 img.src = getExpandedWidgetState(img.src);
 } else {
 document.getElementById("OLBlock" + blockNum).style.display = "none";
 img.src = getCollapsedWidgetState(img.src);
 }
}

function expandAll() {
 var newState = "";
 while (newState.length < currState.length) {
 newState += "1";
 }
 currState = newState;
 var contentImages = document.getElementById("content").getElementsByTagName("img");
 var widgetNum, expanded;
 for (var i = 0; i < contentImages.length; i++) {
 if (contentImages[i].className == "collapsible") {
 widgetNum = contentImages[i].id.substring(6);
 contentImages[i].src = getExpandedWidgetState(contentImages[i].src);
 }
 }
 initExpand();
}

function collapseAll() {
 var newState = "";
 while (newState.length < currState.length) {
 newState += "0";
 }
 currState = newState;
 var contentImages = document.getElementById("content").getElementsByTagName("img");
 var widgetNum, expanded;

Example 10-7. The XMLoutline.js library (continued)

324 | Chapter 10: Page Navigation Techniques

 for (var i = 0; i < contentImages.length; i++) {
 if (contentImages[i].className == "collapsible") {
 widgetNum = contentImages[i].id.substring(6);
 contentImages[i].src = getCollapsedWidgetState(contentImages[i].src);
 }
 }
 initExpand();
}

/*********************************
 OUTLINE HTML GENERATION
**********************************/
// apply default expansion state from outline's header
// info to the expanded state for one element to help
// initialize currState variable
function calcBlockState(ol, n, expandElem) {
 // get OPML expansionState data
 var expandedData = (expandElem && expandElem.childNodes.length) ?
 expandElem.firstChild.nodeValue.split(",") : null;
 if (expandedData) {
 for (var j = 0; j < expandedData.length; j++) {
 if (n == expandedData[j] - 1) {
 return "1";
 }
 }
 }
 return "0";
}

// counters for reflexive calls to drawOutline()
var currID = 0;
var blockID = 0;
// generate HTML for outline
function drawOutline(ol, prefix, expState) {
 var output = "";
 var nestCount, link, nestPrefix, lastInnerNode;
 prefix = (prefix) ? prefix : "";
 if (ol.childNodes[ol.childNodes.length - 1].nodeType == 3) {
 ol.removeChild(ol.childNodes[ol.childNodes.length - 1]);
 }
 for (var i = 0; i < ol.childNodes.length ; i++) {
 if (ol.childNodes[i].nodeType == 3) {
 continue;
 }
 if (ol.childNodes[i].childNodes.length > 0 &&
 ol.childNodes[i].childNodes[ol.childNodes[i].childNodes.length - 1].nodeType
== 3) {
ol.childNodes[i].removeChild(ol.childNodes[i].childNodes[ol.childNodes[i].childNodes.
length - 1]);
 }
 nestCount = ol.childNodes[i].childNodes.length;
 output += "<div class='OLRow' id='line" + currID++ + "'>\n";

Example 10-7. The XMLoutline.js library (continued)

10.11 Creating Collapsible XML Menus | 325

 if (nestCount > 0) {
 output += prefix;
 currState += calcBlockState(ol, currID-1, expState);
 if (currState.substr(currState.length-1) == "0") {

output += "<img id='widget" + (currID-1) + "' class='collapsible' src='" +
 ((i == ol.childNodes.length-1 && blockID != 0) ?
 expMenuWidgets.collapsedWidgetEnd.src : (blockID == 0) ?
 expMenuWidgets.collapsedWidgetStart.src :
 expMenuWidgets.collapsedWidget.src);
 } else {

output += "<img id='widget" + (currID-1) + "' class='collapsible' src='" +
 ((i == ol.childNodes.length-1 && blockID != 0) ?
 expMenuWidgets.expandedWidgetEnd.src : (blockID == 0) ?
 expMenuWidgets.expandedWidgetStart.src :
 expMenuWidgets.expandedWidget.src);
 }
 output += "' height=" + expMenuWidgets.height + " width=" +
 expMenuWidgets.width;
 output += " title='Click to expand/collapse nested items.' " +
 "onClick='toggle(this," + blockID + ")'> ";
 link = (ol.childNodes[i].getAttribute("uri")) ?
 ol.childNodes[i].getAttribute("uri") : "";
 if (link) {
 output += "<a href='" + link + "' class='itemTitle' title='" +
 link + "' target='" + displayTarget + "'>" ;
 } else {
 output += "";
 }
 output += "" +
 ol.childNodes[i].getAttribute("text") + "";
 output += "<span class='OLBlock' blocknum='" + blockID + "' id='OLBlock" +
 blockID++ + "'>";
 nestPrefix = prefix;
 nestPrefix += (i == ol.childNodes.length - 1) ?
 "<img src='" + expMenuWidgets.emptySpace.src + "' height=" +
 expMenuWidgets.height + " width=" + expMenuWidgets.width + ">" :
 "<img src='" + expMenuWidgets.chainSpace.src + "' height=" +
 expMenuWidgets.height + " width=" + expMenuWidgets.width + ">"
 output += drawOutline(ol.childNodes[i], nestPrefix, expState);
 output += "</div>\n";
 } else {
 output += prefix;
 output += "<img id='widget" + (currID-1) + "' src='" +
 ((i == ol.childNodes.length – 1) ? expMenuWidgets.nodeWidgetEnd.src :
 expMenuWidgets.nodeWidget.src);
 output += "' height=" + expMenuWidgets.height + " width=" +
 expMenuWidgets.width +
 ">";
 link = (ol.childNodes[i].getAttribute("uri")) ?
 ol.childNodes[i].getAttribute("uri") : "";
 if (link) {
 output += " <a href='" + link + "' class='itemTitle' title='" +
 link + "' target='" + displayTarget + "'>";

Example 10-7. The XMLoutline.js library (continued)

326 | Chapter 10: Page Navigation Techniques

 } else {
 output += " ";
 }
 output +="" +
 ol.childNodes[i].getAttribute("text") + "";
 output += "</div>\n";
 }
 }
 return output;
}

/*********************************
 OUTLINE INITIALIZATIONS
**********************************/
// expand items set in expansionState OPML tag, if any
function initExpand() {
 for (var i = 0; i < currState.length; i++) {
 if (currState.charAt(i) == 1) {
 document.getElementById("OLBlock" + i).style.display = "block";
 } else {
 document.getElementById("OLBlock" + i).style.display = "none";
 }
 }
}

function insertOutline(req) {
 req = req.request;
 if (req.readyState == 4 && req.status == 200) {
 // get outline body elements for iteration and conversion to HTML
 var ol = req.responseXML.getElementsByTagName("body")[0];
 // wrap whole outline HTML in a span
 var olHTML = "" + drawOutline(ol, "",
 req.responseXML.getElementsByTagName("expansionState")[0]) + "";
 // throw HTML into 'content' div for display
 document.getElementById("content").innerHTML = olHTML;
 initExpand();
 }
}

// constructor function for an XML request object;
function XMLDoc() {
 var me = this;
 var req = null;
 // branch for native XMLHttpRequest object
 if (window.XMLHttpRequest) {
 try {
 req = new XMLHttpRequest();
 } catch(e) {
 req = null;
 }
 // branch for IE/Windows ActiveX version
 } else if (window.ActiveXObject) {
 try {

Example 10-7. The XMLoutline.js library (continued)

10.11 Creating Collapsible XML Menus | 327

Some global definitions come first. Images are specified (size and image file URLs)
and preloaded into the expMenuWidgets global object. Images created for this solution
are shown in Figure 10-5 of Recipe 10.10. All images are the same size. The script
will use the currState variable to preserve a representation of the expanded and col-
lapsed state of various items in the menu. For a framed layout, you should assign to
the displayTarget variable the name of the frame where content linked from the
menu items will appear.

The section marked “Toggle Display and Icons” includes functions that control the
change of state between expanded and collapsed. A pair of functions named
getExpandedWidgetState() and getCollapsedWidgetState() (both invoked by the
toggle() function) retrieve one of three expanded or collapsed images depending on
the name (specifically, a portion of the name) of the current widget image. The
swapState() helper function (also invoked from toggle()) performs binary arith-
metic on the value of the currState variable to change a specific character from zero
to one or vice versa (these characters represent the state of each branch node).

 req = new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 req = new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 req = null;
 }
 }
 } else {
 alert("This example requires a browser with XML support, such as IE5+/Windows,
Mozilla, Safari 1.2, or Opera 8.")
 }
 // preserve reference to request object for later
 this.request = req;
 // "public" method to be invoked whenever
 this.loadXMLDoc = function(url, loadHandler) {
 if (this.request) {
 this.request.open("GET", url, true);
 this.request.onreadystatechange = function () {loadHandler(me)};
 this.request.setRequestHeader("Content-Type", "text/xml");
 this.request.send("");
 }
 };
}

function initXML() {
 var outlineRequest = new XMLDoc();
 outlineRequest.loadXMLDoc("SpecOutline.xml", insertOutline);
}

addOnLoadEvent(initXML);

Example 10-7. The XMLoutline.js library (continued)

328 | Chapter 10: Page Navigation Techniques

At the center of user interaction is the toggle() function, which is activated by click
event handlers assigned to each clickable widget. Because the event handlers are
assigned while a script builds the outline, they can include parameters that indicate
which item is being clicked. Thus, toggle() receives the widget’s current image URL
(used to determine which image should take its place) and a numeric ID associated with
the span containing nested items. Although the function is small, it uses some helper
functions, specifically swapState(), getExpandedWidget(), and getCollapsedWidget().
The two basic tasks of this function are to change the clicked widget image and display
style sheet setting of the element containing nested items below it.

Two more functions, expandAll() and collapseAll(), stand ready to fully expand
and collapse the entire outline, if your user interface design provides user control of
that feature.

The next-to-last block of code devotes itself to the creation of the HTML for the out-
line menu content. One helper function, calcBlockState(), is invoked repeatedly dur-
ing the HTML construction, and looks to see if the particular line number of the
outline is supposed to be expanded by default. The data for these settings consists of a
comma-delimited list of line numbers for expanded items read from the
expansionState tag of the OPML data (e.g., <expansionState>1,3,8</expansionState>).

Assembly of the outline’s HTML in the drawOutline() function iterates through the
node tree of the XML data passed as the ol parameter (described later). But a major
part of that iteration entails recursive calls to the same drawOutline() function to
build the nested items. Therefore, a pair of counting variables (used to compose
unique IDs for elements) are declared in the global space as currID and blockID.

The drawOutline() function accumulates the HTML for the rendered outline. The
content is assembled just once, while all subsequent adjustments to the expanded or
collapsed states get controlled by style sheet settings. Layout of the various widget
images is governed by the structure of the XML document’s element hierarchy. Among
the more complex tasks that the drawOutline() recursive code needs to keep track of is
whether an image column position requires a vertical line to signify a later connection
with an earlier item or just a blank space. The regularity of all widget image sizes lets
the script build the widget image parts of each line as if the images were mosaic tiles.

The final code block performs all initializations. First is a function (initExpand())
that iterates through the currState variable to establish the expand/collapse state of
each nested block. This function is invoked not only by the following verifyLoad()
function, but also by the expandAll() and collapseAll() functions.

To assist with the XML document retrieval, we use the XMLDoc constructor function
from Recipe 14.17. When invoked, this function creates an object that can retrieve
XML (or a couple of other types of) data from a URL via the XMLHttpRequest object.
The instance object’s loadXMLDoc() method performs the retrieval and signifies the
function to be invoked each time the XMLHttpRequest readyState property changes.
For this example, we specify that insertOutline() be invoked.

10.11 Creating Collapsible XML Menus | 329

The insertOutline() function tests for the successful completion of the download. It
then passes the expansionState and body elements of the OPML document to
drawOutline(), where the outline’s HTML is assembled. The resulting HTML string
is applied to the innerHTML property of the otherwise div element.

OPML is an extensible format for outline data. An OPML document is divided into
two blocks, head and body. The body element contains all of the items that belong to
the outline. Each item is called an outline element. Hierarchy (nesting) of outline
items is determined entirely by the nesting of outline elements. You may add any
attributes you like to an outline element and still conform to the format (provided
the attribute/value syntax is well-formed XML). An excerpt of the OPML document
that produces an outline like the one shown in Figure 10-4 (but with truncated URLs
for space reasons) follows:

<?xml version="1.0"?>
<opml version="1.0">
 <head>
 <title>HTML Sections Outline</title>
 <dateCreated>Mon, 10 Sep 2002 03:40:00 GMT</dateCreated>
 <dateModified>Fri, 22 Sep 2002 19:35:00 GMT</dateModified>
 <ownerName>Danny Goodman</ownerName>
 <ownerEmail>dannyg@dannyg.com</ownerEmail>
 <expansionState></expansionState>
 <vertScrollState>1</vertScrollState>
 <windowTop></windowTop>
 <windowLeft></windowLeft>
 <windowBottom></windowBottom>
 <windowRight></windowRight>
 </head>
 <body>
 <outline text="Forms">
 <outline text="Introduction" uri="http://w3.org/.../forms.html#h-17.1"/>
 <outline text="Controls" uri="http://w3.org/.../forms.html#h-17.2">
 <outline text="Control Types"
 uri="http://w3.org/.../forms.html#h-17.2.1"/>
 </outline>
 <outline text="FORM Element" uri="http://w3.org/.../forms.html#h-17.3"/>
 <outline text="INPUT Element" uri="http://w3.org/.../forms.html#h-17.4">
 <outline text="INPUT Control Types"
 uri="http://w3.org/.../forms.html#h-17.4.1"/>
 <outline text="Examples"
 uri="http://w3.org/.../forms.html#h-17.4.2"/>
 </outline>
 ...
 </outline>
 <outline text="Scripts">
 <outline text="Introduction"
 uri="http://w3.org/.../scripts.html#h-18.1"/>
 <outline text="Designing Documents for Scripts"
 uri="http://w3.org/.../scripts.html#h-18.2">
 <outline text="SCRIPT Element"
 uri="http://w3.org/.../scripts.html#h-18.2.1"/>
 <outline text="Specifying the Scripting Language"

330 | Chapter 10: Page Navigation Techniques

 uri="http://w3.org/.../scripts.html#h-18.2.2">
 <outline text="Default Language"
 uri="http://w3.org/.../scripts.html#h-18.2.2.1"/>
 <outline text="Local Language Declaration"
 uri="http://w3.org/.../scripts.html#h-18.2.2.2"/>
 <outline text="References to HTML Elements"
 uri="http://w3.org/.../scripts.html#h-18.2.2.3"/>
 </outline>
 ...
 </outline>
 ...
 </outline>
 </body>
</opml>

Notice in the OPML document’s structure that branch nodes contain other outline
elements between their start and end tags, while leaf nodes contain no other
outline elements.

If you issue the OPML content from a document on the server with an .opml exten-
sion, be sure that your server configuration maps that extension to the content type
of text/xml. Similarly, any server-published content in this format should also be
sent with a content type header of text/xml.

Parsing the XML document hierarchy (in the drawOutline() function) takes advan-
tage of the regularity of the body element of an OPML document. One nuisance
arises, however, in Mozilla-based browsers. If the OPML document is transmitted
with carriage returns between lines, these are treated as text nodes in the hierarchy.
Thus, in the drawOutline() code, you see a couple of instances where for loop exe-
cution is modified slightly when a node of type 3 is encountered. We’re interested
only in element nodes (nodeType of 1) because they contain attributes with the text
and link URIs. The rest of the function operates with the same recursive calls to
build nested lines of the outline as in Recipe 10.10.

Because attributes for OPML outline elements are extensible, you can add whatever
information your outline needs for your version. This includes information about
images (URIs, alternate text, and so on) if you prefer to use images rather than text as
entries. Also, don’t forget to look into the OPML elements in the head as sources of
data that may be useful to render for the user, such as dates, title, and initial expan-
sion state other than fully expanded or collapsed.

See Also
Recipe 14.17 for scripting the XMLHttpRequest object; Recipe 1.1 for building large
strings from smaller segments; Recipe 10.10 for a comparable navigation outliner
using a JavaScript data source; Recipe 12.1 for precaching images; Recipe 12.10 for
hiding and showing elements.

331

Chapter 11 CHAPTER 11

Managing Style Sheets11

11.0 Introduction
The idea behind Cascading Style Sheets (CSS) is quite simple: separate the content
from rules that govern how the content lays out on the page. In these days of special-
ization within web site authoring groups, writers can write and designers can design
without stepping on each other’s toes. There is perhaps an even simpler practical
side as well. Rather than place design properties in HTML tags scattered around a
document (or web site), the properties can be defined in just one place and automati-
cally applied to every chunk of content that looks to the design rules for rendering
instructions.

CSS is an evolving standard. It began with Level 1, which was partially implemented
in Internet Explorer 3 and more fully in Internet Explorer 4 and Navigator 4. An
extension to CSS, called CSS-Positioning, presented a standard for specifying the pre-
cise location of an element on the page (see Chapter 13). CSS and CSS-P were com-
bined along with many new style facilities in CSS Level 2, which is implemented in
varying stages of completeness starting with IE 5, Mozilla, and Opera 5. Various
pieces of CSS Level 3 are implemented in the latest browsers.

Adding Styles to a Document
You have three ways to embed style sheet rules into a document:

• With the <style> tag

• Via the style attribute in an element

• By importing them from an external file (see Recipe 11.4)

The <style> tag requires you to specify the MIME type of the CSS source code you
are using. These days, all style sheets use the standard CSS syntax, whose MIME
type is text/css, specified in the <style> with the type attribute (type="text/css").

While the syntax of style sheet rules lets you apply a rule to one or more elements,
you also have the option of applying a style to a single element by including the style

332 | Chapter 11: Managing Style Sheets

attribute in the element’s tag. The value of the style attribute is a string of style prop-
erty/value pairs in a format that differs from typical HTML attribute assignments.

Some page authors use the <style> tag technique exclusively, while other authors
may use a combination of approaches. The former is easier to maintain over time,
while the latter is more convenient during an ad-hoc authoring session. But if you
intend to apply a style to lots of pages, importing a style sheet (Recipe 11.4) is the
way to go.

Style Sheet Rule Syntax
When you define a style sheet rule within a <style> tag set, you must designate the
recipient of the rule and the rule’s properties. The recipient is designated by a selec-
tor, which may be an element tag name, an element class attribute value, or an ele-
ment id attribute value. The style properties are placed inside curly braces according
to the following schema:

selector {property1:value1; property2:value2; ...}

If the selector is a tag name, that name stands by itself:

h2 {property1:value1; property2:value2; ...}

Style property names are case-insensitive (although I tend to write them as all lower-
case). Values typically do not need to be quoted unless a single value consists of
more than one word. A colon (plus an optional space) separates the property name
from its value. If two or more property/value pairs inhabit the rule, they are sepa-
rated from each other by a semicolon (and an optional space).

When the style sheet rule is assigned via the style attribute within an element tag,
the value of the attribute is a string of the property/value pairs that otherwise appear
inside the curly braces of a <style> tag set, but without the curly braces in this case:

<h2 style="property1:value1; property2:value2; ...">...</h2>

Each property accepts specific types of values tailored for the property. Many proper-
ties specify a physical measurement of some kind on the page. Unless the value is
zero, you should always include the measurement unit along with the numeric value.
For example, if you want to set the font size of a paragraph to 14-point, the style rule
looks like the following:

p {font-size:14pt}

Values are also commonly constant values. For example, to set the font style of a
paragraph to italic, assign the italic value to the font-style property, as follows:

p {font-style:italic}

If a property accepts more than one value, the values should be comma-delimited,
although space delimiting also works for some shortcut properties, such as border

11.1 Assigning Style Sheet Rules to an Element Globally | 333

and font. For example, you can set many individual font properties via the shortcut
font property and a space-delimited series of values for each of the specific properties:

p {font:12pt sans-serif bolder}

The browser knows how to parcel out the values to the individual implied properties
because each value is acceptable by one specific font-related property only.

The Cascade and Specificity
CSS-enabled browsers follow well-defined guidelines for applying style sheets that
appear in many places in a document. You may also see conflicting rules being
applied to the same element. The cascade guidelines help the browser know which
style definition to apply to each element.

At the root of the cascade guidelines is the fact that the more specifically a style sheet
rule points to one element among all the elements on the page, the higher the prior-
ity that rule has for the element. For example, if you assign a style rule to all p ele-
ments on a page in the <style> tag and also assign a further (or conflicting) rule to
one p element in its style attribute, any conflicts are settled in favor of the rule
within the element’s own style attribute. Unconflicting style properties from the
more general rule are still applied to the p element (that is, global rules are inherited
by an individual element, but an inherited rule can also be overridden with that ele-
ment).

Additional details about Cascading Style Sheets and specificity guidelines can be
found in my book Dynamic HTML: The Definitive Reference (O’Reilly).

11.1 Assigning Style Sheet Rules to an Element
Globally

Problem
You want every instance of a given element in a document to be governed by the
same style sheet rule.

Solution
Define a style sheet rule in the head portion of your document, assigning the rule to
an HTML element name:

<style type="text/css">
tagName {styleProperty1:value1; styleProperty2:value2; ...}
</style>

For the tagName, specify the name of the tag without its angle brackets. The follow-
ing example sets the font size and line height of every p element in a document to 14
points and 110 percent of normal, respectively:

334 | Chapter 11: Managing Style Sheets

<style type="text/css">
p {font-size:14pt; line-height:110%}
</style>

Discussion
Because global style definitions apply to every instance of a particular element in a
document, you can essentially define custom appearances for a browser’s default
behavior. For example, if you don’t like the way browsers render text surrounded by
an tag (signifying emphasis) as italic text, you could redefine this behavior by
assigning a rule to all em elements that display the text in normal style but with a red
color:

em {font-style:normal; color:red}

No change is needed in the actual tags in the document. Browsers not capable
of CSS display the element’s content with their default italic style.

See Also
Recipes 11.2 and 11.3 to narrow a style’s specificity to fewer than every element with
a particular tag name.

11.2 Assigning Style Sheet Rules to a Subgroup of
Elements

Problem
You want a mixed group of elements (of the same or different tag name) in a docu-
ment to be governed by a single style sheet rule.

Solution
Use a class or contextual selector in your style sheet rule definition. If you use a class
selector, the rule is applied to every element in the document (regardless of tag
name) whose class attribute is assigned the arbitrary name you use for the class defi-
nition. A class selector name in the style sheet definition is preceded by a period, as
in the following example:

.hot {color:red; text-decoration:underline}

But the period is not used in the class attribute assignment statement in the tag:

<p>And now for something completely different.</p>

A contextual selector lets you define a rule that applies to all instances of a given tag
when they are nested inside another specific tag. For example, the following style
sheet rule applies to all em elements that exist inside any p element in the document:

p em {font-size:16pt; font-style:normal}

11.2 Assigning Style Sheet Rules to a Subgroup of Elements | 335

If an em tag were embedded within, say, a li element, this rule would not be applied
to it.

Discussion
Class and contextual selectors are rather powerful features of CSS. For example, you
can limit a class selector name to apply to only a hand-picked group from a particu-
lar tag, as in:

p.narrow {margin-left:5em; margin-right:5em}

This rule is applied to all p elements only when those elements have the name narrow
identifier assigned to their class attributes:

<p class="narrow">...</p>

You could then define a class selector of the same name that applies to all div ele-
ments whose class attributes are assigned the value narrow:

div.narrow {margin-left:7em; margin-right:7em}

You can also further refine the context of a contextual selector by specifying as
deeply nested a context as your design calls for. In the following example, a style rule
is defined for a span element whenever it appears nested inside an em tag, which, in
turn, is nested inside a p element whose class selector is set to narrow:

p.narrow em span {background-color:yellow}

By virtue of style sheet inheritance, this rule also inherits any other style rules that are
specified for p.narrow and em elements in the page.

Moreover, you can use the contextual selector to override a style rule for a portion of
an element whose containing element has the same style rule properties set for it.
The following example shows a rule defined for an em element within a p element,
but then has one of the em element’s attributes overridden when a span is located
inside the em element:

p em {font-size:16pt; font-style:normal}
p em span {font-size:18pt}
...
<p>This is all 16pt text except this 18pt part</p>

The span element inside the em element inherits the normal font-style setting, but
defines its own font-size setting just for the span content.

Class names (also called identifiers) that you create are entirely up to you. The only
restrictions are as follows:

• Use one word only (no whitespace).

• Avoid punctuation symbols (underscores are OK).

• Do not use a numeral as the first character of the name.

• Do not use an ECMAScript reserved word (see Appendix C).

336 | Chapter 11: Managing Style Sheets

Not all of these restrictions are necessary for CSS, but if you also write client-side
scripts that access objects by their IDs, you will stay out of trouble if you follow these
rules.

See Also
Recipe 11.3 to define a rule for a single element; Recipe 11.9 to override a rule for
just one element.

11.3 Assigning Style Sheet Rules to an Individual
Element

Problem
You want a single element to stand out by having its own style sheet rule.

Solution
Define an ID selector for a style rule and assign that same selector name to the id
attribute of an element. An ID selector name is preceded by a hash mark (#), as in the
following example:

#special {border:5px; border-style:ridge; border-color:red}

This rule applies to the following element:

<div id="special>...</div>

When you create your HTML, assign an identifier to no more than one element on
the page. Duplicate identifiers assigned to id attributes of multiple elements just con-
fuse scripts.

Discussion
ID names are entirely up to you, but you should follow the same restrictions for
these identifiers as those detailed for class names in Recipe 11.2. Be aware that if an
element has both a class and id value assigned to it and those names have style rules
associated with them, the style rule for the id takes precedence over the one for the
class value wherever a conflict arises. This should be of concern to you only if the
style rules for both the class and id values adjust the same style properties.

See Also
Recipe 11.3 for class selectors; Recipe 11.9 about overriding style rules; Recipe 4.1
for script identifier naming conventions that apply to id attributes.

11.4 Importing External Style Sheets | 337

11.4 Importing External Style Sheets

Problem
You want to implement a style sheet strategy across multiple HTML documents in a
web site without embedding explicit CSS code in every document.

Solution
Define a style sheet (with one or more rules) as a separate .css file and import it into a
document with the <link> tag:

<link rel="stylesheet" type="text/css" href="myStyleSheet.css" />

The contents of the style sheet file should consist solely of style sheet rules. Do not
include the <style> tags or the usual nested HTML comments in this file.

Discussion
The Solution shows a cross-browser solution that works with all CSS-capable brows-
ers. More current browsers that support the CSS2 specification can use an alterna-
tive “at-rule” inside the document’s <style> tags. The at-rule version of the Solution
is:

<style type="text/css">
@import url(myStyleSheet.css)
</style>

You can use the @import rule starting with Internet Explorer 4 and with all modern
browsers. Some scripters use this import technique intentionally to exclude Naviga-
tor 4, which ignores the @import rule. You can combine the @import rule with other
page-specific style sheet rules within the same <style> tag set on a page.

The filename extension for an external style sheet file should be .css. The server
should also be configured to send the text/css MIME type with the file for Mozilla
to process the file correctly (and to adhere to Internet standards).

It’s not uncommon for external stylesheet files to be grouped in a separate subdirec-
tory (typically named css). You should be aware, therefore, that if your CSS rules
point to other sources (e.g., image files), the URLs specified in the rules must be
either absolute URLs, or relative to the location of the .css file, not the HTML file
into which the stylesheet is loaded. For example, if all CSS files are in a css subdirec-
tory and all images are in an images directory (both sharing the same root parent
directory), a CSS rule pointing to an image would look like the following:

.logo {background-image: url(../images/corpLogo.jpg)}

338 | Chapter 11: Managing Style Sheets

See Also
Recipe 11.5 for importing style sheets tailored to a particular browser or operating
system; Recipe 11.6 for changing an imported style sheet after the page has loaded;
Recipe 14.3 for importing HTML content into a page.

11.5 Importing Browser- or Operating System-Specific
Style Sheets

Problem
You want to load separate external style sheet files for users on different kinds of
computers.

Solution
Use JavaScript to write <link> tags within the head portion of the page, branching
according to operating-system detection. The following example loads different style
sheet files for Mac users and all other users:

<head>
...
<script type="text/javascript">
var cssFile = (navigator.userAgent.indexOf("Mac") != -1) ?
 "styles/macCSS.css" : "styles/pcCSS.css";
document.write("<link rel='stylesheet' type='text/css' href='" + cssFile + "'>");
</script>
...
</head>

You can combine the browser- or operating system-specific external style sheets with
other fixed <link> elements in the same page, as well as other kinds of style sheet
definitions or @import rules (where supported). If your content observes the strict ver-
sion of XHTML, and you want dynamically generated code to also be in that form,
you can use the following document.write() call instead:

document.write("<link rel='stylesheet' type='text/css' href='" + cssFile + "' />");

To simplify the validation of your script under strict XHTML, you can move the CSS
file loading statements to an external .js file.

Discussion
Employing multiple style sheets for different browsers or operating systems imposes
the same maintenance headaches as multiple page implementations for different
browsers. Any change you make to the design needs to be adapted for each version
and tested thoroughly on the designated platforms. And yet, some applications of
CSS styles may create an imperative for separate style sheet rules for Internet
Explorer for Windows versions that are not fully CSS-compatible (see Recipe 11.13).

11.5 Importing Browser- or Operating System-Specific Style Sheets | 339

Starting with IE 5 for Windows, Microsoft added a special kind of HTML comment
tag syntax that lets you define blocks of HTML that are to rendered for specific IE
versions. Called conditional comments, they contain expressions that let you specify a
single IE version or range of versions, such as all versions from IE 6 onward.

There are two types of conditional comments: downlevel-hidden and downlevel-
revealed. The former allows you to supply HTML code that is rendered only in desig-
nated versions of IE 5 or later; the latter lets you supply HTML that is rendered only
in browsers other than designated IE 5 or later versions. Each type has a slightly dif-
ferent syntax.

A downlevel-hidden conditional comment has the following syntax:

<!--[if expression]> HTMLContent <![endif]-->

IE 5 and later for Windows understand that the square brackets with if and endif
directives are explicitly for conditional comments, and will render the HTMLContent
portion if the expression evaluates to true. Other browsers treat the entire comment
as a plain HTML comment, and won’t render anything.

A downlevel-revealed conditional comment has the following syntax:

<![if expression]> HTMLContent <![endif]>

Note that there are no hyphens in this form. Browsers other than IE 5 or later will
always render the HTMLContent portion. If you also want, say, IE 5 and 5.5 to render
the content, but not IE 6 or later, you create an expression that tells IE to render the
HTMLContent portion also for those IE browsers whose versions are less than 6, as in
the following:

<![if lt IE 6]
<link type="text/css" rel="stylesheet" href="css/mainStyle_old.css" />
</script>
<![endif]>

An expression consists of a feature (IE is the only one supported to date), a compari-
son operator (omitting the operator means “equals”), and a version number (5 or
later). Accepted comparison operators are lt (less than), gt (greater than), lte (less
than or equal to), and gte (greater than or equal to). You can also negate the expres-
sion with a ! symbol in front of the feature (e.g., <![if !IE 7]>, meaning if IE is not
version 7).

See Also
Recipe 11.3 about the impact on IE 6 for Windows by CSS-compatibility mode; Rec-
ipe 5.7 for detecting the browser’s operating system.

340 | Chapter 11: Managing Style Sheets

11.6 Changing Imported Style Sheets After Loading

Problem
You want users to be able to select a different user interface “skin” for the page by
loading a different .css file into a page already being viewed in the browser.

Solution
If you truly adhere to the spirit of separating content from rendering, the look and
feel of a page can be controlled exclusively by style sheets. Designing different style
sheets can transform the overall appearance of the page—background and fore-
ground colors, margins, font specifications, and so on—even while the content
remains the same. If you use a <link> element to import the default skin, you can
assign a URL to a different .css file to import a different skin. Here is a sample <link>
element:

<link id="basicStyle" rel="stylesheet" type="text/css" href="styles.normal.css" />

To load a new external style sheet into the link, use the following:

document.getElementById("basicStyle").href = "styles/crazySkin.css";

After the new file loads, Internet Explorer 5 or later and modern browsers automati-
cally apply the new style definition to the document.

Discussion
There are other ways to refer to style sheets as objects (via the document.styleSheets
collection, for example), but the href property of a styleSheet object referenced in
this manner is not writable in all browsers.

If you allow users to set preferences such as design skins, you should preserve those
settings so that they are employed automatically the next time they visit the site. The
most efficient way to do this is to save the preference on the client machine in a
cookie. For example, your page could include a group of radio buttons, each signify-
ing a skin design choice. Each radio button’s value attribute is the URL of the associ-
ated skin’s .css file. Each button’s click event handler invokes a function that both
loads the new skin choice and preserves the setting in a cookie (with the help of a
cookie utility, such as the one in Recipe 1.10):

function setSkin(evt) {
 // equalize IE and W3C event models
 evt = (evt) ? evt : ((window.event) ? window.event : null);
 if (evt) {
 var btn = (evt.srcElement) ? evt.srcElement : evt.target;
 document.getElementById("basicStyle").href = btn.value;
 cookieMgr.setCookie("skin", btn.value);
 }
}

11.7 Enabling/Disabling Style Sheets | 341

Your scripts also then bear the responsibility of assigning the saved skin URL the
next time the page loads. But you must also take into account browsers with cookies
and/or scripting turned off. To do this, include the hardwired <link> element as
before, but follow it with script statements in the head that retrieve cookie data and,
if present, assign the preserved value to the href property of the link element:

var skin = cookieMgr.getCookie("skin");
if (skin) {
 document.getElementById("basicStyle").href = skin;
}

To complete the UI design, your page should also set the checked attribute of the
radio button corresponding to the saved value. You can either use document.write()
to generate the radio button HTML or a load event handler for the page to loop
through the radio button set for a match between the saved skin value and the value
property of one of the buttons.

See Also
Recipe 11.8 for scripts that toggle between already loaded style sheets; Recipe 1.10
for reading and writing cookies; Recipe 12.7 for a demonstration of using a cookie to
set style preferences.

11.7 Enabling/Disabling Style Sheets

Problem
You want to activate or deactivate a style sheet in the page to change between style
sheets dynamically.

Solution
To turn off a style sheet, assign the Boolean value true to a styleSheet object’s
disabled property:

document.styleSheets[1].disabled = true;

Conversely, to re-enable the style sheet, set its disabled property to false:

document.styleSheets[1].disabled = false;

You can disable and enable a link element object that has loaded a style sheet. A
style element object has a disabled property supported by modern browsers.

Discussion
Enabling and disabling style sheets could be another way to implement a selectable
“skin” interface for a page. The page could contain multiple <style> tags, each con-
taining detailed specifications for a skin design. Radio button controls or clickable
icons could disable all and enable one, along the lines demonstrated in Recipe 12.7.

342 | Chapter 11: Managing Style Sheets

See Also
Recipe 11.6 for loading a different external style sheet on the fly; Recipe 11.8 for
switching between loaded style sheets; Recipe 12.7 for using cookies to preserve
external style sheet choices between visits.

11.8 Toggling Between Style Sheets for an Element

Problem
You want to swap style sheets for an element based on user action, such as rolling
the mouse over a hot spot or clicking on an arbitrary element.

Solution
First, define two style sheet rules, each with a different class selector. Then design an
event handler for the element to change the element’s className property to the
desired class selector’s identifier:

<style type="text/css">
.unhilited {background-color:white}
.hilited {background-color:yellow; text-decoration:underline}
</style>
...
<script src="eventsManager.js"></script>
<script type="text/javascript">
function setHilite(evt) {
 evt = (evt) ? evt : ((window.event) ? window.event : null);
 if (evt) {
 var elem = (evt.srcElement) ? evt.srcElement : evt.target;
 elem.className = "hilited";
 }
}
function setUnHilite(evt) {
 evt = (evt) ? evt : ((window.event) ? window.event : null);
 if (evt) {
 var elem = (evt.srcElement) ? evt.srcElement : evt.target;
 elem.className = "unhilited";
 }
}
// from eventsManager.js
function setEvents() {
 addEvent(document.getElementById("hotSpot"), "mouseover", setHilite, false);
 addEvent(document.getElementById("hotSpot"), "mouseour", setUnHilite, false);
}
addOnLoadEvent(setEvents);
...
Some potentially hot spot text.

Adjusting the className property of an element as shown here is perhaps the most
widely used and supported way to implement dynamic styles.

11.9 Overriding a Style Sheet Rule | 343

Discussion
If you are toggling the style for just a single element, you might be tempted to use the
id attribute and ID selector as your switch point, rather than the class attribute and
selector. But an element’s id attribute should not change unless absolutely necessary.

When a script reassigns a style sheet rule to an element, none of the CSS properties
from the previous setting are inherited by the newly assigned rule. In the preceding
example, the rule with the hilited class selector sets the text-decoration property to
underline the element’s text. But when the unhilited rule is reapplied to the ele-
ment, the element automatically reverts to the previous value of the text-decoration
property that the element inherited from the browser’s default style sheet.

In the case of mouse rollovers, you can also use a CSS-only (i.e., no JavaScript
required) solution, but with some limitations. CSS lets you define a rule that
applies to what is called a pseudo-class. One of the CSS Level 2 pseudo-classes is
called :hover. For example, you can define two rules for an element (or any other
type of CSS selector), one for regular display, and one when the cursor hovers atop
the element. Using the style rules from the code in the solution, the rules would be:

#hotSpot {background-color: white}
#hotSpot:hover {background-color: yellow; text-decoration: underline}

That’s all you need for a rollover effect. The problem, however, is that IE imple-
ments :hover only for hyperlink (a) elements in IE 6 and earlier; in IE 7, you must be
in CSS compatibility mode (Recipe 11.13) for :hover to work on other elements.

See Also
Recipe 11.7 for enabling or disabling a style sheet; Recipe 12.1 for swapping images
with mouse rollovers.

11.9 Overriding a Style Sheet Rule

Problem
You want a single element to adhere to a global style sheet rule except for one or two
style properties that are unique to the element.

Solution
There are two common ways to solve this problem. The first calls for creating a style
rule with an ID selector tailored to the one element you wish to behave differently.
That element can have both class and id attributes assigned to it. The style sheet
rule associated with the class selector is applied first, but then the style rule associ-
ated with the ID selector can override any style properties needed for this element.
An example of style rules and an element that applies those rules follows:

344 | Chapter 11: Managing Style Sheets

p.narrow {font-size:14pt; margin-left:2em; margin-right:2em}
#narrow_special {margin-left:2.5em; margin-right:2.5em; border:5px ridge red}
...
<p class="narrow" id="narrow_special">...</p>

Another approach is to assign the style properties that are unique to the element to
the style attribute within the element’s tag. The following shows the equivalent syn-
tax for the previous example:

p.narrow {font-size:14pt; margin-left:2em; margin-right:2em}
...
<p class=narrow
style="margin-left:2.5em; margin-right:2.5em; border:5px ridge red">
...</p>

Discussion
Cascade-specificity rules give preference to styles that are assigned to an individual
element. The one style sheet rule that cannot be overridden is the one assigned to the
style attribute within the element’s tag. Inheritance rules still apply, however. There-
fore, an element with an assigned style attribute still observes other style rules
assigned higher up the cascade precedence ladder, unless specifically overridden
within the element.

Another CSS directive—!important—causes a CSS property setting to override any
other settings, even those that traditionally have more weight in cascading rules. The
directive goes after the property value in a rule:

p {font-size: 14px; margin-left: 2em !important; margin-right: 2em}

User style sheets (rules defined by the user to govern all browser activity) commonly
use the !important directive to override page designers’ CSS rules. For example, a
vision-impaired visitor may require a large minimum font size for the page to be
readable, regardless of the designer’s wishes.

See Also
Recipes 11.1, 11.2, and 11.3 for basic style sheet rule bindings.

11.10 Turning Arbitrary Content into a Styled Element

Problem
You want to assign a style to a section of body content that is not currently delim-
ited by HTML tags.

11.11 Creating Center-Aligned Body Elements | 345

Solution
Wrap the content inside a or <div> tag pair, and assign a style to that element
type, class, or ID:

<p>And now for something completely different.</p>

Discussion
Despite the large number of contextual tags provided by HTML 4.0 (such as the
<address> and <blockquote> tags), the tags don’t necessarily have names that describe
the true context within your document. Although you can use the XML capabilities
of most modern browsers to fill this gap (by designing your own tags and
namespace), you can also use HTML tags to define these contexts for you.

The span element is customarily used to wrap inline content, such as a sequence of
text within a paragraph. A div element automatically defines a block-level entity,
which means that the browser starts a div element’s content on its own line while any
content following the div element begins on a new line after the div. A div element is
often used when the page needs to change alignment from, say, left to center. But a div
is also a convenient container for content that is to be positioned on a page.

See Also
Recipes of Chapter 13 for using a div with CSS positioning; Recipe 15.2 for convert-
ing a user selection into an arbitrary element for styling.

11.11 Creating Center-Aligned Body Elements

Problem
You want paragraphs or other body content of a fixed width to be center-aligned
within the page.

Solution
You have two approaches available to you. One is backward-compatible, while the
other works in standards-compatibility mode for the newer browsers (see Recipe
11.13). The backward-compatible approach is to encase the element to be centered
within an arbitrary div element, and then assign the text-align style sheet rule to the
outermost block-level element. For example, to center a group of narrow paragraphs
on a page, begin with the following style sheet rule for the paragraphs:

p.narrow {width:70%}

Then wrap those paragraphs with a div element whose style sheet rule reads:

div.centered {text-align:center}

346 | Chapter 11: Managing Style Sheets

In standards-compatible mode, you can do away with the div wrapper element, and
specify left and right margin settings for the paragraphs:

p.narrow {width:70%; margin-left:auto; margin-right:auto}

In quirks mode, IE 6 and 7 ignore the margin settings and render the narrow para-
graphs flush left.

Discussion
These style sheet techniques supplant the center element and the align attribute of
numerous block elements—HTML terminology that is deprecated in HTML 4. Cen-
tering an element vertically in the browser window is not as simple, and typically
requires the help of absolute-positioned elements, described in Chapter 13.

See Also
Recipe 11.13 for IE 6 and 7 compatibility modes; Recipe 13.7 for centering a posi-
tioned element in a window or frame.

11.12 Reading Effective Style Sheet Property Values

Problem
You want a script to ascertain the value of a style sheet property initially set via a
<style> tag or imported style sheet.

Solution
The following getElementStyle() function works with browsers that support W3C
DOM element referencing syntax, and either the IE currentStyle object or W3C
DOM window.getComputedStyle() method:

function getElementStyle(elem, CSSStyleProp) {
 var styleValue, camel;
 if (elem) {
 if (document.defaultView && document.defaultView.getComputedStyle) {
 // W3C DOM version
 var compStyle = document.defaultView.getComputedStyle(elem, "");
 styleValue = compStyle.getPropertyValue(CSSStyleProp);
 } else if (elem.currentStyle) {
 // make IE style property camelCase name from CSS version
 var IEStyleProp = CSSStyleProp;
 var re = /-\D/;
 while (re.test(IEStyleProp)) {
 camel = IEStyleProp.match(re)[0].charAt(1).toUpperCase();
 IEStyleProp = IEStyleProp.replace(re, camel);
 }

11.12 Reading Effective Style Sheet Property Values | 347

 styleValue = elem.currentStyle[IEStyleProp];
 }
 }
 return (styleValue) ? styleValue : null;
}

The function returns the value that the browser uses to govern the property whose
name (in CSS form) is passed as a parameter.

Discussion
You might normally think of reading the value of an element’s style sheet property
by simply reading the style.propertyName property of the element. This works, how-
ever, only when the property is assigned via the style attribute of the element or the
value is previously modified by script. But because it is more common (if not recom-
mended) to bind style sheet rules to elements from a distance (in a <style> tag or
imported through <link> tags or @import rules), this otherwise simple approach does
not work. The value comes back as an empty string, even though there is a com-
puted style sheet value being applied to the element at the time.

To read these distant style assignments requires help from the browser’s DOM.
Internet Explorer includes in its DOM an element object property called
currentStyle. This object has most (but not all) of the same properties as an ele-
ment’s style property, but the values are read-only, and convey the effective style
sheet property governing the element. This includes any default style property val-
ues (imposed from the browser’s own default style sheet).

In contrast, the W3C DOM mechanism of the document.defaultView object’s
getComputedStyle() method returns an object that also contains properties similar to
an element’s style property (in Mozilla, the document.defaultView object is equiva-
lent to a reference to the window object). Using this method, however, is a two-step
process: first get the style object (technically, it’s a CSSStyleDeclaration object in
W3C DOM parlance), and then invoke the getPropertyValue() method on the style
object.

As if the diverse models for this property inspection weren’t enough, the two
approaches frequently require different ways of referring to the style properties. In
the case of the IE currentStyle object, references are made via the same object model
syntax as is used for getting and setting style values. Therefore, hyphenated CSS
property names must be referenced via the intercapitalization system (e.g., margin-
left becomes marginLeft). But the property name for the W3C DOM
getPropertyValue() method must be in the CSS property format (e.g., margin-left is
margin-left). Fortunately for you, the getElementStyle() function shown in the rec-
ipe accepts only the W3C CSS version and internally handles the conversion for IE.
For example, to retrieve the effective background color of an element named myDiv,
the call is:

var divColor = getElementStyle("myDiv", "background-color");

348 | Chapter 11: Managing Style Sheets

Also be aware that for some CSS properties, different browser versions may return
different value types—especially in colors that are specified by CSS syntax other than
rgb(r,g,b). For example, if you set the color with a plain-language color name (e.g.,
orange), the value returned from the browsers may be in a different format. For the
most part, if you specify colors in rgb(r,g,b) format, you’ll get that back.

CSS values consisting of length measurements typically contain units (pixels, points,
ems, and so on). If you intend to utilize the value of a style property for any math,
such as adding five pixels to the left edge of a positioned element, be sure to extract
the numeric portion of string values that include units. Use the parseInt() function
for integers and the parseFloat() function for numeric values that may have digits to
the right of the decimal (e.g., 0.5em).

Once you assign a value to a property of an element’s style object, the value can be
read subsequently through the style property. But for consistency’s sake, you can
continue to read a value through the getElementStyle() function because it returns
the effective value applied to the element at any instant.

See Also
Recipe 9.4, Recipe 9.10, Recipe 13.12, and Recipe 13.13, where getElementStyle()
(in a version embedded within the DHTML API from Recipe 13.3) is used.

11.13 Forcing Recent Browsers into Standards-
Compatibility Mode

Problem
You want modern browsers to behave in keeping with the W3C specification for
Cascading Style Sheets, rather than honoring old style behaviors now deemed to be
out of standard.

Solution
Specify a DOCTYPE element as the first element of a document with any of the modern
value sets. Some declarations require the URL portion to force the document into
CSS-compatibility mode.

Use the following element if the document’s markup generally follows the W3C
HTML 4.0 recommendation, but also may include items deprecated from earlier ver-
sions (URL required for standards-compatible mode):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC-html40/loose.dtd">

11.13 Forcing Recent Browsers into Standards-Compatibility Mode | 349

The following element is for a framesetting document that follows the HTML 4.0
recommendation (URL required for standards-compatible mode):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN"
 "http://www.w3.org/TR/REC-html40/frameset.dtd">

Use this element if the document’s markup strictly adheres to the W3C HTML 4.0
recommendation (URL not required for standards-compatible mode):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
 "http://www.w3.org/TR/REC-html40/strict.dtd">

Use the following element if the document’s markup generally follows the W3C
XHTML 1.0 recommendation, but may also include items deprecated from HTML
4.0 (URL not required for standards-compatible mode):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The following element is for a framesetting document that follows the W3C XHTML
1.0 recommendation with the addition of frame-related terminology (URL not
required for standards-compatible mode):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Use this element if the document’s markup strictly adheres to the W3C XHTML 1.0
recommendation (URL not required for standards-compatible mode):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Use the following element if the document’s markup strictly adheres to the W3C
XHTML 1.1 recommendation (URL not required for standards-compatible mode):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

Including a DOCTYPE element for a particular HTML or XHTML level does not affect
the browser’s ability to recognize and render tags and attributes outside of the stated
recommendation.

Discussion
The difference between standards-compatible mode and the earlier (sometimes
called “quirks”) mode varies by browser. You may notice a small difference in
Mozilla between the two modes, except for an occasional variance in pixel spacing
around form controls. The differences are more significant in IE 6 and 7, however.
The W3C style sheet group adopted a different way of measuring element sizes with
respect to borders, padding, and margins than the way Microsoft had originally
implemented back in Internet Explorer 4. In many respects, IE 6 and 7 in standards-
compatible mode is more predictable in the way it responds to dimensions, margins,
and offset measures relative to other elements. The results more closely resemble

350 | Chapter 11: Managing Style Sheets

those of Mozilla, Safari, and Opera using the same DOCTYPE specifications. For creat-
ing new content, you should utilize the standards-compatible mode for both brows-
ers to get in the habit of operating according to the W3C specification (or at least as
closely as the browsers interpret the standards). Earlier browsers do not alter their
content rendering based on DOCTYPE declarations.

IE 6 or later, Mozilla, and Opera 7 or later provide a script-accessible property,
document.compatMode, which reports the mode in which the document is operating.
Property values are either BackCompat or CSS1Compat.

In theory, an XHTML page should also lead with an xml declaration, along with
character set information:

<? xml version="1.0" encoding="UTF-8" ?>

But when IE 6 encounters this tag, it holds the browser in backward-compatible
mode, regardless of the DOCTYPE declaration. To satisfy the XHTML validators, place
your character set information in a meta element in the head portion of the document:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

See Also
Recipe 9.4, Recipe 11.11, Recipe 13.6, Recipe 13.7, Recipe 13.11, Recipe 13.13, Rec-
ipe 15.6, and Recipe 15.11 for examples of how scripts and style sheets frequently
need to accommodate different CSS modes in IE 6 and 7.

351

Chapter 12 CHAPTER 12

Visual Effects for Stationary Content12

12.0 Introduction
The dynamic part of Dynamic HTML is not restricted to elements flying around the
page, hierarchical menus popping up from the ether, and users dragging stuff around
the page. An element that doesn’t move one pixel during its lifetime can still be
dynamic because a change to one or more properties can alter the appearance of the
element’s content. Such changes can be automatic or in response to user action.

Referencing Element Objects
If you intend to modify a characteristic of an element on the page, your script must
be able to “talk” to the element. In the early days of client-side scripting, the browser
exposed only a handful of elements as objects accessible to scripts. Those elements
were generally the more interactive elements, such as form controls (buttons, text
boxes, and the like). Syntax used to reference these elements followed a hierarchy of
exposed elements, starting with the window object and then gradually narrowing the
focus to the specific element. The window object is assumed for the current window,
so references typically start with the document object. For example, if you assign an
identifier to the name attribute of an a, form, or input element, references can employ
those names:

document.linkName
document.formName
document.formName.controlName

When a document contains more than one type of exposed element, the group of
elements of the same type can be referenced through an array (collection) of those
items. Array index values can be either a zero-based integer (numbered in source
code order) or the name attribute string:

document.links[i]
document.forms["formName"]
document.forms[2].elements["controlName"]

352 | Chapter 12: Visual Effects for Stationary Content

These old-fashioned element reference styles for the limited range of elements con-
tinue to be supported in scriptable browsers to maintain backward-compatibility
with a gigantic universe of existing code that employs these referencing techniques.

Microsoft Internet Explorer 4 was the first scriptable browser to expose all HTML
elements as scriptable objects in its document object model. Scripts could reference
any element that had a name or, preferably, an id attribute value. The most common
mechanism to address an element was by way of the document.all collection—an
array of all elements in the document, regardless of element nesting or position in the
document. Microsoft provided a variety of syntaxes to reference elements via this
collection:

document.all.elementID
document.all["elementID"]
document.all("elementID")

The latter two versions were particularly helpful in processing a generic function that
received a string of the ID of an element to operate on. Moreover, the IE object
model let you omit the collection entirely and reference an element simply by its ID:

elementID

The effort to standardize document object models to encompass both HTML and
XML documents took the form of the Document Object Model (DOM) recommen-
dation from the World Wide Web Consortium (W3C). The W3C DOM working
group elected to devise its own model and syntax for referencing elements as objects.
The document object was still part of the equation, but a new method of the document
object allowed a string of an element’s ID to signify the specific element to reference:

document.getElementById("elementID")

This standards-based syntax is supported in IE 5 or later, as well as Mozilla, Safari,
and Opera. Thus, it is supported by the vast majority of scriptable browsers in use
today. Scripts for forms and form controls can utilize the original syntax, even if you
use newer syntax in other portions of your scripts. Even so, you should gravitate to
W3C DOM syntax where possible.

Recipes throughout this cookbook demonstrate the W3C DOM syntax except in the
following cases:

• The recipe explicitly shows how to write code intended to work with multiple
object models.

• Referenced elements are backward-compatible to browsers prior to IE 4 and
Mozilla.

Small examples involving forms often use the old syntax primarily to help you under-
stand that the example pertains to forms and form controls.

Introduction | 353

Referencing Elements from Events
If a function is defined as an event handler, the function very likely needs to devise a
reference to the HTML element that was the target of the event. Internet Explorer
and the W3C DOM have different event models and syntax, but they operate
enough in parallel that you can equalize them to obtain a reference to the target ele-
ment for further processing, as shown in the following function:

function myEventFunction(evt) {
 evt = (evt) ? evt : ((window.event) ? window.event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target :
 ((evt.srcElement) ? evt.srcElement : null);
 if (elem) {
 // process element here
 }
 }
}

See Chapter 9 for more details on processing events across incompatible event
models.

Getting to an Element’s Style
One constant you can count on (so far, anyway) is that if a browser supports refer-
encing individual HTML elements of all types, every rendered element has a style
property. The property is a reference to an object whose own properties are Cascad-
ing Style Sheet property names (occasionally contorted slightly to be in JavaScript-
friendly format). A script reference to one of the style property values of an element
follows the syntax:

elementReference.style.stylePropertyName

For example, using W3C DOM element referencing syntax for an element, the follow-
ing statement assigns a new value to the color style sheet property for the element:

document.getElementById("mainHeading").style.color = "#ffff00";

The IE-only version is identical except for the element reference syntax:

document.all.mainHeading.style.color = "#ffff00";

When the CSS property name contains a hyphen, the DOM equivalent strips the
hyphen and capitalizes the first character after each hyphen. This makes the refer-
ence compatible with the requirements of the JavaScript language (and others).
Therefore, the following statement assigns a new value to the CSS font-size prop-
erty of an element:

document.getElementById("link12").style.fontSize = "20px";

Changing an element’s style sheet value is comparatively easy (there are multiple
ways to do this, as shown in Recipes 11.7 and 11.8). But reading the current value

354 | Chapter 12: Visual Effects for Stationary Content

applied to a particular property isn’t always that easy, especially if the initial value is
set via a style sheet definition outside of the element’s style attribute. See Recipe
11.12 for more details.

12.1 Precaching Images

Problem
You want an image rollover to swap the image instantaneously the first time, rather
than forcing the user to wait while the alternate image downloads from the server.

Solution
Begin by creating a custom object with a number of properties whose values apply to
the rollover images you wish to precache for the current page. This solution assumes
that all images are the same dimensions (purely optional) and you have a consistent
naming system for your pairs of images (e.g., homeNormal.jpg and homeHilite.jpg):

var rolloverImageBank = {
 height : 20,
 width : 50,
 sharedImgURIs : ["img/home", "img/prod", "img/support", "img/contact"],
 normalSuffix : "Normal.jpg",
 hiliteSuffix : "Hilite.jpg",
 preloadImages : function() {
 var imgObj = new Image(this.height, this.width);
 for (var i = 0; i < this.sharedImgURIs.length; i++) {
 imgObj.src = this.sharedImgURIs[i] + this.normalSuffix;
 imgObj.src = this.sharedImgURIs[i] + this.hiliteSuffix;
 }
 }
};
rolloverImageBank.preloadImages();

When the custom object’s preloadImages() method is invoked, the images are
loaded into the browser’s image cache but are not displayed. Recipe 12.2 shows how
image rollover scripts access these cached images.

Discussion
Image caching in browsers occurs when a URI is assigned to the src property of
either a visible image or an instance of an Image object. This object exists strictly in
memory and never displays a picture. But this object has the same properties as the
img element object, particularly the dimensions (height and width) and the URI (src).
Passing the pixel height and width of the image to the Image() constructor function
is not vital, but it can speed up the precaching slightly because the browser doesn’t
have to wait for the image to load to calculate its dimensions.

12.1 Precaching Images | 355

The real caching work occurs in the preloadImage() method of the custom object,
when the statement assigning a URI to the src property executes. The browser
immediately tries to resolve the URI, and downloads the image to the browser. Even
though the URI is assigned to the same Image object instance over and over, it is not
a factor in the precaching operation.

Although this solution is written for pairs of images, it can be modified for triplets
(for mouseover, mouseout, and mousedown events) by adding one more property for the
suffix used in the mousedown variety. Then add one more assignment statement in the
for loop to precache that third variety. You can also modify the object to work with
non-rollover images if you simply want to precache a bunch of images for quick dis-
play later. Assuming the images are of different sizes, you can omit the height and
width properties, as well as the suffix-related properties. Then, in the
preloadImages() method, eliminate the parameters from the new Image() construc-
tor, and make only one src assignment per entry in the URI-related array.

If you encounter a situation in which the images do not appear to precache them-
selves (for instance, you experience download delays in image rollovers), look to the
server configuration as the primary problem source. It is not uncommon for a web
server (especially one that supplies frequently updated content) to be set to send
HTTP headers for some or all MIME types that tell browsers to prevent content from
caching in the browser. Make sure that headers for your image types do not declare
an expiration date or “no-cache” instruction.

Users, too, may confound your efforts to precache images if they turn off browser
caching in their Preferences settings. You cannot override this setting, but such users
must already be accustomed to complete downloading of all content, no matter how
frequently they visit a page.

With many browsers, you can verify that your images are in the cache. In IE for Win-
dows, open the Tools ➝ Internet Options window. In the General panel, click the
Settings button in the Temporary Internet Files (IE 6) or Browsing history (IE 7) sec-
tion. Click the View Files button to see a listing of all files currently in the browser’s
cache. IE for the Macintosh doesn’t provide this direct access. For Mozilla-based
browsers, enter the URL about:cache. Click on the links shown to view files in the
memory and disk caches. The browser window fills with a list of items currently in
the cache.

See Also
Recipe 12.2 for image rollovers; Recipes 10.9, 10.10, 10.11, and Recipe 15.9 to see
examples of precached images in applications.

356 | Chapter 12: Visual Effects for Stationary Content

12.2 Swapping Images (Rollovers)

Problem
You want the picture displayed by an img or image-type input element to change
when the user rolls the mouse over the element.

Solution
This solution builds on Recipe 12.1, which handles precaching of pairs of images.
One additional method definition handles all image swapping when invoked by
mouseover and mouseout events in the img elements:

var rolloverImageBank = {
 height : 20,
 width : 50,
 sharedImgURIs : ["img/home", "img/prod", "img/support", "img/contact"],
 normalSuffix : "Normal.jpg",
 hiliteSuffix : "Hilite.jpg",
 preloadImages : function() {
 var imgObj = new Image(this.height, this.width);
 for (var i = 0; i < this.sharedImgURIs.length; i++) {
 imgObj.src = this.sharedImgURIs[i] + this.normalSuffix;
 imgObj.src = this.sharedImgURIs[i] + this.hiliteSuffix;
 }
 },
 toggleImage : function(evt) {
 evt = (evt) ? evt : event;
 var elem = (evt.target) ? evt.target : evt.srcElement;
 if (elem && elem.src) {
 var reOff = new RegExp("(.*)(" + this.normalSuffix + ")");
 var reOn = new RegExp("(.*)(" + this.hiliteSuffix + ")");
 if (reOff.test(elem.src)) {
 elem.src = reOff.exec(elem.src)[1] + this.hiliteSuffix;
 } else {
 elem.src = reOn.exec(elem.src)[1] + this.normalSuffix;
 }
 }
 }
};
rolloverImageBank.preloadImages();

The preloadImages() method is invoked immediately after the rolloverImageBank
object is created. You must also bind mouseover and mouseout events to the img ele-
ments in the document. Using the eventsManager.js library from Recipes 9.1 and 9.3,
the bindings look like the following (abbreviated to show only the first two images):

function setEvents() {
 addEvent(document.getElementById("home"), "mouseover",
 function(evt) {rolloverImageBank.toggleImage(evt)}, false);
 addEvent(document.getElementById("home"), "mouseout",
 function(evt) {rolloverImageBank.toggleImage(evt)}, false);

12.2 Swapping Images (Rollovers) | 357

 addEvent(document.getElementById("products"), "mouseover",
 function(evt) {rolloverImageBank.toggleImage(evt)}, false);
 addEvent(document.getElementById("products"), "mouseout",
 function(evt) {rolloverImageBank.toggleImage(evt)}, false);
...
}
addOnLoadEvent(setEvents);

The function reference passed as the third parameter to addEvent() is an anonymous
function, which lets the toggleImage() method of the rolloverImageBank object work
within that object’s context, rather than the img element’s context.

In the HTML portion of the document, insert the img elements just as you would for
any element:

Feel free to surround the img element with a hyperlink (a) element to use the image
as a site navigation tool.

Discussion
The design of this solution is intended to minimize the amount of setup work you
need to do to prepare for the image caching and swapping. By creating pairs of image
file names with consistent suffixes for the two image types (normal and highlighted),
you can keep your image files straight easily, while facilitating a regularity that lets
the preloading and toggling actions work compactly. In the case of the toggleImage()
method, the suffixes specified in the rolloverImageBank properties help the script
know (by testing a regular expression) which state the image is currently in before
switching to the other.

Scripting isn’t the only way to achieve mouse rollovers, however. In recent browsers,
you can accomplish link rollovers without img elements via CSS. Instead use CSS to
define style rules for a block-level a element for both normal display and highlighted
display, the latter occurring during what CSS calls a “hover” of the cursor over a link.
The style rules for a “Products” image link look as follows:

a#products {background:url(img/prodNormal.jpg); display:block; height:20px;
width:50px}
a#products:hover {background:url(img/prodHilite.jpg)}

In the HTML, all you need is the a element set with an ID associated with the style
sheet rules:

...

You need a pair of style sheet rules for all the a elements, each with a unique ID. The
key to making this work is the display style sheet property for the a element. This
forces the empty link to open to the block size specified in the rule. This approach,
however, does not precache images, so you may wish to combine the CSS rollover
technique with the image caching script from Recipe 12.1.

358 | Chapter 12: Visual Effects for Stationary Content

See Also
Recipe 12.1 for precaching images; Recipe 3.8 for working with custom objects;
Recipe 9.1 for cross-browser event handling.

12.3 Reducing Rollover Image Downloads with
JavaScript

Problem
You want to reduce the number of individual image files downloaded to the browser
to accomplish three-state image rollovers.

Solution
The solution is a combination of traditional HTML techniques plus a small Java-
Script library shown in the Discussion section. The script library makes some minor
assumptions about identifiers assigned to the id attributes of the tags and name
attribute of the <map> tag, but takes most of its cues from HTML attribute values.

Begin by creating one large image for the entire rollover area in each of the visual
states of the buttons or controls. Include graphical borders or other static artifacts
associated with the active region. The script described here accommodates three
states (normal, mouseover, mousedown), which means you should create three images,
each one displaying all of the buttons in the same state. Figure 12-1 shows all three
images used in this example.

The names you assign to the three image files are not critical. It may be helpful for
development purposes to establish a system that clearly identifies each image’s pur-
pose and state. For example, the following sample file names readily identify the
three states of a menubar image:

Figure 12-1. Three image states: normal, mouseover, and mousedown

12.3 Reducing Rollover Image Downloads with JavaScript | 359

• menubarUp.jpg

• menubarOver.jpg

• menubarDown.jpg

Place the images in your page’s HTML as absolute-positioned elements (stacked atop
each other) nested inside another relative- or absolute-positioned container (such as
a div element). Assign unique identifiers to each img element’s id attribute so that the
three share the same prefix of your choice and end with the suffixes Up, Over, and
Down. Insert the tags into the page with the normal (up) version occurring first
in source code order. Assign style sheet rules that make the normal version visible by
default, but the other two hidden by default, as shown in the following example:

<style type="text/css">
.menuImages {
 height: 110px;
 width: 680px;
 border: 0;
 position: absolute;
 top: 0px;
 left: 0px;
 visibility: hidden;
 }
#menubarUp {visibility: visible}
</style>
...
<div style="position:relative">
<img id="menubarUp" class="menuImages" src="menubarUp.jpg" alt="menubar"
usemap="#menubar" />
<img id="menubarOver" class="menuImages" src="menubarOver.jpg" alt="menubar"
usemap="#menubar" />
<img id="menubarDown" class="menuImages" src="menubarDown.jpg" alt="menubar"
usemap="#menubar" />
</div>

Define client-side image map elements (via <map> and <area> elements). Use the pre-
fix of the id attribute values from the img elements as the value for the name attribute
of the map element. Also assign a unique identifier of your choice to the id attribute
of the <map> tag. Set the rectangular coordinates of the “hot spots” in the image as
you normally would for an image map. For example:

<map id="menubarMap" name="menubar">
 <area shape="rect" coords="8,22,117,86" href="index.html" alt="home"
 title="home" />
 <area shape="rect" coords="120,22,227,86" href="products.html" alt="products"
 title="view products" />
 <area shape="rect" coords="230,22,337,86" href="manuals.html" alt="manuals"
 title="download manuals" />
 <area shape="rect" coords="340,22,447,86" href="dealers.html" alt="dealers"
 title="find a dealer" />
 <area shape="rect" coords="450,22,557,86" href="support.html" alt="support"
 title="get support" />

360 | Chapter 12: Visual Effects for Stationary Content

 <area shape="rect" coords="560,22,667,86" href="contact.html" alt="contact"
 title="contact us" />
</map>

Include the JavaScript code from the Discussion section in your page, either inside a
<script> tag or linked in from an external .js file. Initialize the code from the page’s
load event handler, but do it in a way that lets you pass as a parameter the string ID
of the map element you wish to initialize. If you have multiple image maps, pass their
IDs as comma-delimited arguments in the call to the initMaps() function.

Discussion
Reducing the number of image retrievals at load time can substantially improve the
perceived performance of a web page. In the past, the menu whose pieces are shown
in Figure 12-1 would have been implemented through 18 individual image files, three
images for each button. But the solution shown here reduces the retrieval to only
three downloads. While it’s true that each of the three images is larger than any of
the original smaller images, the real bottleneck is in the number of simultaneous con-
nections—two, at best—that the browser can make to the server while loading the
page. Each request also has a fair amount of overhead (headers and such) that bogs
down a page’s response if not kept in check.

The JavaScript portion of this recipe follows:

<script src="../js/eventsManager.js"></script>
<script type="text/javascript">
function initMaps() {
 if (document.getElementById) {
 var mapIds = initMaps.arguments; // pass string IDs of containing map elements
 var i, j, area, areas;
 for (i = 0; i < mapIds.length; i++) {
 areas = document.getElementById(mapIds[i]).getElementsByTagName("area");

 for (j = 0; j < areas.length; j++) { // loop thru img elements
 area = areas[j];
 // from eventsManager.js
 addEvent(area, "mousedown", imgSwap, false);
 addEvent(area, "mouseout", imgSwap, false);
 addEvent(area, "mouseover", imgSwap, false);
 addEvent(area, "mouseup", imgSwap, false);
 }
 }
 }
}
// from eventsManager.js
addOnLoadEvent(function() {initMaps("menubarMap")});

// image swapping event handling
function imgSwap(evt) {
 evt = (evt) ? evt : event;
 var elem = (evt.target) ? evt.target : evt.srcElement;
 var imgClass = elem.parentNode.name;

12.3 Reducing Rollover Image Downloads with JavaScript | 361

 var coords = elem.coords.split(",");
 var clipVal = "rect(" + coords[1] + "px " +
 coords[2] + "px " +
 coords[3] + "px " +
 coords[0] + "px)";
 var imgStyle;

 switch (evt.type) {
 case "mousedown" :
 imgStyle = document.getElementById(imgClass + "Down").style;
 imgStyle.clip = clipVal;
 imgStyle.visibility = "visible";
 break;
 case "mouseout" :
 document.getElementById(imgClass + "Over").style.visibility = "hidden";
 document.getElementById(imgClass + "Down").style.visibility = "hidden";
 break;
 case "mouseover" :
 imgStyle = document.getElementById(imgClass + "Over").style;
 imgStyle.clip = clipVal;
 imgStyle.visibility = "visible";
 break
 case "mouseup" :
 document.getElementById(imgClass + "Down").style.visibility = "hidden";
 // guarantee click in IE
 if (elem.click) {
 elem.click();
 }
 break;
 }
 evt.cancelBubble = true;
 return false;
}

</script>

After the page loads, the initMaps() function assigns four mouse-related event han-
dlers to each of the area elements within the map elements whose IDs arrive in the ini-
tialization function’s arguments. All four mouse events—mouseover, mouseout,
mousedown, and mouseup—invoke the same event handler function, imgSwap(). Event
handlers are assigned only if the browser supports at least the basic W3C DOM
capabilities needed for the rest of the image handling.

The lone event handler function, imgSwap(), performs a lot of work but in a speedy
and efficient manner. The function’s primary jobs are: 1) to determine which of the
three images needs to be visible or hidden (depending on event type); and 2) to
adjust the clipping rectangle of the visible image to the dimensions of the specific
area element being activated by the event.

The imgSwap() function begins by equalizing the Internet Explorer and W3C DOM
event models to obtain a single reference to the event object (see Recipe 9.1) as well
as a reference to the area element that received the event. The area element’s parent

362 | Chapter 12: Visual Effects for Stationary Content

node (the map element container) has a name that becomes an important part of the
image visibility swapping later in the function. It’s economical to grab that property
just once and assign it to a local variable (imgClass) for use later.

Next, the function extracts the area element’s coordinate values. These values are to
be assigned to a clipping rectangle, but because the coords and style.clip property
values are in different sequences and formats, the function needs to convert from one
format to the other. For example, the first area element’s coords value must trans-
form from:

8, 22, 117, 86

to the clip style property value of:

rect(22px 117px 86px 8px)

With the essential variable values loaded for action, the imgSwap() function then
branches execution based on the specific mouse event type. This is where the nam-
ing conventions for the id attributes of the img elements come into play. For exam-
ple, during a mouseover event, the “menubarOver” image is clipped to the target
element’s coordinates, and then made visible; during a mouseout event, both of the
secondary images are hidden from view.

Note that the same two functions shown above can be used with any number of
three-image sets of rollover graphics on the same page. Simply add the name of the
surrounding map elements as arguments to the initMaps() function call. The scripts
pick up the clipping values from the coords attribute values of your area elements. If
you or the page’s graphic designer change the menubar art or image map coordi-
nates, the scripts automatically pick up the changes from the revised HTML.

Not only does this solution significantly reduce the number of HTTP requests to the
server for each group of rollover images, but it also eliminates the need to pre-cache
images explicitly. All necessary images are included in the document’s body, forcing
all images to download with the page without any script intervention.

See Also
Recipe 9.1 for equalizing the incompatible Internet Explorer and W3C DOM event
models; Recipe 4.8 for other techniques to improve script performance.

12.4 Reducing Rollover Image Downloads with CSS

Problem
You want to reduce the number of individual image files downloaded to the browser
to accomplish image rollovers, but without JavaScript.

12.4 Reducing Rollover Image Downloads with CSS | 363

Solution
Using the same set of images from Recipe 12.3, this solution has minimal HTML
involved—merely the hyperlink (a) elements, contained by a div element:

<div id="menuWrap">

</div>

Layout, dimensions, and behaviors are all handled by the Cascading Style Sheet spec-
ifications, explained in the Discussion section.

Discussion
The CSS code is extensive, but pretty repetitive, with differences between sets of
rules consisting of slightly different position adjustments. Example 12-1 shows the
CSS portion.

Example 12-1. CSS code for efficient image swapping

#menuWrap {
 position: relative;
 background-image: url(menubarUp.jpg);
 width: 680px;
 height: 110px;
 }

#menuWrap a {
 display: block;
 position: absolute;
 visibility: visible;
 top: 0px;
 height: 110px;
 outline: none
 }
#homeArea {
 left: 0px;
 width: 117px;
 background-image: none;
 }
#homeArea:hover {
 background-image: url(menubarOver.jpg);
 background-position: 0px 0px
 }
#homeArea:active {
 background-image: url(menubarDown.jpg);
 background-position: 0px 0px
 }

364 | Chapter 12: Visual Effects for Stationary Content

#productsArea {
 left: 117px;
 width: 110px;
 background-image: none;
 }
#productsArea:hover {
 background-image: url(menubarOver.jpg);
 background-position: -117px 0px
 }
#productsArea:active {
 background-image: url(menubarDown.jpg);
 background-position: -117px 0px
 }
#manualsArea {
 left: 227px;
 width: 110px;
 background-image: none
 }
#manualsArea:hover {
 background-image: url(menubarOver.jpg);
 background-position: -227px 0px
 }
#manualsArea:active {
 background-image: url(menubarDown.jpg);
 background-position: -227px 0px
 }
#dealersArea {
 left: 337px;
 width: 110px;
 background-image: none
 }
#dealersArea:hover {
 background-image: url(menubarOver.jpg);
 background-position: -337px 0px
 }
#dealersArea:active {
 background-image: url(menubarDown.jpg);
 background-position: -337px 0px
 }
#supportArea {
 left: 447px;
 width: 110px;
 background-image: none
 }
#supportArea:hover {
 background-image: url(menubarOver.jpg);
 background-position: -447px 0px
 }
#supportArea:active {
 background-image: url(menubarDown.jpg);
 background-position: -447px 0px
 }

Example 12-1. CSS code for efficient image swapping (continued)

12.4 Reducing Rollover Image Downloads with CSS | 365

The menuWrap div element is set up as a relative-positioned element to provide a posi-
tioning context for the nested hyperlink elements, each of which will be absolute-
positioned within that context. This allows the entire menu to flow naturally on the
page, without further adjustments to the nested hyperlink positions. The back-
ground image for the wrapper is the normal version of the entire menu. It becomes
the substrate for the menuing system.

All of the hyperlink elements have a number of CSS property values in common.
Those values are assigned to all of them in one rule aimed at a elements nested inside
the menuWrap element.

Next come three rules for the first “button” in the menu, the one labeled “Home.”
The hyperlink element is positioned at the left edge of the container, and its back-
ground image is set to none, meaning that the background is transparent, allowing
the substrate image to show through. When the cursor hovers atop the “Home” link,
the background image for that element is changed to the highlighted version.
Because this button is at the left edge of the container, its left background-position
property is set to 0px. When the user clicks down on the element, it is in the active
state, which changes the background image to the third state, likewise positioned at
0px.

This set of three states (normal, hover, active) is repeated for each of the hyperlink
elements. The differences are all in the left position of the hyperlink element, and the
corresponding negative shift of the hover and active background images to the left.

Due to a couple of rendering irregularities in a couple of browsers, this solution may
not be as flexible as you like. For example, IE 6 and IE 7 have difficulty restoring the
background image to none after the element has been in the active state. A two-state
rollover (normal and hover) appears to work well, however. In Mozilla, if a user navi-
gates to a page in the menu and clicks the Back button, the clicked menu item may
still be in the hover state until the cursor reaches the content region of the browser
window. This could be disconcerting to some users. A div element, rather than a
hyperlink, might work better, but IE 6 does not recognize the hover or active CSS

#contactArea {
 left: 557px;
 width: 110px;
 background-image: none
 }
#contactArea:hover {
 background-image: url(menubarOver.jpg);
 background-position: -557px 0px
 }
#contactArea:active {
 background-image: url(menubarDown.jpg);
 background-position: -557px 0px
 }

Example 12-1. CSS code for efficient image swapping (continued)

366 | Chapter 12: Visual Effects for Stationary Content

states for the div element. None of these problems affect the JavaScript version,
shown in Recipe 12.3.

See Also
Chapter 11 on applying CSS; Recipe 12.3 for a JavaScript version of this recipe.

12.5 Dynamically Changing Image Sizes

Problem
You want to offer a user option on your web page to enlarge or reduce the dimen-
sions of one or more images, such as enlarging a thumbnail to a more viewable size.

Solution
Modern browsers scale an original image to whatever size is assigned to the img tag,
either by the height and width attributes/properties or through CSS rule settings.
This solution provides code for the latter method and assumes that all resizable
images have the same original size.

This solution relies on three style sheet rules assigned to class names, as follows:

.largesize {height: 384px; width: 512px}

.mediumsize {height: 192px; width: 256px}

.smallsize {height: 77px; width: 102px}

The original image is 1024 pixels wide by 768 pixels high, and the display options
are at 50 percent, 25 percent, and 10 percent of original size. Those values are pre-
calculated and hardcoded into the style sheet rules.

HTML for this example consists of three radio button choices and an img element:

<form>
<p id="scale">Scale: <input id="smallScale" type="radio" name="scaler" value="small">
10%
<input id="mediumScale" type="radio" name="scaler" value="medium">25%
<input id="largeScale" type="radio" name="scaler" value="large" checked>50%
</p>
</form>

With the help of the eventsManager.js library from Recipes 9.1 and 9.3, the scripts in
this example bind a click event handler to the p element that contains the three
radio buttons. Click events from the radio buttons will bubble up to the container,
but the event targets will be the radio buttons. The following script then reads the
value of the clicked radio button to determine which class name should be assigned
to the img element:

function setImgSize(evt) {
 evt = (evt) ? evt : window.event;

12.6 Changing Text Style Properties | 367

 var elem = (evt.target) ? evt.target : evt.srcElement;
 document.getElementById("seascape").className = elem.value + "size";
}

function setEvents() {
 addEvent(document.getElementById("scale"), "click", setImgSize, false);
}
addOnLoadEvent(setEvents);

Upon changing the className property of the img element, the chosen style is imme-
diately applied to the image.

Discussion
Notice in the Solution that there is a link between the values assigned to each of the
radio buttons and the class names used for the CSS rules. This relationship simpli-
fies the assignment statement in the setImgSize() function because the new name is
a combination of the chosen radio button’s value and the string “size.”

There are numerous ways to enhance this solution to take into account images of
varying sizes. One characteristic to watch out for is that once an image is resized, you
cannot obtain the original size of the image (except in Mozilla, which offers a propri-
etary pair of img element object properties, naturalHeight and naturalWidth). If you
wish to use scripts to perform calculations on images whose dimensions are not the
same throughout the page, you may want to use a load event handler function to
capture an array of image sizes to use as a reference for subsequent calculated resiz-
ing operations.

Browsers won’t keep the aspect ratio of your images intact—your calculations will
have to do that. But if you multiply the height and width by the same factor, and
round results to the nearest integer, you’ll get decent results. Of course, you are at
the mercy of the browser’s rendering engine when it comes to the quality of thumb-
nails or enlargements. This isn’t Adobe Photoshop.

See Also
Recipe 11.2 for using CSS with subgroups of elements; Recipe 11.8 for changing style
sheet rules assigned to an element; Recipes 9.1 and 9.3 for the workings of the
eventsManager.js library.

12.6 Changing Text Style Properties

Problem
You want to alter the style of some text already displayed on the page.

368 | Chapter 12: Visual Effects for Stationary Content

Solution
Change one or more of the associated style properties of the element containing the
text, as in these examples:

elementReference.style.color = "00ff00";
elementReference.style.font =
 "bolder small-caps 16px 'Andale Mono', Arial, sans-serif";
elementReference.style.fontFamily = "'Century Schoolbook', Times, serif";
elementReference.style.fontSize = "22px";
elementReference.style.fontStretch = "narrower";
elementReference.style.fontStyle = "italic";
elementReference.style.fontVariant = "small-caps";
elementReference.style.fontWeight = "bolder";
elementReference.style.textDecoration = "line-through";
elementReference.style.textTransform = "uppercase";

Discussion
Many CSS properties affect the appearance of text on the page. Because all imple-
mented CSS properties can be controlled via properties of the style object associated
with an element, those CSS properties can be modified after the page has loaded.

Before you can modify the appearance of text, that text must be its own element, even
if it is merely an arbitrary span within a larger element. See Recipe 15.2 for an example
of converting a user text selection into an element ready for text style modification.

Note that to comply with JavaScript (and other) language rules, the CSS property
names that contain hyphens are converted to intercapitalized style words. Thus, the
DOM reference for the font-weight CSS property is fontWeight. Values assigned to
these properties are always strings, and the constant values (such as none or xx-
small) are identical to those assigned to CSS properties, including those with
hyphens. Values that denote length, such as the fontSize value, must also include
the units (e.g., 22px). Table 12-1 lists each CSS Level 2 text style property and the
types of accepted values.

Table 12-1. CSS Level 2 text style properties and values

Property Description

color Foreground color specified as hexadecimal triplet (e.g., #ff00ff), CSS RGB value (e.g.,
rgb(255,0,255) or rgb(100%,0%,100%)), or color constant (e.g., green)

font Combination property with one or more of fontFamily, fontSize, lineHeight (which must
be preceded by a / symbol in this property), fontStyle, fontVariant, and fontWeight or a
constant: caption, icon, menu, message-box, small-caption, or status-bar

fontFamily Comma-delimited list of font families in decreasing priority; multiple-word family names must be
quoted inside the string value

fontSize Length value representing the height of the characters (fixed size with unit measure or percentage),
relative size (larger or smaller), or constant:xx-small, x-small,small, medium,large,
x-large, or xx-large

12.6 Changing Text Style Properties | 369

Additional style properties can also affect the overall appearance of a text-centric ele-
ment. The element’s background color (backgroundColor style property) can have a
significant impact on the view and readability of a text span. Other text-related style
properties, such as textAlign and textIndent, operate in block-level elements that
contain text.

If you want to animate the transitions between states in any way, including alternat-
ing between states, you need to use setTimeout() or setInterval() to allow the ani-
mation to be visible. If, instead, you simply script a sequence of style changes, be
aware that the browsers tend to delay refreshing the screen until the current script
thread finishes. This speeds up the rendering of multiple style property changes and
makes them appear all at once, rather than seeing each property change individually.
For example, if you wish to momentarily alternate the background color of an ele-
ment to bring the viewer’s attention to it, you can set up a function that invokes itself
several times through the setTimeout() mechanism. Each time the function runs, it
changes the background color of the element whose ID is initially passed as a sole
parameter to the function:

function flashBkgnd(elemID, count) {
 // if counter is null, initialize at zero
 count = count || 0;
 // execute reference just once
 var elem = document.getElementById(elemID);
 // grab value once for multiple comparisons
 var currColor = elem.style.backgroundColor;
 if (currColor == "rgb(255, 255, 0)" || currColor == "#ffff00") {
 elem.style.backgroundColor = "#ff0000";
 } else {
 elem.style.backgroundColor = "#ffff00";
 }
 if (count < 10) {
 // call this function again in 1/10 sec., with incremented counter value
 setTimeout(function() {flashBkgnd(elemID, ++count)}, 100);
 } else {
 // assumes a white body background

fontStretch Character spacing governed by a constant: normal, wider, narrower, ultra-condensed,
extra-condensed, condensed, semi-condensed, semi-expanded, expanded,
extra-expanded, ultra-expanded, or none

fontStyle Slant of text characters governed by a constant: normal, italic, or oblique

fontVariant Small-caps version of font: normal or small-caps

fontWeight Boldness of the characters: bold, bolder, lighter, normal, 100, 200, 300, 400, 500, 600,
700, 800, or 900

textDecoration Extra ornament for the text: blink, line-through, none, overline, or underline

textTransform Case transformations of the text: capitalize, lowercase, none, or uppercase

Table 12-1. CSS Level 2 text style properties and values (continued)

Property Description

370 | Chapter 12: Visual Effects for Stationary Content

 elem.style.backgroundColor = "#ffffff";
 }
}

This function maintains its own internal counter, passing the incremented value as a
second parameter to the function for subsequent function calls. Once the counter
reaches its maximum value, the background color of the element returns to a default
value. You could also use a version of Recipe 11.2 to determine the effective back-
ground color of the body element, and set the flashing element’s background color to
that value upon exiting the function the final time.

Note, too, that in the flashBkgnd() function, the current color is tested in two forms:
a CSS rgb(x,y,z) value and a hexadecimal triplet value. This is necessary because
some browsers (Mozilla and Safari in particular) report color values in the RGB for-
mat, regardless of the value assigned to the property elsewhere.

See Also
Recipe 12.2 for special hover behaviors for hyperlinks; Recipe 4.5 for usage of
setTimeout() as a delay mechanism; Recipe 11.2 for reading effective style sheet
values; Recipe 15.2 for converting a user selection into a style-modifiable arbitrary
element.

12.7 Offering Body Text Size Choices to Users

Problem
You want to let users choose the relative font size for the content of the page.

Solution
Create a user interface element that lets users select from three or four different font
sizes. Each choice invokes the changeSizeStyle() function shown in the Discussion.
This function enables a style sheet whose ID is passed as an argument and disables
the rest. All of the related style sheets apply themselves to the body element. As an
added bonus, the changeSizeStyle() function calls upon the cookies.js library (Recipe
1.10) to preserve the setting to be applied to the page the next time the user visits.

Discussion
This is a three-part solution, involving HTML for the font size controller, style
sheets, and scripts. The result is a small controller on the page that lets users select
from three font size bases upon which the rest of the page renders, as shown in
Figure 12-2.

12.7 Offering Body Text Size Choices to Users | 371

The HTML for the controller defines one surrounding div element and several
nested img elements, each of which acts as a clickable button to change the body text
size. To prevent blank space from occurring between the images, avoid source code
line breaks between elements. The following HTML code inserts line breaks inside
element tags:

<div id="textSizer">
<img
id="smallStyler" class="textSize" src="fontSmall.jpg" height="18" width="18"
alt="Smallest" /><img id="mediumStyler" class="textSize" src="fontMedium.jpg"
height="18" width="18" alt="Default" /><img id="largeStyler"
class="textSize" src="fontLarge.jpg" height="18" width="18" alt="Biggest" />
</div>

The stylesheet portion of this solution consists of several rules. Three (.smallText,
.mediumText, and .largeText) indicate the class names that can be applied to the
body element to influence the display. Three other rules control the rendering of
the buttons’ container and individual buttons. The :hover rule here is applied to
img elements, a tactic that won’t work in IE 6 unless you wrap the images in hyper-
link (a) elements and assign the style rule to those elements (and cancel the default
click behavior of the hyperlinks). By default, the controller is not rendered, but
scripts take care of this, as discussed shortly:

body {font-family: Verdana, Helvetica, sans-serif; background-color: #ffffff}
.smallText {font-size: xx-small}

Figure 12-2. Text size controller for users

372 | Chapter 12: Visual Effects for Stationary Content

.mediumText {font-size: small}

.largeText {font-size: large}
#textSizer {text-align: right; display: none}
.textSize {border: 1px solid black}
.textSize:hover {cursor: pointer}

The JavaScript portion relies on the cookies.js library (Recipe 1.10) and consists of a
pair of statements that run while the page loads, two functions that control changes
to styles and initial event binding:

<script src="cookies.js"></script>
<script type="text/javascript">
// write style sheet link
var styleCookie = cookieMgr.getCookie("fontSize") || "medium";
document.write("<link rel='stylesheet' type='text/css' href='" + styleCookie +
 "Font.css' />");

// invoked by clicking on sizer icons
function changeSizeStyle(evt) {
 evt = evt || window.event;
 var elem = evt.target || evt.srcElement;
 var re = /(.*)(Styler\b)/;
 var sizeStyle = re.exec(elem.id)[1];
 cookieMgr.setCookie("fontSize", sizeStyle, cookieMgr.getExpDate(120, 0, 0));
 document.body.className=sizeStyle + "Text";
 setIconBorder(elem.id);
}
function setIconBorder(elemID) {
 elemID = (elemID) ? elemID :
 (cookieMgr.getCookie("fontSize") ?
 cookieMgr.getCookie("fontSize") + "Styler" : "mediumStyler");
 var iconIDs = ["smallStyler", "mediumStyler", "largeStyler"];
 for (var i = 0; i < iconIDs.length; i++) {
 document.getElementById(iconIDs[i]).style.borderColor = "black";
 }
 document.getElementById(elemID).style.borderColor = "red";
}
function setEvents() {
 addEvent(document.getElementById("smallStyler"), "click", changeSizeStyle,
false);
 addEvent(document.getElementById("mediumStyler"), "click", changeSizeStyle,
false);
 addEvent(document.getElementById("largeStyler"), "click", changeSizeStyle,
false);
}
addOnLoadEvent(function() {setIconBorder()});
addOnLoadEvent(setEvents);
</script>

Users’ choices are preserved as a cookie value (in the changeSizeStyle() function) so
that the previous setting is applied on the next visit to the page. The application
occurs in the writing of a <link> element to load the desired .css file (see Recipe 11.5).
Each of the .css files includes a rule that sets the display property of the textSizer

12.7 Offering Body Text Size Choices to Users | 373

control container to block. In other words, the controls don’t appear on the page
unless the user has scripting enabled.

The controller consists entirely of images so that even as the body font size is
adjusted, the label’s text won’t change as well. While the label could be given an
inline style attribute to override the more remote style settings, using an image is
easier. If the label text were allowed to resize, the position of the clickable images
would shift with each click, driving users crazy. While the example here uses a non-
positioned element and a percentage length for the left margin, you might find it
more appealing to turn it into an absolute-positioned element that is keyed to some
other relative-positioned wrapper element in your design.

Notice that this example does not specify a specific font size in any unit. Font sizing
is always a problem in browsers due to their quirky behavior with regard to user set-
tings in the browser and operating system. Using relative sizes suggests that we let
users determine their default sizes outside of our application, and they can choose to
display your font sets either in a smaller or larger font than the default. This also
assumes that more detailed font size settings throughout each page’s document are
also relative, rather than absolute. Thus, top-level headlines may be specified in em
units to derive the desired larger size, but always relative to the surrounding body ele-
ment’s current size. In a way, this approach embraces the flaws of the browser world,
leaving the precise display up to the user. Your job as a designer is to make sure the
content flows appropriately in a variety of sizes.

One of the challenges of this application is preventing the page from initially loading
and displaying the default font sizes, and then having the page redraw itself with the
previously selected size. Remember that scripts cannot assign a value to the style
property of the body element in most browsers until the element has completely ren-
dered. Waiting until the load event is too late because the body will have already
begun to render in the default size. Thus, this solution dynamically writes the <link>
tag in the head portion of the file so that it applies to the body element as it initially
renders.

Names of the controller images are critical in this solution. A regular expression in
the changeSizeStyle() function assumes that the first part of the name indicates the
size (small, medium, or large) and the last part is Styler (although you can change the
components to meet your design criteria). This allows the script to extract the size,
which can then be used to assemble either the name of the class to be assigned to the
body element or the name of the .css file to be loaded when the page arrives.

One final visual touch is that the border of the currently selected control button is set
to a red color. This provides visual feedback to the user to see where the current size
lies in respect to other choices. It’s important for such a device to also signal the size
at load time. Therefore, a load event handler invokes the setIconBorder() func-
tion. The assignment (in addOnLoadEvent() from eventsManager.js of Recipe 9.1 and
Recipe 9.3) occurs as an anonymous function so that the W3C event object is not

374 | Chapter 12: Visual Effects for Stationary Content

automatically passed as a parameter to the function. If no cookie had been previ-
ously saved, the medium control is highlighted (and the mediumFont.css style sheet
will have already been written to the dynamically generated <link> element, earlier.

See Also
Recipe 1.10 for cookie utilities; Recipe 11.4 for importing style sheets; Recipe 11.5
for dynamically importing style sheets; Recipes 9.1 and 9.3 for event management.

12.8 Creating Custom Link Styles

Problem
You want links on the page to respond to rollovers and clicks differently than the
default browser behavior.

Solution
Take advantage of CSS pseudoclasses for a elements that let you define separate style
sheet rules for various states of a link. The following example displays the text of an
a element in a dark reddish-brown except when the user clicks down on the link, at
which point the background and text color invert. Also, the link does not display the
traditional underline except while the cursor passes atop the link:

<style type="text/css">
a:link {color:#993300; background-color:#ffffff; text-decoration:none}
a:visited {color:#993300; background-color:#ffffff; text-decoration:none}
a:active {color:#ffffff; background-color:#993300; text-decoration:none}
a:hover {text-decoration:underline}
</style>

Discussion
The a:link, a:visited, and a:active CSS pseudoclasses for a elements are modern
versions of old attributes of the <body> tag. The old attributes controlled nothing
more than the color of a link in each of the three states. But the CSS version allows far
more control over the appearance of the link’s text and other environment factors.

The state, represented by the a:hover pseudoclass, is a simplified way of implement-
ing style changes during what scripters might consider to be a mouseover event. But
no scripting is needed. It’s this same behavior that allows unscripted image rollovers
in some situations (as described in Recipe 12.2). The only imperative for using genu-
ine mouseover event handlers is that they work in older browsers than those that sup-
port the CSS pseudoclasses and they can perform other scripting tasks, such as
retrieving data via the XMLHttpRequest object.

Note a peculiarity with IE for Windows and the a:active pseudoclass. This browser
has a different meaning for active. While other browsers treat this state as meaning

12.9 Changing Page Background Colors and Images | 375

only while the mouse button is pressed on the element, IE for Windows considers
an a element that has focus to be active. Therefore, if a user clicks on a hyperlink,
the a:active style rule remains in effect until the link loses focus. It also means that
if a user presses the Tab key enough times to bring focus to the link, the link’s
appearance is under the a:active style rule.

A valid user interface question occurs when contemplating the hiding of a link’s tra-
ditional underline decoration. Some page designers object to the default appearance
on aesthetic grounds in that the bold color and underline distract the user from the
content, destroy the designer’s other color schemes, and may encourage users to
jump out of the site too quickly. Rather than omit external links (at the risk of giving
the appearance of not being a good Net citizen), designers can, in a sense, disguise
the links.

Your decision about link styles will most likely be influenced by the nature of your
audience. An unsophisticated audience for a very public web site may not catch on
quickly enough that your subtly hued, nonunderlined text segments are links, and
may not even find some of your own site’s gems. A web-savvy audience, on the other
hand, may instinctively know where to expect links and will catch on quickly to your
style scheme. In the end, consistency in your approach—throughout the site—is an
important step toward users accepting your design.

The :hover pseudo-class works with elements other than hyperlinks in Mozilla,
Safari, Opera 7 or later, and IE 7 (only in standards-compatibility mode). Other IE
versions recognize :hover only for hyperlinks.

See Also
Recipe 12.2 for mouseover image swapping; Recipe 12.7 for an example of the :hover
pseudoclass in use.

12.9 Changing Page Background Colors and Images

Problem
You want to give users an opportunity to select a background color or background
image for the current page or site.

Solution
Change one or more of the background-related style properties of the body element.
The following examples demonstrate the range of options:

document.body.background = "url(watermark.jpg) repeat fixed";
document.body.backgroundAttachment = "fixed";
document.body.backgroundColor = "rgb(255, 255, 204)";

376 | Chapter 12: Visual Effects for Stationary Content

document.body.backgroundImage = "url(corp%20watermark.jpg)";
document.body.backgroundPosition = "5% 5%";
document.body.backgroundRepeat = "repeat-y";

Discussion
Several CSS style properties control aspects of element backgrounds. When applied
to the body element, the background properties affect the entire page. Table 12-2 lists
the scriptable properties and the types of values they accept.

If you set both a background color and image, the image overlays the color and the
background color shows through any transparent pixels in the image.

Providing users with a choice in background style (perhaps by way of a select ele-
ment somewhere on the page) adds an extra burden if you want a user-friendly web
site. You should preserve the setting so that the next time the user visits, the earlier
choice applies to the current visit. While you can save this information in a database
if you like, it is probably more convenient to preserve the setting in a client cookie.
This obviates the need for a user to register and log into your site just to have a previ-
ously chosen skin applied to the site’s look and feel.

Recipe 1.10 contains a generic cookie reading and writing library, which the follow-
ing description assumes is loaded in the page (providing you with the setCookie()
and getCookie() functions). In the following example, the user can select from a list
of images located in a select element whose ID is bgChooser. The cookie preserves
the URI of the most recently chosen image, and applies that to the body’s back-
ground after the page loads (via an onload event handler in the <body> tag). The core

Table 12-2. Background style properties and values

Property Description

background Combination of several background styles in one specification, consisting of a space-
delimited list of values for backgroundAttachment, backgroundColor,
backgroundImage, backgroundPosition, and backgroundRepeat prop-
erty values.

backgroundAttachment How a background image clings to content during scrolling, controlled by the constants
fixed and scroll.

backgroundColor Color specified as hexadecimal triplet (e.g., #ff00ff), CSS RGB value (e.g.,
rgb(255,0,255) or rgb(100%,0%,100%)), or color constant (e.g., green).

backgroundImage URI of an external background image in CSS format (e.g., url(logo.jpg)).

backgroundPosition Offset of a background image relative to the edges of the (body) element. Values are a
space-delimited pair of length or percentage values (horizontal and vertical measures)
or a pair of combinations of constants: bottom, center, left, right, or top. A
single value can also be applied to both dimensions.

backgroundRepeat Controls whether the image is to be repeated and whether the repeat is along a single
axis, according to the constants: no-repeat, repeat, repeat-x, or repeat-y.

12.9 Changing Page Background Colors and Images | 377

of the routine is a function that reads the cookie and applies the value to the
backgroundImage property. If the cookie is empty, the first item in the select list is
used as a default:

// save user choice in cookie and set the style value
function savebgImage(evt) {
 evt = (evt) ? evt : ((event) ? event : null);
 if (evt) {
 var elem = (evt.target) ? evt.target : evt.srcElement;
 cookieMgr.setCookie("bgImage", elem.value, getExpDate(120, 0, 0);
 // invoke function to change the visible image
 setbgImage();
 }
}

// change bkgnd image after user selection or onload
function setbgImage() {
 var uri = cookieMgr.getCookie("bgImage");
 // get reference to select element
 var selector = document.getElementById("bgChooser");
 if (uri) {
 // apply cookie value to background image
 document.body.style.backgroundImage = "url(" + uri + ")";
 // for onload, set select to the cookie value
 for (var i = 0; i < selector.options.length; i++) {
 if (uri == selector.options[i].value) {
 selector.options[i].selected = true;
 break;
 }
 }
 } else {
 // if no cookie, set to whatever is selected by default
 document.body.style.backgroundImage = "url(" + selector.value + ")";
 }
}
addOnLoadEvent(setbgImage);
...
<body>
...
<select id="bgChooser" onchange="savebgImage(event)">
 <option value="desk1.gif">Desk 1</option>
 <option value="desk2.gif">Desk 2</option>
 <option value="desk3.gif">Desk 3</option>
 <option value="desk4.gif">Desk 4</option>
</select>

Notice a subtle but important part of the setbgImage() function. The selected item in
the select element should always echo the cookie value. A loop looks through all
options of the select element to find a match between option and cookie values.
When the loop locates a match, the option is set to be the selected item.

378 | Chapter 12: Visual Effects for Stationary Content

See Also
Recipe 12.7 for an alternative way of preserving and restoring style preferences by
way of style sheets; Recipe 1.10 for a cookie library.

12.10 Hiding and Showing Elements

Problem
You want to hide a currently visible element or show a currently hidden element.

Solution
Two CSS style properties (and their corresponding scripted properties) influence the
visibility of an element, but your choice of usage has a big impact on the results of
showing or hiding an element. The less-intrusive property is style.visibility,
whose fully supported values are hidden, inherit, or visible, as in the following
example that hides an element:

document.getElementById("warning").style.visibility = "hidden";

Changing this value has no effect on surrounding content. The other relevant prop-
erty, style.display, when set to none, removes the element from rendering flow of
the page, forcing surrounding content to cinch up to fill the space formerly occupied
by the element:

document.getElementById("warning").style.display = "none";

Restoring the display property value to its applicable display mode (typically block
or inline) reinserts the element into rendering flow, and the content adjusts itself to
accommodate the inserted content.

Discussion
CSS property inheritance plays a significant role in the resulting effect of your hiding
and showing of elements. The default visibility property value is inherit, which
means that an element’s visibility is governed by its parent containing element.
Therefore, if you hide a container, all nested elements are hidden as well. But each
element can also be the master of its own visibility in most browsers. For example, if
you set the visibility of a container element to hidden and one of the container’s chil-
dren to visible, the child element will be visible even though its parent is not. By
and large, the visibility style property is most reliably used on either block-level
elements or absolute-positioned elements.

Adjusting the display style property is a more substantial act in the eyes of the CSS
model. This property has a large range of possible values, some of which are dedi-
cated to the way browsers render tables, table components, and list items. It even has
the power to override default element characteristics such that an inline element is

12.11 Adjusting Element Transparency | 379

treated instead as a block-level element. Therefore, when you set the property to
none, the action does far more than just hide the element. You’re telling the browser
to shrink the element’s renderable space to zero height and width, and to adjust the
rendering of surrounding elements. The element, however, is not removed from its
place in the document node tree.

See Also
Several recipes in Chapter 10 that hide and show elements in dynamic navigation
menus.

12.11 Adjusting Element Transparency

Problem
You want an element to be partially transparent so that background content bleeds
through.

Solution
The formal W3C CSS specification didn’t get around to offering an opacity property
until CSS Level 3. It is supported starting with Mozilla 1.7.2, Safari 1.2, and Opera 9.
Even so, Internet Explorer for Windows and earlier Mozilla versions have different
proprietary approaches to specifying opacity on any element in CSS-like syntax. In
fact, IE has two different systems, one of which works only in IE 5.5 for Windows or
later.

The IE style sheet syntax that works with versions as early as IE 4 (for Windows
only) relies upon a proprietary filter property. The following example makes an ele-
ment whose ID is watermark appear with 25 percent opacity:

#watermark {filter:alpha(opacity=25)}

The newer syntax utilizes an ActiveX control that is delivered with IE 5.5 or later for
Windows and requires a more explicit reference:

#watermark {filter:progid:DXImageTransform.Microsoft.Alpha(opacity=25)}

For all Mozilla versions, use the Mozilla proprietary opacity style control, -moz-
opacity:

#watermark {-moz-opacity:0.25}

The leading hyphen of the property name is intentional so that it won’t be confused
or conflict with the W3C opacity property.

For Mozilla 1.7.2 or later, Safari 1.2 or later, and Opera 9 or later, use the CSS3
opacity style property:

#watermark {opacity:0.25}

380 | Chapter 12: Visual Effects for Stationary Content

Discussion
Internet Explorer filter styles are an extensive set of transforms intended primarily for
text. All filters are specified as CSS-like style rules whose property is filter. For the
backward-compatible version, the property value consists of one of the filter’s
names followed by a pair of parentheses. Some filters, such as the alpha filter that
controls opacity, have one or more additional properties that are set via equality
symbol assignments inside the parentheses. Multiple property/value pairs are
comma-delimited.

Possible properties for the alpha filter include not only a straight opacity level (speci-
fied within a range of 0 to 100, with 100 being completely opaque), but also addi-
tional opacity styles, such as an opacity gradient where the opacity varies across the
area of the element. Possible gradient styles are uniform (value of 0, the default), lin-
ear (value of 1), radial (value of 2), or rectangular (value of 3). You can then use the
opacity property to specify the opacity level for the start of the gradient and
finishopacity for the end of the gradient:

{filter:alpha(opacity=25, finishopacity=75, style=2)}

Additional properties let you define the x,y coordinates for both the start and end
points of the gradient (the startX, startY, finishX, and finishY properties).

To modify a filter’s setting under script control, reference the filter just like any style
property and assign its value as a string containing the entire filter name, parenthe-
ses, and extra properties:

document.getElementById("myBox").style.filter = "alpha(opacity=80)";

If you are using the newer ActiveX control for filtering in IE 5.5 and later, all refer-
ences must include the control’s internal object path, as shown in the Solution. Even
script references must include this information, but access is through the filters col-
lection of the element object (not the style object):

document.getElementById("myBox").
 filters["DXImageTransform.Microsoft.Alpha"].Opacity=80;

Be aware, however, that to modify a value of this newer version, the named filter
must be declared in a CSS style sheet or in the element’s style attribute. You cannot
introduce a DXImageTransform opacity filter to an element that does not have one
defined for it via CSS syntax.

Scripting the proprietary Mozilla opacity filter is accomplished through the style.
MozOpacity property. A value for this property must be a string representing a num-
ber between 0 (transparent) and 1 (opaque). Note that the property has a leading
uppercase letter. The Mozilla opacity filter is a uniform type without any gradients.

The CSS3 opacity property takes the same values as the MozOpacity property. With-
out any IE support through IE 7, and only recent browsers of other brands, it will be
awhile before you can deploy the CSS3 opacity property with the expectation that
users will observe any transparency.

12.12 Creating Transition Visual Effects | 381

See Also
Recipe 12.10 for hiding elements entirely.

12.12 Creating Transition Visual Effects

Problem
You want elements that change their visual characteristics (e.g., hiding, showing,
image swapping) to reveal the new state by way of a visual effect such as a wipe, barn
door, checkerboard, or dissolve.

Solution
Transitions in IE for Windows are part of the proprietary filter extensions to CSS
(not implemented in IE for Macintosh, Mozilla, Safari, or Opera). Two filter syn-
taxes are available. One is backward-compatible all the way to IE 4; the other
requires IE 5.5 or later. I’ll demonstrate a solution that applies a dissolve transition
between image swaps from Recipe 12.2.

Transitions have two components. The first is a filter definition applied via style
sheet rules. The following modification of the tag for Recipe 12.2 adds a one-
half second dissolve (fade) transition filter in the backward-compatible syntax:

<img name="products" height="20" width="50" border="0" src="img/prodNormal.jpg"
style="filter:blendTrans(duration=0.5)" alt="Products">

Here’s the newer syntax, which utilizes a more powerful ActiveX control delivered
with IE 5.5 for Windows or later:

<img name="products" height="20" width="50" border="0" src="img/prodNormal.jpg"
style="filter:progid:DXImageTransform.Microsoft.Fade(duration=0.5)"
alt="Products">

The second component of an element transition consists of two scripted methods of
the filter object: apply() and play(). The apply() method freezes the view of the
element whose filter you address. This gives you the opportunity to make the
change(s) to the element out of view. Then the play() method lets the transition fil-
ter execute the transition between the original and modified states. Modifying the
image-swapping function of Recipe 12.2 to accommodate the newer filter syntax
causes the function to become:

var rolloverImageBank = {
 height : 20,
 width : 50,
 sharedImgURIs : ["img/home", "img/prod", "img/support", "img/contact"],
 normalSuffix : "Normal.jpg",
 hiliteSuffix : "Hilite.jpg",
 preloadImages : function() {
 var imgObj = new Image(this.height, this.width);

382 | Chapter 12: Visual Effects for Stationary Content

 for (var i = 0; i < this.sharedImgURIs.length; i++) {
 imgObj.src = this.sharedImgURIs[i] + this.normalSuffix;
 imgObj.src = this.sharedImgURIs[i] + this.hiliteSuffix;
 }
 },
 toggleImage : function(evt) {
 evt = (evt) ? evt : event;
 var elem = (evt.target) ? evt.target : evt.srcElement;
 if (elem && elem.src) {
 if (elem.filters) {
 elem.filters["DXImageTransform.Microsoft.Fade"].apply();
 }
 var reOff = new RegExp("(.*)(" + this.normalSuffix + ")");
 var reOn = new RegExp("(.*)(" + this.hiliteSuffix + ")");
 if (reOff.test(elem.src)) {
 elem.src = reOff.exec(elem.src)[1] + this.hiliteSuffix;
 } else {
 elem.src = reOn.exec(elem.src)[1] + this.normalSuffix;
 }
 if (elem.filters) {
 elem.filters["DXImageTransform.Microsoft.Fade"].play();
 }
 }
 }
};

Discussion
The two generations of CSS filters in IE for Windows present very different ways of ref-
erencing specific transition effects. Transitions in the backward-compatible form are
divided into two families: the blend (dissolve) and reveal (numerous types). Assign a
blend via the blendTrans() filter, with one parameter for the duration in seconds:

img.blends {filter:blendTrans(duration=0.5)}

A reveal transition (revealTrans()) definition includes two parameters: transition,
which requires an integer value corresponding to the type of shape used in the transi-
tion, and duration, which controls the speed:

div.wipe {filter:revealTrans(transition=7, duration=1.5)}

Transition types are listed in Table 12-3.

Table 12-3. IE backward-compatible transition types

Type Meaning Type Meaning

0 Box in 12 Random dissolve

1 Box out 13 Split vertical in

2 Circle in 14 Split vertical out

3 Circle out 15 Split horizontal in

4 Wipe up 16 Split horizontal out

5 Wipe down 17 Strips left down

12.12 Creating Transition Visual Effects | 383

You can modify the properties of a particular filter by script. For example, if you
want to change an element’s transition filter from a wipe to a circle in style, refer-
ence the filter’s transition property as follows:

elementReference.filters["revealTrans"].transition = 2;

In the newer filter syntax, each transition type has its own filter (see Table 12-4).

6 Wipe right 18 Strips left up

7 Wipe left 19 Strips right down

8 Vertical blinds 20 Strips right up

9 Horizontal blinds 21 Random bars horizontal

10 Checkerboard across 22 Random bars vertical

11 Checkerboard down 23 Random

Table 12-4. IE new-style transition filters

Filter name Description

Barn() A barn-door transition effect, with properties for duration, motion, and
orientation

Blinds() AVenetian-blind transition effect, with properties for direction, duration, and thick-
ness (bands) of the slats

Checkerboard() A checkerboard transition effect with properties for direction, duration, and square
sizes (squaresX, squaresY)

Fade() A blended transition between views, with properties for duration and the degree of
overlap of both views

GradientWipe() A wipe transition using a gradient blend at the wipe line, with properties for duration,
thickness of the gradient (gradientSize), and direction (wipeStyle)

Inset() A wipe transition that works along horizontal and vertical axes, but diagonally from one cor-
ner to its opposite, with duration property

Iris() A zoom-style transition with properties for duration, motion (in or out), and
irisStyle (e.g., circle, cross, diamond, plus, square, star)

Pixelate() Blends between views via an expansion/contraction and blurring/focusing of the content,
with properties for duration and maximum pixel size (maxSquare)

RadialWipe() Blends between views via your choice of duration and wipeStyle (clock, wedge,
radial)

RandomBars() Blends between views via expanding/contracting bars, with properties for orientation
and duration

RandomDissolve() Blends between views through random pixel changes, with duration property

Slide() Blends between views through banded sliding of various types, with properties for band
thickness (bands), duration, and slideStyle (hide, push, swap)

Spiral() Blends between views through spiral reveals, with properties for duration and spiral size
(gridSizeX, gridSizeY)

Table 12-3. IE backward-compatible transition types (continued)

Type Meaning Type Meaning

384 | Chapter 12: Visual Effects for Stationary Content

The newer filter mechanism is obviously more powerful than the backward-compatible
version, although it is also considerably more verbose because you must reference the
ActiveX control in references to the filter:

document.images[imgName].filters["DXImageTransform.Microsoft.Fade"].apply();

If you want to change the transition type after a page has loaded, you can assign a
new filter string to the style.filter property:

elementRef.style.filter = "progid:DXImageTransform.Microsoft.Iris(duration=1.0)";

References to filter styles can get tricky because the reference syntax varies with your
intention. To control an existing filter type (to invoke one of its methods or alter one
of its properties), use the filters array of the element itself (not the element’s style
property). The index to the array can be either an integer (corresponding to the
source code order of the filters assigned to the element) or a string name of the spe-
cific filter. To control the filter type, assign a complete filter specification to the ele-
ment’s style.filter property.

Using the apply() and play() methods of a filter object works within the same
page when you alter some visible characteristic of an element. But if you want to use
these transitions for slide shows when the slides are different HTML pages, you must
assign the transition filters to <meta> tags of the pages. Proprietary attribute values
instruct IE for Windows to apply the defined transition to the page upon entry and
exit. Usually you need a transition on either entry or exit, but not both. The excep-
tion might be if you also have an intervening blank or black page between slides to
emphasize two different effects, such as an iris-in when entering the blank page and
an iris-out when leaving the blank page. The <meta> tags for the blank page in this
scenario look like the following:

<meta http-equiv="Page-Enter"
content="progid:DXImageTransform.Microsoft.Iris(Motion='in', IrisStyle='circle')">
<meta http-equiv="Page-Exit"
content="progid:DXImageTransform.Microsoft.Iris(Motion='out', IrisStyle='circle')">

By placing these transitions in the blank pages, you don’t need to specify page transi-
tions in the content slides. Nor is any scripting required for the transitions. But you
still use a script to assemble the URL of the next content slide and pass that data as a

Stretch() Blends between views through various stretch-style reveals, with properties for duration
and stretchStyle (hide, push, spin)

Strips() Blends between views with striped effect, with properties for duration and motion

Wheel() Blends between views via wheel spokes emanating from the element center, with proper-
ties for duration and spoke size (spokes)

ZigZag() Blends between views via removal of rows of bricks, with properties for duration and size
(gridSizeX, gridSizeY)

Table 12-4. IE new-style transition filters (continued)

Filter name Description

12.13 Drawing Charts in the Canvas Element | 385

search string to the blank page (see Recipe 10.6). A script in the blank page parses
the location.search data to navigate to the next content slide, causing the exit transi-
tion to fire en route.

See Also
Recipe 10.6 for passing data between pages via URLs; Recipe 15.5 for a DHTML slide
show; for complete details on IE transition types and their properties, visit http://
msdn.microsoft.com/workshop/author/filter/filters.asp.

12.13 Drawing Charts in the Canvas Element

Problem
You want to draw circles, lines, and filled shapes on the client without resorting to
server programming.

Solution
Use the canvas element in Mozilla 1.8 or later, Safari 2 or later, and Opera 9 or later
to provide a rectangular space on the page in which scripts can draw freeform. Only
a minimal amount of HTML is needed to plant the element where you want it:

<canvas id="myCanvas" height="400" width="500"></canvas>

All the work of drawing inside the element is controlled by scriptable methods of the
rendering context object within the element:

function draw() {
 var canvas = document.getElementById("myCanvas");
 var ctxt = canvas.getContext("2d");
 // invoke methods on ctxt object here
}

Thus far, only a two-dimensional context has been implemented in supporting
browsers.

Discussion
The canvas mechanism is documented in a recommended standard authored by the
Web Hypertext Application Technology Working Group (WHATWG). It offers a
wide range of drawing capabilities, but it helps to have a good grounding in algebra
and geometry to understand how the more complex operations work. Table 12-5
lists the properties and methods of the rendering context object.

Table 12-5. Properties and methods of the canvas context object

Property/Method Description

canvas Reference to current canvas object

fillStyle Color, gradient, or pattern for shape fill

386 | Chapter 12: Visual Effects for Stationary Content

globalAlpha Transparency level for all items

globalCompositeOperation Masking type

lineCap Line end point style

lineJoin Style of line joints at meeting point

lineWidth Line thickness

miterLimit Miter line joint ratio

shadowBlur Shadow depth

shadowColor Shadow color

shadowOffsetX Horizontal shadow width

shadowOffsetY Vertical shadow width

strokeStyle Color, gradient, or pattern for shape outline

arc(x, y, radius, startAngle, endAngle,
counterClockwiseFlag)

Specifies an arc path

arcTo(x1, y1, x2, y2, radius) Specifies arc path from current point

beginPath() Resets context path

bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y) Specifies cubic Bézier curve path

clearRect(x, y, width, height) Erases rectangular region

clip() Creates clipping region of current path

closePath() Adds straight line from current point to first path point

createLinearGradient(x0, y0, x1, y1) Generates CanvasGradient object for fillStyle

createPattern(imageObjectRef, "repeatStyle") Generates CanvasPattern object for fillStyle

createRadialGradient(x0, y0, r0, x1, y1, r1) Generates CanvasGradient object for fillStyle

drawImage(imageOrCanvas, sx, sy, sw, sh, dx,
dy, dw, dh)

Copies imported image to context

fill() Fills current path space with fillStyle specs

fillRect(x, y, width, height) Fills rectangle with fillStyle specs

lineTo(x, y) Adds line to path from current point

moveTo(x, y) Moves point to specific location

quadraticCurveTo(cp1x, cp1y, x, y) Specifies quadratic Bézier curve path

rect(x, y, width, height) Creates path for a rectangle

restore() Pops topmost state from internal stack

rotate(angle) Rotates context within canvas

save() Pushes current state onto internal stack

scale(x, y) Adjusts scale of context

stroke() Draws current path

strokeRect(x, y, width, height) Draws rectangle

translate(x, y) Moves origin point of context

Table 12-5. Properties and methods of the canvas context object (continued)

Property/Method Description

12.13 Drawing Charts in the Canvas Element | 387

The basic operation of drawing starts with a new path (beginPath()), which sets the
current point to 0,0 within the canvas context. You then move the point to a starting
coordinate for your drawing, specify a series of movements of the point (either to
draw arcs, lines, or shapes), and then cause the specified path to be drawn in the can-
vas (stroke()). For example, the following function draws a yellow-filled smiley face
inside a canvas element whose ID is myCanvas:

function drawSmiley() {
 var canvas = document.getElementById("myCanvas");
 var ctxt = canvas.getContext("2d");
 // set fill color to yellow
 ctxt.fillStyle = "rgb(255,225,0)";
 // reset current point to 0,0
 ctxt.beginPath();
 // two-pixel thick line to start
 ctxt.lineWidth = 2;
 // move current point to starting point for big circle
 ctxt.moveTo(125, 75);
 // specify path for big head with a 50-pixel radius
 ctxt.arc(75,75,50,0,Math.PI*2,true);
 // fill it with fillStyle (yellow) and render
 ctxt.fill();
 // move current point to start left eye
 ctxt.moveTo(65,65);
 // specify path for left eye with 5-pixel radius
 ctxt.arc(60,65,5,0,Math.PI*2,true);
 // and now to the right eye
 ctxt.moveTo(95,65);
 ctxt.arc(90,65,5,0,Math.PI*2,true);
 // render the two eye circles
 ctxt.stroke();
 // start a new path
 ctxt.beginPath();
 // move point to begin smile arc
 ctxt.moveTo(110,75);
 // make it wider than other lines thus far
 ctxt.lineWidth = 4;
 // specify arc for smile
 ctxt.arc(75,75,35,0,Math.PI,false);
 // render it
 ctxt.stroke();
}

A smiley face may be cute, but there are more formal uses for drawing, such as creat-
ing a dynamic pie chart on a web page. For this example, we’ll create a 200 × 200
canvas and provide four select elements to allow the user to change value for each of
four pie chart wedges. Figure 12-3 shows the result.

The HTML portion is simplicity itself, consisting of nothing more than the canvas
element and the “controller” holding the four select elements. I chose arbitrary val-
ues for each control. The four values don’t have to add up to 100 because the scripts
calculate the relative proportions from the total.

388 | Chapter 12: Visual Effects for Stationary Content

<p>
<canvas id="myCanvas" height="200" width="200"></canvas>
</p>
<div id="pieController">
<form>
<div id="data1">Data Point One: <select id="select1" class="selector">
<option value="10">10</option>
<option value="30">30</option>
<option value="50">50</option>
<option value="70">70</option></select></div>
<div id="data2">Data Point Two: <select id="select2" class="selector">
<option value="5">5</option>
<option value="25">25</option>
<option value="50">50</option>
<option value="88">88</option></select></div>
<div id="data3">Data Point Three: <select id="select3" class="selector">
<option value="20">20</option>
<option value="40">40</option>
<option value="60">60</option>
<option value="80">80</option></select></div>
<div id="data4">Data Point Four: <select id="select4" class="selector">
<option value="10">10</option>
<option value="20">20</option>

Figure 12-3. Dynamic pie chart and controller

12.13 Drawing Charts in the Canvas Element | 389

<option value="50">50</option>
<option value="100">100</option></select></div>
</form>
</div>

Some style sheet rules apply background colors to each control to match the color to
be rendered for that controller’s value in the pie chart. I also surround the canvas
with a one-pixel border and specify a white background. Without a border or back-
ground specification, the canvas element blends into the background (making what-
ever content is drawn within it to appear as if it is part of the HTML document).

canvas {border: 1px black solid; background-color: white}
#pieController {width: 196px;
 border: 1px solid black;
 padding: 2px;
 font-family: Arial;
 font-weight: bold;
 text-align: center
 }
.selector {padding: 2px; margin: 2px}
#data1 {background-color: rgb(51, 255, 0)}
#data2 {background-color: rgb(255, 51, 51)}
#data3 {background-color: rgb(51, 204, 255)}
#data4 {background-color: rgb(255, 255, 0)}

With the help of the eventsManager.js library, the script binds an event handler func-
tion (preparePie()) to each of the select elements (for the change event) and also
immediately draws a pie chart using default values, as you’ll see in a moment:

function setEvents() {
 addEvent(document.getElementById("select1"), "change",
 preparePie, false);
 addEvent(document.getElementById("select2"), "change",
 preparePie, false);
 addEvent(document.getElementById("select3"), "change",
 preparePie, false);
 addEvent(document.getElementById("select4"), "change",
 preparePie, false);
}

addOnLoadEvent(setEvents);
addOnLoadEvent(function() {drawPie()});

Specifying and drawing the pie chart are divided into two functions. The first,
preparePie(), is the one that is invoked by the select elements. This function
extracts all the currently chosen values, and packages them into an array that gets
sent to the actual drawing function, drawPie(). By separating the drawing operation
from the form extraction, I allow the drawing function to be invoked from other
sources, such as the load event.

function preparePie(evt) {
 evt = evt || window.event;
 var elem = evt.target || evt.srcElement;

390 | Chapter 12: Visual Effects for Stationary Content

 var form = elem.form;
 var data = new Array();
 for (var i = 0; i < form.elements.length; i++) {
 data.push(form.elements[i].value);
 }
 drawPie(data);
}

The drawing function makes a few assumptions for this example. First, there are
always four wedges to this pie, each of which has a unique color. Second, the size of
the canvas is 200 × 200, meaning that the center point will be at 100,100, offering
enough space for an 80-pixel radius pie chart to be drawn. Of course, all of these
aspects can be algorithmically determined for a more flexible version, but there is
enough going on in this example that it’s best to simplify peripheral items. With
those notions in mind, the drawPie() function follows:

function drawPie(data) {
 var ctxt = document.getElementById("myCanvas").getContext("2d");
 var data = data || [10, 5, 20, 10];
 var total = sumData(data);
 var colors = ["rgb(51, 255, 0)", "rgb(255, 51, 51)", "rgb(51, 204, 255)",
"rgb(255, 255, 0)"];
 var wedges = new Array();
 var currAngle = 0;
 var centerX = 100;
 var centerY = 100;
 var radius = 80;
 var pct;

 // accumulate pie wedge parameters
 for (var i = 0; i < data.length; i++) {
 pct = data[i]/total;
 wedges[i] = {
 startAngle : currAngle * Math.PI * 2,
 endAngle : (currAngle += pct) * Math.PI * 2
 };
 }
 // draw pie wedges
 ctxt.save();
 for (i = 0; i < wedges.length; i++) {
 ctxt.fillStyle = colors[i];
 ctxt.beginPath();
 ctxt.moveTo(centerX, centerY);
 ctxt.arc(centerX, centerY, radius, wedges[i].startAngle - Math.PI/2,
 wedges[i].endAngle - Math.PI/2, false);
 ctxt.closePath();
 ctxt.fill();
 }
 ctxt.restore();
}

Numerous local variables are initialized at the top of the function. The most impor-
tant of all is obtaining a reference to the rendering context object (ctxt), whose
methods make the drawing possible later. If there is any incoming data, it arrives as

12.13 Drawing Charts in the Canvas Element | 391

an array. Because we use the sum of those values as our “100%,” the task of getting
that total is passed to an external function, sumData():

function sumData(array) {
 var result = 0;
 for (var i = 0; i < array.length; i++) {
 result += parseFloat(array[i]);
 }
 return result;
}

The focus of the drawPie() function is to provide parameters for the canvas con-
text’s arc() method. The method specifies an arc within the context anchored to a
point that would be the center of a circle if the arc continued to complete a circle.
For the pie chart, that is the center of the pie. Also needed is the distance from the
center—the radius—at which the arc path is made. The arc extends around the cir-
cle between two points represented as the start and end angles, with an angle of 0
being straight up from the center point.

After the local variables are defined in drawPie(), the data is used to calculate the
start and end angles of each wedge of the pie (assuming the total comes to a full cir-
cle). These values for each wedge are stored as properties of a custom object, and the
wedge objects are collected in the wedges array.

With the angles in hand, the drawing begins by pushing the current context onto an
internal canvas context stack (in case you interrupt some other context path to draw
the pie chart wedges). Then, while iterating through the array of wedge objects, the
script assigns a fill color and starts specifying the path for each wedge, beginning by
moving the current point to the chart’s center, defining the arc’s path, and closing
the path (which finds its way back to the path’s start point in the center. The fill()
method renders the wedge. After all the wedges are rendered, the earlier context is
popped from the internal stack.

Despite what seems to be an onerous process, it operates very quickly. Changes to
the pie chart in response to selections are almost instantaneous, even though the
entire chart is being redrawn.

If you want to add a legend or other labels to the chart, you can do so with absolute-
positioned HTML elements in front of the canvas element. As you can tell from the
range of properties and methods in Table 12-5, you can create all types of bar and
line charts, including those with smooth curves. Some designers have created
gauges and dials, as well as analog clocks with ticking second hands. Making the
leap from artistic design to the math needed to draw those designs is perhaps the
biggest challenge.

For more details about the canvas element, visit Mozilla’s tutorial on the subject at
http://developer.mozilla.org/en/docs/Canvas_tutorial.

392

Chapter 13CHAPTER 13

Positioning HTML Elements 13

13.0 Introduction
When a typical HTML page loads, the browser flows the content according to its
interpretation of how each element should appear on the page. Some elements have
attributes that control various dimensions, either in terms of pixels or percentages of
the available space, but again, the designer is at the mercy of the rendering engine of
the browser. The tradition of HTML as a passive publishing medium is much cruder
than print publishing, where the designer is in total control of every millimeter of
space on the page.

Precise HTML content layout is often left up to twisting HTML tables and transpar-
ent images inside table cells to make sure the position relationships, say, between an
image and its caption, meet the designer’s expectations. In fact, if you play with
WYSIWYG (What You See is What You Get) web page layout programs the same
way you use print publishing layout tools (such as PageMaker or QuarkXPress), a
mass of HTML table-related code frequently accrues behind the pretty page. Manu-
ally tweaking that gnarled code can sometimes lead to tears.

To fill the gap by providing publishing-quality control over content appearance, the
style sheet concept has gained a strong footing in web publishing, particularly with
the W3C-sponsored Cascading Style Sheets (CSS) recommendation. Not only is the
raw content—the words and images, primarily—separated from the specifications of
how the content is rendered, but the publishing world has contributed to mapping
out the nature and breadth of CSS properties that can be applied to content.

Not long after the first release of a CSS recommendation, a supplementary standard
appeared, covering the notion of positioning HTML content. Element positioning
became part of the main CSS Level 2 recommendation. At its root, CSS positioning
lets you specify the exact coordinates of an element within the document space. A
positioned element exists in its own plane above the page, much like the acetate sheet
that cartoon animators once used to create characters that moved (in succeeding ace-
tate cels) in front of a fixed background. Before CSS positioning, each rendered

Introduction | 393

HTML element occupied its own rectangular space on the page. With CSS position-
ing, you may overlap elements, which means that stacking order is also controllable.
And since each positioned element lives in its own plane, positioned elements may
also hide themselves and reappear without disturbing the layout of other elements.

When you add the scripting capabilities of modern browsers to element positioning
concepts, you open up a door to a wide array of user interface possibilities—page
features that extend far beyond the Web’s original publishing concepts. Scripts can
make an element jump from one position to another or glide slowly along a path
(albeit not with the same level of speed control as is possible in dedicated anima-
tion technologies, such as Macromedia Flash). Interaction with mouse events
allows scripts to track the location of an element along with the position of the
mouse cursor on the screen for actual element dragging on the page. Another kind
of positioning animation lets you create blocks of body text that automatically
scroll for page visitors.

Positioning Scope
As you determine how you might wish to employ element positioning on your page,
you have to consider the range of options you have with regard to the positioning
context you wish to use. The most common positioning context is that of the entire
space occupied by the web page inside the browser window. In this scenario, treat
the area occupied by the page’s content as your layout space, within which you can
define the location of one or more elements, each residing in its own plane. This
space has a two-dimensional coordinate system, with point 0,0 being the very top left
of the page (the top-left corner of the browser’s content region if the page is scrolled
all the way to the top and left). Numbers for the coordinates increase as you move to
the right and downward.

Another positioning context can be an already-positioned element. In other words,
you can position an element inside another positioned element. In this case, the
more nested element uses the layout space of the outer element as its context. The
outer element presents its own coordinate system, with point 0,0 being the top-left
corner of the element. If the outer element is moved, the inner nested element
moves right along with it, maintaining its interior coordinates relative to its posi-
tioning context.

An important design consideration to keep in mind is that even though a positioned
element seems to float in front of all other content, it does not act like a browser win-
dow. If you position an element so that some of its area extends beyond the visible
area of a web page, the positioned element is clipped to the edge of the window,
rather than overlapping the browser’s scrollbars or other window chrome. In fact,
positioning an element outside of the regular document flow is likely to force the
browser to resize the page, extending it in such a way as to display browser scrollbars
where none existed before. This kind of clipping, however, does not occur when you

394 | Chapter 13: Positioning HTML Elements

position an element within another positioned element, unless you explicitly set the
clipping rectangle of the outer container.

Positioning Types
You have a few positioning types to choose from. A helpful type, which is not imple-
mented in IE for Windows through version 6, is fixed positioning. This style allows
an element to remain in a constant location in the content region of the browser win-
dow, regardless of page scrolling. Typical applications for a fixed element include
floating control panels and page watermarks (similar to the network symbols that
occupy the corners of many television channel screens). More common are two
other types, whose names do not always convey their meaning: absolute positioning
and relative positioning. Keeping the characteristics of these two types straight is
important.

An absolute-positioned element is removed from the rest of the page’s rendering
flow, regardless of its location within the source code. A nonnested, absolute-posi-
tioned element uses the page coordinate space as its positioning context (more about
this in a moment, because it’s not exactly that simple). Any other HTML in the
source code flows on the page as if the positioned element were not there. In fact, if
you instruct an element to be positioned but fail to give it coordinates to follow, the
positioned element appears at the top-left corner of the page, on top of whatever
other content happens to be in that location. And yet, the element containment hier-
archy with respect to nodes and their children in the document’s object model still
exists.

In contrast to the absolute-positioned element is the relative-positioned element. A
significant difference between absolute- and relative-positioned elements is that a rel-
ative-positioned element influences the rendering flow of the main document con-
tent. The positioning context of a relative-positioned element is the location in the
main document where the element normally appears if it is not positioned. In fact, if
you specify an element as being relative-positioned and don’t supply any coordi-
nates (defaulting to 0,0), the element looks no different than if it were a non-posi-
tioned element. The difference, however, comes when you assign coordinates to the
element. It moves (relative to its original position), and the surrounding content does
not cinch up around the unused space.

A valuable application of a relative-positioned element is to provide a positioning
context for some other absolute-positioned element. This lets the relative-positioned
element flow into the page as normal (influenced by the browser window size, style
sheet settings, and the like). But then a nested absolute-positioned element can
define its location relative to that positioning context, such as 20 pixels below the
end of a paragraph whose final period is a relative-positioned span element (see
Recipe 13.2).

Introduction | 395

Evolving Contexts
In the first versions of Internet Explorer for Windows that permitted element posi-
tioning, Microsoft designed parts of its system in a way that ultimately was not
adopted by the W3C in its CSS recommendation. To get back on the standards
track, IE 6 implemented CSS more in line with the standard. But some of these
changes could make older content—which looked and operated fine in IE 4 through
5.5—render in unexpected ways.

To bridge the gap, IE 6 (and now IE 7) includes two modes, one for backward com-
patibility and one for CSS compatibility. By default, IE 6 and 7 operate in backward-
compatibility mode. But to switch them into CSS-compatibility mode, you need to
define a DOCTYPE element at the top of the document with certain characteristics.
Other modern browsers similarly have two modes, although the differences between
the two are less apparent for typical positioning tasks. See Recipe 11.13 for details
about defining an appropriate DOCTYPE element.

One important difference between the two modes in IE 6 and 7 is that the primary
positioning context for an unnested element moves outward from the body element
(as in IE 4 through 5.5) to the html element, which represents the full rendered docu-
ment context. The difference is more than just symbolic because the body element in
IE has some built-in margins that can affect precise positioning when trying to align
positioned and non-positioned elements (see Recipe 13.6).

Incompatibility Hazards
Although far less of an issue than it once was, you need to be aware of potential
problems with older and underpowered browsers (e.g., in some cell phones) when
you include positioned elements in the page. If a browser doesn’t support the CSS
positioning properties, the elements you have set aside as positioned elements ren-
der on the page in their source code order. Not only will your carefully positioned
elements not be where you want them to be, but they will likely confuse the visitor.

Counteracting this problem results in a variety of compromises, depending on your
solution. One choice is to limit page access to browsers that support CSS positioning.

Another possibility is to use scripts to generate the HTML for positioned content
dynamically while the page loads. The script can verify that the browser supports
CSS and basic W3C DOM syntax, and then use DOM element creation techniques
to create the HTML. Of course, your page must be able to stand on its own without
the positioned content to be meaningful to users of other older browsers. A poten-
tial downside to this technique is that search engines will not detect any links in the
dynamically generated content.

396 | Chapter 13: Positioning HTML Elements

Units of Measure
Designers from the publishing world are accustomed to laying out content in a vari-
ety of units of measure, such as inches, centimeters, picas, points, and ems. CSS sup-
ports all of these units of measure for length values, but for the most part, they are
difficult to work with in a medium that most commonly outputs to a video screen. In
computer monitors, the pixel is king. It is also indivisible, so that any measure that
attempts to split hairs in units other than pixels is likely doomed to failure.

Even if you intend the output to go to a printer, you may not get the results you
expect if you specify units other than pixels. Browsers perform a lot of estimations,
conversions, and interpolations between the screen-rendered output and what they
send to a printer. It’s true that you might get lucky with a design template in other
units on a particular browser, but such results are the exception rather than the rule.

The Erstwhile <layer> Tag
Navigator 4 was the first browser to implement the notion of positioned elements,
which it did via a then-new element called the layer. This effort pre-dated the W3C’s
effort to codify CSS positioning. When the standards body finished its work, it
decided to steer clear of the <layer> tag and all associated coding. The Navigator 4
browser was a popular version, and developers created a lot of content that not only
used the proprietary <layer> tag, but also the required Navigator 4 DOM syntax for
referencing such elements to adjust their properties (e.g., to move or hide an ele-
ment). In the meantime, Microsoft came up with its own referencing scheme,
whereby any element (positioned or otherwise) could be referenced through the
document.all collection. Equalizing references to the positioned-element properties
of IE and NN 4 browsers was a part of any DHTML page at the time.

With the layer element eliminated from the standardized HTML grammar before it
ever got there, developers of the next generation of Netscape browser made the diffi-
cult but ultimately correct decision to drop support for the <layer> tag and DOM
reference scheme from the Mozilla browser. Lots of Netscape-specific scripts broke
during the transition, but thanks to the W3C DOM and support for it in current
browsers, it is now possible to use the same HTML- and DOM-referencing syntax to
produce and manipulate positioned elements on a wide range of browsers, including
IE 5 or later. The W3C syntax is a stable development platform going forward.

One legacy of the Navigator 4 effort, however, is that positioned elements are fre-
quently called layers, regardless of the browser platform. It is a convenient metaphor
for the way these positionable, floating elements behave, and you will find this usage
in this book as well.

13.1 Making an Element Positionable in the Document Space | 397

13.1 Making an Element Positionable in the
Document Space

Problem
You want one or more elements in your page to overlap other elements or appear in
a specific location on the page out of rendering order.

Solution
Assign the absolute value to the position CSS property. You can do this in a sepa-
rate style declaration:

<style type="text/css">
#someElementID {position: absolute; left: 100px; top: 100px}
</style>

Or you can include the style declaration as an attribute to an element:

<div id="myDIV" style="position:absolute; left:100px; top:100px">Content Here</div>

Give coordinates for the top-left corner of the element relative to the top-left corner
of the document.

Discussion
There is nothing particularly dynamic about a positioned element, except that it is
loaded with potential for scripting activity in motion, visibility, stacking, and clip-
ping. In today’s browsers the positioned element itself can be of any renderable
HTML element, and may thus have event handler assignments (perhaps for mouse
dragging) and any HTML content. Even an inline element (such as a span element)
becomes a block-level element when it is positioned (even if the display style prop-
erty value doesn’t necessarily change to reflect its behavior).

As you will see in Recipe 13.3, scripted modifications to the position of an element
are performed via the style property of the element. Using W3C DOM element refer-
encing, for example, allows you to adjust the top coordinate of the example as follows:

document.getElementById("myDIV").style.top = "200px";

Note that the position property of the style object is read-only, which means that
once an element renders according to its associated position CSS property, the value
cannot be changed. Therefore, you cannot turn an inline element into a positioned
element simply by altering the value assigned to the style.position property.

See Also
Recipe 13.3 for a script library of functions to control positioned elements;
Chapter 11 for style sheet assignment syntax.

398 | Chapter 13: Positioning HTML Elements

13.2 Connecting a Positioned Element to a Body
Element

Problem
You want an element to render on the page a fixed number of pixels vertically and/or
horizontally distant from an element that flows in the main document.

Solution
Create a positioning context with a relative-positioned container around the primary
element, and embed an absolute-positioned element within the container. The fol-
lowing code binds an absolute-positioned photo copyright image to the photo image:

<div style="position:relative; margin-left:20%">
 <img src="kitty.jpg" height="511" width="383" style="border:4px groove darkred"
 alt="My Kitty" />
 <img src="photoCopyright.jpg" style="position:absolute; top:519px; left:263px"
 alt="Copyright 2003 Snaps McGraw" />
</div>

Discussion
The result appears in Figure 13-1. The relative-positioned container has a percentage
value for its margin, so its precise horizontal position varies with the width of the
browser window. But no matter where the photo image appears on the page, the
copyright image will appear immediately below it and flush right.

In the Solution, the coordinates of the absolute-positioned element need to be
adjusted for each inline image because the coordinates depend on the size of the
image. The 0,0 point of the coordinate system is determined by the location of the
first element encased in the relative-positioned div element. Although the main
image has a height of 511 pixels, the image has a four-pixel wide border around it.
For the copyright image to be clear of the border, its top coordinate must be 511 plus
the width of the top and bottom borders, for a total of 519 pixels. The left position is
determined by the width of the main image (383 pixels) minus the width of the copy-
right image (120 pixels).

The choice of the div element as a container is driven by the block-level nature of the
image in the layout. A div element is a convenient block-level container that lets you
create an arbitrary HTML container wherever one is needed (see Recipe 13.4).
Because an img element is not a container, it cannot be made a relative-positioned
element that can contain an absolute-positioned element—thus the need for the div
container.

13.2 Connecting a Positioned Element to a Body Element | 399

This technique is also useful for overlapping elements. For example, instead of a
copyright image, the page owner might prefer to overlay a transparent image that
includes a subtle watermark-looking credit line. If the credit image is the same height
and width as the underlying image, its absolute-positioned coordinates can be set to
0,0, corresponding to the top-left corner of the main image. However, if the water-
mark is a smaller image, it can be positioned anywhere on the image so that it is
readable, yet doesn’t detract from the view of the image.

See Also
The introduction to this chapter to understand the differences between absolute- and
relative-positioned elements; Recipe 13.4 to help you know when to use a div or span
element for positioning.

Figure 13-1. Binding an absolute-positioned element (copyright notice) to a relative-positioned
element (photo)

400 | Chapter 13: Positioning HTML Elements

13.3 Controlling Positioning via a DHTML JavaScript
Library

Problem
You want a reusable library of routines that ease the scripted positioning of elements
in a page.

Solution
Use the DHTML library, DHTML3API.js (shown in Example 13-1 in the Discus-
sion), to simplify cross-browser scripting of positionable elements. The library is
compatible with IE 4 or later and Navigator 4 or later. The library creates one global
object, called DHTMLAPI, which has numerous methods your scripts invoke for com-
mon positioning tasks. It provides API routines for moving, hiding/showing, and
modifying the stacking order of positioned elements. For example, you can move an
absolute-positioned element whose ID is helpWindow to a location 300 pixels to the
right and 200 pixels down from the top-left corner of the document with the follow-
ing function call:

DHTMLAPI.moveTo("helpWindow", 300, 200);

Additional utility routines in the library retrieve object references given an element’s
ID, dimensions, and positions, rendered style values, and some browser window
dimensions.

If you save this library under the name DHTM3LAPI.js, you can link it into any doc-
ument with the following tag:

<script src="DHTML3API.js"></script>

The library is self-initializing if you load the eventsManager.js external library before
this library. Do not insert load event handlers into the <body> tag, as discussed in
Recipe 9.3.

Discussion
Example 13-1 shows the full DHTML3API.js library. In addition to providing a set of
cross-browser tools for controlling positioned elements, it also defines five Boolean
properties about the browser environment that your other scripts may use.

Example 13-1. The DHTML3API.js library

// DHTML3API.js custom API for cross-platform
// object positioning by Danny Goodman (http://www.dannyg.com).
// Release 3.0. Supports NN4, IE, and W3C DOMs.

var DHTMLAPI = {
 browserClass : new Object(),

13.3 Controlling Positioning via a DHTML JavaScript Library | 401

 init : function () {
 this.browserClass.isCSS = ((document.body && document.body.style) ? true : false);
 this.browserClass.isW3C = ((this.browserClass.isCSS && document.getElementById) ?
 true : false),
 this.browserClass.isIE4 = ((this.browserClass.isCSS && document.all) ?
 true : false),
 this.browserClass.isNN4 = ((document.layers) ? true : false),
 this.browserClass.isIECSSCompat = ((document.compatMode &&
 document.compatMode.indexOf("CSS1") >= 0) ? true : false)
 },
 // Seek nested NN4 layer from string name
 seekLayer : function (doc, name) {
 var elem;
 for (var i = 0; i < doc.layers.length; i++) {
 if (doc.layers[i].name == name) {
 elem = doc.layers[i];
 break;
 }
 // dive into nested layers if necessary
 if (doc.layers[i].document.layers.length > 0) {
 elem = this.seekLayer(doc.layers[i].document, name);
 if (elem) {break;}
 }
 }
 return elem;
 },

 // Convert element name string or object reference
 // into a valid element object reference
 getRawObject : function (elemRef) {
 var elem;
 if (typeof elemRef == "string") {
 if (this.browserClass.isW3C) {
 elem = document.getElementById(elemRef);
 } else if (this.browserClass.isIE4) {
 elem = document.all(elemRef);
 } else if (this.browserClass.isNN4) {
 elem = this.seekLayer(document, elemRef);
 }
 } else {
 // pass through object reference
 elem = elemRef;
 }
 return elem;
 },
 // Convert element name string or object reference
 // into a valid style (or NN4 layer) object reference
 getStyleObject : function (elemRef) {
 var elem = this.getRawObject(elemRef);
 if (elem && this.browserClass.isCSS) {
 elem = elem.style;
 }
 return elem;
 },

Example 13-1. The DHTML3API.js library (continued)

402 | Chapter 13: Positioning HTML Elements

 // Position an element at a specific pixel coordinate
 moveTo : function (elemRef, x, y) {
 var elem = this.getStyleObject(elemRef);
 if (elem) {
 if (this.browserClass.isCSS) {
 // equalize incorrect numeric value type
 var units = (typeof elem.left == "string") ? "px" : 0;
 elem.left = x + units;
 elem.top = y + units;
 } else if (this.browserClass.isNN4) {
 elem.moveTo(x,y);
 }
 }
 },

 // Move an element by x and/or y pixels
 moveBy : function (elemRef, deltaX, deltaY) {
 var elem = this.getStyleObject(elemRef);
 if (elem) {
 if (this.browserClass.isCSS) {
 // equalize incorrect numeric value type
 var units = (typeof elem.left == "string") ? "px" : 0;
 if (!isNaN(this.getElementLeft(elemRef))) {
 elem.left = this.getElementLeft(elemRef) + deltaX + units;
 elem.top = this.getElementTop(elemRef) + deltaY + units;
 }
 } else if (this.browserClass.isNN4) {
 elem.moveBy(deltaX, deltaY);
 }
 }
 },

 // Set the z-order of an object
 setZIndex : function (obj, zOrder) {
 var elem = this.getStyleObject(obj);
 if (elem) {
 elem.zIndex = zOrder;
 }
 },

 // Set the background color of an object
 setBGColor : function (obj, color) {
 var elem = this.getStyleObject(obj);
 if (elem) {
 if (this.browserClass.isCSS) {
 elem.backgroundColor = color;
 } else if (this.browserClass.isNN4) {
 elem.bgColor = color;
 }
 }
 },

Example 13-1. The DHTML3API.js library (continued)

13.3 Controlling Positioning via a DHTML JavaScript Library | 403

 // Set the visibility of an object to visible
 show : function (obj) {
 var elem = this.getStyleObject(obj);
 if (elem) {
 elem.visibility = "visible";
 }
 },

 // Set the visibility of an object to hidden
 hide : function (obj) {
 var elem = this.getStyleObject(obj);
 if (elem) {
 elem.visibility = "hidden";
 }
 },

 // return computed value for an element's style property
 getComputedStyle : function (elemRef, CSSStyleProp) {
 var elem = this.getRawObject(elemRef);
 var styleValue, camel;
 if (elem) {
 if (document.defaultView && document.defaultView.getComputedStyle) {
 // W3C DOM version
 var compStyle = document.defaultView.getComputedStyle(elem, "");
 styleValue = compStyle.getPropertyValue(CSSStyleProp);
 } else if (elem.currentStyle) {
 // make IE style property camelCase name from CSS version
 var IEStyleProp = CSSStyleProp;
 var re = /-\D/;
 while (re.test(IEStyleProp)) {
 camel = IEStyleProp.match(re)[0].charAt(1).toUpperCase();
 IEStyleProp = IEStyleProp.replace(re, camel);
 }
 styleValue = elem.currentStyle[IEStyleProp];
 }
 }
 return (styleValue) ? styleValue : null;
 },

 // Retrieve the x coordinate of a positionable object
 getElementLeft : function (elemRef) {
 var elem = this.getRawObject(elemRef);
 var result = null;
 if (this.browserClass.isCSS || this.browserClass.isW3C) {
 result = parseInt(this.getComputedStyle(elem, "left"));
 } else if (this.browserClass.isNN4) {
 result = elem.left;
 }
 return result;
 },

Example 13-1. The DHTML3API.js library (continued)

404 | Chapter 13: Positioning HTML Elements

 // Retrieve the y coordinate of a positionable object
 getElementTop : function (elemRef) {
 var elem = this.getRawObject(elemRef);
 var result = null;
 if (this.browserClass.isCSS || this.browserClass.isW3C) {
 result = parseInt(this.getComputedStyle(elem, "top"));
 } else if (this.browserClass.isNN4) {
 result = elem.top;
 }
 return result;
 },

 // Retrieve the rendered width of an element
 getElementWidth : function (elemRef) {
 var result = null;
 var elem = this.getRawObject(elemRef);
 if (elem) {
 if (elem.offsetWidth) {
 if (elem.scrollWidth && (elem.offsetWidth != elem.scrollWidth)) {
 result = elem.scrollWidth;
 } else {
 result = elem.offsetWidth;
 }
 } else if (elem.clip && elem.clip.width) {
 // Netscape 4 positioned elements
 result = elem.clip.width;
 }
 }
 return result;
 },

 // Retrieve the rendered height of an element
 getElementHeight : function (elemRef) {
 var result = null;
 var elem = this.getRawObject(elemRef);
 if (elem) {
 if (elem.offsetHeight) {
 result = elem.offsetHeight;
 } else if (elem.clip && elem.clip.height) {
 result = elem.clip.height;
 }
 }
 return result;
 },

 // Return the available content width space in browser window
 getInsideWindowWidth : function () {
 if (window.innerWidth) {
 return window.innerWidth;
 } else if (this.browserClass.isIECSSCompat) {
 // measure the html element's clientWidth
 return document.body.parentElement.clientWidth;

Example 13-1. The DHTML3API.js library (continued)

13.3 Controlling Positioning via a DHTML JavaScript Library | 405

The purpose of this API is to present a single script interface for what can be night-
marish compatibility issues when trying to address three position-aware document
object models: IE 4, NN 4, and W3C DOM. Your scripts invoke simple, one-size-
fits-all functions, and the library takes care of the syntactic and conceptual differ-
ences among the three object models.

The DHTML library shown here first appeared in bonus downloads for Dynamic
HTML: The Definitive Reference (O’Reilly). It contains numerous functions that may
be invoked from other JavaScript code loaded in the same page. The utility functions
you are most likely to invoke directly are:

DHTMLAPI.moveTo(obj,x,y)
Moves an object to a coordinate point within its positioning context

DHTMLAPI.moveBy(obj,deltaX,deltaY)
Moves an object by the specified number of pixels along the x and y axes of the
object’s positioning context

DHTMLAPI.setZIndex(obj,zOrder)
Sets the z-index value of the object

DHTMLAPI.show(obj)
Makes the object visible

DHTMLAPI.hide(obj)
Makes the object invisible

 } else if (document.body && document.body.clientWidth) {
 return document.body.clientWidth;
 }
 return null;
 },

 // Return the available content height space in browser window
 getInsideWindowHeight : function () {
 if (window.innerHeight) {
 return window.innerHeight;
 } else {
 if (document.body.clientHeight != document.body.parentNode.clientHeight) {
 // measure the html element's clientHeight
 return document.body.parentNode.clientHeight;
 } else {
 return document.body.clientHeight;
 }
 }
 return null;
 }
}

addOnLoadEvent(function() {DHTMLAPI.init()});

Example 13-1. The DHTML3API.js library (continued)

406 | Chapter 13: Positioning HTML Elements

All functions require as a parameter something to let the function know which ele-
ment to operate on. Because the library cannot predict how your scripts may be ref-
erencing an element when the functions are needed, all functions welcome either
full-fledged object references or just the ID of the element (as a string). If you supply
only the ID, other internal functions obtain the correct reference needed to modify
the desired style properties. This works even for the peculiar way that Navigator 4
requires references to layer objects, rather than style properties.

To move a positioned element to a coordinate within its positioning context, sim-
ply invoke the DHTMLAPI.moveTo() method, passing as parameters a reference to
the element (or just its ID) and the left and top (x and y) coordinate points of the
destination:

DHTMLAPI.moveTo("moveableFeast", 340, 500);

To increment the location along one or both axes, you can use the moveBy() method.
For example, to move an element three pixels across and five pixels up, the state-
ment is as follows:

DHTMLAPI.moveBy("moveableFeast", 3, -5);

In the moveBy() method, positive values move the element to the right or downward;
negative values move the element to the left or upward.

Your scripts, of course, may invoke any of the functions of the library if they help the
cause. For example, two utility functions at the end of the library return the height
and width of the browser window’s content region. These values may be useful in
positioning or sizing an element under script control to the current browser window
size or proportion.

This library includes a self-initializing load event handler via the addOnLoadEvent()
mechanism of Recipe 9.3. You can have other libraries and scripts in the page add
other load event handlers to the queue in the same fashion without fear of collisions.

As with many .js libraries, you can eliminate the methods that you don’t use, and
even extract some methods as free-standing functions if you like. Loading a big
library to use only a few functions is a waste of bandwidth. Just exercise care that
you don’t remove helper methods invoked by the main methods you call directly.
For example, if you wanted to use only the moveBy() method, you also need the
init(), getStyleObject(), getRawObject(), getElementLeft(), and getElementTop()
methods as a supporting cast.

Browsers tend to restrict rendering of repositioned content until an execution
sequence completes execution. Therefore, even though repositioning an element
requires adjustments along two different axes, the user sees a single jump from one
position to another. For animation, you need to use the setInterval() mechanism to
force the browser to continually redraw the position along a path (see Recipes 13.9
and 13.10).

13.4 Deciding Between div and span Containers | 407

See Also
Most recipes later in this chapter and many recipes in later chapters utilize this API
for positioning tasks.

13.4 Deciding Between div and span Containers

Problem
You want to choose the optimum generic container for a positioned element.

Solution
Any container defined as an absolute- or fixed-position element becomes, for all
practical purposes, a block-level element. Therefore, it makes little difference in most
browsers whether you use div or span elements as arbitrary containers for positioned
content. Conceptually, however, it may help you identify positioned code in your
HTML if you use div elements for absolute- and fixed-position elements.

One significant exception is when you use a relative-positioned container around
inline content to create a positioning context for some other nested and positioned
content. The following example turns the trailing period of a paragraph into a posi-
tioning context so that some other, absolute-positioned content can maintain its
position relative to that period, regardless of the content flow of the page:

<p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim adminim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.

-- Greek text in Latin.

</p>

Discussion
Figure 13-2 shows the results of the Solution in two different browser windows, so
you can see how the absolute-positioned content maintains it position relative to the
trailing period.

The default behavior of a block-level element in HTML (such as a p or div element)
is to render the element at the start of the next line of content on the page; any subse-
quent element starts on the next line following the block-level element. This is why a
standard p element starts flush left on its own line in left-to-right language systems.
An inline element (such as an em or span element) does not affect the layout flow of
its own or surrounding content.

408 | Chapter 13: Positioning HTML Elements

If you use a span element as a container for an absolute- or fixed-position element,
the content removes itself from the regular document flow entirely and starts its own
block. But the CSS display property, which governs the rendering characteristics of
elements (with values such as block, inline, none, and so on), remains set to inline,
even though the positioned element has a lot of “blockness” about it.

By altering the value of an element’s style.display property, you can control the
flow characteristics of the element, over and above the default behavior. Typically,
this approach is used to give the appearance of inserting and/or removing an ele-
ment from the page. But you can turn a typically inline element into a truly block-
level element by assigning the value block to the style.display property.

See Also
Recipe 13.2 for the use of a relative-positioned container as a positioning context.

Figure 13-2. An absolute-positioned element inside a relative-positioned span element

13.5 Adjusting Positioned Element Stacking Order (Z-order) | 409

13.5 Adjusting Positioned Element Stacking Order
(Z-order)

Problem
You want to control the way an overlapping element appears in front of or behind
another element.

Solution
You can either use the DHTMLAPI.setZIndex() method from the DHTML library (Rec-
ipe 13.3) for backward-compatibility or, for all browsers that support the style prop-
erty of elements, adjust the style.zIndex property directly:

document.getElementById("myLayer").style.zIndex = "100";

Discussion
Turning an element into a positioned element automatically raises it to a layer in
front of the main document content. Unless the background of a layer is set to a
color or image, the element’s background is transparent by default, allowing content
underneath to be visible in the blank spaces.

If the stacking order of a positioned element doesn’t have to change during user
interaction with the page, you can simply set the initial value via the CSS z-index
property and be done with it. But there are times when scripts need to adjust the
stacking order. For example, if you have multiple draggable elements on the page
(see Recipe 13.11), you must ensure that the element being dragged is in front of all
other elements, including other positioned elements. Otherwise, the dragged item
will submarine beneath other positioned elements and befuddle the user. Once
dropped behind other items, the element may be lost.

Stacking rules are pretty simple. If any two elements have the same z-index value, the
elements stack in source code order, with the element that comes later in the source
code appearing in front of the earlier item. The default CSS z-index value for a posi-
tioned element is auto, which equates to zero. A negative value does not layer the ele-
ment behind the main content. An element with a higher z-index value appears in
front of elements with lower numbers. Thus, you can control the layering regardless
of source code order.

In the drag scenario just mentioned (and demonstrated in Recipe 13.11), the script
that responds to the mouse event signaling the activation of a draggable element
should raise the zIndex property value of the dragged element to a number guaran-
teed to be higher than all others. There is no practical limit to the value you assign.
Therefore, it’s not uncommon to assign an arbitrarily high number, such as 100 or
1,000, to an item that must be in front of all others. But once the user releases the

410 | Chapter 13: Positioning HTML Elements

dragged element, you need to restore the original value (which you should have pre-
served in a variable or custom property for later recall). This leaves room for the next
dragged item to be assigned that high number so it appears in front of all others.

Beware, however, of mixing positioned elements and form controls. Except in the
most recent browsers, you will encounter rendering conflicts between layers and sev-
eral types of form controls when the layers are intended to overlap those controls.
The most common offenders are text-based controls, such as text input elements,
textarea elements, and select elements (which frequently use text-editing innards to
display their content).

Unfortunately, when these conflicts arise, you can do nothing to make the layer dis-
play in front of the form control. Even the biggest number assigned to the zIndex
style property won’t help. If you cannot rework the design so that the overlap does
not occur, the only workaround is to hide the form controls whenever the layer is
visible. The best way to do this is to wrap the affected form in a relative-positioned
span, and then change its style.visibility property as needed. This keeps the rest of
the page from shifting around when the controls hide or show themselves.

See Also
Recipe 13.3 and its utility library for changing stacking order, among other DHTML
tasks.

13.6 Centering an Element on Top of Another Element

Problem
You want to position an element so that it is vertically and horizontally centered in
front of an element in the main document flow.

Solution
The following centerOnElement() function takes two arguments: the ID of the main
document element and ID of the positioned element to be placed there. The func-
tion is compatible with browsers that support W3C DOM element reference syntax:

function centerOnElement(baseElemID, posElemID) {
 baseElem = document.getElementById(baseElemID);
 posElem = document.getElementById(posElemID);

 var offsetTrail = baseElem;
 var offsetLeft = 0;
 var offsetTop = 0;
 // accumulate offset values
 while (offsetTrail) {
 offsetLeft += offsetTrail.offsetLeft;
 offsetTop += offsetTrail.offsetTop;

13.6 Centering an Element on Top of Another Element | 411

 offsetTrail = offsetTrail.offsetParent;
 }

 posElem.style.left = offsetLeft + parseInt(baseElem.offsetWidth/2) -
 parseInt(posElem.offsetWidth/2) + "px"
 posElem.style.top = offsetTop + parseInt(baseElem.offsetHeight/2) -
 parseInt(posElem.offsetHeight/2)+ "px"
}

Discussion
As simple as this operation may sound in theory, the code that accomplishes it must
compensate for issues affecting compatibility modes of Internet Explorer. Another
key point that makes this function generalizable is that it bases its measurements on
the rendered dimensions of both the static and positioned elements. If the elements
contain content that flows (such as text), the dimensions will likely differ with
browser window size and, in some browsers, font preferences that aren’t overridden
by document style sheets. This function reads the rendered dimensions before calcu-
lating sizes and locations.

The first part of the calculations obtains the absolute position of the non-positioned
base element, wherever it may render in the document. This is an iterative process
that accumulates the offsetLeft and offsetTop measures of the base element and any
elements that report in as offset parent elements. For many browsers, the base ele-
ment’s offset measures are sufficient. But IE 6 and 7 in CSS-compatibility mode need
to add the offset parent’s dimensions to get accurate coordinates. Looping through
the offsetParent trail takes care of the problem.

With the absolute location of the base element in hand, the final calculations estab-
lish the coordinates of the positioned element. To arrive at the value along any one
axis, the inset dimension is calculated by subtracting half the size of the positioned
element from half the size of the base element. Adding that difference to the abso-
lute coordinate of the base element provides the absolute coordinate of the centered,
positioned element.

Note that the function reads rendered data about both elements. This is possible
only after the page has loaded. If you want an item centered without user interac-
tion, invoke the function via a load handler.

You must also take into account the possibility that the user might resize the browser
window in such a way that the flow of the base content changes—along with the
position of the underlying element. Because there is no inherent connection between
the elements (as there is with nested relative- and absolute-positioned elements, as in
Recipe 13.2), you need to provide a resize event handler for the window that rein-
vokes the centering function. If multiple positioned elements are centered on multi-
ple base elements, the resize event handler can invoke a function that makes
repeated calls to centerOnElement(), each with the necessary pair of arguments.

412 | Chapter 13: Positioning HTML Elements

Bear in mind that the offset properties used in the centerOnElement() function are
not part of the W3C DOM. But nothing in DOM Level 2 provides the kind of vital
information needed for this kind of operation (and many other positioning tasks).
Although the properties were Microsoft inventions (first used in IE 4), Mozilla-based
browsers, Safari, and Opera also implement them.

See Also
Recipe 11.13 for IE 6 CSS-compatibility issues and how to govern which mode the
browser follows; Recipe 9.3 for setting up load event handlers.

13.7 Centering an Element in a Window or Frame

Problem
You want to center an element within the browser window or a frame of a frameset.

Solution
For optimum backward-compatibility, use the DHTML3API.js library described in
Recipe 13.3 to support the following generalizable centerOnWindow() function in IE 4
or later and Navigator 4 or later:

// Center a positionable element whose ID is passed as
// a parameter in the current window/frame, and show it
function centerOnWindow(elemID) {
 // 'obj' is the positionable object
 var obj = DHTMLAPI.getRawObject(elemID);
 // window scroll factors
 var scrollX = 0, scrollY = 0;
 if (document.body && typeof document.body.scrollTop != "undefined") {
 scrollX += document.body.scrollLeft;
 scrollY += document.body.scrollTop;
 if (document.body.parentNode &&
 typeof document.body.parentNode.scrollTop != "undefined" &&
 (document.body.scrollTop != document.body.parentNode.scrollTop)) {
 scrollX += document.body.parentNode.scrollLeft;
 scrollY += document.body.parentNode.scrollTop;
 }
 } else if (typeof window.pageXOffset != "undefined") {
 scrollX += window.pageXOffset;
 scrollY += window.pageYOffset;
 }
 var x = Math.round((DHTMLAPI.getInsideWindowWidth()/2) -
 (DHTMLAPI.getElementWidth(obj)/2)) + scrollX;
 var y = Math.round((DHTMLAPI.getInsideWindowHeight()/2) -
 (DHTMLAPI.getElementHeight(obj)/2)) + scrollY;
 DHTMLAPI.moveTo(obj, x, y);
 DHTMLAPI.show(obj);
}

13.7 Centering an Element in a Window or Frame | 413

Discussion
The primary challenge of centering an element in the browser window occurs in
Internet Explorer, which provides no direct window object property for the window’s
size, inside or out. Thus, we must turn to other document-level objects and their
measurements for clues about the content region of the browser window.

All of this negotiation takes place in the DHTML API library with the
getInsideWindowWidth() and getInsideWindowHeight() methods. Although the pro-
cess for obtaining these measurements is the same for either axis, a small docu-
ment—which isn’t as wide or as tall as the window—might convey incorrect
dimensions. Internet Explorer provides clientHeight and clientWidth properties for
all elements, which, for the body element, reveal the dimensions of the body space
that is immediately visible through the browser window. For IE 5 and later (includ-
ing IE 6 and 7 in backward-compatible mode), these dimensions for the body ele-
ment supply the full interior window dimension, even for a small document. This
changes, however, in CSS-compatibility mode for IE 6 and 7, where the window
space is revealed by the html element (the parent element of the body). Thus, for
browsers that do not support the Netscape window.innerHeight property (which
pre-dates the IE client properties), the two similar API support methods derive the
measures from the most revealing element, as in the one for window height from
Recipe 13.3:

 // Return the available content height space in browser window
 getInsideWindowHeight : function () {
 if (window.innerHeight) {
 return window.innerHeight;
 } else if (this.browserClass.isIECSSCompat) {
 // measure the html element's clientHeight
 return document.body.parentElement.clientHeight;
 } else if (document.body && document.body.clientHeight) {
 return document.body.clientHeight;
 }
 return null;
 }

Another factor to be concerned about is whether the document whose positioning
context you’re using is scrolled along either the horizontal or vertical axis. For exam-
ple, as the user scrolls the page downward, the 0,0 point of the positioning context
moves up, meaning that the y coordinate of the positioned element must be
increased by the number of pixels that the page has scrolled in that direction.

As with most window-oriented properties, the W3C DOM Level 2 does not offer
properties for items such as document scrolling. Back in the version 4 browser days,
Microsoft and Netscape developed their own vocabularies and ways to access the
scrolled position of a window. Although most browsers implement the Microsoft
properties (scrollLeft and scrollTop) for the sake of convenience, you can get more
compatibility by branching the scroll-awareness code for syntactical support for

414 | Chapter 13: Positioning HTML Elements

either the Microsoft or Netscape way. The majority of lines in the centerOnWindow()
function in this recipe deal with reading those factors, which are then applied to the
final coordinate values passed to the moveTo() method of the DHTML API.

Rendering anomalies appear in IE and Safari when the user reloads a scrolled page.
When the script reads the scrolling values, the browsers are in a temporary
unscrolled position. To counteract the problem, bind the load event handler via
setTimeout(), as follows:

addOnLoadEvent(function() {setTimeout(function() {centerOnWindow("someElementID"),
0})});

Centering an element once, however, won’t keep it centered if the user scrolls the
page or resizes the window. To compensate for these typical user actions, you need
event handlers that respond to both window resizing and scrolling. A window-
resizing event is supported by all browsers capable of working with the DHTML
API; a scrolling event is available in IE 4 or later, Mozilla, Safari, and Opera. For
these event handlers to work most smoothly, assign them as event handler proper-
ties of the window object, as in the following eventsManager.js (Recipe 9.1) binding:

addEvent(window, "scroll", function() {centerOnWindow("someElementID")}, false);

Notice the use of an anonymous function to facilitate passing the ID of the position-
able element to centerOnWindow().

To maintain a positioned element in a fixed-window position at all times, the best
solution is to make the element a fixed-position element. You must still assign initial
coordinates of the element when the page loads because every browser window can
be a different size. Unfortunately, IE supports the fixed CSS position type only start-
ing in IE 7 when switched into CSS compatibility mode.

See Also
Recipe 11.13 for controlling IE 6 and 7 CSS-compatibility modes.

13.8 Determining the Location of a Nonpositioned
Element

Problem
You want to ascertain the pixel coordinates of an element that the browser has
placed during normal page flow.

Solution
The following getElementPosition() function returns an object with properties for the
left and top absolute coordinates of the element whose ID is passed as an argument:

13.9 Animating Straight-Line Element Paths | 415

function getElementPosition(elemID) {
 var offsetTrail = document.getElementById(elemID);
 var offsetLeft = 0;
 var offsetTop = 0;
 while (offsetTrail) {
 offsetLeft += offsetTrail.offsetLeft;
 offsetTop += offsetTrail.offsetTop;
 offsetTrail = offsetTrail.offsetParent;
 }
 return {left:offsetLeft, top:offsetTop};
}

This function is compatible with browsers that support W3C DOM element refer-
encing syntax.

Discussion
The typical purpose of establishing the absolute location of an element on the page is
to position some other element on it or in relation to it. Because the location of inline
elements can vary widely with the browser window size and font situation, the val-
ues need to be calculated after the page has loaded, the page is reflowed in response
to other dynamic content additions and deletions, or the window is resized.

Although some browser versions report the accurate value simply via the offsetLeft
and offsetTop properties of an element, others require the addition of any offsets
imposed by parent elements offering positioning contexts (the element indicated by
the offsetParent property). Therefore, this function includes a loop that iterates
through the offsetParent hierarchy of the element passed as an argument to the
function, accumulating additional coordinate offsets if they exist.

This function is not needed for CSS-type absolute-positioned elements because you
can obtain the correct coordinates directly via the style.left and style.top prop-
erties (or via the effective style property, as retrieved through the script shown in
Recipe 11.12).

See Also
Recipe 11.12 for reading initial style properties set in <style> and <link> tags.

13.9 Animating Straight-Line Element Paths

Problem
You want to animate the position of an element from one coordinate to another on
the page along a straight-line path.

416 | Chapter 13: Positioning HTML Elements

Solution
To animate a positioned element along a straight-line path, link the animeLine.js
library (Example 13-2 in the Discussion) to your page and invoke the initSLAnime()
function with at least the first five parameters in the following sequence:

1. ID of the positioned element (as a string)

2. x coordinate of the starting position

3. y coordinate of the starting position

4. x coordinate of the ending position

5. y coordinate of the ending position

For example:

initSLAnime("floater", 100, 100, 400, 360);

Discussion
While you can move a positioned element along a hardwired straight-line path in far
less code than shown in this recipe, the animeLine.js library shown in Example 13-2
provides a generalizable solution, in which you specify the ID of the element to
move, the start and end coordinates, and the relative speed. The custom objects and
functions perform all of the necessary math to accomplish the job, regardless of
direction or length of travel.

Example 13-2. The animeLine.js library for straight-line animation

// animation object holds numerous properties related to motion
var anime;

// initialize default anime object
function initAnime() {
 anime = {elemID:"",
 xCurr:0,
 yCurr:0,
 xTarg:0,
 yTarg:0,
 xStep:0,
 yStep:0,
 xDelta:0,
 yDelta:0,
 xTravel:0,
 yTravel:0,
 vel:1,
 pathLen:1,
 interval:null
 };
}

// stuff animation object with necessary explicit and calculated values
function initSLAnime(elemID, startX, startY, endX, endY, speed) {

13.9 Animating Straight-Line Element Paths | 417

The library begins by defining a blank anime object, which becomes the holding place
for each animation you invoke. Each invocation of the main initSLAnime() function
sets initial values of the anime object to zero, and then populates the properties with
values passed as parameters or values calculated from the parameters. The final act
of this intermediate initialization of the straight-line animation process ends with a
setInterval() function, which invokes the actual animation function repeatedly.

 initAnime();
 anime.elemID = elemID;
 anime.xCurr = startX;
 anime.yCurr = startY;
 anime.xTarg = endX;
 anime.yTarg = endY;
 anime.xDelta = Math.abs(endX - startX);
 anime.yDelta = Math.abs(endY - startY);
 anime.vel = (speed) ? speed : 1;
 // set element's start position
 document.getElementById(elemID).style.left = startX + "px";
 document.getElementById(elemID).style.top = startY + "px";
 // the length of the line between start and end points
 anime.pathLen = Math.sqrt((Math.pow((startX - endX), 2)) +
 (Math.pow((startY - endY), 2)));
 // how big the pixel steps are along each axis
 anime.xStep = parseInt(((anime.xTarg - anime.xCurr) / anime.pathLen) * anime.vel);
 anime.yStep = parseInt(((anime.yTarg - anime.yCurr) / anime.pathLen) * anime.vel);
 // start the repeated invocation of the animation
 anime.interval = setInterval("doSLAnimation()", 10);
}

// calculate next steps and assign to style properties
function doSLAnimation() {
 if ((anime.xTravel + anime.xStep) <= anime.xDelta &&
 (anime.yTravel + anime.yStep) <= anime.yDelta) {
 var x = anime.xCurr + anime.xStep;
 var y = anime.yCurr + anime.yStep;
 document.getElementById(anime.elemID).style.left = x + "px";
 document.getElementById(anime.elemID).style.top = y + "px";
 anime.xTravel += Math.abs(anime.xStep);
 anime.yTravel += Math.abs(anime.yStep);
 anime.xCurr = x;
 anime.yCurr = y;
 } else {
 document.getElementById(anime.elemID).style.left = anime.xTarg + "px";
 document.getElementById(anime.elemID).style.top = anime.yTarg + "px";
 clearInterval(anime.interval);
 }
}
// using eventsManager.js library
addOnLoadEvent(initAnime);

Example 13-2. The animeLine.js library for straight-line animation (continued)

418 | Chapter 13: Positioning HTML Elements

The interval identifier is also preserved as a property of the animation object, rather
than having an extra global variable cluttering up the document.

The repeated doSLAnimation() function moves the visible object toward its destina-
tion until the element approaches or reaches the target coordinates. When it can go
no further, the element is explicitly positioned at the destination, and the interval
identifier is cleared to stop the iterations.

All coordinate values are in the page-absolute coordinate system, as these values are
ultimately assigned to the positioned element to start and end the animation. If you
wish to align the start and/or end points of the animated element with a body content
element, use Recipe 13.8 to determine the absolute position of the fixed-location ele-
ment, and then use those values as parameters to initSLAnime(). The straight-line
path can be at any angle (including perfectly vertical or horizontal) and in any direc-
tion. But be careful about specifying coordinates that are beyond the browser win-
dow’s width: you can lose an element that is off the page and out of view.

If you want to animate an element to follow a more complex path, you can string
together invocations of the initSLAnime() function, but be sure to allow each
setInterval() iteration to complete its task. The simplest way to begin is to assign
one more property to the anime object, called next, and initialize it to zero. Because
the initAnime() function is called from a different place in the script (and repeat-
edly), this new property value must preserve its value from one leg to the next. Thus,
the object property assignment statement lets an existing value persist into the next
initialization:

...
next: (anime.next) ? anime.next : 0,
...

Next, create a controlling function that contains an array of coordinate pairs for the
start and end positions of each straight line comprising your complex path. For
example, here is a version that provides three paths to make up a triangle:

function animatePolygon(elemID) {
 // prepare anime object for next leg
 initAnime();
 // create array of coordinate points
 var coords = new Array()
 coords[0] = [200, 200, 100, 400];
 coords[1] = [100, 400, 300, 400];
 coords[2] = [300, 400, 200, 200];
 // pass next coordinate group in sequence based on anime.next value
 if (anime.next < coords.length) {
 initSLAnime(elemID, coords[anime.next][0], coords[anime.next][1],
 coords[anime.next][2], coords[anime.next][3], 10);
 // increment for next leg
 anime.next++;
 } else {

13.10 Animating Circular Element Paths | 419

 // reset 'next' counter after all legs complete
 anime.next = 0;
 }
}

Other changes include moving the initAnime() function call from initSLAnime() to
the new animatePolygon() function. Finally, in doSLAnimation(), after the interval is
cleared following a completion of one leg, invoke the animatePolygon() function
again to get the next leg going, passing the element ID from the current anime object:

animatePolygon(anime.elemID);

Employ as many coordinate points as you like to provide the animation path. You do
not have to return the element to its original position if you don’t want to.

An optional sixth parameter, an integer, represents the relative velocity of the anima-
tion. Speed is influenced by the size of the jump during each iteration of the
doSLAnimation() function. The default value is 1, which is pretty slow. Users may expect
a little more animated motion, for which a value of 10 works nicely. But you can experi-
ment with your content and layout to find the optimum speed. As well as experiment
with the second parameter of the setInterval() method (with much higher numbers
than shown in the solution) to move in small steps at even slower speeds.

Be aware that the perceived speed of the animated element will not be constant
across all browsers or computers. This is not animation in the same sense as time-
based media displayed in dedicated environments such as Flash. The trade-off over
the lack of temporal precision is that you can animate standard HTML elements and
have the animated elements overlay other content anywhere on the page—you’re not
limited to the embedded Flash rectangle.

See Also
Recipe 13.8 for obtaining coordinates of elements within the body; Recipe 3.7 for
creating a custom object; Recipe 13.10 for animation in a circular path.

13.10 Animating Circular Element Paths

Problem
You want to animate the position of an element in a circular path.

Solution
To animate a positioned element along a circular path, link the animeCirc.js library
(Example 13-3 in the Discussion) to your page and invoke the initCircAnime() func-
tion with five parameters in the following sequence:

1. ID of animated element (as string)

2. x coordinate of start/end point of circle

420 | Chapter 13: Positioning HTML Elements

3. y coordinate of start/end point of circle

4. Even integer value specifying the number of render points in the circle

5. Integer value of relative radius of the circle

A typical set of values to put an element into motion might be as follows:

initCircAnime("rounder", 200, 200, 36, 10);

Discussion
The process for circular animation is similar to the straight-line animation of Recipe
13.9, but trigonometry assists in prescribing the path for the element. Example 13-3
shows the animeCirc.js library containing the code that performs the animation.

Example 13-3. The animeCirc.js library for circular animation

// animation object holds numerous properties related to motion
var anime = new Object();

// initialize default anime object
function initAnime() {
 anime = {elemID:"",
 xStart:0,
 yStart:0,
 xCurr:0,
 yCurr:0,
 next:1,
 pts:1,
 radius:1,
 interval:null
 };
}

// stuff animation object with necessary explicit and calculated values
function initCircAnime(elemID, startX, startY, pts, radius) {
 initAnime();
 anime.elemID = elemID;
 anime.xCurr = anime.xStart = startX;
 anime.yCurr = anime.yStart = startY;
 anime.pts = pts;
 anime.radius = radius;
 // set element's start position
 document.getElementById(elemID).style.left = startX + "px";
 document.getElementById(elemID).style.top = startY + "px";
 // start the repeated invocation of the animation
 anime.interval = setInterval("doCircAnimation()", 10);
}

function doCircAnimation() {
 if (anime.next < anime.pts) {
 var x = anime.xCurr +
 Math.round(Math.cos(anime.next * (Math.PI/(anime.pts/2))) * anime.radius);
 var y = anime.yCurr +

13.11 Creating a Draggable Element | 421

The library begins by defining an abstract animation object that gets initialized each
time a circular path runs. Your scripts invoke the initCircAnime() function, which
assigns parameter values to the anime object’s properties. The function that executes
repeatedly in response to setInterval() comes at the library’s end.

The smoothness of the circular motion is controlled by the number of points along
the circle at which the display should be updated. This value becomes the upper
limit of anime.next in the if clause of doCircAnimation(). To accomplish a full cir-
cle, the value by which Math.PI is divided in the next two lines must be one-half the
maximum value in the condition. For any given combination of values, the radius of
the circle is controlled by the multiplier at the end of the two statements containing
Math.PI. The value (preserved as anime.radius) is not a straight pixel measure, but
rather a factor that governs the radius. The larger the number, the larger the radius.

If you assign larger values for anime.pts (such as 72), the animation is smoother
because the arcs between refresh points are much smaller. This also means that the
motion is slower because the interval time (at 10 milliseconds) is essentially whirling
as quickly as it can. On the other hand, too few refresh points, while faster, may
appear too jerky for your users.

See Also
Recipe 13.9 for straight-line animation; Recipe 3.7 for creating a custom object.

13.11 Creating a Draggable Element

Problem
You want a user to be able to click on and drag an element from one location on the
page to another.

 Math.round(Math.sin(anime.next * (Math.PI/(anime.pts/2))) * anime.radius);
 document.getElementById(anime.elemID). style.left = x + "px";
 document.getElementById(anime.elemID). style.top = y + "px";
 anime.xCurr = x;
 anime.yCurr = y;
 anime.next++;
 } else {
 document.getElementById(anime.elemID).style.left = anime.xStart + "px";
 document.getElementById(anime.elemID).style.top = anime.yStart + "px";
 clearInterval(anime.interval);
 }
}
// using eventsManager.js library
addOnLoadEvent(initAnime);

Example 13-3. The animeCirc.js library for circular animation (continued)

422 | Chapter 13: Positioning HTML Elements

Solution
Use the load event queue manager from Recipe 9.2, the DHTML API from Recipe
13.3 and the dragManager.js library (Example 13-4 in the Discussion) to set up ele-
ments to drag around the page. The dragManager.js library is wired to expect one or
more absolute-positioned elements whose class attribute is set to draggable. For
example, here is the HTML for a pair of images that are set to be draggable:

<img id="imgA" class="draggable" src="widget1.jpg"
width="120" height="90" border="0" alt="Primary draggable widget">
<img id="imgB" class="draggable" src="widget2.jpg"
width="120" height="90" border="0" alt="Secondary draggable widget">

Set up the positioned elements by way of style sheet definitions. For example, the
style sheets for the two img elements shown here are as follows:

<style type="text/css">
#imgA {position:absolute;
 left: 35%;
 top: 20%;
 width: 230px;
 height: 102px;
 border: solid black 1px;
 z-index: 0
 }
#imgB {
 position: absolute;
 left: 40%;
 top: 25%;
 width: 281px;
 height: 100px;
 border: solid black 1px;
 z-index: 0
 }
.draggable:hover {cursor: pointer}
</style>

All other initializations and event handler assignments are performed by the self-ini-
tializing libraries.

Discussion
Example 13-4 shows the dragManager.js library code. It should be linked into your
page following the events and DHTML API libraries, as follows:

<script src="eventsManager.js"></script>
<script src="DHTML3API.js"></script>
<script src="dragManager.js"></script>

The library accommodates as many draggable elements as you like on the page, with-
out conflicting with static items.

13.11 Creating a Draggable Element | 423

Example 13-4. The dragManager.js library for dragging elements on the page

// dragObject contains data for currently dragged element
var dragObject = {
 selectedObject : null,
 offsetX : 0,
 offsetY : 0,
 // invoked onmousedown
 engageDrag : function(evt) {
 evt = (evt) ? evt : window.event;
 dragObject.selectedObject = (evt.target) ? evt.target : evt.srcElement;
 var target = (evt.target) ? evt.target : evt.srcElement;
 var dragContainer = target;
 // in case event target is nested in draggable container
 while (target.className != "draggable" && target.parentNode) {
 target = dragContainer = target.parentNode;
 }
 if (dragContainer) {
 dragObject.selectedObject = dragContainer;
 DHTMLAPI.setZIndex(dragContainer, 100);
 dragObject.setOffsets(evt, dragContainer);
 dragObject.setDragEvents();
 evt.cancelBubble = true;
 evt.returnValue = false;
 if (evt.stopPropagation) {
 evt.stopPropagation();
 evt.preventDefault();
 }
 }
 return false;
 },
 // calculate offset of mousedown within draggable element
 setOffsets : function (evt, dragContainer) {
 if (evt.pageX) {
 dragObject.offsetX = evt.pageX - ((dragContainer.offsetLeft) ?
 dragContainer.offsetLeft : dragContainer.left);
 dragObject.offsetY = evt.pageY - ((dragContainer.offsetTop) ?
 dragContainer.offsetTop : dragContainer.top);
 } else if (evt.offsetX || evt.offsetY) {
 dragObject.offsetX = evt.offsetX - ((evt.offsetX < -2) ?
 0 : document.body.scrollLeft);
 dragObject.offsetY = evt.offsetY - ((evt.offsetY < -2) ?
 0 : document.body.scrollTop);
 }
 },
 // invoked onmousemove
 dragIt : function (evt) {
 evt = (evt) ? evt : window.event;
 var obj = dragObject;
 if (evt.pageX) {
 DHTMLAPI.moveTo(obj.selectedObject, (evt.pageX - obj.offsetX),
 (evt.pageY - obj.offsetY));
 } else if (evt.clientX || evt.clientY) {
 DHTMLAPI.moveTo(obj.selectedObject, (evt.clientX - obj.offsetX),

424 | Chapter 13: Positioning HTML Elements

This library is designed to be encapsulated in one global object, named dragObject.
Because only one element can be dragged at a time with this library, the global object
has a one-to-one relationship with the element being dragged. You will see numer-
ous references within the code to the global object. This because many methods are
invoked by events from elements—elements that provide the context for the method
execution. Therefore, this references won’t point to dragObject to help us read and
write properties or invoke internal methods. We supply that reference explicitly.

 (evt.clientY - obj.offsetY));
 }
 evt.cancelBubble = true;
 evt.returnValue = false;
 },
 // invoked onmouseup
 releaseDrag : function (evt) {
 DHTMLAPI.setZIndex(dragObject.selectedObject, 0);
 dragObject.clearDragEvents();
 dragObject.selectedObject = null;
 },
 // set temporary events
 setDragEvents : function () {
 addEvent(document, "mousemove", dragObject.dragIt, false);
 addEvent(document, "mouseup", dragObject.releaseDrag, false);
 },
 // remove temporary events
 clearDragEvents : function () {
 removeEvent(document, "mousemove", dragObject.dragIt, false);
 removeEvent(document, "mouseup", dragObject.releaseDrag, false);
 },
 // initialize, assigning mousedown events to all
 // elements with class="draggable" attributes
 init : function () {
 var elems = [];
 if (document.all) {
 // IE 5 & 5.5 don't know wildcard for getElementsByTagName
 // so use document.body.all, which lets IE 4 work OK
 elems = document.body.all;
 } else if (document.body && document.body.getElementsByTagName) {
 elems = document.body.getElementsByTagName("*");
 }
 for (var i = 0; i < elems.length; i++) {
 if (elems[i].className.match(/draggable/)) {
 addEvent(elems[i], "mousedown", dragObject.engageDrag, false);
 }
 }
 }
};
// set onload event via eventsManager.js
addOnLoadEvent(dragObject.init);

Example 13-4. The dragManager.js library for dragging elements on the page (continued)

13.11 Creating a Draggable Element | 425

The library begins by declaring a few properties that convey information between ini-
tial activation of the drag and the actual drag operation. One, selectedObj, maintains
a reference of the element being dragged. The offsetX and offsetY pair get set in the
engage() method, and are used constantly during the positioning tasks while dragging.

Jumping down for a moment to the end of the library, you find the init() method.
Its job is to bind mousedown event handler functions (the dragObject.engageDrag()
method call) to all elements on the page whose class attribute has “draggable”
assigned to it. This works even if an element has multiple class names assigned to it
(through the regular expression matching technique).

It is the engageDrag() method (back at the top of the library) that gets the ball roll-
ing. In addition to obtaining a reference to the draggable element (including finding
the actual draggable element in case a mousedown event fired on one of its child
nodes), it also performs the following tasks:

• Sets the z-index CSS property to an arbitrarily high value to make sure the ele-
ment will be layered above other draggable elements

• Determines the number of pixels offset from the top-left corner of the element
where the mousedown event occurred so that when the element is dragged, the off-
set stays constant

• Binds mousemove and mouseup events to the element about to be dragged

• Prevents any further propagation or action of the mousedown event (needed pri-
marily for Macintosh browsers)

The mousemove event is bound to the dragIt() method. As the method is repeatedly
invoked by the rapidly-firing event, the DHTML API library repositions the element
accordingly to event properties that report the coordinates of the events. Corrections
for the offsets are taken into account.

When the mouseup event fires, it means that the user has stopped dragging the ele-
ment. It’s time to clean up in the releaseDrag() method. First the z-index value is
reset to zero. Then the temporarily set mousemove and mouseup events are unbound
from the dragged element. Finally, the pointer to the dragged element
(selectedObject) is nulled out.

The last statement of the library self-initializes the library with the help of the
eventsManager.js library (Recipe 9.3), which, like the DHTML3API.js library, must
be loaded ahead of the dragManager.js library. No preparations (beyond the class
naming of draggable items) are necessary.

If you want to limit the region within which an element can be dragged, you can
define a rectangular boundary and keep the element within that zone. To accom-
plish this, first define a dragObject property with coordinate points of the space:

 zone: {left:120, top:120, right:400, bottom:400},

426 | Chapter 13: Positioning HTML Elements

Then modify the dragIt() method in Example 13-4 so that it won’t allow dragging
outside of the zone:

 dragIt : function (evt) {
 evt = (evt) ? evt : window.event;
 var x, y, width, height;
 var obj = dragObject;
 if (evt.pageX) {
 x = evt.pageX - obj.offsetX;
 y = evt.pageY - obj.offsetY;
 } else if (evt.clientX || evt.clientY) {
 x = evt.clientX - obj.offsetX;
 y = evt.clientY - obj.offsetY;
 }
 width = DHTMLAPI.getElementWidth(obj.selectedObj);
 height = DHTMLAPI.getElementHeight(obj.selectedObj);
 x = (x < obj.zone.left) ? obj.zone.left :
 ((x + width > obj.zone.right) ? obj.zone.right - width : x);
 y = (y < obj.zone.top) ? obj.zone.top :
 ((y + height > obj.zone.bottom) ? obj.zone.bottom - height : y);
 DHTMLAPI.moveTo(obj.selectedObject, x, y);
 evt.cancelBubble = true;
 evt.returnValue = false;
 },

The modifications take advantage of the DHTML API’s functions that easily obtain the
width and height of the positioned element. Then the values of the intended coordi-
nates are tested against the zone’s points. If the intended position is outside the box,
the coordinate value is set to the maximum value along the edge. This allows an ele-
ment to reach an edge in one axis and still be draggable up and down along the edge.

See Also
Recipe 13.3 for the required DHTML API library; Recipe 11.13 for IE 6 and 7 CSS-
compatibility mode issues.

13.12 Scrolling div Content

Problem
You want to let users scroll up and down through content located in a separate posi-
tioned viewable area on the page, without resorting to system (overflow) scrollbars.

Solution
This solution requires some HTML elements that are used as both scrollable content
containers and the buttons that control the scrolling. You can see the HTML por-
tion in Example 13-5 of the Discussion. You then use the scrollButtons.js library,
shown in Example 13-6 of the Discussion, as the script basis for controlling scrolla-
ble regions on your page.

13.12 Scrolling div Content | 427

Your HTML page needs to link in three JavaScript libraries: eventsManager.js from
Recipe 9.3, DHTML3API.js from Recipe 13.3 and scrollButtons.js. Although the
DHTML API library is self-initializing, you can feed specifics to scrollButtons.js via a
load event handler in the HTML page. Due to a “race” condition in IE, the scroll ini-
tialization must start in its own thread via setTimeout():

addOnLoadEvent(function() {setTimeout("initScrollers()",0)});

The initScrollers() function invokes an object constructor specifying HTML
details of each instance of a scrollable region on the page. For example, the follow-
ing initScrollers() function creates a JavaScript object that governs the scrolling
activity for one region:

function initScrollers() {
 scrollBars[0] = new scrollBar("outerWrapper0", "innerWrapper0", "lineup0",
 "linedown0");
}

Discussion
The vital HTML portion of this recipe is shown in Example 13-5. The scrolling
region consists of a series of nested div elements. The content container is a pair of
nested containers. The outer wrapper defines the rectangular boundaries of the view-
port through which the content is visible, while the second positioned container,
innerWrapper0, holds the actual content to scroll. The trailing number of the IDs in
this example helps illustrate that you can have multiple scrolling regions on the same
page, and they will not collide as long as you use unique IDs for the components.

Example 13-5. HTML scrolling region and controller

<style type="text/css">
body {height: 400px}
#pseudoWindow0 {
 position: absolute;
 top: 200px;
 left: 45%
 }
#outerWrapper0 {
 position: absolute;
 top: 0px;
 left: 0px;
 height: 150px;
 width: 100px;
 overflow: hidden;
 border-top: 4px solid #666666;
 border-left: 4px solid #666666;
 border-right: 4px solid #cccccc;
 border-bottom: 4px solid #cccccc;
 background-color: #ffffff
 }
#innerWrapper0 {

428 | Chapter 13: Positioning HTML Elements

Figure 13-3 illustrates the look of the scrolling pseudowindow assembly based on the
HTML of Example 13-5.

 position: absolute;
 top: 0px;
 left: 0px;
 padding: 5px;
 font: 10px Arial, Helvetica, sans-serif}
</style>
...
<div id="pseudoWindow0">
 <div id="outerWrapper0">
 <div id="innerWrapper0">
 <p style="margin-top:0em"> Lorem ipsum dolor sit amet, consectetaur ...</p>
 </div>
 </div>
 <img id="lineup0" class="lineup" src="scrollUp.gif" height="16" width="16"
 alt="Scroll Up" style="position:absolute; top:10px; left:112px" />
 <img id="linedown0" class="linedown" src="scrollDn.gif" height="16" width="16"
 alt="Scroll Down" style="position:absolute; top:128px; left:112px" />
</div>

Figure 13-3. A custom scrolling container

Example 13-5. HTML scrolling region and controller (continued)

13.12 Scrolling div Content | 429

Buttons that perform the scrolling (vertical scrolling in this case) are simple img ele-
ments. The arrow img elements are absolute-positioned within the context of the out-
ermost div element (pseudoWindow0). If some other scripting needs to move the
outermost div element, the buttons keep their positions relative to the whole set of
components. The job of the associated script library, scrollButtons.js (shown in
Example 13-6), is to slide the inner wrapper element up or down. Its content is
clipped by the outer wrapper element, whose overflow style property is set to hidden.

Example 13-6. The scrollButtons.js library

var scrollEngaged = false;
var scrollInterval;
var scrollBars = new Array();

function scrollBar(ownerID, ownerContentID, upID, dnID) {
 this.ownerID = ownerID;
 this.ownerContentID = ownerContentID;
 this.index = scrollBars.length;
 this.upButton = document.getElementById(upID);
 this.dnButton = document.getElementById(dnID);
 this.upButton.index = this.index;
 this.dnButton.index = this.index;

 this.ownerHeight = parseInt(DHTMLAPI.getComputedStyle(this.ownerID, "height"));

 this.contentElem = document.getElementById(ownerContentID);
 this.contentFontSize = parseInt(DHTMLAPI.getComputedStyle(this.ownerContentID,
 "font-size"));
 this.contentScrollHeight = (this.contentElem.scrollHeight) ?
 this.contentElem.scrollHeight : this.contentElem.offsetHeight;
 setScrollEvents(this.upButton, this.dnButton);
}

function setScrollEvents(upButton, dnButton) {
 addEvent(upButton, "mousedown", handleScrollClick, false);
 addEvent(upButton, "mouseup", handleScrollStop, false);
 addEvent(upButton, "contextmenu", blockEvent, false);

 addEvent(dnButton, "mousedown", handleScrollClick, false);
 addEvent(dnButton, "mouseup", handleScrollStop, false);
 addEvent(dnButton, "contextmenu", blockEvent, false);
}

function handleScrollStop() {
 scrollEngaged = false;
}

function blockEvent(evt) {
 evt = (evt) ? evt : event;
 evt.cancelBubble = true;
 return false;
}

430 | Chapter 13: Positioning HTML Elements

The library employs an object-oriented approach by creating an abstract object that
holds information about a pair of scroll buttons and the content containers. This
simplifies an implementation that employs multiple scrolling boxes. At the start of
the library, a few global variables are defined that preserve the collection of scroller
objects and important state values during scrolling.

The scrollBar() constructor function for the scroller objects receives four string
parameters: the IDs for the outer wrapper, the inner wrapper, and the two scroll but-
tons. The purpose of this constructor is to perform some one-time calculations and
initializations per scroller, facilitating the click-and-hold scroll action later on. To
help the buttons’ event handlers know which set of scrollers is operating, an index
value, corresponding to the position within the scrollBars array, is assigned to index
properties of the two button elements. The scrollBars.length value represents the
numeric index of the scrollBars item being generated because the scrollBars array
has not yet been assigned the finished object, meaning that the array length is one
less than it will be after the object finishes its construction.

Each scroller object invokes the setScrollEvents() function, right after the scroller
object is created. The function assigns event handlers to the button images, including
one that prevents a click-and-hold action from displaying the context menu (on the
Macintosh).

function handleScrollClick(evt) {
 var fontSize;
 evt = (evt) ? evt : event;
 var target = (evt.target) ? evt.target : evt.srcElement;
 var index = target.index;
 fontSize = scrollBars[index].contentFontSize;
 fontSize = (target.className == "lineup") ? fontSize : -fontSize;
 scrollEngaged = true;
 scrollBy(index, parseInt(fontSize));
 scrollInterval = setInterval("scrollBy(" + index + ", " +
 parseInt(fontSize) + ")", 100);
 evt.cancelBubble = true;
 return false;
}

function scrollBy(index, px) {
 var scroller = scrollBars[index];
 var elem = document.getElementById(scroller.ownerContentID);
 var top = parseInt(DHTMLAPI.getComputedStyle(elem, "top"));
 var scrollHeight = parseInt(scroller.contentScrollHeight);
 var height = scroller.ownerHeight;
 if (scrollEngaged && top + px >= -scrollHeight + height && top + px <= 0) {
 DHTMLAPI.moveBy(elem, 0, px);
 } else {
 clearInterval(scrollInterval);
 }
}

Example 13-6. The scrollButtons.js library (continued)

13.12 Scrolling div Content | 431

Next come a group of event handler functions. All that handleScrollStop() does is
turn off the flag that other functions use to permit repeated scrolling, while
blockEvent() stops the contextmenu event from carrying out its default action. At the
heart of this application is the handleScrollClick() event handler, which takes care
of scrolling in both directions. Scrolling for this example is line-by-line, so the con-
tent’s font size is the approximation used to determine the scroll jump size. The
event targets are img elements, each of which is assigned an index value property cor-
responding to the scroller object’s array position. Further identifying each button is
the class attribute, which categorizes a button as either an up or down (by one line)
action button. Scrolling the content upward requires subtracting the height of one
line from the current vertical position of the element. One immediate call to the
scrollBy() function comes within the function to let the buttons react instanta-
neously to a quick click. After that, the scrollBy() function is invoked every 100
milliseconds until other conditions (releasing the mouse button) turn off scrolling.

Adjusting the position of the inner content wrapper is the job of the scrollBy() func-
tion. It receives as parameters both the index number of the scroller object and the
number of pixels to increment the vertical position. If the content is not scrolled
completely to the top or bottom, the DHTML API moveBy() function moves the ele-
ment along the vertical axis the number of pixels instructed by the calling function.
But if the scrolling has reached an end point, the interval timer is turned off, and
further holding of the mouse button over the image scrolls no more in the current
direction.

The user interface possibilities for this kind of scrolling view port are endless. The
code in this recipe can be adapted to a multitude of scroll controller buttons,
whether they are images, hyperlinks, image maps, or widgets constructed out of div
elements and text. It’s just a question of assigning the desired event handlers to the
hot spots and making sure that those spots have index properties associated with
scrollBar objects (as shown in the scrollBar() constructor function).

At the same time, however, some designer choices can be disastrous. Using mouse
rollover events to trigger the scroll may not be a good idea, despite its practice in
some sites. Autoscrolling can also be frustrating if the content is important because
good autoscrolling needs to be smoother (a scroll size of only one or two pixels), yet
the time it takes to scroll through the content and start over can be frustratingly long
for impatient visitors.

Choosing an object-oriented approach to the application is not as arbitrary as it
might seem. The core, frequently repeated routines (especially the scrollBy() func-
tion invoked at short time intervals), rely on several properties of the content con-
tainer and its outer wrapper. Some of those properties must be accessed (ultimately)
through the DHTMLAPI.getComputedStyle() method, which must perform a fair
amount of processing to do the job right. It is inefficient to invoke that function over
and over while the interval is firing away. The values that don’t change once the

432 | Chapter 13: Positioning HTML Elements

wrapper elements exist (such as dimensions) should be obtained only once. Preserv-
ing those values in an object representing the scroller simply makes good program-
ming sense. As a by-product, the scrollBar object lets us preserve additional one-
time calculated values throughout the entire session. Moreover, we can limit the but-
ton event handlers so that they are not active until the page is loaded. Premature
clicking of the buttons causes no errors because the events aren’t yet bound to the
elements.

More about this application could be generalized, rather than governed by fixed-style
sheet values for positioning. You can see an example of this (and the additional com-
plexity it brings to the code) in Recipe 13.13, which produces a more fully loaded
vertical scrollbar that controls the same kind of content.

See Also
Recipe 13.13 for a more complex scrollbar; Recipe 3.8 for creating a custom object;
Recipe 11.12 for reading default style sheet property values as they apply to a ren-
dered element.

13.13 Creating a Custom Scrollbar

Problem
You want to let users scroll through a separate block of content within the page via a
scrollbar containing line and page regions, as well as a draggable scrollbar thumb.

Solution
This solution requires numerous HTML elements that are used as both scrollable
content containers and a simulated scrollbar. You can see the HTML portion in
Example 13-7 of the Discussion. You then use the scrollBars.js library, shown in
Example 13-8 of the Discussion, as the script basis for both generating and control-
ling customized scrollbars on your page.

Your HTML page needs to link in three JavaScript libraries: eventsManager.js from
Recipe 9.3, DHTML3API.js from Recipe 13.3, and scrollBars.js. The libraries are self-
initializing.

Insert page-specific details by two calls to the scrollBars.js library at load time. For
example, the following initScrollbars() function both creates a JavaScript object
that governs the scrollbar associated with a fixed set of HTML elements, and creates
the HTML pieces for the visible scrollbar:

function initScrollbars() {
 scrollBars[0] = new scrollBar("pseudoWindow", "outerWrapper", "innerWrapper");
 scrollBars[0].appendScroll();
}
addOnLoadEvent(function() {setTimeout("initScrollbars()", 0)});

13.13 Creating a Custom Scrollbar | 433

The initScrollbars() function needs to operate in its own thread to avoid a “race”
condition with the libraries.

Discussion
This solution is an extension of Recipe 13.12, but with far more complex issues
involving the dragging of the scrollbar thumb and synchronizing the scroll of the
document with the thumb location. It also employs dynamic creation of the scroll-
bar components (consisting of images and styled div elements) so that precise posi-
tioning isn’t necessary: the positioning of elements depends on the specified
dimensions of the content container and its various style sheet settings (borders, pad-
ding, and the like). Figure 13-4 shows the effect created by this solution.

Two previous recipes play important roles in this solution. First is the DHTML API
of Recipe 13.3. Second is the element dragging code from Recipe 13.12. One of the
functions, dragIt(), is tailored to this scrollbar application, so all of the dragging
functions are embedded within the scrollBars.js file.

Figure 13-4. Scripted scrollbars for a div element

434 | Chapter 13: Positioning HTML Elements

The solution begins with the HTML for the pseudowindow container and its scrol-
lable content, shown in Example 13-7. Missing is the HTML for the scrollbars
themselves because they are generated by code later.

Example 13-8 shows the extensive scrollBars.js library. It is divided into four sec-
tions: Scrollbar Creation, Event Handler Functions, Scrollbar Tracking, and Element
Dragging (for the scrollbar thumb).

Example 13-7. HTML scrollbar region awaiting scripted scrollbars

<style type="text/css">
body {height: 400px}
#pseudoWindow {
 position: absolute;
 top: 160px;
 left: 45%
 }
#outerWrapper {
 position: absolute;
 top: 0px;
 left: 0px;
 height: 200px;
 width: 100px;
 overflow: hidden;
 border-top: 4px solid #666666;
 border-left: 4px solid #666666;
 border-right: 4px solid #cccccc;
 border-bottom: 4px solid #cccccc;
 background-color: #ffffff
 }
#innerWrapper {
 position:absolute;
 top: 0px;
 left: 0px;
 padding: 5px;
 font: 10px Verdana, Ariel, Helvetica, sans-serif
 }
#myp {margin-top: 0em}
</style>
...
<div id="pseudoWindow" >
 <div id="outerWrapper">
 <div id="innerWrapper">
 <p id="myp">Lorem ipsum dolor sit amet, consectetaur</p>
 </div>
 </div>
</div>

13.13 Creating a Custom Scrollbar | 435

Example 13-8. The scrollBars.js library

/***********************
 SCROLLBAR CREATION
************************/
// Global variables
var scrollEngaged = false;
var scrollInterval;
var scrollBars = new Array();

// Scrollbar constructor function
function scrollBar(rootID, ownerID, ownerContentID) {
 this.rootID = rootID;
 this.ownerID = ownerID;
 this.ownerContentID = ownerContentID;
 this.index = scrollBars.length;

 // one-time evaluations for use by other scroll bar manipulations
 this.rootElem = document.getElementById(rootID);
 this.ownerElem = document.getElementById(ownerID);
 this.contentElem = document.getElementById(ownerContentID);
 this.ownerHeight = parseInt(DHTMLAPI.getComputedStyle(ownerID, "height"));
 this.ownerWidth = parseInt(DHTMLAPI.getComputedStyle(ownerID, "width"));
 this.ownerBorder = parseInt(DHTMLAPI.getComputedStyle(ownerID, "border-top-width")) * 2;
 this.contentHeight = Math.abs(parseInt(this.contentElem.style.top));
 this.contentWidth = this.contentElem.offsetWidth;
 this.contentFontSize = parseInt(DHTMLAPI.getComputedStyle(this.ownerContentID,
 "font-size"));
 this.contentScrollHeight = this.contentElem.scrollHeight;
 // Boolean flag for overflow requiring scroll thumb
 this.overflow = this.contentScrollHeight >= this.ownerHeight;

 // create quirks object whose default (CSS-compatible) values
 // are zero; pertinent values for quirks mode filled in later
 this.quirks = {on:false, ownerBorder:0, scrollBorder:0, contentPadding:0};
 if (navigator.appName == "Microsoft Internet Explorer" &&
 navigator.userAgent.indexOf("Win") != -1 &&
 (typeof document.compatMode == "undefined" ||
 document.compatMode == "BackCompat")) {
 this.quirks.on = true;
 this.quirks.ownerBorder = this.ownerBorder;
 this.quirks.contentPadding = parseInt(DHTMLAPI.getComputedStyle(ownerContentID,
 "padding"));
 }

 // determined at scrollbar initialization time
 this.scrollWrapper = null;
 this.upButton = null;
 this.dnButton = null;
 this.thumb = null;
 this.buttonLength = 0;
 this.thumbLength = 0;
 this.scrollWrapperLength = 0
 this.dragZone = {left:0, top:0, right:0, bottom:0}

436 | Chapter 13: Positioning HTML Elements

 // build a physical scrollbar for the root div
 this.appendScroll = appendScrollBar;
}

// Create scrollbar elements and append to the "pseudo-window"
function appendScrollBar() {
 // button and thumb image sizes (programmer customizable)
 var imgH = 16;
 var imgW = 16;
 var thumbH = 27;

 // "up" arrow, needed first to help size scrollWrapper
 var lineup = document.createElement("img");
 lineup.id = "lineup" + (scrollBars.length - 1);
 lineup.className = "lineup";
 lineup.index = this.index;
 lineup.src = "scrollUp.gif";
 lineup.height = imgH;
 lineup.width = imgW;
 lineup.alt = "Scroll Up";
 lineup.style.position = "absolute";
 lineup.style.top = "0px";
 lineup.style.left = "0px";

 // scrollWrapper defines "page" region color and 3-D borders
 var wrapper = document.createElement("div");
 wrapper.id = "scrollWrapper" + (scrollBars.length - 1);
 wrapper.className = "scrollWrapper";
 wrapper.index = this.index;
 wrapper.style.position = "absolute";
 wrapper.style.visibility = "hidden";
 wrapper.style.top = "0px";
 wrapper.style.left = this.ownerWidth + this.ownerBorder -
 this.quirks.ownerBorder + "px";
 wrapper.style.borderTop = "2px solid #666666";
 wrapper.style.borderLeft = "2px solid #666666";
 wrapper.style.borderRight= "2px solid #cccccc";
 wrapper.style.borderBottom= "2px solid #cccccc";
 wrapper.style.backgroundColor = "#999999";
 if (this.quirks.on) {
 this.quirks.scrollBorder = 2;
 }
 wrapper.style.width = lineup.width + (this.quirks.scrollBorder * 2) + "px";
 wrapper.style.height = this.ownerHeight + (this.ownerBorder - 4) -
 (this.quirks.scrollBorder * 2) + "px";

 // "down" arrow
 var linedn = document.createElement("img");
 linedn.id = "linedown" + (scrollBars.length - 1);
 linedn.className = "linedown";
 linedn.index = this.index;

Example 13-8. The scrollBars.js library (continued)

13.13 Creating a Custom Scrollbar | 437

 linedn.src = "scrollDn.gif";
 linedn.height = imgH;
 linedn.width = imgW;
 linedn.alt = "Scroll Down";
 linedn.style.position = "absolute";
 linedn.style.top = parseInt(this.ownerHeight) + (this.ownerBorder - 4) -
 (this.quirks.ownerBorder) - linedn.height + "px";
 linedn.style.left = "0px";

 // fixed-size draggable thumb
 var thumb = document.createElement("img");
 thumb.id = "thumb" + (scrollBars.length - 1);
 thumb.className = "draggable";
 thumb.index = this.index;
 thumb.src = "thumb.gif";
 thumb.height = thumbH;
 thumb.width = imgW;
 thumb.alt = "Scroll Dragger";
 thumb.style.position = "absolute";
 thumb.style.top = lineup.height + "px";
 thumb.style.width = imgW + "px";
 thumb.style.height = thumbH + "px";
 thumb.style.left = "0px";
 // set visibility per overflow
 thumb.style.visibility = (this.overflow) ? "visible" : "hidden";

 // fill in scrollBar object properties from rendered elements
 this.upButton = wrapper.appendChild(lineup);
 this.thumb = wrapper.appendChild(thumb);
 this.dnButton = wrapper.appendChild(linedn);
 this.scrollWrapper = this.rootElem.appendChild(wrapper);
 this.buttonLength = imgH;
 this.thumbLength = thumbH;
 this.scrollWrapperLength =
 parseInt(DHTMLAPI.getComputedStyle(this.scrollWrapper.id, "height"));
 this.dragZone.left = 0;
 this.dragZone.top = this.buttonLength;
 this.dragZone.right = this.buttonLength;
 this.dragZone.bottom = this.scrollWrapperLength - this.buttonLength -
 (this.quirks.scrollBorder * 2)

 // all events processed by scrollWrapper element
 // if overflow is true
 if (this.overflow) {
 this.scrollWrapper.onmousedown = handleScrollClick;
 this.scrollWrapper.onmouseup = handleScrollStop;
 this.scrollWrapper.oncontextmenu = blockEvent;
 this.scrollWrapper.ondrag = blockEvent;
 }

 // OK to show
 this.scrollWrapper.style.visibility = "visible";

Example 13-8. The scrollBars.js library (continued)

438 | Chapter 13: Positioning HTML Elements

 // handle Opera delay in reporting newly appended element height
 if (navigator.userAgent.indexOf("Opera") != -1) {
 var me = this;
 setTimeout(function() {
 me.scrollWrapperLength =
 parseInt(DHTMLAPI.getComputedStyle(me.scrollWrapper.id, "height"));
 me.dragZone.bottom = me.scrollWrapperLength - me.buttonLength;
 }, 0);
 }

 // bind mousedown event to thumb
 dragObject.init();

}

/***************************
 EVENT HANDLER FUNCTIONS
****************************/
// onmouse up handler
function handleScrollStop() {
 scrollEngaged = false;
}

// Prevent Mac context menu while holding down mouse button
function blockEvent(evt) {
 evt = (evt) ? evt : event;
 evt.cancelBubble = true;
 return false;
}

// click event handler
function handleScrollClick(evt) {
 var fontSize, contentHeight;
 evt = (evt) ? evt : event;
 var target = (evt.target) ? evt.target : evt.srcElement;
 target = (target.nodeType == 3) ? target.parentNode : target;
 var index = target.index;
 fontSize = scrollBars[index].contentFontSize;
 switch (target.className) {
 case "lineup" :
 scrollEngaged = true;
 scrollBy(index, parseInt(fontSize));
 scrollInterval = setInterval("scrollBy(" + index + ", " +
 parseInt(fontSize) + ")", 100);
 evt.cancelBubble = true;
 return false;
 break;
 case "linedown" :
 scrollEngaged = true;
 scrollBy(index, -(parseInt(fontSize)));
 scrollInterval = setInterval("scrollBy(" + index + ", -" +
 parseInt(fontSize) + ")", 100);

Example 13-8. The scrollBars.js library (continued)

13.13 Creating a Custom Scrollbar | 439

 evt.cancelBubble = true;
 return false;
 break;
 case "scrollWrapper" :
 scrollEngaged = true;
 var evtY = (evt.offsetY) ? evt.offsetY : ((evt.layerY) ? evt.layerY : -1);
 if (evtY >= 0) {
 var pageSize = scrollBars[index].ownerHeight - fontSize;
 var thumbElemStyle = scrollBars[index].thumb.style;
 // set value negative to push document upward
 if (evtY > (parseInt(thumbElemStyle.top) +
 scrollBars[index].thumbLength)) {
 pageSize = -pageSize;
 }
 scrollBy(index, pageSize);
 scrollInterval = setInterval("scrollBy(" + index + ", " +
 pageSize + ")", 100);
 evt.cancelBubble = true;
 return false;
 }
 }
 return false;
}

// Activate scroll of inner content
function scrollBy(index, px) {
 var scroller = scrollBars[index];
 var elem = document.getElementById(scroller.ownerContentID);
 var top = parseInt(elem.style.top);
 var scrollHeight = parseInt(elem.scrollHeight);
 var height = scroller.ownerHeight;
 if (scrollEngaged && top + px >= -scrollHeight + height && top + px <= 0) {
 DHTMLAPI.moveBy(elem, 0, px);
 updateThumb(index);
 } else if (top + px < -scrollHeight + height) {
 DHTMLAPI.moveTo(elem, 0, -scrollHeight + height - scroller.quirks.contentPadding);
 updateThumb(index);
 clearInterval(scrollInterval);
 } else if (top + px > 0) {
 DHTMLAPI.moveTo(elem, 0, 0);
 updateThumb(index);
 clearInterval(scrollInterval);
 } else {
 clearInterval(scrollInterval);
 }
}

/**********************
 SCROLLBAR TRACKING
***********************/
// Position thumb after scrolling by arrow/page region
function updateThumb(index) {

Example 13-8. The scrollBars.js library (continued)

440 | Chapter 13: Positioning HTML Elements

 var scroll = scrollBars[index];
 var barLength = scroll.scrollWrapperLength - (scroll.quirks.scrollBorder * 2);
 var buttonLength = scroll.buttonLength;
 barLength -= buttonLength * 2;
 var docElem = scroll.contentElem;
 var docTop = Math.abs(parseInt(docElem.style.top));
 var scrollFactor = docTop/(scroll.contentScrollHeight - scroll.ownerHeight);
 DHTMLAPI.moveTo(scroll.thumb, 0, Math.round((barLength - scroll.thumbLength) *
 scrollFactor) + buttonLength);
}

// Position content per thumb location
function updateScroll() {
 var index = dragObject.index;
 var scroller = scrollBars[index];

 var barLength = scroller.scrollWrapperLength - (scroller.quirks.scrollBorder * 2);
 var buttonLength = scroller.buttonLength;
 var thumbLength = scroller.thumbLength;
 var wellTop = buttonLength;
 var wellBottom = barLength - buttonLength - thumbLength;
 var wellSize = wellBottom - wellTop;
 var thumbTop = parseInt(DHTMLAPI.getComputedStyle(scroller.thumb.id, "top"));
 var scrollFactor = (thumbTop - buttonLength)/wellSize;
 var docElem = scroller.contentElem;
 var docTop = Math.abs(parseInt(docElem.style.top));
 var scrollHeight = scroller.contentScrollHeight;
 var height = scroller.ownerHeight;
 DHTMLAPI.moveTo(scroller.ownerContentID, 0, -(Math.round((scrollHeight - height) *
 scrollFactor)));
}
/*******************
 ELEMENT DRAGGING
********************/
// dragObject contains data for currently dragged element
var dragObject = {
 selectedObject : null,
 offsetX : 0,
 offsetY : 0,
 index: 0,
 // invoked onmousedown
 engageDrag : function(evt) {
 evt = (evt) ? evt : window.event;
 var target = (evt.target) ? evt.target : evt.srcElement;
 if (target.id.indexOf("thumb") == 0) {
 var dragContainer = target;
 if (dragContainer) {
 dragObject.selectedObject = dragContainer;
 dragObject.index = dragContainer.index;
 DHTMLAPI.setZIndex(dragContainer, 100);
 dragObject.setOffsets(evt, dragContainer);
 dragObject.setDragEvents();

Example 13-8. The scrollBars.js library (continued)

13.13 Creating a Custom Scrollbar | 441

 evt.cancelBubble = true;
 evt.returnValue = false;
 if (evt.stopPropagation) {
 evt.stopPropagation();
 evt.preventDefault();
 }
 }
 }
 return false;
 },
 // calculate offset of mousedown within draggable element
 setOffsets : function (evt, dragContainer) {
 if (evt.pageX) {
 dragObject.offsetX = evt.pageX -
 ((typeof dragContainer.offsetLeft == "number") ?
 dragContainer.offsetLeft : dragContainer.left);
 dragObject.offsetY = evt.pageY -
 ((typeof dragContainer.offsetTop == "number") ?
 dragContainer.offsetTop : dragContainer.top);
 } else if (evt.offsetX || evt.offsetY) {
 dragObject.offsetX = evt.clientX -
 ((typeof dragContainer.offsetLeft == "number") ?
 dragContainer.offsetLeft : 0);
 dragObject.offsetY = evt.clientY -
 ((typeof dragContainer.offsetTop == "number") ?
 dragContainer.offsetTop : 0);
 }
 },
 // invoked onmousemove
 dragIt : function (evt) {
 evt = (evt) ? evt : window.event;
 var x, y, width, height;
 var obj = dragObject;
 if (evt.pageX) {
 x = evt.pageX - obj.offsetX;
 y = evt.pageY - obj.offsetY;
 } else if (evt.clientX || evt.clientY) {
 x = evt.clientX - obj.offsetX;
 y = evt.clientY - obj.offsetY;
 }
 var index = dragObject.index;
 var scroller = scrollBars[index];
 // set dynamically at scrollbar creation
 var zone = scroller.dragZone;
 width = scroller.thumb.width;
 height = scroller.thumb.height;
 x = (x < zone.left) ? zone.left :
 ((x + width > zone.right) ? zone.right - width : x);
 y = (y < zone.top) ? zone.top :
 ((y + height > zone.bottom) ? zone.bottom - height : y);
 DHTMLAPI.moveTo(obj.selectedObject, x, y);
 updateScroll();

Example 13-8. The scrollBars.js library (continued)

442 | Chapter 13: Positioning HTML Elements

The code begins by defining some scrollbar and scroll action global variables. The
scrollBars array manages more than one scrollbar per page.

The scrollBar() constructor function for the scrollbar objects receives three string
parameters: the IDs for the div that holds the content and scrollbar (informally
referred to here as the root container), the content’s outer wrapper div (the content
div’s owner), and the content’s inner wrapper (the owner content). The purpose of
this constructor is to perform some one-time calculations and initializations per
scrollbar (multiple scrollbars per page are allowed), facilitating several possible
scrollbar actions later on. To help the buttons’ event handlers know which set of
scrollers is operating, an index value, corresponding to the position within the
scrollBars array, is assigned to the index properties of the two button elements. The

 evt.cancelBubble = true;
 evt.returnValue = false;
 },
 // invoked onmouseup
 releaseDrag : function (evt) {
 DHTMLAPI.setZIndex(dragObject.selectedObject, 0);
 dragObject.clearDragEvents();
 dragObject.selectedObject = null;
 },
 // set temporary events
 setDragEvents : function () {
 addEvent(document, "mousemove", dragObject.dragIt, false);
 addEvent(document, "mouseup", dragObject.releaseDrag, false);
 },
 // remove temporary events
 clearDragEvents : function () {
 removeEvent(document, "mousemove", dragObject.dragIt, false);
 removeEvent(document, "mouseup", dragObject.releaseDrag, false);
 },
 // initialize, assigning mousedown events to all
 // elements with class="draggable" attributes
 init : function () {
 var elems = [];
 if (document.all) {
 // IE 5 & 5.5 don't know wildcard for getElementsByTagName
 // so use document.body.all, which lets IE 4 work OK
 elems = document.body.all;
 } else if (document.body && document.body.getElementsByTagName) {
 elems = document.body.getElementsByTagName("*");
 }
 for (var i = 0; i < elems.length; i++) {
 if (elems[i].className.match(/draggable/)) {
 addEvent(elems[i], "mousedown", dragObject.engageDrag, false);
 }
 }
 }
};

Example 13-8. The scrollBars.js library (continued)

13.13 Creating a Custom Scrollbar | 443

scrollBars.length value represents the numeric index of the scrollBars item being
generated because the scrollBars array has not yet been assigned the finished object,
meaning that the array length is one less than it will be after the object finishes its
construction.

Numerous properties of each scrollBar object don’t receive their active values until
the function that creates the physical scrollbar executes. There is also a section in the
constructor that concerns itself with browsers operating in quirks (i.e., non-CSS-
compliant) mode, such as IE 5 and 5.5. When element dimensions affect element
positioning, factors such as borders and padding are treated very differently in quirks
and CSS-compatibility modes. Another property of this object, dragZone, is eventu-
ally used to guide the dragging of the thumb image to keep it restricted to the space
within the scrollbar.

The next function, appendScrollBar(), is a monster. It could be easily broken into
multiple pieces, but the structure is simple enough to follow whole, as it assembles
the DOM objects for the physical scrollbar. As relevant values become available, they
are assigned to the abstract scrollBar object’s properties created in the constructor
function. The physical scrollbar consists of one scroll wrapper (which also serves as
the background gray region for the scrollbar) and three img elements: clickable line-
up and line-down buttons and the draggable thumb. Mouse-related event handlers
are assigned to the scrollbar wrapper to process events from any of the components
within the scrollbar. The scrollbar is initially created invisibly, and then shown at the
end to overcome a rendering bug in IE that otherwise positions the scrollbar errantly.

The next section of the library contains the event handler functions. All that
handleScrollStop() does is turn off the flag that other functions use to permit
repeated scrolling, while blockEvent() stops the contextmenu event from carrying out
its default action on the Macintosh. Event processing for clicks on the arrow images
or in the page-up and page-down regions of the scrollbar is managed by the
handleScrollClick() function. The function provides three branches for calculating
the distance that scrolling is to jump in response to the click. Negative values move
the content document upward. The trickiest part of this function is calculating
whether the click on the scroll wrapper is above or below the thumb to reach the
appropriate scroll direction (in the "scrollWrapper" case).

Compared to the simple scroll buttons of Recipe 13.12, this recipe’s version of the
scrollBy() function has more to worry about. When the user clicks an arrow or page
area of the scrollbar, not only must the document scroll, but the thumb image must
also move into a position that corresponds to the scrolled percentage of the docu-
ment. Thus, after each invocation of the DHTML API’s moveBy() or moveTo() func-
tion, the updateThumb() function gets a call. Notice that there are two extra branches
of the scrollBy() function. They take care of the cases when the user clicks on the
page regions and there is less than a full page to go. The result of the two extra
branches forces the scroll (and thumb) to the top or bottom of the range, depending
on direction.

444 | Chapter 13: Positioning HTML Elements

The third section of the library is devoted to keeping the scrolled content and thumb
position synchronized with each other. To keep the thumb image in sync with the
scrolled position of the document, the updateThumb() function calculates the propor-
tion of the document scrolled upward and applies that proportion to the position of
the thumb element within the scroll wrapper element (offset by the up button
image). Conversely, the updateScroll() function adjusts the scrolled position of the
content to represent the same proportion as the location of the thumb along the
scrollbar while the user drags the thumb. The known value (after some calculations
involving the current size of the scrollbar and related images) is the proportion of the
thumb along the area between the scroll buttons (the well). That factor is applied to
the scroll characteristics of the content document. As the user slides the thumb up or
down, the document scrolls in real time.

The last library code section contains functions needed for dragging the thumb. The
basics of element dragging in Recipe 13.11 carry over to the scrollbar thumb-dragging
operation here. Although we use the same event handler assignments and three pri-
mary dragObject methods (engageDrag(), dragIt(), and releaseDrag()), a couple of
items are modified to work specifically within this specialized scrollbar environment.

The biggest modifications apply to the dragIt() function. These changes deal prima-
rily with restricting the drag of the thumb image within the vertical travel of the
scrollbar, and preventing the thumb from exceeding the area between the scroll but-
tons. Values controlling the boundaries are set in the scrollbar object’s dragZone
property. If you use different scrollbar designs and sizes, you’ll need to modify these
object properties to fit your elements. The revised dragIt() function also invokes the
updateScroll() function, which synchronizes the scroll of the content with the posi-
tion of the thumb.

To create the scrollbar and prepare it for user interaction, initialize the process by
calling the two key functions: the scrollBar() constructor function (passing IDs of
the three hardwired HTML components shown at the beginning of this Solution),
and the appendScroll() function. Activate these functions from the load event han-
dler after initializing the DHTML API.

The design of the scrollbar shown in Figure 13-4 is very traditional. You’re not lim-
ited to that style by any means. You might, for example, elect to eliminate the but-
tons, and include only a highly stylized slider to control scrolling. Or you could get
more platform-specific, and include art that more closely resembles the user’s operat-
ing system. Native scrollbars look very different in the Windows 9x, Windows XP,
Windows Vista, and Mac OS X environments.

There is another factor to consider: Mac OS X displays scrollbar buttons together at
the bottom of the scrollbar, rather than split to the top and bottom. Not that Mac
users wouldn’t know how to operate the split button kind of scrollbar, but the split
design may not feel natural to users who are accustomed to the newer scrollbar
interface. The code in the Solution could be modified to produce a scrollbar with

13.14 Creating a Slider Control | 445

the buttons together. This change impacts a lot of things, particularly the position-
ing of the thumb, but it is possible to branch your code (or perhaps load the scroll-
bar as separate external .js libraries) for the main operating systems.

Horizontal scrolling is not addressed in this recipe. If you need to scroll horizontally,
you need to make several modifications to the code. Look first to all invocations of
the scrollBy(), moveBy(), and moveTo() methods, which need to swap their parame-
ters so that the y axis values are zero, and the x axis values are the ones that change.
Dimensions of key elements, such as the scroll wrapper and content holders, need to
focus on their widths, rather than heights. Fortunately, all of the technicalities of
working in quirks mode apply directly to horizontal measures as well as to vertical
measures, so you won’t have to delve deeply in those parts of the code.

This scrollbar recipe is among the most code-intensive applications in this book. Yet
it builds upon foundations from other recipes without reinventing infrastructure
wheels (especially the DHTML- and element-dragging APIs). It also demonstrates
that, at least for modern browsers, you can accomplish quite a lot from the user
interface realm, even in the otherwise ordinary published document model.

See Also
Recipe 13.3 for the vital DHTML API library; Recipe 13.11 for the element-drag-
ging routines; Recipe 13.12 for scrolling only with buttons rather than a complete
scrollbar.

13.14 Creating a Slider Control

Problem
You want to provide users with a draggable slider control to interact with dynamic
content on the page.

Solution
Use a combination of the eventsManager.js library (Recipe 9.3), the DHTML3API.js
library (Recipe 13.3), and the slideControl.js library, shown in Example 13-9 in the
Discussion. Although the new library is self-initializing, you need to pass some infor-
mation to the library at load time for each slide control on the page. Your script in
the HTML page would look like the following:

function initSlide() {
 if (slideObject) {
 slideObject.addSlide({zone:{left:-35, top:-11, right:227, bottom:-11},
 updateFunction:updateDisplay});
 }
}
addOnLoadEvent(initSlide);

446 | Chapter 13: Positioning HTML Elements

As discussed more fully in the Discussion section, the zone object contains coordi-
nates for the region in which the slide may travel while being dragged; the
updateFunction is a reference to the page-specific function that modifies dynamic
content on the page.

You must also include HTML for elements that comprise the slide control, usually
consisting of an overall container (to provide a positioning context), an absolute-
positioned background image, and an absolute-positioned slider. The CSS and
HTML for one example follows:

<style type="text/css">
#sliderControl {position: absolute; top: 100px; left: 200px}
#sliderScale {position: absolute; top: 0; left: 0; z-index: 0; border: 3px ridge
black}
#slide {position: absolute; top: -11px; left: 97px; z-index: 1}
</style>
...
<div id="sliderControl">
<img id="sliderScale" src="slider_bg.png" width="300" height="141" alt="Slide Scale"
/>
<img id="slide" class="draggable" src="slider_slide.png" width="116" height="168"
alt="Slide" />
</div>

The class attribute value of draggable causes the slide controller initialization rou-
tine to assign the necessary mousedown event to enable dragging.

Discussion
This solution is a minor extension (with minor renaming) of the dragManager.js
library from Recipe 13.11. As described in that recipe, it doesn’t take much to limit
the movement of a draggable item—something necessary for a slider that works hori-
zontally or vertically.

As an example of the slider in action, this solution employs a background image of a
scale and a movable foreground transparent image of a slide. While both examples
are based on photographs of a real slider control, you can substitute artwork of your
own creation. Figure 13-5 shows the slider, along with a color box below the slider.
As the user slides the control, the color of the box changes dynamically from green to
red (appearing yellow at the midpoint). Example 13-9 contains the complete
slideControl.js library.

13.14 Creating a Slider Control | 447

Figure 13-5. An example of a slider control operated by this solution

Example 13-9. The slideControl.js library

// slideObject contains data for currently dragged element
var slideObject = {
 selectedObject : null,
 offsetX : 0,
 offsetY : 0,
 sliders : new Array(),
 zone: null,
 updateFunction: null,
 // invoked onmousedown
 engageDrag : function(evt, i) {
 evt = (evt) ? evt : window.event;
 slideObject.selectedObject = (evt.target) ? evt.target : evt.srcElement;
 var target = (evt.target) ? evt.target : evt.srcElement;
 var dragContainer = target;
 // in case event target is nested in draggable container
 while (target.className != "draggable" && target.parentNode) {
 target = dragContainer = target.parentNode;
 }
 if (dragContainer) {
 slideObject.selectedObject = dragContainer;
 slideObject.setOffsets(evt, dragContainer);

448 | Chapter 13: Positioning HTML Elements

 slideObject.setDragEvents();
 slideObject.zone = slideObject.sliders[i].zone;
 slideObject.updateFunction = slideObject.sliders[i].updateFunction;
 evt.cancelBubble = true;
 evt.returnValue = false;
 if (evt.stopPropagation) {
 evt.stopPropagation();
 evt.preventDefault();
 }
 }
 return false;
 },
 // calculate offset of mousedown within draggable element
 setOffsets : function (evt, dragContainer) {
 if (evt.pageX) {
 slideObject.offsetX = evt.pageX -
 ((typeof dragContainer.offsetLeft == "number") ?
 dragContainer.offsetLeft : dragContainer.left);
 slideObject.offsetY = evt.pageY -
 ((typeof dragContainer.offsetTop == "number") ?
 dragContainer.offsetTop : dragContainer.top);
 } else if (evt.offsetX || evt.offsetY) {
 slideObject.offsetX = evt.clientX -
 ((typeof dragContainer.offsetLeft == "number") ?
 dragContainer.offsetLeft : 0);
 slideObject.offsetY = evt.clientY -
 ((typeof dragContainer.offsetTop == "number") ?
 dragContainer.offsetTop : 0);
 }
 },
 // invoked onmousemove
 dragIt : function (evt) {
 evt = (evt) ? evt : window.event;
 var x, y, width, height;
 var obj = slideObject;
 if (evt.pageX) {
 x = evt.pageX - obj.offsetX;
 y = evt.pageY - obj.offsetY;
 } else if (evt.clientX || evt.clientY) {
 x = evt.clientX - obj.offsetX;
 y = evt.clientY - obj.offsetY;
 }
 width = DHTMLAPI.getElementWidth(obj.selectedObj);
 height = DHTMLAPI.getElementHeight(obj.selectedObj);
 x = (x < obj.zone.left) ? obj.zone.left :
 ((x + width > obj.zone.right) ? obj.zone.right - width : x);
 y = (y < obj.zone.top) ? obj.zone.top :
 ((y + height > obj.zone.bottom) ? obj.zone.bottom - height : y);
 DHTMLAPI.moveTo(obj.selectedObject, x, y);
 // optimized for horizontal slider
 if (obj.updateFunction) obj.updateFunction((x - obj.zone.left)/

Example 13-9. The slideControl.js library (continued)

13.14 Creating a Slider Control | 449

The library is implemented as a single object, named slideObject. Even though it is a
single object, it can accommodate multiple sliders on the same page because the key
details about each slider (the coordinate zone in which it travels and the function to

 (obj.zone.right - obj.zone.left));
 evt.cancelBubble = true;
 evt.returnValue = false;
 },
 // invoked onmouseup
 releaseDrag : function (evt) {
 DHTMLAPI.setZIndex(slideObject.selectedObject, 0);
 slideObject.clearDragEvents();
 slideObject.selectedObject = null;
 },
 // set temporary events
 setDragEvents : function () {
 addEvent(document, "mousemove", slideObject.dragIt, false);
 addEvent(document, "mouseup", slideObject.releaseDrag, false);
 },
 // remove temporary events
 clearDragEvents : function () {
 removeEvent(document, "mousemove", slideObject.dragIt, false);
 removeEvent(document, "mouseup", slideObject.releaseDrag, false);
 },
 // add slider data to sliders array
 // data in object form {zone obj, updateFuncRef}
 addSlide : function(data) {
 this.sliders[this.sliders.length] = data;
 },
 // initialize, assigning mousedown events to all
 // elements with class="draggable" attributes
 init : function () {
 var elems = [];
 if (document.all) {
 // IE 5 & 5.5 don't know wildcard for getElementsByTagName
 // so use document.body.all, which lets IE 4 work OK
 elems = document.body.all;
 } else if (document.body && document.body.getElementsByTagName) {
 elems = document.body.getElementsByTagName("*");
 }
 var hitCount = 0
 for (var i = 0; i < elems.length; i++) {
 if (elems[i].className.match(/draggable/)) {

addEvent(elems[i], "mousedown", function(evt) {slideObject.engageDrag(evt,
 hitCount++)}, false);
 }
 }
 }
};
// set onload event via eventsManager.js
addOnLoadEvent(slideObject.init);

Example 13-9. The slideControl.js library (continued)

450 | Chapter 13: Positioning HTML Elements

be invoked at every movement) are stored in an array (called sliders) within the
object. An index to that array is passed to the engageDrag() method, which then
assigns the specific slider’s details to the zone and updateFunction properties of
sliderObject for the duration of the dragging process. For each slide control, invoke
the slideObject.addSlide() method, passing an object consisting of two properties,
as shown in the Solution section.

Determining the values to pass as the zone coordinates for a particular slider may
take some trial and error. It’s rare for the slide component to start and stop its travel
at the exact edges of the positioning context. In the example shown in Figure 13-5,
for instance, the left edge of the slide extends beyond the left edge of the positioning
context, requiring the zone.left property to be a negative value. For a horizontal
slider, the zone.top and zone.bottom values will be the same (to keep the slider on a
fixed horizontal line); for a vertical slider, the zone.left and zone.right values will
be the same.

Each time the sliderObject.dragIt() method runs (at each mousemove event while
the slide is being dragged), the function passed as the second parameter to
addSlide() is invoked. This function is one you write to respond to the new posi-
tion of the slide control. The call to your function passes a single parameter, a value
between 0 and 1 (inclusive) representing the percentage (0 to 100) at which the
slide is positioned relative to the total travel distance for the slider. It is up to your
function to convert that knowledge to something dynamic on the page. In the exam-
ple shown in Figure 13-5, the update function changes the background color of a box
on the page. The colors range from green (RGB value of 255, 0, 0) to red (RGB value
of 0, 255, 0). Statements in the update function recalculate the necessary red and
green values based on the passed value. Note that the passed value is a floating-point
number. If your function needs integer values, perform the necessary conversions in
your function, as shown in the following example:

function updateDisplay(pct) {
 var max = 255;
 var min = 0
 var red, green;
 if (pct < .5) {
 green = max;
 red = Math.round(max * (pct * 2));
 } else {
 red = max;
 green = Math.round(max * ((1-pct) * 2));
 }
 document.getElementById("colorbox").style.backgroundColor =
 "rgb(" + red + ", " + green + ", 0)";
}

As an aside, the reason the pct values above are multiplied by two is that in this
application, the ranges of applied color values max out at the midpoint, where both
red and green values are 255.

13.14 Creating a Slider Control | 451

A slider control is fun and interactive for visitors. The downside, of course, is that
without scripting enabled, the visitor derives no benefit from the design; similarly,
special browsers for vision- or motor-skill-impaired visitors likely won’t be able to
use the sliders effectively. As with most DHTML implementations, apply techniques
such as these to add value to otherwise accessible content.

See Also
Recipe 13.11 for other draggable element ideas; Recipe 13.3 for scripting DHTML
features with the help of a JavaScript library.

452

Chapter 14CHAPTER 14

Creating Dynamic Content 14

14.0 Introduction
JavaScript-enabled browsers have always provided a level of control over page con-
tent so that scripts can influence what the visitor sees on the page. But it took sophis-
ticated document object models and the automatically reflowing page features of
browsers such as Internet Explorer 4 and Mozilla to give scripters carte blanche over
the page content, both during page loading and after (within security boundaries, of
course). This chapter focuses on how to generate content that goes into the page and
manipulate the existing content of a page. The next chapter picks up where this one
leaves off, showing several specific applications of these powers.

Web programmers who spend most of their time coding for server processing fre-
quently overlook the power that a scripted client can provide to an otherwise dead
and dull web page. Their (quite logical) train of thought is to have the server work its
magic to assemble content that shoots its way to the browser, where users read it and
perhaps enter various things into forms. The browser then sends the form back to
the server, where more programming processes the user input. It’s powerful stuff on
the server, and applications involving transactions and database access need that
power running right where it is.

Users, however, are accustomed to direct manipulation of data and instant feedback
from their experience with standalone applications running on their computers.
When you change the font characteristics of a selection in a word processing docu-
ment, the change is instantaneous; when you sort the columns of a spreadsheet, the
sorting occurs in the blink of an eye. Waiting for a submission to the server, remote
processing, and delivery of the reconstituted page is not fun, even when you have a
broadband connection to the Internet.

The broadband connection, combined with the now nearly ubiquitous
XMLHttpRequest object in browsers, has unleashed an entirely new generation of web-
based applications—applications that offer interactive communications with server
processes and dynamically modified web pages. Incremental updates to page content

14.1 Writing Dynamic Content During Page Loading | 453

mean that the user experience of a web-based application is as good as a standalone
program—if not better, thanks to access to instant updates from a server.

This chapter and the next are all about pages that may look entirely different from
the way they were delivered by the server because the user is able to sort tables,
experiment with the body text content, retrieve incremental data, and even filter con-
tent based on user preferences. The focus here is on client-side solutions, all of which
may be enhanced with server-side processes.

14.1 Writing Dynamic Content During Page Loading

Problem
You want to customize the content of the body based on client settings or cookie
data, particularly in a backward-compatible way.

Solution
All scriptable browsers let you embed scripted document.write() statements any-
where in the body where you want customized content to appear. The following
code displays a message tailored to the visitor’s operating system:

<html>
<head>
<script type="text/javascript">
function yourOS() {
 var ua = navigator.userAgent.toLowerCase();
 if (ua.indexOf("win") != -1) {
 return "Windows";
 } else if (ua.indexOf("mac") != -1) {
 return "Macintosh";
 } else if (ua.indexOf("linux") != -1) {
 return "Linux";
 } else if (ua.indexOf("x11") != -1) {
 return "Unix";
 } else {
 return "Computers";
 }
}
</script>
...
<body>
<h1>Welcome to GiantCo Computers</h1>
<h2>We love
<script type="text/javascript">document.write(yourOS())</script>
<noscript>Computer</noscript>
Users!</h2>
...
</body>
</html>

454 | Chapter 14: Creating Dynamic Content

Discussion
The preceding Solution works on all scriptable browsers. Exercise care, however,
when experimenting with document.write(). When you embed this method in the
page flow, as shown in the Solution, you do not use the document.open() or
document.close() methods commonly associated with document.write(). This is
because the page-rendering stream is already open by virtue of the page loading from
the server; the browser automatically closes the stream when the content ends.

A common beginner’s mistake is to try to invoke document.write() after the page has
loaded in an effort to modify or add to the content on the page. But if you invoke
document.write() at that point, the current page automatically goes away, taking
with it all scripts and data embedded in the page. Invoking document.write() by
itself equates to three methods in sequence: document.clear(), document.open(), and
document.write(). In other words, after the current page has loaded, use document.
write() only to replace the current page with other content that your scripts assem-
ble (as shown in Recipe 14.2). To modify the existing page (to the extent that your
target browsers support this feature), use the more direct element object manipula-
tion shown throughout Chapter 15.

See Also
Recipe 15.1 for using document.write() to display a random slogan on the page;
Recipe 15.7 for greeting users with the time of day in their local time zones.

14.2 Creating New Page Content Dynamically

Problem
You want to use scripts to assemble the content of a page that replaces the current
page.

Solution
The following code gathers user-supplied text from a form on one page to provide
some of the content for an entirely new page that replaces the first page:

<html>
<head>
<title>Welcome Page</title>
<script type="text/javascript">
// create custom page and replace current document with it
function rewritePage(form) {
 // accumulate HTML content for new page
 var newPage = "<html><head><title>Page for ";
 newPage += form.entry.value;
 newPage += "</title></head><body bgcolor='#ffffcc'>";
 newPage += "<h1>Hello, " + form.entry.value + "!</h1>";

14.2 Creating New Page Content Dynamically | 455

 newPage += "</body></html>";
 // write it in one blast
 document.write(newPage);
 // close writing stream
 document.close();
}
</script>
<body>
<h1>Welcome!</h1>
<hr />
<form onsubmit="return false;">
<p>Enter your name here: <input type="text" name="entry" id="entry"></p>
<input type="button" value="New Custom Page" onclick="rewritePage(this.form);">
</form>
</body>
</html>

Discussion
Because one swipe of the document.write() method invoked on a loaded page erases
the current page, the technique is to assemble the replacement HTML as a single
string value and then invoke document.write() just once, passing the string as the
parameter. Bear in mind that you are supplying text for the entire page, so any con-
tent that you might typically put into a page’s head section (such as the document
title) goes into the string. If you fail to provide tags for the html, head, and body ele-
ments, the browser treats the written string as the body content of the new page,
automatically inserting the html, head, and body elements around your content. But it
is better practice to supply those parts of the page yourself.

You can put any well-formed HTML and script content into the string that gets writ-
ten to the new page. Thus, you can pass along script variables and their numeric or
string values within written script tags. For example, if you wanted to pass the value
of string variable myName from the current document to the next, the following HTML
string accumulation statement puts the correct value in place. Notice how explicit
quote marks are placed around the evaluated value, just as you’d do in a regular
script statement involving a string:

htmlString += "var myName = '" + myName + "';";

Using document.write() for script tags, however, can be tricky in earlier browsers
because the </script> tag that you assemble into the string may be interpreted as an
end to the script that is assembling the text. To avoid this problem, break up the
end-script tag and escape the forward slash, as follows:

htmlString += '<script type="text/javascript">script statement here<\/scr' + 'ipt>';

It is vital that you follow the document.write() statement with a call to document.
close(). Even though the original page’s script is blown away by document.write(),
the document.close() method call still executes. If you don’t include document.close(
), not all of the content of the string written to the next page may render. This is espe-
cially true if the content contains images or other external content.

456 | Chapter 14: Creating Dynamic Content

See Also
Recipe 1.1 for combining string segments into one string.

14.3 Including External HTML Content

Problem
You want to combine (include) content from another HTML document into a single
document on the page.

Solution
Put the external content into an iframe element, and disguise the iframe so that it
looks to be part of the regular document flow. Here is an example of an iframe ele-
ment that blends seamlessly into a plain HTML page:

<iframe id="myFrame" frameborder="0" vspace="0" hspace="0" marginwidth="0"
marginheight="0" width="100%" src="external.html" scrolling="no"
style="overflow:visible"></iframe>

To size the iframe element correctly, you must wait for the content to load, and then
use scripts to find out the content height. The following function is invoked by the
load event handler of the main page, which passes the ID of the iframe to be
adjusted:

function adjustIFrameSize(id) {
 var myIframe = document.getElementById(id);
 if (myIframe) {
 if (myIframe.contentDocument && myIframe.contentDocument.body.scrollHeight) {
 // W3C DOM iframe document syntax
 myIframe.height = myIframe.contentDocument.body.scrollHeight;
 } else if (myIframe.Document && myIframe.Document.body.scrollHeight) {
 // IE DOM syntax
 myIframe.height = myIframe.Document.body.scrollHeight;
 }
 }
}

To adjust the example iframe element, the load event binding can be by attribute in
the main page’s <body> tag:

onload = "adjustIFrameSize('myFrame');"

The user will see the page rearrange itself when the iframe resizes.

Discussion
For the resizing script to work, both the host and the external pages must be served
from the same domain and server, to allow the script to dive into the otherwise pro-
tected realm of the iframe’s content. Notice that the reference to the content of the
iframe element is not as direct as you might be accustomed to from working with

14.3 Including External HTML Content | 457

framesets. If you begin with a reference to the iframe element, you then need the
DOM-compatible syntax to reach the document object within that frame: Document for
IE and contentDocument for W3C DOM-based browsers. References to those docu-
ments point to the root document containing the content visible in the frame. From
there, you can reach the body or other elements within the document. In the case of
the embedded iframe, the total height of the rendered content (unknown until it
loads) governs the ultimate height of the iframe.

Be aware that hyperlinks in the iframe’s content will load their destination docu-
ments into the iframe, unless the targets of those links are set to _top. Also, any new
content loaded into the iframe that is not the same height as the original either leaves
a gap (too short) or is clipped (too long). The only fix is to resize the iframe for the
new content.

To prepare the iframe for automatic resizing when a new document loads there, you
must bind a load event handler to the iframe element. While a hardwired onload
event handler or event property assignments may not work for the iframe element in
Mozilla, more modern event binding does. Use the addEvent() function from Recipe
9.1 to revise the function shown in the Solution to bind the events as follows:

function adjustIFrameSize(id) {
 var myIframe = document.getElementById(id);
 if (myIframe) {
 if (myIframe.contentDocument && myIframe.contentDocument.body.scrollHeight) {
 // W3C DOM iframe document syntax
 myIframe.height = myIframe.contentDocument.body.scrollHeight;
 } else if (myIframe.Document && myIframe.Document.body.scrollHeight) {
 // IE DOM syntax
 myIframe.height = myIframe.Document.body.scrollHeight;
 }
 // bind load events to iframe
 addEvent(myIframe, "load", resizeIframe, false);
 }
}

The events invoke a function that processes the event to pass the desired informa-
tion (the ID of the iframe) back to the adjustIFrameSize() function:

function resizeIframe(evt) {
 evt = (evt) ? evt : event;
 var target = (evt.target) ? evt.target : evt.srcElement;
 // take care of W3C event processing from iframe's root document
 if (target.nodeType == 9) {
 if (evt.currentTarget &&
 evt.currentTarget.tagName.toLowerCase() == "iframe") {
 target = evt.currentTarget;
 }
 }
 if (target) {
 adjustIFrameSize(target.id);
 }
}

458 | Chapter 14: Creating Dynamic Content

The tricky part is that the load event fires for the content document of the iframe in
W3C DOM browsers rather than for the iframe element directly. Fortunately, the
event bubbles up to the containing iframe, and the W3C DOM event object’s
currentTarget property gives us a reference to the element that is actually processing
the event, regardless of original target. The event bindings are invoked again in the
adjustIFrameSize() function, but there is no harm in doing so. If you have some
other initializations on the page that occur in response to the main page’s load event
handler, you can shift these assignments to that initialization function so that they
execute only one time.

See Also
Recipe 9.1 for handling conflicting event models together; Recipe 9.2 for details
about the load event handler.

14.4 Embedding XML Data

Problem
You want to reference XML document data to support script activities in the main
page.

Solution
IE 5 or later for Windows, Mozilla, Safari 1.2 or later, and Opera 8 or later allow you
to create an invisible virtual document that holds raw XML data, which your scripts
may then traverse using standard DOM node referencing methods and properties.
For now, loading the XML data requires browser-specific handling, but once that
occurs, you can reference the content and its node tree uniformly.

The following XMLDoc() constructor function creates an object that stands ready to
use the XMLHttpRequest object to load external XML data and then invoke a function
of your own creation to handle the data:

// constructor function for an XML request object;
function XMLDoc() {
 var me = this;
 var req = null;
 // branch for native XMLHttpRequest object
 if (window.XMLHttpRequest) {
 try {
 req = new XMLHttpRequest();
 } catch(e) {
 req = null;
 }
 // branch for IE/Windows ActiveX versions
 } else if (window.ActiveXObject) {
 try {

14.4 Embedding XML Data | 459

 req = new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 req = new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 req = null;
 }
 }
 } else {
 alert("This example requires a browser with XML support, such as IE5+/
Windows, Mozilla, Safari 1.2, or Opera 8.")
 }
 // preserve reference to request object for later
 this.request = req;
 // "public" method to be invoked whenever
 this.loadXMLDoc = function(url, loadHandler) {
 if (this.request) {
 this.request.open("GET", url, true);
 this.request.onreadystatechange = function () {loadHandler(me)};
 this.request.setRequestHeader("Content-Type", "text/xml");
 this.request.send("");
 }
 };
}

Create an instance of the XMLDoc object either at load time or whenever you need it.
Then instruct it to retrieve XML data from a known URL, firing your function upon
retrieval:

function initXML() {
 var outlineRequest = new XMLDoc();
 outlineRequest.loadXMLDoc("myData.xml", handleDataFunction);
}

Discussion
The XMLHttpRequest object was first implemented in Internet Explorer as an ActiveX
control. There have been two generations of the ActiveX object. When the other
browsers began implementing this object, they did so as a native object—primarily
because the browsers needed to run on operating systems that didn’t support ActiveX.
With IE 7, Microsoft has also implemented the native XMLHttpRequest object. But with
IE 6 still so prevalent, it’s important that this solution continue to offer both ways,
depending on the capabilities of the browser. Priority is given to the native object, but
the operational result is inconsequential. Once the object is created, all styles have the
same basic properties, methods, and operating characteristics.

This solution builds an object (XMLDoc) that encapsulates the XMLHttpRequest object.
After your script creates an instance of the XMLDoc object, it needs to invoke only one
method of the object: loadXMLDoc(). This method needs two parameters. The first is
the URL which responds to an HTTP GET to return an XML document (as well as
other types). The other parameter is a reference to a function that will be called by

460 | Chapter 14: Creating Dynamic Content

the XMLHttpRequest object each time the readystatechange event fires. This event fires
several times while data is coming from the server. Your script function will then
have access to the XML document object, which has a DOM node tree you can read
with the same W3C DOM node methods and properties that you use to manipulate
an HTML document. You can see examples of this in Recipes 10.11, 14.6, and 14.8.

The reason that you need to load XML into these separate virtual documents is that
loading them into a browser frame (hidden or visible) causes most browsers to
HTML-ize the document. This type of conversion performs all kinds of formatting
on the content so that it renders in the browser window with a variety of colors,
indenting, and hierarchy symbols. The node tree of the raw document is buried and
commingled with the browser-created window dressing.

See Also
Recipe 14.6 for generating an HTML table from XML data; Recipe 14.8 for creating
JavaScript custom objects from XML data; Recipe 14.20 for walking a document
node tree for XML or HTML documents; Recipe 14.17 for using the XMLHttpRequest
object for a REST request; Recipe 14.18 for using the XMLHttpRequest object to make
a SOAP call.

14.5 Embedding Data As JavaScript Objects

Problem
You want to include data retrieved by server processes in the JavaScript code of the
page so that client scripts can manipulate the data and/or provide rendering options
for the user.

Solution
Your server processing code can insert blocks of dynamically assembled data into
portions of the HTML page about to be served to the client. While string data is typi-
cally sent to the client as values of hidden input elements, JavaScript data structures
offer significantly more power and flexibility once the code loads into the client.

For simple collections of related values, JavaScript arrays are ideal mechanisms, espe-
cially with the shortcut syntax that simplifies code assembly on the server:

var dataArray = ["value0", "value1", "value2", ... "valueN"];

For repetitive database-record-like data, shortcut JavaScript object creation syntax
makes it a snap to define properties and their values:

var dataObject = {prop0:"value0", prop1:"value1", prop2:"value2", ... propN:
"valueN"};

14.5 Embedding Data As JavaScript Objects | 461

To create an array of objects, take advantage of the length of a newly created array to
get started. By using a calculated array index value, you can modify the sequence of
array entries without having to renumber the indexes manually:

var dataArray = new Array();
dataArray[dataArray.length] = {prop0_0:"value0_0", prop0_1:"value0_1",

prop0_2:"value0_2", ... prop0_N:"value0_N"};
dataArray[dataArray.length] = {prop1_0:"value1_0", prop1_1:"value1_1",

prop1_2:"value1_2", ... prop1_N:"value1_N"};
...

Values assignable as array items or object values can be quoted strings (shown here),
numbers, Booleans, and other arrays and objects. In fact, there is no practical limit to
the amount of nesting you can do to create complex objects whose properties are,
themselves, complex objects.

Discussion
If you define the JavaScript data objects in a script within the <head> tag, those
objects are defined and ready to go when the body starts rendering. Therefore, you
have the choice of utilizing those objects to generate dynamic HTML while the page
loads, or of using the load event handler to trigger a function that modifies the body
delivered with the page.

You don’t have to embed the data formally within the HTML page. Instead, a sepa-
rate server process (invokeable via URL) can serve as the source for the equivalent of
a .js script library. Specify the URL of the process as the value of the <script> tag’s
src attribute. Make sure that the string content returned from the process is in the
same script-only form as any valid .js file and that the content type for the output is
text/javascript. Because of potential synchronization problems with a secondary
server request, access the data delivered this way via the page’s load event handler
only.

One of the most convenient JavaScript data formats is an object utilizing string index
values. These aren’t arrays per se, since the object does not gain a length property,
and iterating through its members requires the for-in style of object introspection. A
little known fact is that JavaScript lets you build this pseudohash table on top of an
array object, and the two sets of data do not collide (as shown in Recipe 3.9). For
example, consider the following JavaScript data variation of the World Cup final
match records, delivered initially as an array of objects:

var matchData = new Array();
matchData[0] = {loser:"Argentina", losscore:"2", location:"Uruguay",
winner:"Uruguay", winscore:"4", year:"1930"};
matchData[1] = {loser:"Czechoslovakia", losscore:"1", location:"Italy",
winner:"Italy", winscore:"2", year:"1934"};
...

462 | Chapter 14: Creating Dynamic Content

Now imagine a page that has a select element containing a list of the years of all the
matches, allowing a user to select a year to display the details of the final match. The
slow way to reach the data is to use a for loop through the matchData array, looking
at each year property value in search of a match of the chosen option value. For a siz-
able array, this could take a few seconds. But a one-time preprocessing of the array
can create the pseudohash table with the years as string index values. Immediately
after the matchData array is completely populated, the following statements generate
the hash table:

for (var i = 0; i < matchData.length; i++) {
 matchData["_" + matchData[i].year] = matchData[i];
}

Notice an interesting twist that the sample data required: because the year property
values being used as hash table indexes automatically cast to numeric values when
placed in that context, a nonnumeric value (an underscore) is concatenated onto
each value to force the index to be a string value. Otherwise, the numeric value
increases the length of the array, without generating the string-indexed hash table.
For nonnumeric property values, you can eliminate the concatenation trick and sup-
ply just the property reference.

Once the hash table is created, you can now reference the array object through the
unique string index of the hash table, as in this oversimplified example:

<select onchange="alert('Winner was: ' + matchData[this.value].winner)">
<option value="_1930">1930</option>
<option value="_1934">1934</option>
...
</select>

A related technique, sometimes referred to as JavaScript Object Notation (JSON),
can take advantage of the XMLHttpRequest object to retrieve data preformatted as
JavaScript arrays and objects. The concept behind JSON is simple: deliver the data to
the client as a string, and then use the JavaScript global eval() method to convert
that string into live arrays and objects (the inverse of converting to strings shown in
Recipe 3.13). In response to a request to a server URL, the XMLHttpRequest object
receives data in two forms: an XML document (if applicable) and a string. That
string can be changed into JavaScript objects and data that your scripts manipulate
as if the data had arrived with the page. See Recipe 14.7 for more on handling data
returned to an XMLHttpRequest object.

See Also
Recipe 3.1 for creating arrays; Recipe 3.8 for creating custom objects; Recipe 3.9 for
generating hash tables from arrays or arrays of objects; Recipe 3.11 for sorting arrays
of objects; Recipe 14.17 for working with XMLHttpRequest data.

14.6 Transforming XML Data into HTML Tables | 463

14.6 Transforming XML Data into HTML Tables

Problem
You want to render embedded XML data as a traditional HTML table.

Solution
For a table of known column headings and XML data structure, you can set up the
initial table element container, prepped for the addition of the data rows:

<table id="cupFinals">
<thead>
<tr><th>Year</th>
 <th>Host Country</th>
 <th>Winner</th>
 <th>Loser</th>
 <th>Score (Win - Lose)</th>
</tr>
</thead>
<tbody id="matchData"></tbody>
</table>

Use the XML-loading scenario described in Recipe 14.4. A load event handler func-
tion obtains an instance of the XMLDoc object and then loads a specific URL, while
also indicating that drawTable() (shown in Example 14-1 of the Discussion) is to be
invoked when the XML data is loaded:

function initXML() {
 var outlineRequest = new XMLDoc();
 outlineRequest.loadXMLDoc("worldCupFinals.xml", drawTable);
}
addOnLoadEvent(initXML);

Discussion
Example 14-1 shows the drawTable() function, which assembles table rows and cells
from the XML document’s node tree.

Example 14-1. The drawTable() function dynamically generating a table’s contents

// Draw table from XML document tree data
function drawTable(req) {
 req = req.request;
 if (req.readyState == 4 && req.status == 200) {
 // XML node tree
 var data = req.responseXML.getElementsByTagName("worldcup")[0];
 var tbody = document.getElementById("matchData");
 var tr, td, i, j, oneRecord;
 // for td class attributes
 var classes = ["ctr","","","","ctr"];
 for (i = 0; i < data.childNodes.length; i++) {
 // use only 1st level element nodes to skip 1st level text nodes in NN

464 | Chapter 14: Creating Dynamic Content

Once the drawTable() function runs, the table shown in Figure 14-1 appears on the
page.

Because the XMLHttpRequest object’s readystate event fires several times during the
loading of the XML document, the first job of the drawTable() function is to filter
out calls that occur before the entire document has loaded. Internal processing of
this function occurs only if the request object’s readyState property is 4 (“com-
plete”) and the status property is 200 (“success”). At that point, it is safe to fetch the
XML data, which is stored in the responseXML property. XML data retrieved in this
fashion is in the form of a W3C DOM document object. For this example, the struc-
ture of the XML document is as follows:

<?xml version="1.0"?>
<worldcup>
 <final>
 <location>Uruguay</location>
 <year>1930</year>
 <winner>Uruguay</winner>
 <winscore>4</winscore>

 if (data.childNodes[i].nodeType == 1) {
 // one final match record
 oneRecord = data.childNodes[i];
 tr = tbody.insertRow(tbody.rows.length);
 td = tr.insertCell(tr.cells.length);
 td.setAttribute("class",classes[tr.cells.length-1]);
 td.innerHTML =
 oneRecord.getElementsByTagName("year")[0].firstChild.nodeValue;
 td = tr.insertCell(tr.cells.length);
 td.setAttribute("class",classes[tr.cells.length-1]);
 td.innerHTML =
 oneRecord.getElementsByTagName("location")[0].firstChild.nodeValue;
 td = tr.insertCell(tr.cells.length);
 td.setAttribute("class",classes[tr.cells.length-1]);
 td.innerHTML =
 oneRecord.getElementsByTagName("winner")[0].firstChild.nodeValue;
 td = tr.insertCell(tr.cells.length);
 td.setAttribute("class",classes[tr.cells.length-1]);
 td.innerHTML =
 oneRecord.getElementsByTagName("loser")[0].firstChild.nodeValue;
 td = tr.insertCell(tr.cells.length);
 td.setAttribute("class",classes[tr.cells.length-1]);
 td.innerHTML =
 oneRecord.getElementsByTagName("winscore")[0].firstChild.nodeValue +
 " - " +
 oneRecord.getElementsByTagName("losscore")[0].firstChild.nodeValue;
 }
 }
 }
}

Example 14-1. The drawTable() function dynamically generating a table’s contents (continued)

14.6 Transforming XML Data into HTML Tables | 465

 <loser>Argentina</loser>
 <losscore>2</losscore>
 </final>
 <final>
 <location>Italy</location>
 <year>1934</year>
 <winner>Italy</winner>
 <winscore>2</winscore>
 <loser>Czechoslovakia</loser>
 <losscore>1</losscore>
 </final>
 ...
</worldcup>

“Records” for this data are contained in the first (and only) element in the docu-
ment whose tag name is worldcup. It is this XML structure that drawTable() maps to
an HTML table. The regularity of the DOM node tree of record-based XML data
provides an excellent analog to the row and cell formatting of an HTML table. Start-
ing with the container of all record elements (the worldcup element in our example),
it’s a comparatively simple looping routine through the next level elements, each of
which represents a record.

Figure 14-1. Sample table from embedded XML data

466 | Chapter 14: Creating Dynamic Content

In order to generate the HTML for the table, Example 14-1 uses W3C DOM table-
modification methods for inserting rows and cells. A style sheet, located in the head
of the document, defines some rules for table components as well as a class called
ctr:

<style type="text/css">
table {table-collapse:collapse; border-spacing:0}
td {border:2px groove black; padding:7px; background-color:#ccffcc}
th {border:2px groove black; padding:7px; background-color:#ffffcc}
.ctr {text-align:center}
</style>

An array called classes is near the top of the drawTable() function. Each entry of the
array corresponds to a column of the table. For a couple of the columns, the ctr class
needs to be assigned to the class attribute of the cell. This takes place within the for
loop, as the setAttribute() method is invoked for every table cell. Then, if you later
wish to modify the behavior of a particular column, simply define a new class rule,
and add that class name to the classes array constructor.

The choice for populating the content of the tables via the innerHTML property is arbi-
trary. With a couple of more lines per cell, a fully W3C DOM-compliant approach
could have been used instead. Assuming one more local variable, txt, defined at the
top of the function, the replacement for each innerHTML assignment looks as follows:

txt = document.createTextNode(oneRecord.getElementsByTagName("year")[0].
 firstChild.nodeValue);
td.appendChild(txt);

If it weren’t for the fact that the table in this example combines data from two prop-
erties into a single table column (the last column), you could create a generic XML-
to-HTML table transformation function that even creates the table headers. Header
labels could be read from the tag names of the elements nested inside one of the
records, and then modified to capitalize the first letter for the sake of aesthetics. This
works, of course, only if the tag names are meaningful.

See Also
Recipe 14.4 for embedding external XML data into a page; Recipe 14.8 for convert-
ing XML data into JavaScript objects; Recipe 14.20 for details on walking a docu-
ment node tree.

14.7 Transforming JavaScript Objects into HTML Tables

Problem
You want to render embedded JavaScript data as an HTML table.

14.7 Transforming JavaScript Objects into HTML Tables | 467

Solution
When JavaScript data is formatted as an array of objects, it is a relatively simple job
to use the data to drive the creation of rows and cells of an HTML table. Here is an
example of some repetitive data assembled on the server as a JavaScript array (per-
haps from a database query):

// Table data -- an array of objects
var jsData = new Array();
jsData[0] = {location:"Uruguay", year:1930, winner:"Uruguay", winScore:4,
 loser:"Argentina", losScore:2};
jsData[1] = {location:"Italy", year:1934, winner:"Italy", winScore:2,
 loser:"Czechoslovakia", losScore:1};
jsData[2] = {location:"France", year:1938, winner:"Italy", winScore:4,
 loser:"Hungary", losScore:2};
jsData[3] = {location:"Brazil", year:1950, winner:"Uruguay", winScore:2,
 loser:"Brazil", losScore:1};
jsData[4] = {location:"Switzerland", year:1954, winner:"West Germany", winScore:3,
 loser:"Hungary", losScore:2};

A skeleton of the table is delivered with the HTML, so that the column headings are
already in place, and a table body section is set to receive the dynamically created
table content:

<table id="cupFinals">
<thead>
<tr><th>Year</th>
 <th>Host Country</th>
 <th>Winner</th>
 <th>Loser</th>
 <th>Score (Win - Lose)</th>
</tr>
</thead>
<tbody id="matchData"></tbody>
</table>

The function that creates the table content utilizes W3C DOM table-modification
methods:

// Draw table from 'jsData' array of objects
function drawTable(tbody) {
 var tr, td;
 tbody = document.getElementById(tbody);
 // loop through data source
 for (var i = 0; i < jsData.length; i++) {
 tr = tbody.insertRow(tbody.rows.length);
 td = tr.insertCell(tr.cells.length);
 td.setAttribute("align", "center");
 td.innerHTML = jsData[i].year;
 td = tr.insertCell(tr.cells.length);
 td.innerHTML = jsData[i].location;
 td = tr.insertCell(tr.cells.length);
 td.innerHTML = jsData[i].winner;
 td = tr.insertCell(tr.cells.length);

468 | Chapter 14: Creating Dynamic Content

 td.innerHTML = jsData[i].loser;
 td = tr.insertCell(tr.cells.length);
 td.setAttribute("align", "center");
 td.innerHTML = jsData[i].winScore + " - " + jsData[i].losScore;
 }
}

The drawTable() function can be invoked via the load event handler of the page,
or, if you prefer, by a script embedded in the body anywhere below the skeleton
table elements:

drawTable("matchData");

Discussion
The W3C DOM provides the key methods for making a table on the fly. The first is
the insertRow() method of the table element object; the second is the insertCell()
method of the table row element object. It’s not enough just to insert a row or cell,
however. You must also populate the inserted object with content.

When you invoke the insertRow() method, the code returns a reference to the newly
generated row object. That reference becomes the object you use to invoke
insertCell() for each cell in the row. The parameter for both methods is an integer
indicating the position of the new row within the table or cell within the row. The
example uses a simple programmatic technique of applying the length property of
the collection of associated elements, which always points to the next one at the end
of the series.

The choice to populate the content of the table cells via the innerHTML property is
arbitrary. With a couple more lines per cell, a fully W3C DOM-compliant approach
could have been used instead. Assuming one more local variable, txt, defined at the
top of the function, the replacement for each innerHTML assignment looks as follows:

txt = document.createTextNode(jsData[i].year);
td.appendChild(txt);

Naturally, you are not limited to creating tables out of JavaScript data. JavaScript
data objects can consist of the equivalent of lookup tables that interact with user
input in forms. See Recipe 14.5 for an example of a select element being used as part
of a user interface for embedded data lookup. Offloading these simple kinds of
lookup tasks to the client frees the server for more important chores.

Note that IE 5 for the Macintosh does not support table modification methods.
Other document tree modification techniques that involve tables and table compo-
nents almost always crash the browser.

See Also
Recipe 14.5 for embedding JavaScript data into a page; Recipe 14.19 for sorting
tables.

14.8 Converting an XML Node Tree to JavaScript Objects | 469

14.8 Converting an XML Node Tree to JavaScript Objects

Problem
You want to convert XML data (either loaded from an external file or embedded as
an IE/Windows data island) into JavaScript objects for further manipulation by
scripts.

Solution
The following XML2JS() function assumes a regular, record-like structure to the XML
data (or portion of data that is significant to the page). Two parameters are required:
a reference to the XML virtual document object (see Recipe 14.4) and the tag name
of the XML document’s element that is the parent node of the repeated records:

// convert XML data into JavaScript array of JavaScript objects
function XML2JS(xmlDoc, containerTag) {
 var output = new Array();
 var rawData = xmlDoc.getElementsByTagName(containerTag)[0];
 var i, j, oneRecord, oneObject;
 for (i = 0; i < rawData.childNodes.length; i++) {
 if (rawData.childNodes[i].nodeType == 1) {
 oneRecord = rawData.childNodes[i];
 oneObject = output[output.length] = new Object();
 for (j = 0; j < oneRecord.childNodes.length; j++) {
 if (oneRecord.childNodes[j].nodeType == 1) {
 oneObject[oneRecord.childNodes[j].tagName] =
 oneRecord.childNodes[j].firstChild.nodeValue;
 }
 }
 }
 }
 return output;
}

This function returns an array of JavaScript objects whose property names are the
XML tag names, and whose property values are the text nodes of the XML tags.

Discussion
For an example of invoking the function shown in the Solution, consider the World
Cup final match XML data file shown in the Discussion in Recipe 14.4. The element
acting as the parent to the repeated record-like data is called worldcup. This is the tag
name passed as the second parameter to the XML2JS() function. Capture the results
in a global variable for use any time while the page remains loaded:

var matchData = XML2JS(req.responseXML, "worldcup");

470 | Chapter 14: Creating Dynamic Content

The results are in the form of a JavaScript array of JavaScript objects. The object for
the first record is the same object as if it were defined in JavaScript syntax:

matchData[0] = {loser:"Argentina", losscore:"2", location:"Uruguay",
 winner:"Uruguay", winscore:"4", year:"1930"};

With the data in JavaScript format, you have substantial flexibility in how you wish
to mine the data for rendering in HTML. JavaScript’s built-in array sorting capabili-
ties substantially speed and simplify sorting the data according (over and above XSL
transforms) to any one of the object properties, and then re-rendering the sorted
data. If you are showing the data in tabular form, Recipe 14.19 demonstrates how to
sort the data and redraw the table in an instant, rather than sending the request back
to the server for reconstitution of the page.

You might wonder why you’d bother with the conversion process, since you can
transform XML data into HTML directly (as in Recipe 14.6). The benefit, as you can
see in Recipe 14.19, is that data in a JavaScript array of objects is much easier to
access through scripts. Moreover, you can take advantage of powerful array-sorting
routines that would be incredibly clumsy to reproduce using a DOM node tree as
the data repository. Making tables that are sortable by a variety of columns is a
comparative snap.

See Also
Recipe 14.4 for loading XML data into a page; Recipe 14.6 for converting XML data
directly to an HTML table; Recipe 14.19 for sorting dynamically generated tables;
Recipe 3.11 for sorting an array of objects.

14.9 Creating a New HTML Element

Problem
You want to generate a brand new HTML element and insert it into the body of the
current page.

Solution
For IE 5 or later, Mozilla, Safari, and Opera 7 or later, use the W3C DOM element-
creation method of the document object. The sole parameter is a string of the tag
name for the element:

var elem = document.createElement("p");

You can now populate the element with properties and other content, and then
insert it into the document.

14.9 Creating a New HTML Element | 471

Discussion
The tag name you supply as a parameter to the createElement() method can be
upper- or lowercase, but in keeping with current trends in XHTML practice, lower-
case is the preferred style. Your case choice does not influence the value returned by
the element’s tagName property, which uniformly returns values in all uppercase.

Invoking the createElement() method generates the element in the browser’s mem-
ory, but the element is not yet part of the document node tree. To accomplish this
task, use one of the node tree modification methods on the element that you want to
be the parent node of the newly installed element:

appendChild(newChild)
Adds the newChild node as the last child of the element invoking the method.
Returns a reference to the newly appended child node.

insertBefore(newChild,refNode)
Inserts the newChild in front of the existing child node referenced by refNode.
Returns a reference to the newly inserted child node.

replaceChild(newChild,oldChild)
Inserts the newChild in place of the oldChild. Returns a reference to the removed
child node.

Here is a typical sequence that creates a new self-contained element, sets various
attributes, and puts it at the end of the page’s body:

var elem = document.createElement("img");
elem.setAttribute("src", "images/logo.jpg");
elem.setAttribute("height", "40");
elem.setAttribute("width", "120");
elem.setAttribute("alt", "GiantCo Logo");
document.body.appendChild(elem);

The previous sequence uses the setAttribute() method to assign values to what are
normally attribute values of the tag. You can also assign values to the analogous
properties of the element object, but the W3C DOM recommendation prefers the
setAttribute() method for this purpose. Your choice is strictly based on program-
ming style, in that browsers recognize both syntaxes equally (and the property
assignment approach is less verbose).

You may, however, occasionally encounter problems with setAttribute(). It’s not
unusual for IE to fail to act on attribute value changes when the attribute points to
external content and other situations. This primarily affects elements that are already
part of the document tree, but even setting a class attribute of an element under con-
struction can fail. The workaround is to set the value by property rather than by the
setAttribute() method. All browsers comply with this workaround, so it is safe.

472 | Chapter 14: Creating Dynamic Content

You also are not required to set the attributes of the element prior to inserting the
element into the document tree. Again, this is a programming style decision, but it is
quite typical to load an object with all its values before presenting it to the environ-
ment. In rare instances, however, an element must become part of the document tree
for a scripted property to be accessible because it needs a layout context for the prop-
erty assignment to take effect (see Recipe 14.12).

Internet Explorer (dating back to version 4) has a supplementary vocabulary (and
mind-set) for creating elements and inserting them into a document. The system is
not node-oriented in the way the W3C DOM is. Instead, it works with HTML as
strings. Rather than generating a new element object, simply assemble the HTML for
the new element as a string, and then insert the string in the desired place within the
document structure. The IE-only equivalent of the img element creation sequence
shown earlier is:

var elem = "";
document.body.insertAdjacentHTML("BeforeEnd", elem);

The first parameter of the insertAdjacentHTML() method instructs the browser to
insert the new string just inside the </body> tag of the document, while the method
forces the browser to treat the string as HTML so that the tags are treated as markup,
rather than as completely literal strings (displaying the angle brackets, attributes, and
so on).

It’s quite clear that the HTML-string approach is simpler in many respects. But the
W3C DOM through Level 2 does not (and likely will not) provide a convenient way
to deal with tagged content in string form. See Recipe 14.10 for one IE convenience
that has made its way to the Mozilla browser for element text.

Although this recipe addresses creating an HTML element, the same concepts apply
to creating an element that is to be appended or inserted in an XML document (as
you might construct for submission to the server via Ajax). The only difference is
that you should invoke the createElement() method from the XML document, not
the current HTML document. For example, if the variable xDox contains an XML
document (perhaps initially retrieved via XMLHttpRequest), you can add an element to
the document via the following sequence:

var newElem = xDoc.createElement("product");
var catalogElem = xDoc.getElementsByTagName("catalog")[0];
catalogElem.appendChild(newElem);

See Also
Recipe 14.10 for generating text content of an element; Recipe 14.11 for creating a
combination of element and text nodes for insertion into a document; Recipe 14.12
for inserting an iframe into a document.

14.10 Creating Text Content for a New Element | 473

14.10 Creating Text Content for a New Element

Problem
You want to use scripts to generate a portion of body content after the page loads.

Solution
Use the W3C DOM text node-creation method of the document object. The sole
parameter is the string of text content destined for an element container:

var txt = document.createTextNode("My dog has fleas.");

You can now append or insert this text node as a new child node of any element
node, including an element node that has been created but not yet inserted into the
document tree.

Discussion
A typical sequence for creating both a new element and its text content is as follows:

var elem = document.createElement("p");
var txt = document.createTextNode("My dog has fleas.");
elem.appendChild(txt);
document.body.appendChild(elem);

The amount of nesting required for some combinations of elements and text can get
somewhat complicated, but the principles are the same throughout. For example, the
following sequence creates a p element with a sentence containing an em element:

var myEm, myP, txt1, txt2;
myEm = document.createElement("em");
txt1 = document.createTextNode("very");
myEm.appendChild(txt1);
myP = document.createElement("p");
txt1 = document.createTextNode("I am ");
txt2 = document.createTextNode(" happy to see you.");
myP.appendChild(txt1);
myP.appendChild(myEm);
myP.appendChild(txt2);
document.body.appendChild(myP);

The result of the previous sequence is an element whose HTML looks like the
following:

<p>I am very happy to see you.</p>

You may create any combination of elements and text nodes, provided the result is
well-formed HTML, a prospect that is nearly irrevocably enforced by the way node
insertion methods work in the W3C DOM. In fact, you could conceivably append two
text nodes next to each other. To the user, they would be rendered as one continuous

474 | Chapter 14: Creating Dynamic Content

string of text; to the document tree, they are siblings of the same node type (3). If
you prefer to combine sibling text nodes into a single node, invoke the normalize()
method on their parent containing element.

Internet Explorer 4 introduced two text-based properties of element objects that
have gained wide usage in web development for that browser family: innerText and
innerHTML. These two read/write properties let you assign a string of unmarked up
text or text with HTML tags to the interior of an element container, respectively. If
the text contains tags, assignment to the innerHTML property forces the browser to
interpret the tags as if they were in the delivered page source code; assignment to the
innerText property treats the contents as literal text, meaning that the angle brack-
ets, tag name, and attributes are also rendered for users. This string-based approach
to document modification is used by the IE-only document object model (in con-
trast to the W3C DOM node-based model).

Web content authors have found these properties so practical over the years that
non-IE web browser makers relented in their predominantly strict adherence to W3C
DOM precepts just enough to implement the innerHTML property. This convenience
property saves coding because you don’t have to go through the text node creation
process. For example, the W3C DOM sequence:

var txt = document.createTextNode("My dog has fleas.");
document.getElementById("myP").appendChild(txt);

can be reduced to:

document.getElementById("myP").innerHTML = "My dog has fleas.";

The innerText property, however, is not supported by Mozilla.

See Also
Recipe 14.9 for creating a new (empty) element of any tag type; Recipe 14.11 for
using the DocumentFragment object as a temporary container of element and text
nodes during assembly.

14.11 Creating Mixed Element and Text Nodes

Problem
You want to generate content that consists of elements as well as text inside those
elements.

Solution
Use the W3C DOM DocumentFragment object as an arbitrary container while assem-
bling the content:

var frag, myEm, txt1, txt2;
frag = document.createDocumentFragment();

14.11 Creating Mixed Element and Text Nodes | 475

myEm = document.createElement("em");
txt1 = document.createTextNode("very");
myEm.appendChild(txt1);
txt1 = document.createTextNode("I am ");
txt2 = document.createTextNode(" happy to see you.");
frag.appendChild(txt1);
frag.appendChild(myEm);
frag.appendChild(txt2);

At this point, the fragment (which starts and ends with text nodes) is ready for inser-
tion or replacement at any existing element node in the document tree.

Discussion
Treat the DocumentFragment object like a scratch pad capable of containing any well-
formed sequence of node types. The fragment exists solely in memory and is not a
part of the document tree.

Internet Explorer implements the DocumentFragment object in version 5 for the Macin-
tosh and Version 6 or later for Windows. For earlier versions of Internet Explorer,
there is no node-related equivalent. You can simulate the document fragment in
memory by assembling element and text nodes in any generic container (such as a
div or span). When it’s time to place the content into the document tree, you can
remove each child node of the temporary container, and append the removed node
into the document’s destination element. This is ugly, but possible.

Assembling mixed content, not as nodes but as strings, plays nicely in the innerHTML
property of all elements (available in IE, Mozilla, Safari, and Opera). The equivalent
of the node approach just shown looks like the following:

var newContent = "I am very happy to see you.";

Then assign the new content to the innerHTML property of the desired element, which
replaces the existing content with the new content.

The IE-only DOM equips elements with another method that assists insertion of
strings containing text with or without HTML markup that is to be treated as render-
able HTML. The insertAdjacentHTML() method (compatible back to IE 4 and in
Opera 7 or later) lets you determine where the insertion goes in relation to the ele-
ment. The method takes two parameters. The first is a case-insensitive string signify-
ing the relative location of the insertion point for the new content. Here are the four
possible values for the first parameter:

BeforeBegin
In front of the start tag of the current element

AfterBegin
After the start tag, but immediately before any existing content of the current
element

476 | Chapter 14: Creating Dynamic Content

BeforeEnd
At the very end of the content of the element, just in front of the end tag

AfterEnd
After the end tag of the current element, but before any subsequent element

The new content is the second parameter. For example, to append the HTML string
created earlier to an existing element whose ID is myP, the backward-compatible IE-
only syntax is:

document.all("myP").insertAdjacentHTML("BeforeEnd", newContent);

Internet Explorer offers a large set of proprietary content manipulation methods,
shown in Table 14-1.

See Also
Recipe 14.9 for creating a new element; Recipe 14.10 for creating a new text node.

14.12 Inserting and Populating an iframe Element

Problem
You want to create an iframe element, insert it into the current document, and place
content into the iframe.

Table 14-1. IE element content manipulation methods

Method Compatibility Description

contains(elemRef) IE 4, Opera 7 Returns Boolean true if current element contains
elemRef

getAdjacentText(where) IE 5 (Win) Returns text sequence from position where

insertAdjacentElement(where,
elemRef)

IE 5 (Win), Opera 7 Inserts new element object at position where

insertAdjacentHTML(where,
HTMLText)

IE 4, Opera 7 Inserts text (at position where), which gets ren-
dered as HTML

insertAdjacentText(where,
text)

IE 4, Opera 7 Inserts text (at position where) as literal text

removeNode(deep) IE 4, Opera 7 Deletes element or text node (and its child nodes if
deep is true)

replaceAdjacentText(where,
text)

IE 5 (Win) Replaces current text at position where with text

replaceNode(newNodeRef) IE 5 (Win) Replaces current node with new node

swapNode(otherNodeRef) IE 5 (Win) Exchanges current node with otherNodeRef, and
return reference to removed node

14.12 Inserting and Populating an iframe Element | 477

Solution
This task requires a little more than just creating elements and appending them to
the document. This is a case in which one of the elements you create—an iframe—
requires a document tree context before you can stuff it with data. The following
code takes place in the global space. If you bury it inside a function, predeclare the
newIframe variable as a global.

First, we are going to append an iframe to the end of the body element, and then we
will put a dynamically generated form into the iframe. Begin the expected way, by
creating the iframe element in memory, and inserting the empty iframe into the
document:

// create a frame element node
var newIframe = document.createElement("iframe");
newIframe.setAttribute("id","newIframe");
// insert it into the document to give it context;
// set a tiny size, or display:none if you don't want to see it
document.body.appendChild(newIframe);

Next, obtain a reference to the document context that is needed for creating ele-
ments that are to go inside the iframe. For IE, that context is the document object
inside the iframe’s window object; for others, the main document is the appropriate
context:

// get the browser-appropriate document context for content creation
if (navigator.appName == "Microsoft Internet Explorer") {
 var doc = newIframe.contentWindow.document;
} else {
 doc = document;
}

Now create the form and elements inside the form using the browser-specific docu-
ment context. Unfortunately, IE tends to race ahead with its processing of script
statements, sometimes causing statements to execute before the components under
construction arrive on the scene. Therefore, it is necessary to put the brakes on pro-
cessing with a setTimeout() method (set to zero delay) so that the final action can
take place in a stable environment:

// create a form node within suitable document context
var newForm = doc.createElement("form")
newForm.setAttribute("id","sendform");
// create an input element node in the same context
var newField = doc.createElement("input");
newField.setAttribute("id","alldata");
newField.setAttribute("type","text");
// insert the field into the form
newForm.appendChild(newField);
// create and insert more form controls here
...
// insert the form into the iframe via delay
setTimeout("finishIframe()", 0);
}

478 | Chapter 14: Creating Dynamic Content

Finally, the form can be inserted into the body of the iframe’s document:

// complete content insertion
function finishIframe() {
 newIframe.contentWindow.document.body.appendChild(newform);
}

Discussion
If you code the HTML for the iframe and its content in a regular HTML page, the
elements for the form simply exist between the start and end tags of the iframe. This
leads you logically to imagine that creating and inserting a form into a new iframe
would use the same kind of document tree insertion that you see in Recipe 14.9 and
Recipe 14.10. The difference is that an iframe element is a type of window object, just
as if it were a different frame in a frameset. Therefore, to work with the iframe’s con-
tent in a script, you must be able to access the document that lives inside the iframe.
When your scripting context is that of the main document and all you have is a refer-
ence to the iframe, the avenue to the iframe’s document is via the iframe’s
contentWindow—a reference to the window in the frame. That window doesn’t exist
in the object model until the new iframe is inserted into the document.

This roundabout way of reaching the content of an element is limited to those ele-
ments that contain window and document objects: frame elements and iframe ele-
ments. An object element also has a level of indirection, but no window is involved.
Instead, an object element (in the W3C DOM, but not supported in IE as of version
7) has a contentDocument property. You won’t have to worry about this situation for
any other HTML elements.

See Also
Recipe 14.3 for using an iframe to blend separate HTML documents together; Rec-
ipe 14.9 for creating a new element; Recipe 14.10 for creating element text content.

14.13 Getting a Reference to an HTML Element Object

Problem
You want to derive a valid element object reference starting with the string ID or tag
name of an existing element.

Solution
Use the W3C DOM method that has scope over every element in the document:

var elem = document.getElementById("elementID");

14.13 Getting a Reference to an HTML Element Object | 479

If the element doesn’t have an id attribute assigned to it, you can reach the element
by tag name. The following example retrieves an array of elements with the same tag
name:

var elems = document.getElementsByTagName("tagName");

Assuming you know the position of the desired element among all elements with the
same tag name, use standard array syntax to obtain a reference to the single element:

var elem = document.getElementsByTagName("tagName")[2];

Discussion
The getElementById() method belongs to the document object, so the scope of the
method is always the entire document, including the head and body sections of an
HTML document. In contrast, the getElementsByTagName() method can be invoked
on any container. This allows you to narrow the scope of the collection. You can also
supply an asterisk wildcard character (in IE only, starting with IE 6) to retrieve an
array of all element objects:

var allElems = document.getElementsByTagName("*");

How you assign identifiers to repetitive elements can assist for loop scripts that need
to work with a series of similar elements. For example, if you use scripts to generate
a table dynamically so that script processing is accessing the content of cells in one of
the columns, you can assign IDs in sequence, such as subTotal0, subTotal1, and so
on. In the function that later loops through the cells in the column, you can use
string concatenation in the argument to getElementById() to avoid use of the horri-
bly inefficient eval() function:

for (var i = 0; i < array.length; i++) {
 ...
 subTotCell = document.getElementById("subTotal" + i);
 ...
}

If you need a reference to an element in earlier browsers, you can use a pair of methods
from Recipe 13.3’s DHTML API that does the job across browsers and generations:

 // Seek nested NN4 layer from string name
 seekLayer : function (doc, name) {
 var elem;
 for (var i = 0; i < doc.layers.length; i++) {
 if (doc.layers[i].name == name) {
 elem = doc.layers[i];
 break;
 }
 // dive into nested layers if necessary
 if (doc.layers[i].document.layers.length > 0) {
 elem = this.seekLayer(doc.layers[i].document, name);
 if (elem) {break;}
 }
 }

480 | Chapter 14: Creating Dynamic Content

 return elem;
 },

 // Convert element name string or object reference
 // into a valid element object reference
 getRawObject : function (elemRef) {
 var elem;
 if (typeof elemRef == "string") {
 if (this.browserClass.isW3C) {
 elem = document.getElementById(elemRef);
 } else if (this.browserClass.isIE4) {
 elem = document.all(elemRef);
 } else if (this.browserClass.isNN4) {
 elem = this.seekLayer(document, elemRef);
 }
 } else {
 // pass through object reference
 elem = elemRef;
 }
 return elem;
 },

To use this pair of methods, invoke DHTMLAPI.getRawObject(), passing a string of the
desired element’s ID. For IE 4, the function uses the document.all collection, which
contains all elements in the document. For NN 4, however, only positioned ele-
ments (layers) are accessible in this manner (not all elements are exposed to the
object model in NN 4). In case the NN 4 layer is nested inside another, the
getRawObject() method invokes the seekLayer() method to iterate through all lay-
ers and nested layers in search of the one whose id attribute matches the parameter
passed to getRawObject().

See Also
Recipe 13.3 for complete details about how the DHTML API library uses flexible
object references in its dynamic positioning functions; Recipe 14.14 for obtaining a
reference to an element by class attribute value.

14.14 Referencing All Elements of the Same Class

Problem
You want to reference an element based on the value assigned to its class attribute,
rather than its id attribute.

Solution
Use the following function, which returns an array of elements whose class attribute
is (or contains) the string passed as a parameter:

14.14 Referencing All Elements of the Same Class | 481

function getElementsByClassName(className) {
 var allElements = (document.all) ? document.all : document.
getElementsByTagName("*");
 var results = new Array();
 var re = new RegExp("\\b" + className + "\\b");
 for (var i = 0; i < allElements.length; i++) {
 if (re.test(allElements[i].className)) {
 results.push(allElements[i]);
 }
 }
 return results;
}

This function accommodates those cases in which you have assigned more than one
value to the class attribute.

Discussion
The W3C DOM provides no built-in facility for retrieving all elements that share a
class name. Because a class is another way to provide a semblance of context for ele-
ments—differentiating among all the divs in a document, for instance—your scripts
may need to reach these elements, even when their IDs are not known. As long as
you know the class name, you can use the function in the Solution to retrieve an
array of all elements matching that class.

A bug in IE prior to version 6 causes the wildcard character to be ignored by the
getElementsByTagName() method. Therefore, the function gives priority to the
document.all version, if supported by the browser.

The HTML 4 spec allows multiple, space-delimited values to be assigned to the class
attribute. The function uses a regular expression to inspect the className property
value in search of the desired class value (including word boundaries around the
name to prevent a mistaken match on a longer name that includes a shorter one).

Once your script receives the returned array, it can iterate through the smaller collec-
tion of elements and perform whatever manipulations are needed. You can even
assign a new value to the property if, for example, you wish to assign a different style
rule to all elements meeting the criteria.

See Also
Recipe 11.2 for more about CSS class selectors; Recipe 11.8 for changing style rule
assignments by script.

482 | Chapter 14: Creating Dynamic Content

14.15 Replacing Portions of Body Content

Problem
You want to replace content in the document with dynamically generated content.

Solution
There are different tactics, depending on whether the content to be replaced is sim-
ply the text content of an element or a series of HTML elements. To replace all text
content inside an element, create a text node and replace the container’s current
child node with the new one:

var txt = document.createTextNode("Every good boy does fine.");
var elem = document.getElementById("someElement");
var oldTxt = elem.replaceChild(txt, elem.firstChild);

When the element’s current content contains both text and interlaced elements (such
as a paragraph element containing a portion of text marked up as an em element),
delete each nested node prior to inserting the new content:

var txt = document.createTextNode("Every good boy does fine.");
var elem = document.getElementById("someElement");
while (elem.childNodes.length > 0) {
 elem.removeChild(elem.firstChild);
}
elem.appendChild(txt);

To replace one child element with a newly created element, use the replaceChild()
method:

var newElem = document.createElement("span");
newElem.setAttribute("id", "newSpan");
var elem = document.getElementById("someElement");
elem.replaceChild(newElem, elem.firstChild);

For more complex content, especially content beginning or ending with a text node,
use the DocumentFragment object as a temporary container of the created document,
and then insert or replace in the destination element as needed (see Recipe 14.11).

Discussion
If you intend to replace just a portion of an existing text node, you have a couple of
options—sthe more sophisticated of which entails text range objects, illustrated in
Recipe 15.3. But for simpler cases, you can use unsophisticated string parsing on the
old and new text. The basic sequence is to extract a copy of the element’s text node,
whose nodeValue property consists of the actual string. Then use the JavaScript string
replace() method to put the new substring in place of the old. Next, reassign the
text to the nodeValue property of the text node in the document tree. Here is a brief
example, with some hardwired values, that replaces the string “coming” with
“going”:

14.16 Removing Body Content | 483

var elem = document.getElementById("myP");
var srchText = /coming/g;
var replacement = "going";
var elemText = elem.firstChild.nodeValue.replace(srchText, replacement);
elem.firstChild.nodeValue = elemText;

If your design dictates knowing ahead of time that a particular portion of an ele-
ment’s text will be replaced on a regular basis, it is easier to surround that text in a
span element and use that container as a localizer for the text to be swapped out.
Similarly, if you design a page that arrives with a portion of the page empty, in antici-
pation of scripts filling in content upon loading or after user interaction, insert empty
elements in position. You can see examples of this in Recipes 14.6 and 14.7, where
an empty tbody element is pre-installed in a table element to act as a receptor for
table rows and cells created by functions triggered after the page has loaded.

See Also
Recipe 14.9 for creating elements; Recipe 14.10 for creating text content; Recipe 14.11
for more about the DocumentFragment object; Recipe 1.8 for string search and replace
with regular expressions; Recipe 15.3 for using text ranges for body text search-and-
replace operations.

14.16 Removing Body Content

Problem
You want to eliminate an element or portion of text from the current document.

Solution
If you have a reference to the element you wish to delete, you can use the W3C
DOM removeChild() method to remove the element. The method works only on
child nodes, so you must step outward to the element’s parent to invoke the method:

var elem = document.getElementById("spanToGo");
elem.parentNode.removeChild(elem);

To eliminate text from a text node, set its node value to an empty string:

var container = document.getElementById("someSpan");
// verify that the child node is a text node before emptying it
if (container.firstChild.nodeType == 3) {
 container.firstChild.nodeValue = "";
}

To remove the text node entirely, use the removeChild() method as shown above for
the element node removal.

484 | Chapter 14: Creating Dynamic Content

Discussion
When you remove repetitive elements, such as rows of a table, you may need to iter-
ate through a collection when appropriate. For example, a table or tbody element
object has a rows property that returns a collection of all tr element objects nested
within. If you intend to remove all the rows, it is efficient to remove them via a tight
while loop, acting on the first child until there are no more children:

var tbody = document.getElementById("myTableBody");
while (tbody.rows.length > 0) {
 tbody.removeChild(tbody.firstChild);
}

But if removal among a collection is meant to be selective, you also have to account
for a changing collection of numeric indexes for the collection’s array while the array
gets smaller. To work around this potential problem, use a for loop that starts at the
end and decrements the index counter so that the counter doesn’t get off track with a
changing collection.

For an example of selective deletion in action, consider the following table, in which
each row contains a checkbox and some text. A button at the bottom of the table
deletes any and all rows in which the checkbox is checked. The HTML for the table
is as follows:

<form>
<table>
<tbody id="myTBody">
<tr>
 <td><input type="checkbox"></td><td>Item 1</td>
</tr>
<tr>
 <td><input type="checkbox"></td><td>Item 2</td>
</tr>
<tr>
 <td><input type="checkbox"></td><td>Item 3</td>
</tr>
<tr>
 <td><input type="checkbox"></td><td>Item 4</td>
</tr>
<tr>
 <td><input type="checkbox"></td><td>Item 5</td>
</tr>
<tr>
 <td colspan="2">
 <input type="button" value="Remove Checked" onclick="remove()"></td>
 </td>
</tr>
</tbody>
</table>
</form>

14.17 Using XMLHttpRequest for a REST Request | 485

The remove() function is as follows:

function remove() {
 var elem = document.getElementById("myTBody");
 for (var i = elem.rows.length-1; i >= 0 ; i--) {
 if (elem.rows[i].cells[0].firstChild.checked) {
 elem.removeChild(elem.rows[i]);
 }
 }
}

You could also use the deleteRow() method of the tbody object in the function.

See Also
Recipe 14.13 for ways to reference elements in the document.

14.17 Using XMLHttpRequest for a REST Request

Problem
You want to invoke a process on a server via a URL and process the results without
disturbing the current HTML page in the browser.

Solution
Use the XMLDoc() object constructor (from Recipe 14.4) to create a cross-browser
object for working with the XMLHttpRequest object:

// constructor function for an XML request object;
function XMLDoc() {
 var me = this;
 var req = null;
 // branch for native XMLHttpRequest object
 if (window.XMLHttpRequest) {
 try {
 req = new XMLHttpRequest();
 } catch(e) {
 req = null;
 }
 // branch for IE/Windows ActiveX versions
 } else if (window.ActiveXObject) {
 try {
 req = new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 req = new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 req = null;
 }
 }
 } else {

486 | Chapter 14: Creating Dynamic Content

 alert("This example requires a browser with XML support, such as IE5+/
Windows, Mozilla, Safari 1.2, or Opera 8.")
 }
 // preserve reference to request object for later
 this.request = req;
 // "public" method to be invoked whenever
 this.loadXMLDoc = function(url, loadHandler) {
 if (this.request) {
 this.request.open("GET", url, true);
 this.request.onreadystatechange = function () {loadHandler(me)};
 this.request.setRequestHeader("Content-Type", "text/xml");
 this.request.send("");
 }
 };
}

Create an instance of the object, and then invoke its loadXMLDoc() method, passing
the full request URL and a reference to a function to process the results:

function initXML() {
 var salesRequest = new XMLDoc();

salesRequest.loadXMLDoc("webservices.jsp?Operation=ItemRankLookup&ItemId=1234567",
 showSalesRanking);
}

Set up your post-query processing function to receive the request object and perform
work on the XML data once it is completely received, as in the following:

function showSalesRanking(req) {
 req = req.request;
 if (req.readyState == 4 && req.status == 200) {
 var xDoc = req.responseXML;
 // further processing of document here
 }
}

Discussion
REST is an acronym for Representational State Transfer, one of two popular and
standard ways of communicating with a server process via the HTTP protocol. The
choice between REST and SOAP is made by the designer of the server software at the
other end of an HTTP request. Your requests will have to conform to the format
imposed by the server software designer.

Typically, a REST request is formatted in a way similar to a web form submission (by
either the GET or POST method). The URL points to a server destination, appended
with one or more name/value pairs that provide details of the request. A question
mark delimits the appendage from the destination; name/value pairs have an equals
sign between each name and value, and an ampersand delimits each pair.

Most of the “heavy lifting” of an Ajax-style communication is handled by the
XMLHttpRequest object. Once an instance of the object is created (whether it come as

14.17 Using XMLHttpRequest for a REST Request | 487

an IE 6 or earlier ActiveX object or native object in other browsers), a number of
methods set the stage for transmission of the request. Table 14-2 lists the methods
that all versions of the XMLHttpRequest object have in common.

You can see the key methods being invoked within the code shown in the Solution.
Several methods must be called in a strict order. In particular, the sequence of open(),
setRequestHeader(), and send() cannot be altered, although other statements can
occur between these method calls.

In the example above, the open() method passes three parameters. The first is a
string declaring the request type (GET or POST). The second is the URL of the pro-
cess on the server. And the third is a Boolean value that indicates whether the request
should be made asynchronously (true) or synchronously (false). All REST calls
should be made asynchronously so that the browser won’t hang while waiting for a
slow or non-responsive server (the first “A” in Ajax stands for “Asynchronous”).

The “data” portion of the request is contained by the search portion of the URL
passed as the second parameter of open(). Therefore, the send() method’s parame-
ter for a REST request is an empty string.

Other activities with the object involve getting or setting properties. Properties
shared by all types of XMLHttpRequest objects are shown in Table 14-3.

Table 14-2. Methods of a request object

Method Description

abort() Stops current request transaction

getAllResponseHeaders() Returns a list of headers arriving with the response

getResponseHeader() Returns a value of a specific header name

open() Assigns method, URL, and other attributes to a request waiting to be sent

send() Sends the previously specified request over the network

setRequestHeader() Sets a header name/value pair for a request waiting to be sent

Table 14-3. Lowest common denominator properties of a request object

Property Description

onreadystatechange Event property to bind to a function handler that acts during or after the request
transaction

readyState Request object status (0 = uninitialized; 1 = loading; 2 = loaded; 3 = interactive;
4 = complete)

responseText String version of all data retrieved in last request

responseXML XML document node (nodeType of 9) if data is an XML data type

status Numeric status code returned by server (e.g., 200 for success)

statusText Message string (if any) returned with status integer

488 | Chapter 14: Creating Dynamic Content

Only one property, onreadystatechange, is adjusted prior to the request being sent.
Its value is a reference to the function to be invoked each time the readystate event
fires on the object. Each time the referenced function is invoked, a reference to the
request object is automatically passed as the sole parameter to the function.

The state changes several times during reception of the data returned from the server.
It is the job of your function to inspect the readyState and status properties of the
request object to validate that the request was successful (a status value of 200) and
the transmission is complete (a readyState value of 4). For cross-browser debugging
purposes, you can insert alert() dialogs to view the readyState and status proper-
ties to make sure your request URL is formatted the way desired by the server pro-
cess. If you receive status values other than 200, something is amiss.

At this point, your script may obtain a copy of the XML document object
(responseXML) or a string representation of the data (responseText). If you intend to
parse the document node tree, use the responseXML value. But a server process may
also return a non-XML string that is written in the form of a JavaScript array and/or
object notation. This so-called JavaScript Object Notation (JSON) can be retrieved
from the responseText property and duly converted into real arrays and objects via
the eval() function.

As its name implies, an XMLHttpRequest transaction is strictly a request-style commu-
nication. No open communication line exists between the browser and server once
the returned data has been sent back to the browser. Therefore, this is not a server-
push type of technology.

See Also
Recipe 14.4 for more about embedding XML data into a web page; Recipe 14.18 for
making a SOAP call in the background; Recipe 14.8 for converting XML data into
JavaScript objects.

14.18 Using XMLHttpRequest for a SOAP Call

Problem
You want to invoke a remote procedure by way of the SOAP protocol.

Solution
Use a SOAP-specific variation of the routine shown in Recipes 14.4 and 14.17. The
new variation utilizes the same XMLHttpRequest object as its basis, but sends its data
to the server separately from the URL:

// constructor function for an XML request object;
function SOAPCall() {
 var me = this;

14.18 Using XMLHttpRequest for a SOAP Call | 489

 var req = null;
 // branch for native XMLHttpRequest object
 if (window.XMLHttpRequest) {
 try {
 req = new XMLHttpRequest();
 } catch(e) {
 req = null;
 }
 // branch for IE/Windows ActiveX versions
 } else if (window.ActiveXObject) {
 try {
 req = new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 try {
 req = new ActiveXObject("Microsoft.XMLHTTP");
 } catch(e) {
 req = null;
 }
 }
 } else {
 alert("This example requires a browser with XML support, such as IE5+/
Windows, Mozilla, Safari 1.2, or Opera 8.")
 }
 // preserve reference to request object for later
 this.request = req;
 // "public" method to be invoked whenever
 this.loadSOAP = function(url, data, loadHandler) {
 if (this.request) {
 this.request.open("POST", url);
 this.request.onreadystatechange = function () {loadHandler(me)};
 soapReq.setRequestHeader("Content-Type","text/xml; charset=utf-8");
 soapReq.setRequestHeader("SOAPAction","");
 this.request.send(data);
 }
 };
}

Processing data returned by the server is handled the same way as with a REST
request, shown in Recipe 14.17.

Discussion
SOAP is an acronym for Simple Object Access Protocol or Service Oriented Architec-
ture Protocol. It is a way for a client to invoke a process on the server, usually with
the server responding with some type of result.

The big difference between SOAP and REST (Recipe 14.17) is that the “command”
sent to the server is in the form of an XML document. The structure for this docu-
ment is determined by the author of the server process. You will be provided with
the structure of such an XML request by any service offering this capability.

Some of the structure is imposed by the SOAP standard, but there is plenty of room
for variable pieces that are specific to the task running on the server. The following

490 | Chapter 14: Creating Dynamic Content

example is for a command requesting current conversion rates between two coun-
tries’ currencies:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getCurrencyRate
 xmlns:ns1="urn:xmethods-CurrencyRate"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <countryfrom xsi:type="xsd:string">canada</countryfrom>
 <countryto xsi:type="xsd:string">india</countryto>
 </ns1:getCurrencyRate>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Despite so much XML code, only two pieces—the country names in the countryfrom
and countryto elements—change from one SOAP call to the next. Everything else
remains the same (and would be provided to you by a SOAP service provider).

Your script needs to assemble this data, which it can do either as an XML document
or as a string. As an example of performing this operation with string data, the fol-
lowing script segments create an instance of the SOAPCall object (from the Solution),
assemble the SOAP data (the variable data shown in bold), and then send the data
via the SOAPCall object:

function recalc(req) {
 // handles results of XMLHttpRequest retrieval
}
// assembles parameters for loadSOAP method and invokes
function fetchConversionRate(fromCountry, toCountry) {
 var url = 'soap.jsp';
 var data = '<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/1999/
XMLSchema-instance" xmlns:xsd="http://www.w3.org/1999/XMLSchema"><SOAP-ENV:Body><ns1:
getCurrencyRate xmlns:ns1="urn:xmethods-CurrencyExchange" SOAP-ENV:
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><countryfrom xsi:type="xsd:
string">' + fromCountry + '</countryfrom><countryto xsi:type="xsd:string">' +
toCountry + '</countryto></ns1:getCurrencyRate ></SOAP-ENV:Body></SOAP-ENV:Envelope>
';
 var soapMachine = new SOAPCall();
 soapMachine.loadSOAP(url, data, recalc);
}
// trigger the SOAP call
fetchConversionRate("canada", "india");

The XMLHttpRequest object sends the data to the server as a text string. Unlike the
example here, if you supply an XML document as a parameter to the send()
method, the object automatically converts (serializes) the XML document to a string
for transmission.

14.19 Sorting Dynamic Tables | 491

See Also
Recipe 14.17 for a REST-type of request via XMLHttpRequest.

14.19 Sorting Dynamic Tables

Problem
You want users to be able to view a table sorted according to different column values.

Solution
Sorting a table works best when the data for the table is delivered as JavaScript or
XML data, using the kinds of table transformations shown in Recipes 14.6 and 14.7.
The table data does not need to be any different from what was demonstrated in those
recipes. The difference is in the fixed table column headings and the functions
invoked from links surrounding the heading text.

Design your HTML structure such that clickable user interface elements let users
control the table’s sorting order. Table header text formatted as hyperlinks is most
common. Next, define JavaScript array sorting functions for each of your sorting cri-
teria. See the Discussion for an example. Finally, use a script routine to generate the
body of the table based on the current sort order of the JavaScript data array (see the
Discussion). Each time the user requests a sorting of the data array, the table body is
refreshed with the data in the desired order.

Discussion
For an example of what a sortable table framework looks like, the hardwired HTML
portion of the table from Recipe 14.7 is shown here, modified with th cell content
fixed with clickable links.

<table id="cupFinals">
<thead>
<tr>
 <th><a href="#" title="Sort by Year"
 onclick="return sortTable(this)">Year</th>
 <th><a href="#" title="Sort by Country"
 onclick="return sortTable(this)">Host Country</th>
 <th><a href="#" title="Sort by Winning Team"
 onclick="return sortTable(this)">Winner</th>
 <th><a href="#" title="Sort by Losing Team"
 onclick="return sortTable(this)">Loser</th>
 <th>Score <a href="#" title="Sort by Winning Score"
 onclick="return sortTable(this)">Win - <a href="#"
 title="Sort by Losing Score"
 onclick="return sortTable(this)">Lose</th>
</tr>
</thead>

492 | Chapter 14: Creating Dynamic Content

<tbody id="matchData"></tbody>
</table>

All links invoke the same sortTable() function, which acts as a central switchboard
to individual array sorting routines. A switch statement branches execution based on
the text of the link’s th element:

// Sorting function dispatcher (invoked by table column links)
function sortTable(link) {
 switch (link.firstChild.nodeValue) {
 case "Year" :
 jsData.sort(sortByYear);
 break;
 case "Host Country" :
 jsData.sort(sortByHost);
 break;
 case "Winner" :
 jsData.sort(sortByWinner);
 break;
 case "Loser" :
 jsData.sort(sortByLoser);
 break;
 case "Win" :
 jsData.sort(sortByWinScore);
 break;
 case "Lose" :
 jsData.sort(sortByLosScore);
 break;
 }
 drawTable("matchData")
 return false
}

Each of the sorting routines sorts the jsData array based on criteria that examine a
specific property of each jsData item’s object:

// Sorting functions (invoked by sortTable())
function sortByYear(a, b) {
 return a.year - b.year;
}
function sortByHost(a, b) {
 a = a.location.toLowerCase();
 b = b.location.toLowerCase();
 return ((a < b) ? -1 : ((a > b) ? 1 : 0));
}
function sortByWinScore(a, b) {
 return b.winScore - a.winScore;
}
function sortByLosScore(a, b) {
 return b.losScore - a.losScore;
}
function sortByWinner(a, b) {
 a = a.winner.toLowerCase();
 b = b.winner.toLowerCase();
 return ((a < b) ? -1 : ((a > b) ? 1 : 0));

14.19 Sorting Dynamic Tables | 493

}
function sortByLoser(a, b) {
 a = a.loser.toLowerCase();
 b = b.loser.toLowerCase();
 return ((a < b) ? -1 : ((a > b) ? 1 : 0));
}

Back in the sortTable() function, once the jsData table is sorted by the desired prop-
erty, the drawTable() function executes. This is slightly modified over Recipe 14.7 to
include a call to another function that clears all rows from the tbody element reserved
for the dynamic cells. The modified drawTable() method is as follows:

// Draw table from 'jsData' array of objects
function drawTable(tbody) {
 var tr, td;
 tbody = document.getElementById(tbody);
 // remove existing rows, if any
 clearTable(tbody);
 // loop through data source
 for (var i = 0; i < jsData.length; i++) {
 tr = tbody.insertRow(tbody.rows.length);
 td = tr.insertCell(tr.cells.length);
 td.setAttribute("align", "center");
 td.innerHTML = jsData[i].year;
 td = tr.insertCell(tr.cells.length);
 td.innerHTML = jsData[i].location;
 td = tr.insertCell(tr.cells.length);
 td.innerHTML = jsData[i].winner;
 td = tr.insertCell(tr.cells.length);
 td.innerHTML = jsData[i].loser;
 td = tr.insertCell(tr.cells.length);
 td.setAttribute("align", "center");
 td.innerHTML = jsData[i].winScore + " - " + jsData[i].losScore;
 }
}

The clearTable() function is a simple loop that removes any rows in the table body
section:

// Remove existing table rows
function clearTable(tbody) {
 while (tbody.rows.length > 0) {
 tbody.deleteRow(0);
 }
}

Most of the sorting comparison functions in this recipe inspect properties of objects
that occupy each array entry. Because each jsData array entry is an object (see the
object definition in Recipe 14.7), the comparison functions repeatedly compare spe-
cific properties of the object, such as names of teams and score numbers. To ensure
accurate string comparisons regardless of case, they are converted to a uniform case
(lowercase in the example) so that the differing upper- and lowercase ASCII values
do not play a role in the comparisons.

494 | Chapter 14: Creating Dynamic Content

Although the code above contributes a lot of functions to the global naming space, it
is a simple matter to encapsulate many of them as nested functions. All of the indi-
vidual sorting functions are perfect candidates for being nested inside the
sortTable() function, for example.

See Also
Recipe 14.7 for embedding data as JavaScript objects and arrays (which enhance
table sorting possibilities); Recipe 3.5 for simple array sorting; Recipe 3.10 for sort-
ing an array of objects.

14.20 Walking the Document Node Tree

Problem
You want to iterate through the entire document node tree in search of nodes meet-
ing desired criteria.

Solution
The following getLikeElements() function returns a collection of elements that share
the same tag name, attribute name, and attribute value (specified as arguments):

function getLikeElements(tagName, attrName, attrValue) {
 var startSet;
 var endSet = new Array();
 if (tagName) {
 startSet = document.getElementsByTagName(tagName);
 } else {
 startSet = (document.all) ? document.all :
 document.getElementsByTagName("*");
 }
 if (attrName) {
 for (var i = 0; i < startSet.length; i++) {
 if (startSet[i].getAttribute(attrName)) {
 if (attrValue) {
 if (startSet[i].getAttribute(attrName) == attrValue) {
 endSet[endSet.length] = startSet[i];
 }
 } else {
 endSet[endSet.length] = startSet[i];
 }
 }
 }
 } else {
 endSet = startSet;
 }
 return endSet;
}

14.20 Walking the Document Node Tree | 495

Discussion
You can omit one or more arguments of the getLikeElements() function in specific
combinations. For example, if you omit all three arguments, you receive a collection
of all elements in the document. Specify only the first argument (the tag name) to
retrieve all elements with the same tag name. If you supply the tag name and
attribute name only, the returned collection contains elements that have the same tag
name and have the same attribute specified, regardless of attribute value. If you spec-
ify an attribute value, you must also pass an attribute name. For empty arguments,
pass either an empty string or null when they precede nonempty arguments. The fol-
lowing invocations of getLikeElements() are all valid:

var collection = getLikeElements();
var collection = getLikeElements("td");
var collection = getLikeElements("", "class");
var collection = getLikeElements("", "class", "highlight");
var collection = getLikeElements("td", "align", "center");

Use caution, however, when retrieving input elements that have value attributes.
Mozilla returns only those elements with explicitly set value attributes, while IE
returns all input elements because the browser automatically assigns a value
attribute to input elements such as radio and checkbox buttons.

Another variation on the notion of walking a document tree is to use a script to dia-
gram the document to reveal its nested node structure. Object model facilities for
retrieving all elements in a document completely flatten the node hierarchy. To pre-
serve the hierarchy and track it, you can use a routine like the following
walkChildNodes() function, which accumulates a string that reveals the node struc-
ture of any object passed as the first parameter of the function. The function invokes
itself recursively as it dives into nested hierarchies, and internally passes the sec-
ond argument to help the function keep track of which nested level it is currently
processing.

function walkChildNodes(objRef, n) {
 var obj;
 if (objRef) {
 if (typeof objRef == "string") {
 obj = document.getElementById(objRef);
 } else {
 obj = objRef;
 }
 } else {
 obj = (document.body.parentElement) ?
 document.body.parentElement : document.body.parentNode;
 }
 var output = "";
 var indent = "";
 var i, group, txt;
 if (n) {
 for (i = 0; i < n; i++) {

496 | Chapter 14: Creating Dynamic Content

 indent += "+---";
 }
 } else {
 n = 0;
 output += "Child Nodes of <" + obj.tagName .toLowerCase();
 output += ">\n=== == == == == == == == == ==\n";
 }
 group = obj.childNodes;
 for (i = 0; i < group.length; i++) {
 output += indent;
 switch (group[i].nodeType) {
 case 1:
 output += "<" + group[i].tagName.toLowerCase();
 output += (group[i].id) ? " ID=" + group[i].id : "";
 output += (group[i].name) ? " NAME=" + group[i].name : "";
 output += ">\n";
 break;
 case 3:
 txt = group[i].nodeValue.substr(0,15);
 output += "[Text:\"" + txt.replace(/[\r\n]/g,"<cr>");
 if (group[i].nodeValue.length > 15) {
 output += "...";
 }
 output += "\"]\n";
 break;
 case 8:
 output += "[!COMMENT!]\n";
 break;
 default:
 output += "[Node Type = " + group[i].nodeType + "]\n";
 }
 if (group[i].childNodes.length > 0) {
 output += walkChildNodes(group[i], n+1);
 }
 }
 return output;
}

To invoke the walkChildNodes() function to capture the node structure of a docu-
ment’s body element, the call looks like the following:

walkChildNodes(document.body);

Output from walkChildNodes() displays the tags of each element node (with their
IDs, if assigned), and samples of text nodes to help you identify them. The following
trace shows the body of a document containing the Recipe 14.1 script plus a portion
of the table from the discussion of Recipe 14.16:

Child Nodes of <body>
=== == == == == == == == == ==
<h1>
+---[Text:"Welcome to Gian..."]
<h2>
+---[Text:"We Love"]

14.20 Walking the Document Node Tree | 497

+---<script>
+---[Text:" Windows "]
+---<noscript>
+---[Text:"Users!"]
<hr>
<form>
+---<table>
+---+---<tbody ID=myTBody>
+---+---+---<tr>
+---+---+---+---<td>
+---+---+---+---+---<input>
+---+---+---+---<td>
+---+---+---+---+---[Text:"Item 1"]
+---+---+---<tr>
+---+---+---+---<td>
+---+---+---+---+---<input>
+---+---+---+---<td>
+---+---+---+---+---[Text:"Item 2"]
+---+---+---<tr>
+---+---+---+---<td>
+---+---+---+---+---<input>
+---+---+---+---</td>

You can use the walkChildNodes() function as a diagnostic tool, particularly for
dynamically created HTML content. If you embed the function into the document as
well as into a temporary textarea element, your content creation function can end
with a call to walkChildNodes() to output the results to the textarea for closer
inspection, and comparison against what you think the node hierarchy should be.

One last technique to be aware of is the W3C DOM TreeWalker object, which is
available in Mozilla, Safari 2 or later, and Opera 8 or later (but not in IE as of ver-
sion 7). The TreeWalker object is a live, hierarchical list of nodes that meet criteria
defined by the document.createTreeWalker() method. The list assumes the same par-
ent-descendant hierarchy for its items as the nodes to which its items point. The
createTreeWalker() method describes the node where the list begins and which
nodes (or classes of nodes) are exempt from the list by way of filtering.

The TreeWalker object maintains a kind of pointer inside the list (so that your scripts
don’t have to). Methods of this object let scripts access the next or previous node (or
sibling, child, or parent node) in the list, while moving the pointer in the direction
indicated by the method you chose. If scripts modify the document tree after the
TreeWalker is created, changes to the document tree are automatically reflected in the
sequence of nodes in the TreeWalker.

While fully usable in an HTML document, the TreeWalker can be even more valu-
able when working with an XML data document. For example, the W3C DOM does
not provide a quick way to access all elements that have a particular attribute name
(something that the XPath standard can do easily on the server). But you can define a
TreeWalker to point only to nodes that have the desired attribute and quickly access

498 | Chapter 14: Creating Dynamic Content

those nodes sequentially (i.e., without having to script more laborious looping
through all nodes in search of the desired elements). For example, the following fil-
ter function allows only those nodes that contain the author attribute to be a mem-
ber of a TreeWalker object:

function authorAttrFilter(node) {
 if (node.hasAttribute("author")) {
 return NodeFilter.FILTER_ACCEPT;
 }
 return NodeFilter.FILTER_SKIP;
}

A reference to this function becomes one of the parameters to a createTreeWalker()
method that also limits the list to element nodes:

var authorsOnly = document.createTreeWalker(document, NodeFilter.SHOW_ELEMENT,
 authorAttrFilter, false);

You can then invoke TreeWalker object methods to obtain a reference to one of the
nodes in the list. When you invoke the method, the TreeWalker object applies the fil-
ter to candidates relative to the current position of the internal pointer in the direc-
tion indicated by the method. The next document tree node to meet the method and
filter criteria is returned. Once you have that node reference, you can access any
DOM node property or method to work with the node, independent of the items in
the TreeWalker list.

See Also
Recipe 1.1 for concatenating string segments to build long strings.

14.21 Capturing Document Content

Problem
You want to grab a copy of the current HTML node tree, including any dynamic
changes made to it by scripts.

Solution
The need for this feature most commonly occurs when you haven’t prepared for it—
for example, as an ad hoc debugging tool. Therefore, to get an emergency copy of the
page’s HTML, enter the following URL as one unbroken line into the Address/Loca-
tion box of your browser:

javascript: void window.open("","","").document.write("<textarea cols=80
rows=20>" + document.body.parentNode.innerHTML + "</textarea>")

This code produces a new window containing a single textarea element displaying
all HTML inside the <html> and </html> tags of the page at that instant.

14.21 Capturing Document Content | 499

Discussion
When you use dynamic element creation, it frequently becomes difficult to know if a
rendering problem is due to a browser problem or a problem in the document tree
caused by your element modification scripts. Viewing the source in the browser isn’t
much help here, because that view tends to mimic only the page as delivered to the
browser, without any of the dynamic modifications your scripts make to the page
after it loads.

An ideal way to diagnose these kinds of problems is to isolate a copy of the HTML as
the browser sees it, paste it into a test document, and then load that test document
into the browsers for which you develop. Sometimes, simply viewing the HTML
quickly reveals problems such as improperly closed container tags (more common if
you use the IE HTML string modification methods than the W3C DOM node-modi-
fication methods), unbalanced elements in tables, or a missing attribute. But even if
the problem is more elusive, it is far easier to work in a scriptless and stable HTML
environment, experimenting with tags and attributes to find the combination that
works as desired in all target browsers. Then you can go back to your content modi-
fication scripts to plug the holes in content creation routines.

The javascript: pseudo-URL shown in the Solution can be modified to provide a
larger or smaller textarea element. Once you find a combination that works best for
you, create a bookmark for this URL. This kind of active JavaScript bookmark is
commonly called a bookmarklet. It works on pages retrieved from any server.

You can even use it in a frameset. Simply reference the frame in which you’re interested:

javascript: void window.open("","","").document.write("<textarea cols=80
rows=20>" + top.frames[1].document.body.parentNode.innerHTML + "</textarea>")

Be aware that IE for Windows may not produce all of the markup, particularly the
head element contents, when the page is defined as a strictly XHTML file. You can
experiment with the reference in the bookmarklet to point to the desired segment of
the page you’re looking at.

See Also
Recipe 14.20 for another way to examine a document’s structure by walking the doc-
ument node tree.

500

Chapter 15CHAPTER 15

Dynamic Content Applications 15

15.0 Introduction
This chapter’s recipes attempt to provide solutions for real-world challenges that you
may encounter in your DHTML development. The difficulty in arriving at such a ros-
ter of solutions is that DHTML is flexible enough to inspire the imaginations of every
developer in different directions. While most of the recipes here can be used as-is,
they are also meant to serve as basic foundations upon which you can build your
specific application. If these recipes give you ideas for ways to add value to your site,
all the better.

Several of the recipes in this chapter rely on scriptable objects whose powers are not
always easy to grasp: the JavaScript core language Date object (covered in depth in
Chapter 2), and an object representing text ranges (known as the TextRange object in
IE for Windows and the Range object in the W3C DOM). The abstract nature of
these objects and the technical details of their operation can cause numerous concep-
tual problems along the way.

Although the details of text range implementations in the IE for Windows and W3C
DOMs are quite different, their fundamental operations are the same. At its core, a
text range is a sequence of body text separate from the HTML elements that sur-
round or are nested within the sequence. You don’t see a text range, per se,
although it is possible to highlight its text for the user to see, if it’s important to
your application.

A text range has a starting point and an ending point. When you create a text range,
it has a default set of boundaries (again, the details vary with DOM type). Relocat-
ing those two boundaries may entail a reference to an HTML element, but the text
range itself is devoid of any node hierarchy like that of the HTML document. The
typical sequence of working with a text range is to create the abstract text range,
position its boundary points, and then perform some operation on the text (such as
removing the contents or grabbing a copy of the text). For example, you can convert

15.1 Displaying a Random Aphorism | 501

a user selection of a portion of body text to a span element that is then under the con-
trol of a style sheet rule (see Recipe 15.2).

Between the two implementations, the IE TextRange object is the more flexible and
better equipped for practical duty. It is the only one that offers facilities for search-
ing within the body text for string matches (and positioning the boundary points
around the found instance). Importantly, the IE TextRange object can also be applied
to content in a textarea element. Therefore, while it may appear cool to be able to
script a global search-and-replace operation in the body text (Recipe 15.3), it’s more
practical in a textarea containing a bunch of text supplied by the user.

Because many of the recipes in this chapter deal with positioning elements on the
page, many rely on the importation of the DHTML API library shown in Recipe 13.3.
Scripts with dependencies on the functions of that library are clearly marked.
Although the library is not large, you are free to create a version of the library that
includes only the functions needed for a specific application. Or you can copy and
paste those functions into your in-document code or other .js library code. Also, be
on the lookout for recipes that employ cookies to preserve settings across sessions—
they use the cookies.js library from Recipe 1.10.

Several of the following recipes rely on the eventsManager.js library (Recipe 9.3)
because they do their work after the page loads. In some cases, the scripts modify the
page for scriptable browser visitors. The idea is to let the page convey its primary
information for all visitors, and enhance the page for script-enabled visitors. This
technique is sometimes referred to as progressive JavaScript or unobtrusive JavaScript.
As stated throughout this book, for public sites in particular, JavaScript should add
value by offering shortcuts or other enhanced experience features.

15.1 Displaying a Random Aphorism

Problem
You want a random choice from a library of famous quotes to appear in a location
on your home page.

Solution
The backward-compatible (to version 4 browsers) solution is to use the document.
write() method to insert your quotation element while the page loads. A more mod-
ern implemention uses the W3C DOM to insert an element containing the aphorism
into an otherwise invisible placeholder element.

Start by creating an array of sayings in the head section. Each array entry is a custom
object containing the saying and author’s name:

502 | Chapter 15: Dynamic Content Applications

var quotes = new Array();
quotes[quotes.length] = {quote:"One should eat to live, and not live to eat.",
 author:"Moliere"};
quotes[quotes.length] = {quote:"For man is man and master of his fate.",
 author:"Tennyson"};
quotes[quotes.length] = {quote:"History is more or less bunk.",
 author:"Henry Ford"};
quotes[quotes.length] = {quote:"You should never have your best trousers on when you
 turn out to fight for freedom and truth.",
 author:"Ibsen"};
quotes[quotes.length] = {quote:"It is vain and foolish to talk of knowing Greek.",
 author:"Woolf"};
...

The following insertSaying() function uses a random number calculation to obtain
an index for the array to select a saying. The function then assembles the DOM ele-
ment that is to appear in the page:

function insertSaying(targetElemID) {
 var currIndex = Math.floor(Math.random() * (quotes.length));
 var pElem = document.createElement("p");
 pElem.className= "quote";
 pElem.appendChild(document.createTextNode(quotes[currIndex].quote));
 var sElem = document.createElement("span");
 sElem.className = "author";
 sElem.appendChild(document.createTextNode(" -- " + quotes[currIndex].author));
 pElem.appendChild(sElem);
 document.getElementById(targetElemID).appendChild(pElem);
}

Then, in the place where you wish the saying to appear, include a script that invokes
the insertSaying() function, passing the ID of the placeholder element into which
the say is to go:

addOnLoadEvent(function() {insertSaying("placeholder")});

Discussion
The operative part of the Solution is the interaction between the array of objects and
the way the objects are retrieved when needed. The array creation code uses the
length of the array to determine the index values of the entries. This simplifies any
editing of the list, as you don’t have to rearrange index numbers as you add or
remove objects from the array.

Computation of the (pseudo) random number is simplified here because we’re looking
for a number between zero and the number of items in the array (inclusive). Once the
array index is available, it is used to access two properties of the array entry’s object.

HTML formatting is strictly up to your page design. In the Solution, class names are
assigned to the two segments of the saying. A simple style sheet that supplies distinct
font characteristics for the saying and author’s name might be like the following:

15.1 Displaying a Random Aphorism | 503

<style type="text/css">
 .quote {font:bold 12px serif}
 .author {font:italic 12px serif}
</style>

Your design is likely to be more detailed.

Note that the class names are assigned to the elements under construction by prop-
erty name, rather than the typically more desirable setAttribute() method. This is a
case where IE ignores setAttribute(), failing to assign the class value correctly.
Using property assignments does work in IE, as well as all other browsers.

The Solution displays a potentially different saying each time the user loads the page.
If you’d like to preserve the same saying for all visits to the page on a given day, you
need to add some cookie support to store the date and index number associated with
that date. You can build this support into the insertSaying() function so that it first
checks for a named cookie holding date information. If the date is different from the
current date, the current date is preserved in the cookie and a new random index
number is calculated. But if the cookie date matches the current date, the cookie’s
index number is assigned to the currIndex variable inside the function.

Numerous variations on the daily saying application abound on the Internet. Some
like to peg a particular phrase or content to one of the seven days of the week or a
date in the month. For example, each day of the week has a zero-based index num-
ber associated with it in the JavaScript Date object (values 0 through 6, with Sunday
being 0). It’s easy to create a new Date object and get the day number to use as an
index for the array of sayings:

var today = new Date();
var currIndex = today.getDay();

Just be sure to have as many items in the array as the possible numbers that are
assignable to the currIndex variable.

Another application is to display random pictures, such as one from a list of image
URLs from a product catalog—a featured product. You can simply replace the image
of an otherwise static product image on the page and the href attribute of the sur-
rounding hyperlink (a) element. In this case, the array of custom objects contains
image, URL, and alt attribute information:

var imgLinks = new Array();
imgLinks[imgLinks.length] = {src:"images/prods/x25.jpg", url="products/x25.html",
 alt="X25 Super Widget"};
...
function getRandomImage(imgElemID) {
 var currIndex = Math.floor(Math.random() * (quotes.length));
 var imgElem = document.getElementById(imgElemID);
 var aElem = imgElem.parentNode;
 imgElem.src = imgLinks[currIndex].src;
 imgElem.alt = imgLinks[currindex].alt;
 aElem.href = imgLinks[currIndex].url;
}

504 | Chapter 15: Dynamic Content Applications

At each visit, the user should see a different featured product, with a link directly to
the product page.

See Also
Recipe 3.1 for creating an array; Recipe 3.8 for creating a custom object; Recipe 14.9
for creating a new HTML element; Recipe 14.10 for generating text content for an
element node under construction.

15.2 Converting a User Selection into an Arbitrary
Element

Problem
You want to wrap a user’s body text selection in an element to assign a style that
highlights the selection.

Solution
The following solution works with IE 4 or later, Mozilla 1.4 or later, Safari 2 or later,
and Opera 9 or later. Begin by defining a CSS class rule that distinguishes the new
arbitrary element from the rest of its surrounding text:

<style type="text/css">
.newSpan {font: bold 16px serif; background-color: yellow}
</style>

Assign a unique ID to a container that contains some HTML:

<p id="selectableParagraph">Lorem ipsum dolor sit amet, consectetaur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
</p>

Bind to that element two event handlers, one each for mouseup and the IE selectstart
event (shown here with calls to eventsManager.js functions from Recipe 9.1 and Rec-
ipe 9.3):

function setEvents() {
 addEvent(document.getElementById("selectableParagraph"), "mouseup",
 function() {selectionManager.selection2Element("span", "newSpan");}, false);
 addEvent(document.getElementById("selectableParagraph"), "selectstart",
 function() {selectionManager.saveStart();}, false);
}
addOnLoadEvent(setEvents);

These events invoke methods of the custom selectionManager object, whose code is
shown in Example 15-1 in the Discussion. The method contains code branches that
work with both the W3C DOM Range object and the IE TextRange object.

15.2 Converting a User Selection into an Arbitrary Element | 505

Discussion
Example 15-1 shows the code for the selectionManager object, which acts as the
interface between your scripts and the often complex worlds of the Range and
TexRange objects.

IE’s TextRange object and the W3C DOM’s Range object are syntactically incompati-
ble objects that both attempt to provide similar functionality—manipulating
sequences of rendered text content in the browser window. Both object models also
deal with user text selections in different manners, requiring additional DOM-specific
coding.

Example 15-1. The selectionManager object

var selectionManager = {
 selectionStart : null,
 // invoked by selectstart event for IE
 saveStart : function() {this.selectionStart = event.srcElement;},
 // invoked by mouseup
 selection2Element : function(tagName, className) {
 if (document.selection && document.selection.createRange) {
 if (event.srcElement == this.selectionStart ||
 event.srcElement.parentNode == this.selectionStart ||
 event.srcElement == this.selectionStart.parentNode) {
 var rng = document.selection.createRange();
 var newHTML = "<" + tagName + " class='" + className + "'>" + rng.text +
 "</" + tagName + ">";
 rng.pasteHTML(newHTML);
 this.selectionStart = null;
 } else {
 alert("Please restrict selections to within a single paragraph.");
 }
 } else if (document.createRange) {
 var sel = window.getSelection();
 // Safari 2.0.4 doesn't know sel.getRangeAt(), so do it the long way
 var range = document.createRange();
 range.setStart(sel.anchorNode, sel.anchorOffset);
 range.setEnd(sel.focusNode, sel.focusOffset);
 if (range.startContainer == range.endContainer ||
 range.commonAncestorContainer == range.startContainer.parentNode ||
 range.commonAncestorContainer == range.endContainer.parentNode) {
 var origContent = range.extractContents();
 var newElem = document.createElement(tagName);
 newElem.setAttribute("class", className);
 newElem.appendChild(origContent);
 range.insertNode(newElem);
 } else {
 alert("Please restrict selections to within a single paragraph.");
 }
 }
 }
}

506 | Chapter 15: Dynamic Content Applications

The core of the selectionManager object is the selection2Element() method. It
requires two parameters: the name of the tag to use to surround the selected text and
the class name to assign to the new container. Like most of IE’s proprietary DOM, its
Range object is also string-oriented (rather than DOM object-oriented). Therefore,
the basis of converting the selection to a new element involves obtaining the text of
the range, surrounding it with HTML tags, and pasting that new HTML string into
the range.

Deploy this solution guardedly, as you can get yourself into substantial trouble with-
out realizing it. If a user drags a selection across existing HTML container bound-
aries, the new HTML that the IE branch uses to replace the selection will, at best, be
ill-formed HTML that has containers overlapping each other. At worst, the action
will destroy the document structure in the vicinity of the replacement. The
selectstart event invokes the selectionManager.saveStart() method to record the
node in which the selection began. If the beginning and end of the selection are not
in the same node, the user receives an alert.

On the W3C DOM side, everything is handled within its branch of the
selection2Element() method. After obtaining a selection object (from window.
getSelection()), its properties are used to set parameters of a new TextRange object.
After verifying that the range start and end are within acceptable related containers,
the selection is initially removed from the DOM tree, inserted into a newly created
element, and then reinserted into the DOM tree.

See Also
Recipe 15.3 for a more advanced application of the IE TextRange and W3C DOM
Range objects.

15.3 Automating the Search-and-Replace of Body
Content

Problem
You want to offer a search-and-replace function (with undo) for body content.

Solution
This recipe works only in Internet Explorer 4 or later for Windows and Mozilla-
based browsers. On the IE side is a heavy dependence upon the Microsoft propri-
etary TextRange object (which also works with textarea element content); on the
Mozilla side is a heavy dependence on the W3C DOM Range object, which isn’t suffi-
ciently implemented in Safari 2.0.4 or Opera 9 to be usable for this application.
Observing how the W3C DOM Range object works in this recipe will help prepare
you for the day when its deployment is more universal.

15.3 Automating the Search-and-Replace of Body Content | 507

Use the rangeReplace.js library (Example 15-2 in the Discussion) to automate search-
and-replace operations. You have your choice of two functions, depending on the
type of search-and-replace user experience you prefer. Invoke the srBatch() func-
tion for unprompted batch replacement:

srBatch(document.body, "Law", "legislation", false);

The four parameters specify:

• A reference to the element to become the text range

• A string to search for

• A string to replace found strings

• A Boolean for case-sensitive search

The companion srQuery() function takes the same set of arguments, but highlights
each match, and prompts the user to confirm each replacement:

srQuery(document.body, "Law", "legislation", false);

To undo the replacements performed by the last invocation of either function,
invoke the undoReplace() function with no arguments.

Discussion
Example 15-2 shows the rangeReplace.js library. Link it into any document that
requires this functionality.

Example 15-2. The rangeReplace.js library

// Return TextRange.findText() third parameter arguments
function getSearchArgs(caseSensitive) {
 return (caseSensitive) ? 4 : 0;
}

// Unprompted search and replace
function srBatch(container, search, replace, caseSensitive) {
 var rng;
 if (document.body.createTextRange) {
 // IE branch
 var args = getSearchArgs(caseSensitive);
 var found = "";
 rng = document.body.createTextRange();
 rng.moveToElementText(container);
 clearUndoBuffer();
 for (var i = 0; rng.findText(search, 1000000, args); i++) {
 found = rng.text;
 rng.text = replace;
 pushUndoNew(rng, search, replace, found);
 rng.collapse(false) ;
 }
 alert("Search completed.");
 } else if (document.createRange && window.find) {

508 | Chapter 15: Dynamic Content Applications

 // Mozilla (W3C) branch
 var sel;
 var args = caseSensitive || false;
 while (window.find(search, args)) {
 sel = window.getSelection();
 if (sel.anchorNode) {
 rng = sel.getRangeAt(0);
 if (rng.intersectsNode(container)) {
 pushUndoNew(rng, search, replace, rng.toString());
 rng.deleteContents();
 rng.insertNode(document.createTextNode(replace));
 rng.startContainer.parentNode.normalize();
 }
 }
 }
 alert("Search completed.");
 }
}

// Prompted search and replace
function srQuery(container, search, replace, caseSensitive) {
 var rng;
 if (document.body.createTextRange) {
 // IE branch
 var args = getSearchArgs(caseSensitive);
 var found = "";
 rng = document.body.createTextRange();
 rng.moveToElementText(container);
 clearUndoBuffer();
 while (rng.findText(search, 10000, args)) {
 rng.select();
 found = rng.text;
 rng.scrollIntoView();
 if (confirm("Replace?")) {
 rng.text = replace;
 pushUndoNew(rng, search, replace, found);
 }
 rng.collapse(false) ;
 }
 alert("Search completed.");
 } else if (document.createRange && window.find) {
 // Mozilla (W3C) branch
 var sel;
 var args = caseSensitive || false;
 while (window.find(search, args)) {
 sel = window.getSelection();
 if (sel.anchorNode) {
 rng = sel.getRangeAt(0);
 if (rng.intersectsNode(container)) {
 if (confirm("Replace?")) {
 pushUndoNew(rng, search, replace, rng.toString());
 rng.deleteContents();

Example 15-2. The rangeReplace.js library (continued)

15.3 Automating the Search-and-Replace of Body Content | 509

 rng.insertNode(document.createTextNode(replace));
 rng.startContainer.parentNode.normalize();
 } else {
 // move selection beyond current item for next find()
 rng.collapse(false);
 sel.addRange(rng);
 }
 }
 }
 }
 alert("Search completed.");
 }
}

/****************
 UNDO BUFFER
*****************/
// Temporary storage of undo information
var undoObject = {origSearchString:"",newRanges :[]};

// Store original search string and "bookmarks" of each replaced range
function pushUndoNew(rng, srchString, replString, foundString) {
 undoObject.origSearchString = srchString;
 if (rng.moveStart) {
 // IE branch
 rng.moveStart("character", -replString.length);
 var rngSpecs = {bookmark: rng.getBookmark(), found: foundString}
 undoObject.newRanges[undoObject.newRanges.length] = rngSpecs;
 } else if (rng.setStart) {
 // Mozilla (W3C) branch
 var rngSpecs = {node: rng.startContainer, start: rng.startOffset, end: rng.
startOffset + replString.length, found: foundString};
 undoObject.newRanges[undoObject.newRanges.length] = rngSpecs;
 }
}

// Empty array and search string global
function clearUndoBuffer() {
 undoObject.origSearchString = "";
 undoObject.newRanges.length = 0;
}

// Perform the undo
function undoReplace() {
 if (undoObject.newRanges.length && undoObject.origSearchString) {
 if (document.body.createTextRange) {
 // IE branch
 rng = document.body.createTextRange();
 for (var i = 0; i < undoObject.newRanges.length; i++) {
 rng.moveToBookmark(undoObject.newRanges[i].bookmark);
 rng.text = undoObject.newRanges[i].found;
 }

Example 15-2. The rangeReplace.js library (continued)

510 | Chapter 15: Dynamic Content Applications

The library begins with a helper function, getArgs(), invoked by both of the main
search-and-replace functions. The IE TextRange object’s findText() method, used in
both of the main functions, takes three parameters. The first is the string to look for,
followed by an integer of how many characters of the range to search through, and
an integer corresponding to search detail codes. The four possible codes are: 0
(match partial words); 1 (match backwards); 2 (match whole words); or 4 (match
case). Using binary arithmetic, these codes can be combined into a single value
denoting two or more of these switches being on. The getArgs() converts the two
Boolean argument values to the appropriate binary code for findText(). Because this
version of the recipe supports Mozilla, whose search facility does not offer a “whole
word” option, the getArgs() function now works only with the “match case” value.

I’ll first cover the IE branches of all functions. The object detection feature for most
functions is IE’s document.body.createTextRange() method.

Both of the search-and-replace functions, srBatch() and srQuery(), operate the same
way to create the IE text range, set the boundaries to the referenced element, clear
the undo buffer (described next), and perform the search-and-replace operation via
the TextRange’s findText() method. The difference between the two functions is that
srQuery() selects each found match to highlight the text, and then asks the user
whether the highlighted text should be replaced.

Both search-and-replace functions are supplemented by the same undo capabilities.
A global object (undoObject) keeps track of the changes made during a search-and-
replace execution, using the IE TextRange bookmark feature (which preserves a range
definition for reuse later). At each replacement operation, the pushUndoNew() func-
tion preserves information about the operation in the undoObject object’s properties.
Before the function stores the range, however, it adjusts the range to encompass the
newly inserted text so that it can be selected and removed later. In case the search is
not case-sensitive, the found text is also stored so that each instance may be restored
correctly.

 clearUndoBuffer();
 } else if (document.createRange) {
 // Mozilla (W3C) branch
 for (var i = undoObject.newRanges.length - 1; i >= 0 ; i--) {
 rng = document.createRange();
 rng.setStart(undoObject.newRanges[i].node, undoObject.newRanges[i].start);
 rng.setEnd(undoObject.newRanges[i].node, undoObject.newRanges[i].end);
 rng.deleteContents();
 rng.insertNode(document.createTextNode(undoObject.newRanges[i].found));
 rng.startContainer.parentNode.normalize();
 }
 clearUndoBuffer();
 }
 }
}

Example 15-2. The rangeReplace.js library (continued)

15.3 Automating the Search-and-Replace of Body Content | 511

Prior to each search-and-replace traversal, the values of undoObject are cleared via the
clearUndoBuffer() function so as not to interfere with previous operations. When
the user wishes to undo the operation, the undoReplace() function iterates through
the ranges stored in undoObject, and replaces those ranges with the original search
string.

The first argument of either of the search-and-replace functions is a reference to the
HTML container that bounds the text you wish to search. While you can supply a
reference to the entire body if you like, doing so means that the operations will occur
on things like form control labels and other elements you may not wish to have
included. Therefore, structure your HTML document so that the target content is
separate from any fixed content you don’t want changed. You can always wrap a col-
lection of paragraphs and their headings in an arbitrary span element to provide the
necessary container.

Don’t confuse IE’s TextRange bookmark with the kinds of URL bookmarks you save
in your browser. A bookmark value, derived from the rangeObject.getBookmark()
method, is a string containing data that is gibberish to the human eye but is inter-
preted by the browser as a complete range specification. Supplying a bookmark value
to the rangeObject.moveToBookmark() method sets the range to whatever specifica-
tion had been preserved before. You can store as many range bookmarks as you like.

For the Mozilla (W3C DOM) branches, many of the basic operations are the same as
the IE version, but the W3C DOM Range object is both conceptually and syntacti-
cally a different animal. The Range object offers no search facility. While one could
build such an animal out of regular expressions, Mozilla does offer a window.find()
method, which selects text that matches the search string. The selection object’s
getRangeAt() method generates an instance of a Range object whose specifications
match those of the selection. The script then makes sure that the found range is
within the context of the container passed as the first parameter to the search func-
tion. Details of the pre-replacement state are passed to pushUndoNew() where they are
stored for use later, if needed. The found text is removed, new text is inserted, and
all text nodes in the current container are normalized (because inserting a text node
breaks up the original text node).

Because the W3C DOM Range object does not have an analoge to IE’s bookmark
mechanism, the undo buffer stores specifications piecemeal. In the undoReplace()
function, the list of buffered ranges is traversed in reverse order because if there are
two replacements in the same container, the range offsets will be out of whack for a
later item when an earlier item is restored.

See Also
The introduction to this chapter for information about text ranges.

512 | Chapter 15: Dynamic Content Applications

15.4 Designing a User-Editable Content Page

Problem
You want to offer a place for users to enter styled text for submission to the server.

Solution
This recipe for IE, Mozilla, and Opera 9 or later provides an iframe element that
allows users to type new text into it, while customizing numerous style specifica-
tions, which appear within the element’s content. Demonstrated here are only a few
of the style editing choices available to page authors.

The editor.js library shown in Example 15-3 in the Discussion creates a single global
object, editableDoc, which provides the interface to the editing commands. The
HTML portion of the example offers a single iframe element and several controls for
adjusting font characteristics (event assignments handled by functions in
eventsManager.js from Recipes 9.1 and 9.3):

<script type="text/javascript">
function setEvents() {
 addEvent(document.getElementById("fontColorChooser"), "change",
 editableDoc.setFontColor, false);
 addEvent(document.getElementById("fontStyleChooser"), "change",
 editableDoc.setFontStyle, false);
 addEvent(document.getElementById("fontFamilyChooser"), "change",
 editableDoc.setFontFamily, false);
}
addOnLoadEvent(function() {editableDoc.init("editableIframe")});
addOnLoadEvent(setEvents);
</script>
...
<div>
<form>
Font Color: <select id="fontColorChooser">
 <option value="black" selected="selected">Black</option>
 <option value="red">Red</option>
 <option value="green">Green</option>
 <option value="blue">Blue</option>
</select>
Font Style: <select id="fontStyleChooser">
 <option value="removeformat" selected="selected">Normal</option>
 <option value="bold">Bold</option>
 <option value="italic">Italic</option>
 <option value="underline">Underline</option>
 <option value="strikethrough">Strikethrough</option>
</select>
Font Family: <select id="fontFamilyChooser">
 <option value="serif" selected="selected">Serif</option>
 <option value="sans-serif">Sans-serif</option>
 <option value="monospace">Mono</option>
 <option value="comic sans ms">Comic Sans</option>

15.4 Designing a User-Editable Content Page | 513

</select>
</form>
</div>
<iframe id="editableIframe" src="sample.html" width="400" height="300"></iframe>

Discussion
One of the principles of Web 2.0 is the encouragement for site visitors to create input
for others to see. In the past, this has meant using textarea elements for entering
plain text, or using HTML tags the textarea to designate style changes and such—
provided the author knew HTML.

These days, however, users are less likely to know HTML, but are familiar with
styled text editing from their word processing programs. Microsoft developed a set of
commands for IE that allow an element setup to be editable to display styled text and
other HTML features through script control. Mozilla and Opera have implemented
the same command structure (although not necessarily all of the same commands).

Example 15-3 is the code for a simple library that performs a limited number of sty-
listic changes to an editable element. It also includes the necessary initialization
method to set the element to be editable.

Example 15-3. The editor.js library

var editableDoc = {
 doc : null,
 setFontColor : function(evt) {
 if (editableDoc.doc) {
 editableDoc.doc.execCommand("forecolor", false, editableDoc.getElem(evt).value);
 }
 },
 setFontStyle : function(evt) {
 if (editableDoc.doc) {
 editableDoc.doc.execCommand(editableDoc.getElem(evt).value, false, null);
 }
 },
 setFontFamily : function(evt) {
 if (editableDoc.doc) {
 editableDoc.doc.execCommand("fontname", false, editableDoc.getElem(evt).value);
 }
 },
 getElem : function(evt) {
 evt = evt || window.event;
 var elem = evt.target || evt.srcElement;
 return elem;
 },
 init : function(elemID) {
 var iframe = document.getElementById(elemID);
 if (iframe.contentWindow) {
 editableDoc.doc = iframe.contentWindow.document;
 } else if (iframe.contentDocument) {
 editableDoc.doc = iframe.contentDocument;
 }

514 | Chapter 15: Dynamic Content Applications

In the case of an iframe element, IE and the W3C DOM refer to its content docu-
ment with different references, which are equalized in the init() method. Setting the
designMode property of the document within the iframe to on makes it user-editable.
The first three methods invoke the execCommand() method, passing appropriate
parameters for each command. The getElem() method is used internally to help the
first three methods obtain a reference to the select element that invoked the styling
method. Command or parameter values are derived from the value of the currently
selected option.

Table 15-1 provides an abbreviated list of commands that would be appropriate for a
simple editing application. You can find more details in Dynamic HTML: The Defini-
tive Reference (O’Reilly).

 if (editableDoc.doc && editableDoc.doc.designMode) {
 editableDoc.doc.designMode = "on";
 }
 }
}

Table 15-1. Selected execCommand() method commands and browser support

Command IE Moz Opera Description Value parameter

BackColor • • • Sets background color of cur-
rent selection

Color value (name or hex
triplet)

Bold • • • Makes the current selection
bold weight

None

CreateLink • • • Wraps an<ahref=...> tag
around the current selection

A string of a complete or
relative URL

FontName • • • Sets the font family of the cur-
rent selection

A string of the font family
name

FontSize • • • Sets the HTML font size of the
current selection

A string of the font size
(1–7)

ForeColor • • • Sets the foreground (text)
color of the current selection

Color value (name or hex
triplet)

FormatBlock • • • Wraps a block tag around the
current object

HTML tag (e.g., <p>) as
string

InsertOrderedList • • • Inserts an tag at the
current insertion point

A string for the element ID

InsertUnorderedList • • • Inserts a tag at the cur-
rent insertion point

A string for the element ID

Italic • • • Wraps an <i> tag around the
range

None

JustifyCenter • • • Center justifies the current
selection

None

Example 15-3. The editor.js library (continued)

15.5 Creating a Slide Show | 515

The quality of the HTML markup that results from these commanded edits varies
with the browser. If the browser uses CSS to achieve the styles, the rules are embed-
ded within span elements surrounding the affected text. But the fact that an iframe’s
document is a genuine HTML document means that you can submit its content
through facilities such as the XMLHttpRequest object’s send() method (with a POST
type of transmission).

You can see a more fully fleshed-out editor at http://developer.mozilla.org/en/docs/
Rich-Text_Editing_in_Mozilla.

15.5 Creating a Slide Show

Problem
You want to deliver the equivalent of a PowerPoint presentation in a web browser.

Solution
There are dozens of ways to simulate a slide show, but this recipe is a simple, easy-
to-implement solution for recent browsers. All of the content, style sheets, and
scripts are contained in a single HTML page, whose code is shown in Example 15-4
in the Discussion.

JustifyLeft • • • Left justifies the current
selection

None

JustifyRight • • • Right justifies the current
selection

None

Print • — — Displays Print dialog box
(IE 5.5 or later)

None

RemoveFormat • • • Removes formatting from the
current selection

None

SaveAs • — — Saves the page as a local file
(optional file dialog)

A string of a URL for the
path

Strikethrough • • • Formats the selection as
strikethrough text

None

Subscript • • • Formats the selection as sub-
script text

None

Superscript • • • Formats the selection as
superscript text

None

Underline • • • Wraps a <u> tag around the
range

None

Table 15-1. Selected execCommand() method commands and browser support (continued)

Command IE Moz Opera Description Value parameter

516 | Chapter 15: Dynamic Content Applications

To customize this slide show, place the content of each slide in its own div element
with a class attribute set to slide. All of your slide div elements should be nested
inside one master div element named slides. Keep the individual slide div elements
in the same source code order as the presentation slide order.

You can also customize the style sheets that define the look of the slides. The format
shown in Example 15-4 simulates a typical presentation software package’s simple
slide style.

Discussion
Example 15-4 shows the HTML page used for a slide show (with only one slide to
save space). With the entire slide show arriving in a single document, there is no
delay in navigating between slides. Additional support is provided by
eventsManager.js (Recipe 9.1) and the DHTML API library (Recipe 13.3).

Example 15-4. A slide show HTML page and scripts

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>DHTML Slide Show</title>
<style type="text/css">
#slides {
 font-family: Verdana, Arial, sans-serif;
 position: absolute;
 top: 40px;
 width: 90%
 }
.slide {
 position: absolute;
 top: 0px;
 left: 0px;
 display: none;
 width: 80%;
 height: 500px;
 overflow: hidden;
 background-color: #ccffcc;
 font-size: 18px;
 padding: 20px;
 border: 5px solid #ff9900;
 margin: 10%;
 margin-top: 70px
 }
h1 {
 text-align: right;
 padding-right: 10%
 }
h2 {
 font-size: 36px;
 text-align: center

15.5 Creating a Slide Show | 517

 }
li {
 list-style-image: url(end.gif);
 list-style-position: outside
 }
hr {
 width: 60%;
 height: 5px;
 background-color: #ff9900
 }
#titleBar {
 width: 100%;
 height: 10px
 }
body {background-color: #339966}
#controller {
 position: absolute;
 top: 30px;
 left: 10%
 }
</style>
<script src="../js/eventsManager.js"></script>
<script src="../js/DHTML3API.js"></script>
<script type="text/javascript">
// Array of all slides
var allSlides;
// Slide counter
var currSlide = -1;

// Set global with array of slide elements
function getAllSlides() {
 var allChildren = document.getElementById("slides").childNodes;
 var slideElems = new Array();
 for (var i = 0; i < allChildren.length; i++) {
 if (allChildren[i].nodeType == 1) {
 slideElems[slideElems.length] = allChildren[i];
 }
 }
 allSlides = slideElems;
}

// Set pixel heights of slide elements to fit window
function setHeights() {
 for (var i = 0; i < allSlides.length; i++) {
 allSlides[i].style.height = getInsideWindowHeight() - 200 + "px";
 }
}

// Advance to next slide
function next() {
 if (currSlide < 0) {
 allSlides[++currSlide].style.display = "block";

Example 15-4. A slide show HTML page and scripts (continued)

518 | Chapter 15: Dynamic Content Applications

 } else if (currSlide < allSlides.length - 1) {
 allSlides[currSlide].style.display = "none";
 allSlides[++currSlide].style.display = "block";
 } else if (currSlide == allSlides.length - 1) {
 allSlides[currSlide++].style.display = "none";
 }
}

// Go to previous slide
function prev() {
 if (currSlide > allSlides.length - 1) {
 allSlides[--currSlide].style.display = "block";
 } else if (currSlide > 0) {
 allSlides[currSlide].style.display = "none";
 allSlides[--currSlide].style.display = "block";
 } else if (currSlide == 0) {
 allSlides[currSlide--].style.display = "none";
 }
}

// Initialize slide show
function initSlides() {
 getAllSlides();
 setHeights();
}
</script>
</head>
<body onload="initDHTMLAPI(); initSlides()" onresize="setHeights()">
<h1>U.S. Bill of Rights</h1>
<hr id="titleBar" />
<div id="controller">
<form>
<input type="button" value="Prev" onclick="prev()" />
<input type="button" value="Next" onclick="next()" />
</form>
</div>

<div id="slides">

<div id="slide1" class="slide">
<h2>ARTICLE I</h2>
<hr />
<p>
Congress shall make no law respecting an establishment of religion, or prohibiting
the free exercise thereof; or abridging the freedom of speech, or of the press; or
the right of the people peaceably to assemble, and to petition the government for
a redress of grievances.
</p>

Note 1
Note 2
Note 3

Example 15-4. A slide show HTML page and scripts (continued)

15.5 Creating a Slide Show | 519

While the script code works in IE 5 or later, the CSS specifications in this example
require IE 5.5 or later on Windows to achieve the consistent look shown in
Figure 15-1.

A lot of what a slide show looks like depends upon the CSS rules applied to a series
of positioned div elements (of the slide class) nested inside one outer-positioned div
element (with ID slides). Additional style rules control the look of elements within
slides, such as headings, bullet lists, and horizontal rule dividers.

The HTML for the slide title area, controller buttons, and content has a straightfor-
ward structure. Controller buttons simply activate the prev() and next() functions

</div>
...

</div>
</body>
</html>

Figure 15-1. A slide show window

Example 15-4. A slide show HTML page and scripts (continued)

520 | Chapter 15: Dynamic Content Applications

to bring an adjacent slide into view. A style sheet rule positions the controller but-
tons where it is convenient within the rest of the design of the slides. The load event
handler invokes initializations for both the DHTML API (Recipe 13.3) and the slide
show scripts.

This slide show works under script control by hiding and showing individual div ele-
ments representing the slides. The script, therefore, simply needs to keep track of
which slide is showing and display either the next or the previous slide in sequence.
Rather than hardcoding IDs of the individual slides to establish the sequence, the
scripts take advantage of the DOM node tree established for this document. Each
slide is a child element node of an outer wrapper (whose ID is slides). The
getAllSlides() function stores (in the allSlides global variable) an array reference
to the slides in source code order. Note that it is invoked by the load event handler
because the div elements must load and render before they can be counted.

The zero-based index value of the array becomes the counter that helps keep track of
the currently displayed slide. A global variable, currSlide, is initialized with a value
of -1, to signify that no slide is showing and the first slide (index of 0) is next in the
sequence. Both the next() and prev() functions rely on the currSlide value to deter-
mine the next or previous slide to show in sequence until a border condition is
encountered—when the user has reached the start or end of the show. The next()
and prev() functions need to branch to handle these conditions and manage the
currSlide variable accordingly.

One unfinished piece of business is that to prevent the active area of the slide from
changing height with each slide (based on content height), a fixed slide height is
needed. But to keep the height in proportion to the browser window size needs some
DHTML assistance. With the help of the DHTML API library from Recipe 13.3, the
setHeights() function makes the adjustments to all of the slide div elements. Note
that the setHeights() function is invoked both through the load and resize event
handlers of the page. This keeps the height in proper proportions in all circumstances.

The look and feel of a DHTML-based slide show has as many variations as there are
web designers implementing the application. Most of the details shown for the style
sheets in this recipe govern the appearance of this variation only. Size, color, and font
choices are entirely up to you. The same goes for the controllers, implemented here
as basic HTML form button controls. You may prefer clickable images, or you may
not want any buttons at all, so that the slides advance by a click anywhere in the win-
dow. Adding the following code to the scripts just shown provides that functionality
(except in IE on the Mac), along with a way to go backward by holding down the
Shift key while clicking in the window:

function changeSlide(evt) {
 evt = (evt) ? evt : window.event;
 if (evt.shiftKey) {
 prev();
 } else {

15.5 Creating a Slide Show | 521

 next();
 }
}
document.onclick=changeSlide;

One aspect of typical slide shows not covered in the previous code is the transition
effect. While it is possible to script numerous cross-browser effects, such as a dis-
carded slide moving off to the left while the new one floats in from the right, the use
of this kind of animation is of variable smoothness and speed, depending on browser
and operating environment. But Internet Explorer for Windows makes good use of
its integration with the operating system to provide a large set of transition filters
that are specified as part of the style sheet rules.

The catalog of transition effects is long, as is the range of details you can specify for
most transitions (see Recipe 12.12). But as a preview, the following style sheet rule
can be added to the .slide class definition in the previously shown CSS rules:

filter:progid:DXImageTransform.Microsoft.Iris(irisStyle="circle")

Next, modify the next() and prev() functions to apply and play the transitions
when needed. For example, the next() function becomes:

function next() {
 var allSlides = getAllSlides();
 if (currSlide < 0) {
 allSlides[++currSlide].filters[0].apply();
 allSlides[currSlide].style.visibility = "visible";
 allSlides[currSlide].filters[0].play();
 } else if (currSlide < allSlides.length - 1) {
 allSlides[currSlide].style.visibility = "hidden";
 allSlides[++currSlide].filters[0].apply();
 allSlides[currSlide].style.visibility = "visible";
 allSlides[currSlide].filters[0].play();
 } else if (currSlide == allSlides.length - 1) {
 allSlides[currSlide++].style.visibility = "hidden";
 }
}

To allow these transitions to work in IE for Windows without causing script errors in
IE for the Mac or Netscape browsers, you’ll need to lengthen the code a little more to
accommodate all supporting browsers:

function next() {
 var allSlides = getAllSlides();
 var nextSlide;
 if (currSlide < 0) {
 nextSlide = allSlides[++currSlide];
 if (nextSlide.filters) {
 nextSlide.filters[0].apply();
 }
 nextSlide.style.visibility = "visible";
 if (nextSlide.filters) {
 nextSlide.filters[0].play();
 }

522 | Chapter 15: Dynamic Content Applications

 } else if (currSlide < allSlides.length - 1) {
 allSlides[currSlide].style.visibility = "hidden";
 nextSlide = allSlides[++currSlide];
 if (nextSlide.filters) {
 nextSlide.filters[0].apply();
 }
 nextSlide.style.visibility = "visible";
 if (nextSlide.filters) {
 nextSlide.filters[0].play();
 }
 } else if (currSlide == allSlides.length - 1) {
 allSlides[currSlide++].style.visibility = "hidden";
 }
}

Lastly, you can set up a slide show so that it automatically cycles through the slides,
giving users a fixed amount of time to read each slide. Modify the next() function
(you don’t need prev() for this) to circle around when it reaches the end:

function next() {
 var allSlides = getAllSlides();
 if (currSlide < 0) {
 allSlides[++currSlide].style.visibility = "visible";
 } else if (currSlide < allSlides.length - 1) {
 allSlides[currSlide].style.visibility = "hidden";
 allSlides[++currSlide].style.visibility = "visible";
 } else if (currSlide == allSlides.length - 1) {
 allSlides[currSlide++].style.visibility = "hidden";
 currSlide = -1;
 next();
 }
}

Then use a load event handler of the page to initiate a setInterval() call to next()
every several seconds. Because the load event handler shown earlier already per-
forms an initialization in setHeights(), you can enter the setInterval() call at the
end of that function. But since that function is also invoked if the page is resized, you
need to cancel the previous interval timer if the user resizes the window. Failure to
do so starts another interval time, which gives the impression of speeding up the
slide pacing. Therefore, preserve the interval identifier in a global variable:

var slideInterval;

function setHeights() {
 clearInterval(slideInterval);
 var allSlides = getAllSlides();
 for (var i = 0; i < allSlides.length; i++) {
 allSlides[i].style.height = getInsideWindowHeight() -200 + "px";
 }
 slideInterval = setInterval("next()", 5000);
}

15.6 Auto-Scrolling the Page | 523

See Also
Recipe 13.1 for how to make an element positionable on the page; Recipe 13.3 for
details on the DHTML API library; Recipe 12.2 for an introduction to transition
effects in IE for Windows.

15.6 Auto-Scrolling the Page

Problem
You want the entire browser page to automatically scroll vertically for the user.

Solution
All current mainstream scriptable browsers empower their window objects with a
scrollBy() method. By invoking it repeatedly through a setInterval() call, you can
scroll the browser window with no user interaction. The following function and
setInterval() call do the trick:

function scrollWindow() {
 window.scrollBy(0, 1);
}
function initScroll() {
 setInterval("scrollWindow()", 100);
}

The initScroll() function should be invoked by a load event of the window object.

Discussion
Determining the optimum scroll speed is not easy, and may even dissuade you from
employing this application except perhaps in a kiosk environment. Scrolling speed is
governed by two variables: the number of pixels of the increment (the second param-
eter of scrollBy()) and how often the scrollWindow() function is invoked (the inter-
val time specified in the setInterval() method call). If the pixel increment is too
large, the page jumps in big steps that are difficult for the eye to track for any length
of time. The smaller the increment, the better, as shown by the one-pixel jumps in
the solution.

Frequency is specified by the nominal number of milliseconds between calls to the
scrollWindow() function. Too large a number makes the page scroll painfully slowly
for moderate reading speeds. Too small a number may lead to more comfortable
reading in an ideal environment, but it points out a potential problem beyond your
control: repetitive execution of the setInterval() method’s function does not fire in
absolutely uniform intervals. The smaller the interval, the more you see the results in
bursts of smooth scrolling followed by brief stuttering.

524 | Chapter 15: Dynamic Content Applications

To check on the progress of the autoscroll through the page, you can read the instan-
taneous scroll amount (in pixels); however, the syntax varies not only among brows-
ers, but also between standards-compatible mode and quirks mode in IE 6 and 7. For
Mozilla and Safari, get the read-only properties window.scrollX and window.scrollY.
For older IE versions and IE 6/7 running in backward-compatible mode, use
document.body.scrollLeft and document.body.scrollTop. In the CSS-compatibility
mode of IE 6/7, use document.body.parentElement.scrollLeft and document.body.
parentElement.scrollTop. The latter pair reads the scroll values for the entire html
element filling the window.

See Also
Recipe 13.12 for an alternative way to scroll content (in a positioned div element)
without scrolling the window.

15.7 Greeting Users with Their Time of Day

Problem
You want your page to include a greeting pertinent to the user’s part of the day, such
as “Good morning” or “Good afternoon.”

Solution
First, create a function that returns strings associated with each day part, as calcu-
lated by a fresh Date object:

function dayPart() {
 var oneDate = new Date();
 var theHour = oneDate.getHours();
 if (theHour < 12) {
 return "morning";
 } else if (theHour < 18) {
 return "afternoon";
 } else {
 return "evening";
 }
}

To accommodate both scriptable and unscriptable browsers, be sure to encase the
script statement inside HTML comment tags, and include the noscript element with
the text to display for unscriptable browsers:

<script language="JavaScript" type="text/javascript">
document.write("Good " + dayPart() + " and welcome")
</script>
<noscript>Welcome</noscript>
 to GiantCo.

15.8 Displaying the Number of Days Before Christmas | 525

Discussion
As the page loads, it creates an instance of a Date object. By omitting the parameter
for the Date object constructor function, the current time and date are used to gener-
ate the object. A Date object instance is not a ticking clock, but rather a snapshot of
the clock when the object was created. The accuracy of the time is strictly dependent
upon the computer’s internal clock setting.

A Date object has numerous functions for getting and setting components of the
date, ranging from the millisecond to the year. The getHours() method used in the
Solution returns a number between 0 and 23, corresponding to the 24-hour clock set
to the user’s local time. The dayPart() function simply divides the day into three
portions, breaking at noon and 6 P.M. to supply day parts ranging through morning,
afternoon, and evening.

The example provides a <noscript> tag, which will cause browsers with scripting
turned off to display a generic greeting. You could also use a load event to script the
replacement of the generic greeting (assuming you encase the generic content within
an identifiable container, such as a span element). The downside of using that
approach is the chance that the display will flash between the default and scripted
versions as the page loads. The document.write() version—though it may seem
antique to some—avoids the visual disruption.

See Also
Recipes 2.9 through 2.11 for information about working with the Date object.

15.8 Displaying the Number of Days Before Christmas

Problem
You want to display the amount of time before a known date and/or time in the
user’s local time zone.

Solution
The following function returns the number of days prior to the next Christmas in the
user’s local time zone:

function getDaysBeforeNextXmas() {
 var oneMinute = 60 * 1000;
 var oneHour = oneMinute * 60;
 var oneDay = oneHour * 24;
 var today = new Date();
 var nextXmas = new Date();
 nextXmas.setMonth(11);
 nextXmas.setDate(25);
 if (today.getMonth() == 11 && today.getDate() > 25) {

526 | Chapter 15: Dynamic Content Applications

 nextXmas.setFullYear(nextXmas.getFullYear() + 1);
 }
 var diff = nextXmas.getTime() - today.getTime();
 diff = Math.floor(diff/oneDay);
 return diff;
}

The value returned is an integer representing days, which you can insert into body
text either while the page is loading or afterward, as in the following:

<p>Only
<script type="text/javascript">document.write(getDaysBeforeNextXmas())</script>
shopping days until Christmas.</p>

Discussion
Approaching the “How many days before?” problem has some side implications that
you need to address before deploying a solution. In the case of the Solution in this
recipe, the function operates year after year without maintenance because the target
date is not pegged to any particular year. The extra if condition handles the case
when the current date is sometime after Christmas but before January 1 of the fol-
lowing year. To make the calculation arrive at the correct count, the target compara-
tive date is pushed out to the following year.

You could also rework the function to be more generic, whereby it accepts parame-
ters for a target date in the future, complete with the year. Such a function looks like
the following:

function getDaysBefore(year, month, date) {
 var oneMinute = 60 * 1000;
 var oneHour = oneMinute * 60;
 var oneDay = oneHour * 24;
 var today = new Date();
 var targetDate = new Date();
 targetDate.setYear(year);
 targetDate.setMonth(month);
 targetDate.setDate(date);
 alert(targetDate);
 var diff = targetDate.getTime() - today.getTime();
 diff = Math.floor(diff/oneDay);
 return diff;
}

If you are familiar with the Date object, you may wonder why the call to the con-
structor function for the target date object doesn’t pass the getDaysBefore() argu-
ments directly to the constructor. It is because the value for today includes the hours
and minutes into the current day. To compare the current date against a future date,
it’s important to compare the same times in the two dates: if the target date only was
handed to the constructor, the time would be 00:00:00 on that date.

Although this example shows calculations for the number of days, you can derive
other time units by modifying the next-to-last statement’s divisor from oneDay (for

15.9 Displaying a Countdown Timer | 527

the number of days) to oneHour (for the number of hours) or oneMinute. The date cal-
culations are performed at the millisecond level, so you can get even more granular if
you like.

You aren’t limited to displaying the results as text in the body content. If you have
graphical images of each number from 0 through 9, you can convert the number
returned into a graphical display comprising those images. For example, if you have
your images named 0.jpg, 1.jpg, and so on, the following function assembles the
HTML for a sequence of img elements:

function getDaysArt() {
 var output = "";
 var dayCount = getDaysBeforeNextXmas() + "";
 for (var i = 0; i < dayCount.length; i++) {
 output += "<img src='digits/" + dayCount.charAt(i) + ".jpg'";
 output += "height='120' width='60' alt='" + dayCount.charAt(i) + "' />";
 }
 return output;
}

As the page loads, use document.write() to insert this HTML where needed:

<p>Only
<script type="text/javascript">document.write(getDaysArt())</script>
shopping days until Christmas.</p>

See Also
Recipe 15.9 for a countdown timer pegged to a particular time zone in the world;
Recipe 15.10 for a calendar-based date picker.

15.9 Displaying a Countdown Timer

Problem
You want to have a running countdown timer showing on the page.

Solution
Countdown timers can take many forms. Look to the combination of HTML and
scripts in Example 15-5 of the Discussion for inspiration for your particular timer
implementation. The example application sets the turn of the new year in the user’s
time zone as the “zero hour” for the timer, and displays a constantly updated display
of the days, hours, minutes, and seconds until that time.

An onload event handler in the page invokes the countDown() function by way of the
setInterval() method:

window.onload = function() {setInterval("countDown()", 1000)};

528 | Chapter 15: Dynamic Content Applications

The display is updated approximately every second because the setInterval()
method repeatedly invokes the countDown() function until a script cancels the timer.

Discussion
The display of the timer can be in a text input field (all scriptable browsers), swappa-
ble images, or body text. This example uses swappable images because it lends itself
to the most flexible page designs of the choices. Figure 15-2 shows the output.

Example 15-5 shows the complete HTML document for this application, including
the HTML and scripts.

Figure 15-2. Countdown timer with swappable image

Example 15-5. A countdown timer application

<html>
<head>
<title>Recipe 15.9</title>
<style type="text/css">
table {border-spacing: 0}
td {border: 2px groove black; padding: 7px; background-color: #ccffcc}
th {border: 2px groove black; padding: 7px; background-color: #ffffcc}
.ctr {text-align:center}
</style>

15.9 Displaying a Countdown Timer | 529

<script type="text/javascript">
if (document.images) {
 var imgArray = new Array();
 imgArray[0] = new Image(60,120);
 imgArray[0].src = "digits/0.gif";
 imgArray[1] = new Image(60,120);
 imgArray[1].src = "digits/1.gif";
 imgArray[2] = new Image(60,120);
 imgArray[2].src = "digits/2.gif";
 imgArray[3] = new Image(60,120);
 imgArray[3].src = "digits/3.gif";
 imgArray[4] = new Image(60,120);
 imgArray[4].src = "digits/4.gif";
 imgArray[5] = new Image(60,120);
 imgArray[5].src = "digits/5.gif";
 imgArray[6] = new Image(60,120);
 imgArray[6].src = "digits/6.gif";
 imgArray[7] = new Image(60,120);
 imgArray[7].src = "digits/7.gif";
 imgArray[8] = new Image(60,120);
 imgArray[8].src = "digits/8.gif";
 imgArray[9] = new Image(60,120);
 imgArray[9].src = "digits/9.gif";
}

var nextYear = new Date().getYear() + 1;
nextYear += (nextYear < 1900) ? 1900 : 0;
var targetDate = new Date(nextYear,0,1);
var targetInMS = targetDate.getTime();
var oneSec = 1000;
var oneMin = 60 * oneSec;
var oneHr = 60 * oneMin;
var oneDay = 24 * oneHr;

function countDown() {
 var nowInMS = new Date().getTime();
 var diff = targetInMS - nowInMS;
 var scratchPad = diff / oneDay;
 var daysLeft = Math.floor(scratchPad);
 // hours left
 diff -= (daysLeft * oneDay);
 scratchPad = diff / oneHr;
 var hrsLeft = Math.floor(scratchPad);
 // minutes left
 diff -= (hrsLeft * oneHr);
 scratchPad = diff / oneMin;
 var minsLeft = Math.floor(scratchPad);
 // seconds left
 diff -= (minsLeft * oneMin);
 scratchPad = diff / oneSec;
 var secsLeft = Math.floor(scratchPad);

Example 15-5. A countdown timer application (continued)

530 | Chapter 15: Dynamic Content Applications

 // now adjust images
 setImages(daysLeft, hrsLeft, minsLeft, secsLeft);
}

function setImages(days, hrs, mins, secs) {
 var i;
 days = formatNum(days, 3);
 for (i = 0; i < days.length; i++) {
 document.images["days" + i].src = imgArray[parseInt(days.charAt(i))].src;
 }
 hrs = formatNum(hrs, 2);
 for (i = 0; i < hrs.length; i++) {
 document.images["hours" + i].src = imgArray[parseInt(hrs.charAt(i))].src;
 }
 mins = formatNum(mins, 2);
 for (i = 0; i < mins.length; i++) {
 document.images["minutes" + i].src = imgArray[parseInt(mins.charAt(i))].src;
 }
 secs = formatNum(secs, 2);
 for (i = 0; i < secs.length; i++) {
 document.images["seconds" + i].src = imgArray[parseInt(secs.charAt(i))].src;
 }
}

function formatNum(num, len) {
 var numStr = "" + num;
 while (numStr.length < len) {
 numStr = "0" + numStr;
 }
 return numStr
}

window.onload = function() {setInterval("countDown()", 1000)};
</script>
</head>
<body style="margin-left: 10%; margin-right: 10%">
<h1>New Year's Countdown Timer</h1>
<hr />

<table cellspacing="5" cellpadding="5">
<tr>
 <td align="right">

 </td>
 <td align="left">

 </td>
</tr>
<tr>
 <td align="right">

Example 15-5. A countdown timer application (continued)

15.9 Displaying a Countdown Timer | 531

For this example, the target date of the countdown timer is the start of the next year
in the user’s local time zone. The HTML output display is a rudimentary table with
place holders for the digit images. Because this application works with browsers that
may experience CSS formatting problems, we use the old-fashioned, but still sup-
ported, align attribute in table cells and name attribute in img elements. The table
is delivered to the browser with all of the swappable images set to the zero digit
representation.

The script portion of the page begins by precaching the images that represent the
numbers to prevent any delay the first time they are needed. Ten images, each the
same height and width, are loaded into the browser’s image cache while the page
loads.

Several functions will execute repeatedly, and they benefit from the one-time predefi-
nition of constants as global variables.

The function that executes repeatedly, countDown(), performs the date math by com-
paring the current clock setting (read approximately every second) against the target
date. Invoked by way of the window.setInterval() method, the countDown() func-
tion executes repeatedly once every second (plus or minus system latency).

 </td>
 <td align="left">

 </td>
</tr>
<tr>
 <td align="right">

 </td>
 <td align="left">

 </td>
</tr>
<tr>
 <td align="right">

 </td>
 <td align="left">

 </td>
</tr>
</table>

</body>
</html>

Example 15-5. A countdown timer application (continued)

532 | Chapter 15: Dynamic Content Applications

Next is the setImages() function, which adjusts the swappable img element src prop-
erties. This function must convert the numeric values passed from countDown() into
the URLs for the images. Calling formatNum() for each countdown component
returns a string version of the number, including a leading zero where necessary.

This application is a good demonstration of a situation where it makes sense to use
setInterval() to drive the repeated action. While setTimeout() is intended for a sin-
gle invocation of a function after some delay, setInterval() automatically invokes a
function repeatedly.

As with the timed autoscrolling of the page in Recipe 15.6, the repeated calls to the
countdown timer can also exhibit less than smooth running. If you watch this code
run for several seconds, you will notice an occasional and random unevenness to the
flipping of the seconds. You can improve the smoothness by shortening the interval
delay (to 100, for example), but this means that the function is being invoked 10
times per second, which could impact other script processing in your page. You can
experiment with different settings to achieve the balance that feels best for your
application.

So far, we have focused on the user’s local time zone, but there may be other cases in
which you want to peg the target date and time to a unique event occurring some-
place on the planet, such as a corporate press conference announcing a new product
release. To keep the timing accurate, you need to perform some additional calcula-
tions to get the time zone issues under control so that users from Australia to Green-
land will see the exact same countdown times leading up to the singular event.

The coding for this is simple, but the timekeeping may not be. To peg the target time
and date to a universal point in the future, change the global variable declarations
shown in Example 15-5 from this:

var targetDate = new Date(nextYear,0,1);
var targetInMS = targetDate.getTime();

to this:

var targetInMS = Date.UTC(nextYear, 0, 1, 0, 0, 0);

This is for the stroke of midnight on New Year’s Eve at Greenwich Mean Time
(GMT). If you have another date and time, simply plug the values into the six param-
eters in the order of four-digit year, month (zero-based), date, hour, minute, and sec-
ond, but at Greenwich Mean Time. For example, if you plan to offer a web cast of a
recital at 8 P.M. in Los Angeles on January 10, 2008, you need to determine what
that time is in GMT so that you can provide a countdown timer on the announce-
ment page. Los Angeles is in the Pacific Time Zone, and in that part of the year, the
zone is Pacific Standard Time. The PST zone is eight hours earlier than GMT. When
it’s 8 P.M. in Los Angeles, it’s 4 A.M. the next day at GMT. Thus, you’d set the tar-
get time for 4 A.M. on the 11th of January (month index is 2) like this:

var targetInMS = Date.UTC(2008, 0, 11, 4, 0, 0);

15.9 Displaying a Countdown Timer | 533

There is an even easier way to figure out this GMT stuff. Set your system clock and
time zone to the local time of where the event is to occur (you may already be there).
Then run this little calculator page to determine the GMT date and time:

<html>
<head>
<script type="text/javascript">
function calcGMT(form) {
 var date = new Date(form.year.value, form.month.value, form.day.value,
 form.hour.value, form.minute.value, form.second.value);
 form.output.value = date.toUTCString();
}
</script>
</head>
<body>
<form>
Year:<input type="text" name="year" value="0000" />

Month (0-11):<input type="text" name="month" value="0" />

Day (1-31):<input type="text" name="day" value="0" />

Hour (0-23):<input type="text" name="hour" value="0" />

Minute (0-59):<input type="text" name="minute" value="0" />

Second (0-59):<input type="text" name="second" value="0" />

<input type="button" value="Get GMT" onclick="calcGMT(this.form)" />

<input type="text" name="output" size="60" />
</body>
</html>

If you change your system clock settings to use this calculator, be sure to change
them back to your local time and time zone.

Another kind of counter is a short-term counter for applications like student quizzes or
other controlled environments in which you need something to time out or navigate to
another page. It’s not uncommon in such cases to display, say, a 60-second counter.

The following code is a modified version of the script in Example 15-5 that displays a
countdown timer for the number of seconds passed as a parameter to the primary
function:

// global variables
var targetInMS, timerInterval;
var oneSec = 1000;

// pass the number of seconds to count down
function startTimer(secs) {
 var targetTime = new Date();
 targetTime.setSeconds(targetTime.getSeconds() + secs);
 targetInMS = targetTime.getTime();
 // display starting image
 setImages(secs);
 timerInterval = setInterval("countDown()", 100);
}

function countDown() {
 var nowInMS = (new Date()).getTime();

534 | Chapter 15: Dynamic Content Applications

 var diff = targetInMS - nowInMS;
 if (diff <= 0) {
 clearInterval(timerInterval);
 alert("Time is up!");
 // more processing here
 } else {
 var scratchPad = diff / oneSec;
 var secsLeft = Math.floor(scratchPad);
 setImages(secsLeft);
 }
}

function setImages(secs) {
 var i;
 secs = formatNum(secs, 2);
 for (i = 0; i < secs.length; i++) {
 document.images["seconds" + i].src = imgArray[parseInt(secs.charAt(i))].src;
 }
}

function formatNum(num, len) {
 var numStr = "" + num;
 while (numStr.length < len) {
 numStr = "0" + numStr;
 }
 return numStr
}

This code is easily modifiable to extend the timer to minutes and seconds if you like.

See Also
Recipe 15.8 for displaying the number of days until Christmas; Recipes 2.9 and 2.10
for the Date object and its methods.

15.10 Creating a Calendar Date Picker

Problem
You want to provide a pop-up calendar to assist users in locating and entering a date
into a form.

Solution
You can make the user interface part of a popup calendar date picker by using a
dynamic table inside an absolute-positioned div container. Scripting behind the
picker must accomplish two primary tasks:

• Populating the calendar with views of a selected month within a selected year

• Allowing the click of a date in the calendar to be delivered back to the main doc-
ument form to fill in the date field(s)

15.10 Creating a Calendar Date Picker | 535

See the Discussion for an example of an HTML-based date picker, along with style
sheets and the scripts that power the calendar. One script function, shown in
Example 15-6 in the Discussion, is called showCalendar(). This function is invoked
by a user interface element inside the displayed form.

To get everything initialized, a load event invokes all necessary routines in the cur-
rent page:

addOnLoadEvent(function() {datePicker.init(document.getElementById("calendar"),
 document.getElementById("dateChooser"),
 document.getElementById("mainForm"))});

Discussion
This solution has a lot of code, including HTML, CSS, and scripts. But there is a lot
going on here: dynamically creating table content for the calendar, setting the position
and visibility of the calendar, supplying data from the calendar back to the main page,
and more. Figure 15-3 shows the calendar being used with a very simple date form.

We’ll start with two segments of HTML. One is for the date form that ultimately
receives the data from the date picker. A click of the button-type input element
invokes a function that displays the calendar:

<form name="mainForm" id="mainForm" method="POST" action="...">
<p>Enter a date:</p>

Figure 15-3. Pop-up calendar picker

536 | Chapter 15: Dynamic Content Applications

<p>mm:<input type="text" name="month" id="month" size="3" maxlength="2" value="1" />
dd:<input type="text" name="day" id="day" size="3" maxlength="2" value="1" />
yyyy:<input type="text" name="year" id="year" size="5" maxlength="4" value="2003" />
<input type="button" id="showit" value="Pick Date >>"
onclick="datePicker.showCalendar(event)" />
</p>
</form>

The other important HTML part is the positioned div element that holds the calen-
dar table. It is delivered with the page in sparse form (and hidden from view) because
scripts fill out the rest during initialization. Only the days-of-the-week headers and
select list of months are preset in the code. Month names in the select list get used
later on to supply the name for the current month of the calendar:

<div id="calendar">
<table id="calendarTable" border=1>
<tr>
 <th id="tableHeader" colspan="7"></th>
</tr>
<tr><th>Sun</th><th>Mon</th><th>Tue</th><th>Wed</th>
<th>Thu</th><th>Fri</th><th>Sat</th></tr>
<tbody id="tableBody"></tbody>
<tr>
 <td colspan="7">
 <p>
 <form id="dateChooser" name="dateChooser">
 <select name="chooseMonth" id="chooseMonth"
 onchange="datePicker.populateTable(this.form)">
 <option selected>January<option>February
 <option>March<option>April<option>May
 <option>June<option>July<option>August
 <option>September<option>October
 <option>November<option>December
 </select>
 <select name="chooseYear" id="chooseYear"
 onchange="datePicker.populateTable(this.form)">
 </select>
 </form>
 </p>
 </td>
</tr>
</table>
</div>

The table and its components are governed by a fairly extensive style sheet that cov-
ers positioning, visibility, table cell alignment, background colors, fonts, and the like.
Mouse rollover effects for the date numbers in the calendar are controlled strictly by
CSS pseudoclasses of a elements:

<style type="text/css">
#calendar {
 position: absolute;
 left: 0px;

15.10 Creating a Calendar Date Picker | 537

 top: 0px;
 visibility: hidden;
 }
table {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 background-color: #999999
 }
th {
 background-color: #ccffcc;
 text-align: center;
 font-size: 10px;
 width: 26px
 }
#tableHeader {
 background-color: #ffcccc;
 width: 100%
 }
td {
 background-color: #ffffcc;
 text-align: center;
 font-size: 10px;
 width: 28px
 }
#tableBody tr td {width: 26px}
#today {background-color: #ffcc33}
a:link {color: #000000; text-decoration: none}
a:active {color: #000000; text-decoration: none}
a:visited {color: #000000; text-decoration: none}
a:hover {color: #990033; text-decoration: underline}
</style>

Example 15-6 shows the script portion of this recipe, including the linked-in
eventsManager.js library from Recipe 9.3 and the DHTML API library from Recipe
13.3. The calendar script is divided into five sections.

Example 15-6. Scripts for the pop-up date picker

<script src="../js/eventsManager.js"></script>
<script src="../js/DHTML3API.js"></script>
<script type="text/javascript">
var datePicker = {
 /*******************
 REFERENCE PROPERTIES
 ********************/
 calendarDiv : null,
 calendarForm : null,
 destinationForm : null,
 /*******************
 UTILITY METHODS
 ********************/
 // day of week of month's first day
 getFirstDay : function (theYear, theMonth){
 var firstDate = new Date(theYear,theMonth,1);
 return firstDate.getDay();

538 | Chapter 15: Dynamic Content Applications

 },
 // number of days in the month
 getMonthLen : function(theYear, theMonth) {
 var nextMonth = new Date(theYear, theMonth + 1, 1);
 nextMonth.setHours(nextMonth.getHours() - 3);
 return nextMonth.getDate();
 },
 getElementPosition : function(elemID) {
 var offsetTrail = document.getElementById(elemID);
 var offsetLeft = 0;
 var offsetTop = 0;
 while (offsetTrail) {
 offsetLeft += offsetTrail.offsetLeft;
 offsetTop += offsetTrail.offsetTop;
 offsetTrail = offsetTrail.offsetParent;
 }
 return {left:offsetLeft, top:offsetTop};
 },
 // position and show calendar
 showCalendar : function(evt) {
 evt = (evt) ? evt : event;
 if (evt) {
 if (this.calendarDiv.style.visibility != "visible") {
 var elem = (evt.target) ? evt.target : evt.srcElement;
 var position = this.getElementPosition(elem.id);
 DHTMLAPI.moveTo(this.calendarDiv.id, position.left + elem.offsetWidth,
 position.top);
 DHTMLAPI.show(this.calendarDiv.id);
 } else {
 DHTMLAPI.hide(this.calendarDiv.id);
 }
 }
 },
 /************************
 DRAW CALENDAR CONTENTS
 *************************/
 // clear and re-populate table based on form's selections
 populateTable : function(form) {
 // pick up date form choices
 var theMonth = form.chooseMonth.selectedIndex;
 var theYear = parseInt(form.chooseYear.options[form.chooseYear.selectedIndex].text);
 // initialize date-dependent variables
 var firstDay = this.getFirstDay(theYear, theMonth);
 var howMany = this.getMonthLen(theYear, theMonth);
 var today = new Date();

 // fill in month/year in table header
 document.getElementById("tableHeader").innerHTML =
 form.chooseMonth.options[theMonth].text + " " + theYear;

 // initialize vars for table creation
 var dayCounter = 1;

Example 15-6. Scripts for the pop-up date picker (continued)

15.10 Creating a Calendar Date Picker | 539

 var TBody = document.getElementById("tableBody");
 // clear any existing rows
 while (TBody.rows.length > 0) {
 TBody.deleteRow(0);
 }
 var newR, newC, dateNum;
 var done=false;
 while (!done) {
 // create new row at end
 newR = TBody.insertRow(TBody.rows.length);
 if (newR) {
 for (var i = 0; i < 7; i++) {
 // create new cell at end of row
 newC = newR.insertCell(newR.cells.length);
 if (TBody.rows.length == 1 && i < firstDay) {
 // empty boxes before first day
 newC.innerHTML = " ";
 continue;
 }
 if (dayCounter == howMany) {
 // no more rows after this one
 done = true;
 }
 // plug in link/date (or empty for boxes after last day)
 if (dayCounter <= howMany) {
 if (today.getFullYear() == theYear &&
 today.getMonth() == form.chooseMonth.selectedIndex &&
 today.getDate() == dayCounter) {
 newC.id = "today";
 }
 newC.innerHTML = "<a href='#'onclick='datePicker.chooseDate(" +
 dayCounter + "," + theMonth + "," + theYear +
 "); return false;'>" + dayCounter + "";
 dayCounter++;
 } else {
 newC.innerHTML = " ";
 }
 }
 } else {
 done = true;
 }
 }
 },
 /*******************
 INITIALIZATIONS
 ********************/
 // init dispatcher
 init: function(calendarDiv, calendarForm, destinationForm) {
 this.calendarDiv = calendarDiv;
 this.calendarForm = calendarForm;
 this.destinationForm = destinationForm;
 this.fillYears();
 this.populateTable(calendarForm);

Example 15-6. Scripts for the pop-up date picker (continued)

540 | Chapter 15: Dynamic Content Applications

The first script section defines three properties whose values are initialized in the
init() method (below) and are referred to several times throughout other method
executions. Next comes a section that contains several utility functions that support
others to come. First is a pair of functions, getFirstDay() and getMonthLen(), that
the calendar-creation routines use to find which day of the week the first day of a
month falls on, and then the length of the month. The three-hour correction in
getMonthLen() takes care of date calculation anomalies that can occur when the
month includes a transition from summer to winter. The goal is to obtain a valid
date of the day before the first of the next month.

When it’s time to display the calendar, the next pair of functions come into play. The
getElementPosition() function (Recipe 13.8) determines the position of a body ele-
ment (the “Pick Date” button in our example), which the following showCalendar()
function uses to position the calendar just to the right of the button before showing
the calendar (positioning and visibility are controlled from DHTML API functions).

 },
 // create dynamic list of year choices
 fillYears : function() {
 var today = new Date();
 var thisYear = today.getFullYear();
 var yearChooser = document.getElementById("chooseYear");
 for (i = thisYear; i < thisYear + 5; i++) {
 yearChooser.options[yearChooser.options.length] = new Option(i, i);
 }
 this.setCurrMonth(today);
 },
 // set month choice to current month
 setCurrMonth : function(today) {
 document.getElementById("chooseMonth").selectedIndex = today.getMonth();
 },
 /*******************
 PROCESS CHOICE
 ********************/
 chooseDate : function(date, month, year) {
 this.destinationForm.date.value = date;
 this.destinationForm.month.value = month + 1;
 this.destinationForm.year.value = year;
 DHTMLAPI.hide("calendar");
 }
}

addOnLoadEvent(function() {datePicker.init(document.getElementById("calendar"),
 document.getElementById("dateChooser"),
 document.getElementById("mainForm"))});
</script>

Example 15-6. Scripts for the pop-up date picker (continued)

15.10 Creating a Calendar Date Picker | 541

The core routine of this application, populateTable(), calculates the date data and
assembles the HTML for the table body portion of the calendar pop-up window. It
begins by gathering important bearings for the calculations from select lists at the
bottom of the calendar. Then it places the month and year text in the table’s head-
ers. After some DOM-oriented preparations, the script removes any previous table
body content. At the heart of the script is a while loop that keeps adding rows to the
table as needed. For each row, a for loop generates cells for each of the seven col-
umns, filling cells with date numbers surrounded by links that pass the values back to
the main form. A little extra touch is labeling the ID of the current day’s cell so that it
picks up one of the style sheet rules to make it stand out from the rest of the cells.

The primary initialization routine, init(), takes three parameters, each being a refer-
ence to an HTML component of this system. The first parameter is a reference to the
positioned div element that contains the entire calendar display. Within the calen-
dar div is a form, which houses the month and year select elements. Because the
populateTable() method uses those select element values to know which calendar
to build, the form reference is an essential piece of information. Lastly, the third
parameter is a reference to the form that is to receive the chosen date data. It is
assumed that such a form has fields set for the month, day, and year (although the
chooseDate() method’s details can be easily modified to accommodate other date
formats).

After storing the parameters as object properties, init() further calls fillYears()
and setCurrMonth(). These two methods prepare the select elements in the calen-
dar so that the years in the list constantly move forward as time marches on. Also,
the lists are set to the current month and year as a starting point for the user the first
time the calendar appears.

When the user clicks on one of the dates in the calendar, the links for each date
invoke the chooseDate() function, passing parameters for the date, month, and year.
The parameters are assigned to the event handlers of the calendar date links while
the calendar month’s HTML is assembled back in populateTable(). The
chooseDate() function in this example distributes the values to the three date fields
in the original form.

This pop-up calendar works in Internet Explorer 5 or later for Windows, Mozilla,
Safari, and Opera 7 or later. Unfortunately, table modification bugs in IE 5 for the
Mac prevent it from working in that environment.

Most of the visible, fun part of this application is governed by style sheets for the cal-
endar table. You have wide flexibility in designing your calendar by using the HTML
tags and IDs of the skeletal calendar table as a guide. If you adhere to those naming
conventions, the calendar-generating and modifying code will work without any
problems.

542 | Chapter 15: Dynamic Content Applications

Another potential modification that might appeal to you is to make the calendar
draggable by its titlebar. You can adapt the element-dragging code from Recipe 13.
11 to add that functionality here, as well.

See Also
Recipe 2.9 and Recipe 2.10 for details about using date objects; Recipe 12.10 for
hiding and showing elements; Recipe 13.3 for details on the DHTML API library;
Recipe 13.8 for obtaining the position of a body element.

15.11 Displaying an Animated Progress Bar

Problem
You want to show a progress bar while a long, repetitive script operation takes place.

Solution
Components of this solution consist of a minimum of HTML, a style sheet to give
the HTML its look and feel, and scripts to control the display and animation of the
progress bar. The HTML included in the page consists of a group of nested div ele-
ments, each of which makes up a separate visible portion of the user interface: the
wrapper around the entire progress bar, the label text, the empty bar, and the col-
ored bar that expands to the right during the animation:

<div id="progressBar">
 <div id="progressBarMsg">Calculating...</div>
 <div id="sliderWrapper">0%
 <div id="slider">0%</div>
 </div>
</div>

The progress bar is hidden when the page loads, and the rest of its look and feel is
controlled by an extensive style sheet described in the Discussion. You can custom-
ize the appearance by modifying the style sheet.

Apply the script shown in Example 15-7 to the progress bar. The sequence used to
control the progress bar consists of calls to the showProgressBar(), calcProgress(),
and hideProgressBar() functions. See the Discussion about how to repeatedly
invoke calcProgress() to convey motion to the bar. The page must also include a
load event call to the initProgressBar() function:

addOnLoadEvent(function() {initProgressBar()});

Discussion
Despite the simplicity of the HTML for the progress bar, it can convey a significant
amount of information. Figure 15-4 shows what the progress bar looks like in the
middle of its animation.

15.11 Displaying an Animated Progress Bar | 543

Other than the progress message and initial 0 percent indicators, the look and feel of
the entire bar is controlled by the following style sheet rules:

<style type="text/css">
#progressBar {
 position: absolute;
 width: 400px;
 height: 35px;
 visibility: hidden;
 background-color: #99ccff;
 padding: 20px;
 border-width: 2px;
 border-left-color: #9999ff;
 border-top-color: #9999ff;
 border-right-color: #666666;
 border-bottom-color: #666666;
 border-style: solid;
 }
#progressBarMsg {
 position: absolute;
 left: 10px;
 top: 10px;
 font: 18px Verdana, Helvetica, sans-serif bold
 }
#sliderWrapper {
 position: absolute;
 left: 10px;
 top: 40px;

Figure 15-4. An animated progress bar in action

544 | Chapter 15: Dynamic Content Applications

 width: 417px;
 height: 15px;
 background-color: #ffffff;
 border: 1px solid #000000;
 text-align: center;
 font-size: 12px
 }
#slider{
 position: absolute;
 left: 0px;
 top: 0px;
 width: 420px;
 height: 15px;
 clip: rect(0px 0px 15px 0px);
 background-color: #666699;
 text-align: center;
 color: #ffffff;
 font-size: 12px
 }
</style>

Progress bar scripting, as shown in Example 15-7, relies on the DHTML API from
Recipe 13.3 and the centerOnWindow() function from Recipe 13.7.

Example 15-7. Scripts for the progress bar

<script src="../js/eventsManager.js"></script>
<script src="../js/DHTML3API.js"></script>
<script type="text/javascript">
// Center a positionable element whose name is passed as
// a parameter in the current window/frame, and show it
function centerOnWindow(elemID) {
 // 'obj' is the positionable object
 var obj = DHTMLAPI.getRawObject(elemID);
 // window scroll factors
 var scrollX = 0, scrollY = 0;
 if (document.body && typeof document.body.scrollTop != "undefined") {
 scrollX += document.body.scrollLeft;
 scrollY += document.body.scrollTop;
 if (document.body.parentNode &&
 typeof document.body.parentNode.scrollTop != "undefined") {
 scrollX += document.body.parentNode.scrollLeft;
 scrollY += document.body.parentNode.scrollTop
 }
 } else if (typeof window.pageXOffset != "undefined") {
 scrollX += window.pageXOffset;
 scrollY += window.pageYOffset;
 }
 var x = Math.round((DHTMLAPI.getInsideWindowWidth()/2) -
 (DHTMLAPI.getElementWidth(obj)/2)) + scrollX;
 var y = Math.round((DHTMLAPI.getInsideWindowHeight()/2) -
 (DHTMLAPI.getElementHeight(obj)/2)) + scrollY;
 DHTMLAPI.moveTo(obj, x, y);
 DHTMLAPI.show(obj);

15.11 Displaying an Animated Progress Bar | 545

}

function initProgressBar() {
 // create quirks object whose default (CSS-compatible) values
 // are zero; pertinent values for quirks mode filled in later
 if (navigator.appName == "Microsoft Internet Explorer" &&
 navigator.userAgent.indexOf("Win") != -1 &&
 (typeof document.compatMode == "undefined" ||
 document.compatMode == "BackCompat")) {
 document.getElementById("progressBar").style.height = "81px";
 document.getElementById("progressBar").style.width = "444px";
 document.getElementById("sliderWrapper").style.fontSize = "xx-small";
 document.getElementById("slider").style.fontSize = "xx-small";
 document.getElementById("slider").style.height = "13px";
 document.getElementById("slider").style.width = "415px";
 }
}

function showProgressBar() {
 centerOnWindow("progressBar");
}

function calcProgress(current, total) {
 if (current <= total) {
 var factor = current/total;
 var pct = Math.ceil(factor * 100);
 document.getElementById("sliderWrapper").firstChild.nodeValue = pct + "%";
 document.getElementById("slider").firstChild.nodeValue = pct + "%";
 document.getElementById("slider").style.clip = "rect(0px " + parseInt(factor *
417) + "px 16px 0px)";
 }
}

function hideProgressBar() {
 DHTMLAPI.hide("progressBar");
 calcProgress(0, 0);
}

// Test bench to see progress bar in action at random intervals
var loopObject = {start:0, end:10, current:0, interval:null};

function runit() {
 if (loopObject.current <= loopObject.end) {
 calcProgress(loopObject.current, loopObject.end);
 loopObject.current += Math.random();
 loopObject.interval = setTimeout("runit()", 700);
 } else {
 calcProgress(loopObject.end, loopObject.end);
 loopObject.current = 0;
 loopObject.interval = null;
 setTimeout("hideProgressBar()", 500);
 }

Example 15-7. Scripts for the progress bar (continued)

546 | Chapter 15: Dynamic Content Applications

The centerOnWindow() function is called each time the progress bar is shown (in the
showProgressBar() function). Thus, if the user resizes the browser window between
displays of the progress bar, the bar is still centered on the current window.

Due to the heavy use of borders and padding to define the look and feel of the
progress bar, a bit of extra coding is needed to assist with the sizing of the nested div
elements. The discrepancies in IE between backward- and CSS-compatible modes
have a significant bearing on the various measures. The default specification from the
style sheets is tailored for the CSS-compatible world and runs as-is in Mozilla, Safari,
and Opera. For IE 5, 5.5, and the quirks mode of IE 6/7, the initProgressBar()
function (invoked via the load event handler) makes critical adjustments to several
dimensions.

Three functions control the visibility and animation of the progress bar. Two simply
show and hide the bar, but the calcProgress() function is the key to the animation.
The bar works by adjusting the clipping rectangle of the darker-colored, most deeply
nested div element. It is initially set up to be clipped to zero pixel width. Calcula-
tions are based on some current value compared against a maximum value—notions
that can be applied to any quantifiable operation. The factor (converted to a per-
centage for display within the bar space) is applied to the right edge of the clipping
rectangle.

To experiment with the progress bar, I’ve created some test functions that simply
repeat through a sequence of calculations with a little bit of irregularity thrown in to
make the display interesting. A global object named loopObject contains properties
to assist with the experimentation. The runProgressBar() function represents the
kind of function you might be using that would benefit from the progress bar dis-
play. The key to successful deployment is a repeating script triggered by
setTimeout() or setInterval() so that the page updates between iterations. Once
the target value is achieved, the calcProgress() function is invoked with the same
values as parameters to allow the bar to display the 100% value briefly, before the
progress bar is hidden.

Identifying the kinds of operations to which the progress bar can be applied may not
be easy. Prerequisites include an operation that takes sufficient time to warrant the
display of the progress bar in the first place. But more important, the operations

}

function test() {
 showProgressBar();
 runit();
}
addOnLoadEvent(function() {initProgressBar()});
</script>

Example 15-7. Scripts for the progress bar (continued)

15.11 Displaying an Animated Progress Bar | 547

must be something that occurs after the page has loaded so that the progress bar div
elements are already loaded and modified as needed for quirks-mode versions of IE
for Windows.

The operation must also be something for which you have a known target quantity,
so that the current progress can be measured against that target. One possibility is
monitoring the precaching of images, provided the operation takes place triggered by
the load event handler of the page (and after the progress bar is initialized). Your
equivalent of the runProgressBar() function should loop through the array of image
objects, checking whether the value of each object’s complete property is true. If it is,
the progress bar is incremented by one fraction of the image array’s length, and your
function should loop again via the setTimeout() method to test the next image in the
array. If the value is false, the same index value is passed to the function again (via
the setTimeout()) to try once more. Of course, images don’t always arrive from the
server in source code order, so the progress bar is likely to be inconsistent in its
progress. Also, if the images are already in the browser cache, the loop through the
array may actually slow down the user’s access to the finished page.

A progress bar is the right solution when the user might get impatient with some-
thing that is truly going on behind the scenes. Tolerance for delays is greatly
extended when you entertain in the interim.

See Also
Recipe 12.10 for hiding and showing an element; Recipe 13.10 for how to make an
element positionable; Recipe 13.3 for details on the DHTML API library; Recipe 13.7
for centering a positioned element in the browser window.

548

Appendix AAPPENDIX A

Keyboard Event Character Values 1

Keyboard events in recent browsers provide information about the keys and, where
applicable, about the characters corresponding to the keys. Character values may be
read from the keypress event. The following table reveals the codes for characters in
the lower ASCII character set. Some of these codes are for action keys (such as Back-
space and Tab), whose character values are also in this range.

Character Value Character Value

Backspace 8 0 48

Tab 9 1 49

Enter (Return on Mac) 13 2 50

Space 32 3 51

! 33 4 52

“ 34 5 53

35 6 54

$ 36 7 55

% 37 8 56

& 38 9 57

‘ 39 : 58

(40 ; 59

) 41 < 60

* 42 = 61

+ 43 > 62

, 44 ? 63

- 45 @ 64

. 46 A 65

/ 47 B 66

C 67 b 98

Keyboard Event Character Values | 549

D 68 c 99

E 69 d 100

F 70 e 101

G 71 f 102

H 72 g 103

I 73 h 104

J 74 i 105

K 75 j 106

L 76 k 107

M 77 l 108

N 78 m 109

O 79 n 110

P 80 o 111

Q 81 p 112

R 82 q 113

S 83 r 114

T 84 s 115

U 85 t 116

V 86 u 117

W 87 v 118

X 88 w 119

Y 89 x 120

Z 90 y 121

[91 z 122

\ 92 { 123

] 93 | 124

^ 94 } 125

_ 95 ~ 126

` 96 Delete 127

a 97

Character Value Character Value

550

Appendix BAPPENDIX B

Keyboard Key Code Values 2

Key codes are numeric values that correspond to physical keys on the keyboard but
do not necessarily correspond to a particular character. For example, the A key on
the keyboard produces the same key code when pressed, even though its character
code might be 65 (uppercase A) or 97 (lowercase a), depending on whether the Shift
key is down at the same time. Key codes are not influenced by modifier keys. Charac-
ter values (see Appendix A) may be read from the keypress event, while the key val-
ues, including navigation and function keys, are available from keydown and keyup
events. The following table lists all keys on a typical U.S. English keyboard and their
corresponding key codes.

Key Key value Key Key value

Alt 18 F5 116

Arrow Down 40 F6 117

Arrow Left 37 F7 118

Arrow Right 39 F8 119

Arrow Up 38 F9 120

Backspace 8 F10 121

Caps Lock 20 F11 122

Ctrl 17 F12 123

Delete 46 Home 36

End 35 Insert 45

Enter 13 Num Lock 144

Esc 27 (NumPad) - 109

F1 112 (NumPad) * 106

F2 113 (NumPad) . 110

F3 114 (NumPad) / 111

F4 115 (NumPad) + 107

Keyboard Key Code Values | 551

(NumPad) 0 96 P 80

(NumPad) 1 97 Q 81

(NumPad) 2 98 R 82

(NumPad) 3 99 S 83

(NumPad) 4 100 T 84

(NumPad) 5 101 U 85

(NumPad) 6 102 V 86

(NumPad) 7 103 W 87

(NumPad) 8 104 X 88

(NumPad) 9 105 Y 89

Page Down 34 Z 90

Page Up 33 1 49

Pause 19 2 50

Print Scrn 44 3 51

Scroll Lock 145 4 52

Shift 16 5 53

Spacebar 32 6 54

Tab 9 7 55

A 65 8 56

B 66 9 57

C 67 0 48

D 68 ` 222

E 69 - 189

F 70 , 188

G 71 . 190

H 72 / 191

I 73 ; 186

J 74 [219

K 75 \ 220

L 76] 221

M 77 ` 192

N 78 = 187

O 79

Key Key value Key Key value

552

Appendix CAPPENDIX C

ECMAScript Reserved Keywords 3

All of the words in the following table are reserved for use by the ECMAScript inter-
preter built into scriptable browsers. You may not use these words as identifiers for
variables, functions, or objects. A majority of these words are already used by cur-
rent implementations of JavaScript, while others may become part of the vocabulary
in future versions.

The following case-sensitive words may not be used as identifier names in scripts
using ECMA for XML (E4X) scripts (currently supported only in Mozilla):

abstract double in super

boolean else instanceof switch

break enum int synchronized

byte export interface this

case extends long throw

catch final native throws

char finally new transient

class float package try

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

each namespace xml

553

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
< > (angle brackets)

< (less-than) operator, using with for loop
in array iteration, 59

<= (less-than or equals) operator, array
iteration and, 59

>= (greater-than or equals) operator
browser version detection, 114
Internet Explorer version

comparisons, 115
tag names in CSS style rules, 333

@ (at sign), @import rule, 337
\ (backslash)

\\ (double backslashes), escaping escape
character, 15

escape character, 15
: (colon), separating style property name

from its value, 332
, (commas)

delimiting style property values, 332
in displayed numbers, 38

{ } (curly braces)
containing statements belonging to a

function, 90
creating objects, 66
placement of, 92
style properties within, 332

. (dot), dots rule for custom objects, 52
" (double quotes) in strings, 1
= (equal sign)

= = (equality) operator, 10, 34
browser version detection, 114
IE version comparisons, 115

= = = (strict equality) operator, 10
testing numbers for equality, 35

assignment operator, 52
! (exclamation mark)

!= (inequality) operator, 10
testing for inequality of two

numbers, 35
!= = (strict inequality) operator, 10

testing for inequality of two
numbers, 35

(hash mark)
delimiter between page URL and anchor

name in location.hash, 272
preceding ID selectors, 336

() (parentheses), invoking functions, 90
+ (plus sign)

+= (add-by-value) operator, 4
adding a number or appending a string

to an array, 52
performance problems with, 6

addition operator, 4
casting between string and number

data types, 31
priority to string concatenation over

numeric addition, 32
? (question mark), search string

delimiter, 272, 281
; (semicolon), separating style property/value

pairs, 332
' (single quotes) in strings, 1
[] (square brackets)

creating a multidimensional array, 56
symbolizing array constructor, 55

554 | Index

| (vertical bar)
|| (OR) operator, 67

assigning browser-supported event
object to evt variable, 237

A
<a> tags

browser-specific linking using, 129
target attribute, 180
web page navigation, 268

a:active pseudoclass, 374
a:hover pseudoclass, 374
a:link pseudoclass, 374
a:visited pseudoclass, 374
absolute positioning, 394
absolute value, assigning to the position CSS

property, 397
absolute-positioned elements, 359

adding legend or labels to a pie chart, 391
binding a relative-positioned element

to, 398
class attribute set to draggable, 422
div element as containers, 407
inside a relative-positioned span

element, 408
accelerator key behavior, coding, 259
action attribute (form element), mailto: URL

assigned to, 196
add() and remove() methods, select

element, 226
add-by-value operator (+=), 4

adding a number or appending a string to
an array, 52

performance problems with, 6
addEvent() function, 238

invoked by addOnLoadEvent(), 242
addEventListener() function, 237

functions bound via, order of
invocation, 243

addition operator (+), 4
casting between string and number data

types, 31
priority to string concatenation over

numeric addition, 32
addOnLoadEvent() function

appending multiple load event
handlers, 242

forcing load event to invoke
setElementEvents(), 212

invoking initMenus() function, 301
use in image rollover, 360

Address/Location text field, frames and, 178

addSlide() method (slideObject), 450
adjustIFrameSize() function, 456

binding events, 457
Ajax, xiii, 54

XML element, creating, 472
XMLHttpRequest object, 486

all collection (document), 352, 396
alpha filter, 380
Alt key (see modifier keys)
altKey property (event object), 260
anchors, loading, 271
angle brackets (see < >, under Symbols)
animatePolygon() function, 418
animation

circular element paths, 419–421
element positioning and, 393
progress bar, 542–547
setInterval() mechanism, forcing

continual redrawing of position
along a path, 406

state transitions, 369
straight-line element paths, 415–419

anime object, 417
animeCirc.js library, 420
animeLine.js library, 416–419
anonymous functions

creating, 93
custom object property name defined

as, 84
aphorism, displaying random, 501–504
appendChild() method, 471
appendContextMenu() function, 290
appending items to an existing array, 55
appendScroll() function, 445
appendScrollBar() function, 443
Apple Macintosh (see Macintosh)
AppleWebKit version, Safari version

detection, 118
apply() method (filter), 381, 384
arc() method (canvas context), 391
area elements, counted among

document.links collection, 180
Array object

constructor, creating simple array, 54
prototype inheritance chain, 76

array2String() function, 79, 81
arrays, 51

combining, 63
converting between strings, 57
converting to strings, 79–81
creating a multidimensional array, 56
creating a simple array, 54
dividing, 64

Index | 555

hash table simulation for fast
lookups, 69–71

of items, element object references, 351
iterating through, 59
of objects, 68

form content converted to string, 228
simulated hash tables for lookups, 106
sorting, 72–74

objects vs., 52
sorting a simple array, 61
using as temporary storage device for

text, 6
using separately or with objects, 53

arrow keys, moving absolute-positioned
element, 258

ASCII character codes, 257, 548
assignLabelEvents() function, 300
assignment operator (=)
Asynchronous JavaScript and XML (see Ajax)
“at-rules”, @import, 337
atob() method, 26
attachEvent() function, 238

functions bound via, order of
invocation, 243

authorAttrFilter() function, 498
autofocus() function, 223
availWidth and availHeight properties

(screen), 139

B
\b (backspace), 16
background color of an element,

alternating, 369
backgroundImage property, 377
base element

offset measures, 411
relative URLs and, 271

Base64 strings, encoding and
decoding, 23–26

character set for Base64-encoded
strings, 26

web site information on Base64
encoding, 26

base64.js library, 23
base64Encode() function, 26
BasicEvents module (DOM), 127
batch validation

forms, 196
master function calling individual

validation functions as needed, 204
preventing form submission upon

validation failure, 204

binary attachments to email, 26
binding events, 231

addEventListener() method (W3C
DOM), 237

attachEvent() method (IE), 238
to elements, pre-W3C DOM ways, 238
keyboard event to document node, 259
load event handler triggering scripted

bindings, 240
via property assignments, 241
to select element, 275

blankFrame() function, 178
blendTrans() filter, 382
block value (style.display property), 408
blockEvent() function, 431, 444
blockEvents() function, 152, 250
blocking double clicks, 251
blockIt() function, 251
block-level elements in HTML, default

behavior, 407
body content

automating search and replace, 506–511
removing, 483
replacing dynamically, 482

body element
attributes, 374
background-related style properties,

changing, 375
connecting a positioned element to, 398
OPML documents, 329
positioning HTML elements in IE, 395

bookmark values (TextRange), 511
bookmarking

framesets and, 178
just one frame, 183

bookmarklets, 320
border of the currently selected control

button set to red color, 373
borders (positioned elements), 246
bottlenecks in your code, eliminating, 103

 tag compared to newline character, 5
branching execution, 97–100

assigning browser global variables, 112
break statement, 98
Browser Archive, 131
browsers

browser detection, 110
canvas element, 385
carriage return codings in textarea

elements, 16
collapsible XML navigation menus, 321
color values, 370
cookies, 19

556 | Index

browsers (continued)
CSS, implementation, 333
date formats, 43
date validation, 49
disabling form controls, 217
early DHTML, event types, 232
element positioning

conflicts between positioned elements
and form controls, 410

incompatibility hazards, 395
scrolled position of a window, 413

embedding XML data, 458
encodeURIComponent() and

decodeURIComponent()
methods, 281

error handling, 101
Error object properties, support of, 102
event bindings, pre-W3C DOM means

of, 238
event coordinates inside a positioned

element, deriving, 245
event location in coordinate plane of a

document, deriving, 245
event models, 235
expandable navigation menu, 309
exposure of IDs of named HTML

elements to global scope, 82
external script-loading capability, pointing

to server process URL, 54
feature detection, 107–131

browser brand detection, 113
browser- or feature-specific

linking, 129
client operating system, 120
cookie availability, 128
DHTML and accessibility, 112
early browser version, 113
global variables, setting, 112
IE version, 115
JavaScript versions, 110
Mozilla version, 116
native languages, 127
nonscriptable browsers, 109
nonscriptable browsers, masking

scripts from, 110
object detection, 111
object property and method

support, 124
object support, 121
Opera version, 119
page design strategies, 108
Safari version, 118

testing a page on multiple browser
versions, 130

W3C DOM standard support, 126
forcing into standards-compatibility

mode, 348–350
form submissions from Enter/Return

key, 214
formatting numbers for text display, 36

locale-specific formats, 39
older browser versions, 37

frameset element, controlling values of
cols and rows, 188

function navigation keys, behavior
of, 258

global variables, 89
history, keeping pages out of, 273
image caching, 354

problems with, 355
importing browser-specific CSS style

sheets, 338
importing external style sheets, 337
managing browser windows, 132–172

bringing a window to the front, 143
communicating back to main

window, 147
communicating with a new

window, 144–147
creating new window, 139–143
IE modal/modeless

windows, 148–151
living with window control

limitations, 135
maximizing main window, 138
pop-ups, 133
positioning main window, 137
setting main window size, 136
simulating cross-browser modal dialog

window, 151–158
simulating window with

layers, 158–172
things you cannot do, 133

menuing systems, 301
multiple frames (see frames)
object detection, 111
opacity, specifying for an element, 379
platforms, xvii
prototype inheritance chain traversal, 76
prototype properties and methods, adding

to DOM objects, 78
rendering of repositioned content, 406
script syntax initiating process after page

loads, 240

Index | 557

select element
changing options, 224
using for navigation, 275

W3C DOM Level 2 specification, xiii
btoa() method, 26
button property (event), 254

possible values of, 255
buttons for scrolling, 428
button-type input element

invoking function displaying a
calendar, 535

invoking validation routines and form
submission, 196

Submit button, 217
using for client-side form validation, 207

C
caching

HTTP headers preventing caching in
browsers, 355

a page for navigation to anchor on same
page, 272

precaching images, 354
monitoring, 547

calcBlockState() function, 317, 328
calcProgress() function, 542, 546
calendar date picker, 203

creating, 534–542
scripts for, 537–540

cancelAll() function, 300
cancelBubble property (event object), 246,

250
cancelHide() function, 304
canvas element, drawing charts in, 385–391

properties and methods of canvas context
object, 385

capturing document content, 498
carriage returns

codings in textarea element contents, 16
in JavaScript source code, 5

Cascading Style Sheets (see CSS)
case

character comparisons, 222
converting in strings, 8
language codes, 127
sorting and, 73

case branch, 98
case-insensitive (i) regular expression

modifier, 3
case-sensitivity, variable names, 88

casting between number and string data
types, 31

ceil() method (Math), 35
center cell event handlers, HTML for, 263
centered window, opening, 142
centering an element, 345

in a window or a frame, 412–414
recentering after user actions, 414

on top of another element, 410–412
centerOnElement() function, 410

offset properties used, 412
centerOnWindow() function, 412, 546
change event handlers

binding to select element, 275
in input element, real-time validation of

text box entries, 199
changeSizeStyle() function, 370, 372
character codes

allowing only numbers or letters in a text
box, 221

analysis to allow Shift-Tab to move focus
in reverse direction, 224

ASCII, 548
key codes vs., 258
Unicode, converting between string values

and, 20
character key presses, reading, 256
character values, keyboard events, 548
characters, case comparison, 222
charCodeAt() method, 20
charts, drawing in the canvas

element, 385–391
checkDate() function, 47

basic version, 48
enhanced version, 49

checkModal() function, 157
childNodes property (olData), 319
chooseDate() function, 541
circular element paths, animating, 419–421
class attribute, 480

set to draggable, 422
class names, 335
class selectors and class attributes

assigning style sheet rules to a subgroup of
elements, 334

toggling style for an element, 342
className property (elements), 342
clearDragEvents() method, 166
clearTable() function, 493
clearTimeout() method, 95
clearUndoBuffer() function, 511

558 | Index

click event handler, 181, 213, 251
bound to p element containing radio

buttons, 366
click events, determining coordinates of, 244
client operating systems, detecting, 120
clientHeight and clientWidth properties

(IE), 413
client-side form validation, 195
client-side scripting, xiii, 452

W3C DOM and ECMAScript
standards, xvi

clientX and clientY properties (event), 245,
247

clipping rectangle, area element coordinates
assigned to, 362

close() method (document)
closing subwindow from script in main

window, 147
following document.write(), 455

closeLayerDialog() method
(dialogLayer), 162

closeme() function, 152
cMenuMgr object, methods, 289
code examples in this book, using, xviii
collapseAll() function, 317, 328
color, changing for page background, 375
cols and rows properties (frameset), 175, 188
Command key (Macintosh), 260
commas (,)

delimiting style property values, 332
in displayed numbers, 38

comparison functions, 73
comparison operators, 98
compatMode property (document), 350
concatenation

avoiding excessive string
concatenation, 106

combining arrays with concat()
method, 63

strings, 4
concatenation operators, 5
condition expressions, 97–100
conditional comments (IE), 339
const keyword, 88
constructor functions, 65

coworker (example), 67
coworker object (example), 67

contentDocument property (frame), 176
contentWindow property (frame), 176
context object (canvas), 385
contextEntryLive class, 290
contextmenu event handler, 290

contextMenus.js library, 286–289
contextual menus

in browsers, 143
creating, 283–291

context-sensitive help feature, 259
contextual selectors, style sheet rule

definitions, 334
Cook, Steinar Overbeck, 151
cookieManager.js library, 82
cookies, 17–20

enabled or disabled status, detecting, 128
generic cookie reading/writing

library, 376
limits to data, 278
no carryover from main window to modal

window, 151
passing data between pages, 276
preserving state of a frame’s visibility, 190
storage by browsers, 19
storing user preferences for page design

skins, 340
cookies.js library, 17

changes to text styles and initial event
binding, 372

saveData() function, 276
coordinate points of a screen, moving

browser window to, 137
Coordinated Universal Time (UTC), 30
Core module (DOM), 126
countdown timers, displaying, 527–534

60-second counter, 533
countDown() function, 527

date math, 531
createContextMenus() method

(cMenuMgr), 290
createElement() method (document), 470
createTextNode() method (document), 473,

482
createTreeWalker() method

(document), 497
credit card number in fixed-length text

boxes, 223
cross-browser modal dialog window

simulation, 151–158
cross-frame scripting, onload event

handlers, 176
CSS (Cascading Style Sheets), 331–350

animated progress bar rules, 543
assigning rules to a subgroup of

elements, 334
assigning rules to an element

globally, 333

Index | 559

assigning rules to an individual
element, 336

background-related style properties and
values, 376

borders on positioned elements, 246
cascade guidelines, specificity and, 333
center-aligned body elements,

creating, 345
changing imported style sheets after

loading, 340
controlling web page appearance

using, 392
dialogLayer_macosX.css, 170
dialogLayer_win9x.css, 168
dialogLayer_wind9xQ.css, 166
dialogLayer_winxp.css, 169
effective style sheet property values,

reading, 346
element positioning, 392

z-index value for a positioned
element, 409

enabling or disabling style sheets, 341
filters in IE for Windows, 381
font size rules for body text, 371
image rollovers using, 357
importing browser- or operating

system-specific style sheets, 338
importing external style sheets, 337
Level 2 text style properties and

values, 368
menus.css stylesheet, 292
MIME type for standard syntax

(text/css), 331
offering text size choices to users, 370
opacity style property, 379
overriding rules, 343
properties, treatment in different

browsers, 348
property names, 353
pseudoclasses, creating custom link styles

with, 374
reducing image rollover downloads

with, 362–366
simplifying visual aspects of menus, 301
standards-compatibility mode in modern

browsers, 348–350
style properties influencing element

visibility, 378
style sheet rule syntax, 332
text style properties, changing, 367–370

toggling between style sheets for
elements, 342

turning arbitrary content into a styled
element, 344

.css files, 337
loading to a page already being

viewed, 340
CSS module (DOM), 126
CSS2 module (DOM), 126
CSSRuleValues object, 301
ctr class, 466
Ctrl key (see modifier keys)
ctrlKey property (event object), 260
curly braces (see { }, under Symbols)
currencies, conversion rate between, 490
currentStyle object (IE), 346
currentTarget property (event), 458
currSlide global variable, 520
currState variable, 316

tracking expansion state of branch nodes
in the outline, 319

cursor rolls into and out of an
element, 262–266

custom objects, 52
arrays vs., 52
converting to strings, 79–81
creating, 65–69
wrapping validation functions in, 203
(see also objects)

D
data delivery to a page, 271
data structures (arrays and objects), 51

choosing between, 52
(see also arrays; objects)

data types
number, 27
numeric, not differentiated by kind of

number, 32
(see also arrays; dates and times; objects;

strings)
data, embedding in web pages, 53
date objects, 29, 503

client computer and, 30
creating, 42

client-side vs. server-side, 43
methods, listed, 44
value stored in, 30
(see also dates and times)

560 | Index

dates and times, 29
accuracy of client computer clock, 30
calculating a previous or future date, 43
calculating number of days between two

dates, 45
calendar date picker, creating, 534–542
countdown timer, displaying, 527–534
creating a date object, 42

client-side vs. server-side, 43
displaying the part of the day in welcome

greeting, 91
number of days before Christmas,

displaying, 525
text field date entries, validation of, 203
time of day greeting, 524
UTC (Coordinated Universal Time), 30
validating a date, 47–50

Daylight Saving Time, 46
dayPart() function, 524
daysBetween() function, 45
deadend() function, 156
debugging, NaN value as aid to, 34
decimal numbers, 27

converting to hexadecimal, 39
decodeURI() method, 19, 21
decodeURIComponent() method, 21, 281

using on strings from external source, 23
default event behavior, preventing, 248
deleteCookie() function, 19
deleteRow() method (tbody), 485
designMode property, 514
DHTML

accessibility for disabled persons, 112
browser windows and, 132
event types for early DHTML

browsers, 232
IE (Internet Explorer) events, 233

DHTML3API.js library, 158
code, 400–405
controlling element positioning via, 400
element references as function

parameters, 406
eliminating unnecessary functions, 406
frequently used utility functions, 405

DHTMLAPI object
init() method, 243
moveTo() method, 244

dialog windows, 148–151
modeless dialog layered window

simulation, 158–172
simulating cross-browser modal dialog

window, 151–158

dialogArguments property (window), 148
starting point to access main window

contents, 150
dialogLayer object, 162

closeLayerDialog() method, 162
openLayerDialog() method, 162

dialogLayer_macosX.css, 170
dialogLayer_win9x.css, 168
dialogLayer_win9xQ.css, 166
dialogLayer_winxp.css, 169
dialogWin object, 156

args property, 157
openSimDialog() function, 156
properties, 157

disabled persons, accessibility to web
sites, 112

disabled property (form controls), 217
disabled property (styleSheet), 341
disableForms() function, 156
dispatchValidation() function, 212
display property (style), 162, 378

adjusting, 378
altering value to control element

flow, 408
displayTarget variable, 316
div element, 158, 345

container for positioned element
span element vs., 407

scrollbar and contents, 443
scrollbars, 433
scrolling div content, 426–432
using as a container, 398
widths, heights, and top measures, 172

dividing arrays, 64
doCircAnimation() function, 421
DOCTYPE elements, forcing

standards-compatibility in
browsers, 348

document node trees, walking, 494–498
document node, binding keyboard event

to, 259
document object

all collection, 352, 396
browser support of, 111

browser subwindows, 146
close() method, following

document.write(), 455
compatMode property, 350
cookie property, 19
createElement() method, 470
createTextNode() method, 473, 482
createTreeWalker() method, 497

Index | 561

defaultView, 347
element object references and, 351
inside a frame, reaching, 176
getElementById() method, 104, 105, 479

browser referencing elements via, 129
testing for existence of, 125

getElementsByTagName() method, 479
images array, testing for presence of, 122
implementation.hasFeature()

method, 125
links collection, 180
location property, 272
open() and close() methods, write()

method embedded in page
flow, 454

page navigation using, 272
URL property, 272
write() method, 91

avoiding multiple calls, 106
creating new frameset from parent or

top frame, 193
creating new page content

dynamically, 455
displaying random aphorism, 501
embedded in body for customized

content, 453
invoked after page loading to modify

page content, 454
document reference, including after the frame

reference, 175
DocumentFragment object, 474

temporary container of created
content, 482

using as temporary container for frame
elements, 193

documents
framesetting, 174
style sheets, embedding in, 331

DOM (Document Object Model), 107, 352
browsers granting access to object

constructors, 78
changes to, browser support and, 107
Level 0 syntax, 194
node tree of record-based XML data, 465
objects assigned to variables, 89
references for CSS property names

containing hyphens, 368
W3C DOM Core module objects, support

for, 125
doSLAnimation() function, 418, 419
“dots” rule for custom objects, 52
double backslashes (\\), 15

double clicks, blocking, 251
double quotes (") in strings, 1
doubleclick event handler, 251
downlevel-hidden conditional

comments, 339
downlevel-revealed conditional

comments, 339
download performance, investigating, 106
draggable class attribute, 447
draggable elements

creating, 421–426
creating a slider control, 446–451

dragIt() function, 425
custom scrollbar, 445
limiting region within which element can

be dragged, 426
dragManager.js library, 422–425
dragObject, 424

methods used in custom scrollbar, 445
dragZone property (scrollBar), 443
draw() function, 385
drawing charts in the canvas

element, 385–391
drawOutline() function, 317, 319, 328, 329

examining HTML generated by, 320
parsing XML document hierarchy, 330

drawPie() function, 389
drawSmiley() function, 387
drawTable() function, 463, 493

classes array, 466
drop-down navigation menus,

creating, 291–305
DSTAdjust variable, 46
DXImageTransform opacity filters, 380
dynamic content, 452–499

applications, 500–547
animated progress bar, 542–547
automated search-and-replace of body

contents, 506–511
auto-scrolling the page, 523
calendar date picker, 534–542
countdown timer, 527–534
designing user-editable content

page, 512–515
displaying a random

aphorism, 501–504
greeting users with time of day, 524
slide show, creating, 515–523
user selections, converting to arbitrary

elements, 504–506
automating search-and-replace of body

content, 506

562 | Index

capturing document content, 498
converting XML node tree to JavaScript

objects, 469
creating mixed element and text

nodes, 474
creating new HTML elements, 470
creating new page content

dynamically, 454
creating text content for a new

element, 473
displaying number of days until

Christmas, 525
embedding data as JavaScript

objects, 460–462
embedding XML data, 458–460
external HTML content,

including, 456–458
getting reference to an HTML element

object, 478
HTML element objects, getting references

to, 478
inserting and populating iframe

elements, 476
need for, 452
referencing all elements of the same

class, 480
removing body content, 483
replacing portions of body content, 482
sorting dynamic tables, 491–494
transforming JavaScript objects into

HTML tables, 466–468
using XMLHttpRequest for a SOAP

call, 488–491
using XMLHttpRequest for REST

request, 485–488
walking document node tree, 494–498
writing during page loading, 453
XML data, transforming into HTML

tables, 463–466

E
ECMAScript reserved keywords, 552
editableDoc object, 512
editing application, commands for, 514
editor.js library, 512

code, 513
Eich, Brendan, 272
element objects

filters collection (IE), 380
getting reference to, 478
referencing, 351

elements
adjusting transparency, 379
content manipulation methods (IE), 476
converting user selection into, 504–506
creating mixed element and text

nodes, 474
creating new HTML elements, 470
creating XML elements, 472
determining which element received an

event, 252–254
framesets and frames as, 175
hiding and showing, 378
HTML, binding event handler functions

to, 203
nonpositioned, determining location

of, 414
positioning, 393, 419
positioning HTML elements, 392–451
referencing all elements of the same

class, 480
referencing from events, 353
removing from current document, 483
replacing text content, 482
replacing via scripts after page has

loaded, 213
style properties for backgrounds, 376
style property, 353
text content for new elements,

creating, 473
else clause, 98
email

address validation function, regular
expression, 207

binary attachments, Base64 encoding, 26
form submissions, 196
text field contains a likely email

address, 198
embedding

data as JavaScript objects, 460–462
XML data, 458–460

encapsulation, 82
encodeURI() method, 19, 21

encodable characters, 22
encodeURIComponent() method, 21, 281

encodable characters, 22
engage() method, 425
engageDrag() function, 425, 445
English for the United States, language code

(en-us), 128
English-language characters, Unicode and

ASCII-character values, 257

Index | 563

English-language PC keyboard, key codes
for, 258

Enter/Return key
advancing text field focus in a form, 215
blocking form submissions from, 214
submitting a form from any text box, 216

equality operator (= =), 10
browser version detection and, 114
testing numeric values for equality, 34

error handling, 101
Error object, 102
escape characters

defined, 15
string escape sequences, listed, 16
in textarea elements, 16
using with quotes in strings, 2

escape() method, 22
cookie data length calculations and, 278
encodable characters, 23

eval() function, 81
avoiding use for better script

performance, 104
converting array string into actual array

object, 230
event bubbling, 250
event handler functions, 232
event handlers, 232

binding event handler functions to HTML
elements, 203

binding to select element, 275
creating a contextual (right-click)

menu, 283
initializing after document loads, 241
javascript: protocol and, 179
page navigation using select

elements, 275
preparePie() function, 389
simulated modal dialog window, 152

event keyword, 239
event models, equalizing IE and W3C event

models, 236–240
event objects

button property, 254
cancelBubble property, 250
coordinate properties, 247
currentTarget property, 458

event processing, xvii
events, 231–267

appending multiple load event
handlers, 242

binding, 231

blocking, 248, 251
character keys, reading, 256
click event coordinates, determining, 244
determining element the cursor rolled

from/to, 262–266
determining which element received an

event, 252–254
determining which mouse button was

pressed, 254
equalizing IE and W3C event

models, 236–240
binding events, 237

frames and, 176
initiating a process after page loads, 240
keyboard-related, 256
models, 235
modifier keys pressed during an event,

determining, 260
noncharacter keys, reading, 257–260
preventing default behavior, 248
referencing elements from, 353
scripting process, 231
synchronizing sounds to, 266
types of, 232–235
validator object and, 212

Events module (DOM), 126
eventsManager.js library, 152

addEvent() function, adding event
handler to select element, 275

addOnLoadEvent() function, 301, 360
binding/unbinding events, 238
generic load event queue manager, 242
layered window simulation, 158

evolt’s Browser Archive, 131
exception handling, 101–103
execCommand() method, 514

commands and browser support, 514
expandableMenu.js library, 308

code, 310–315
expandAll() function, 317, 328
expansionState global variable, 316, 319
expansionState tag (OPML), 328
expiration date (for cookies), 18
expMenuWidgets object, 316, 327
expression evaluation

reducing by assigning browser global
variables, 112

repetitive, minimizing, 105

564 | Index

F
F1 function key in IE for Windows, 260
fill() method, 391
fillYears() function, 541
filter object

apply() and play() methods, 381, 384
transition property, 383

filter property (IE), 379
filter styles (IE), 380
filters (IE transitions), 381–385
filters collection (element), 380
find() method (window), 511
findText() method (TextRange), 510
finishChecking() function, 157
finishopacity property (IE), 380
Firefox browser archive, 131
fixed positioning, 394
fixed-position elements

div elements as containers, 407
maintaining positioned element in a

fixed-window position, 414
flashBkgnd() function, 369

current color testing in, 370
floating-point numbers

number data type, 27
parseFloat() method, 31, 32
rounding, 35

floor() method (Math), 35
pseudorandom integer calculation, 41

flow characteristics of an element,
controlling, 408

flow control constructions, 97
focus() method, 143, 197

auto-focusing invalid text field entry, 207
focusElement() function, 96, 207
focusNext() function, 215
font size

for body text, offering user choices
of, 370–374

saving user choice in a cookie, 20
font-style property, assigning italic value

to, 332
for loops, 59

nested or multidimensional, 60
for/in loops, accessing object properties, 71
form controls, disabling/enabling in modal

dialog window, 156
form objects, 194
form2ArrayString() function, 228, 230
formatCommas() function, 39
formatNumber() utility function, 37
FormMail program, 197

formObj2String() function, 230
forms, 194–230

action selection based on user
activity, 213

advancing text field focus with the Enter
key, 215

allowing only numbers or text in a text
box, 221

auto-focusing first text field, 197
auto-focusing invalid text field entry, 207
auto-tabbing for fixed-length text

boxes, 223
blocking submissions from Enter/Return

key, 214
copying data between pages, 227–230
custom validation object, using, 208–212
disabling form controls, 217
email submissions and return pages, 196
hiding and showing controls, 219
positioned elements, conflicts with form

controls, 410
preventing form submission on validation

failure, 204–207
referencing forms and controls, 194
select element options,

changing, 224–227
submitting by an Enter key press in any

text box, 216
text field validations, 198–204
validation strategies, 195

frameResize.js library, 188
frames, 173–193

assuring a page loads in its
frameset, 184–187

centering elements in, 412–414
changing content in multiple frames at

once, 181
changing content of one frame from

another, 179
creating a blank frame in a new

frameset, 178
events and, 176
framesets and frames as elements, 175
navigation trail menu within a

frameset, 308
parent and child frames, 174
passing data between pages via, 278–280
preventing your site from appearing

within another site’s frameset, 183
reading frame dimensions, 187
replacing frameset with a page, 182
resizing, 188, 188–191
security, 177

Index | 565

setting frameset specifications
dynamically, 192

things you cannot do, 177
uses of, 173
as window objects, 174

nested frames, 174
frames property (window), 174
frameset element

border attribute, 173
load and unload event handlers, 153
load event, 176

framesets
in the modal window, 157
(see also frames)

fromCharCode() method, 21
fromElement property (IE), 262
function keys

differing behaviors in browsers and
operating systems, 258

scripting assignments, 259
functions

branching execution based on
conditions, 97–100

creating anonymous functions, 93
creating named, 89–92
delaying function calls, 94–97
event handler, 232
function references, 90
methods initially defined as, 66
nesting named functions, 92
operating across frames, triggering, 176

future date, calculating, 44

G
g (global) regular expression modifier, 3, 13
Gecko engine (Mozilla-based browsers), 114

testing for presence in
navigator.userAgent, 117

versions, listed, 117
GET method and location.replace()

method, 273
getAllSlides() function, 520
getArgs() function, 510
getBookmark() method (rangeObject), 511
getCollapsedWidgetState() function, 317,

327
getComputedStyle() function, 246, 258, 347
getCookie() function, 18, 376
getDayPart() function, 91
getDaysArt() function, 527
getDaysBefore() function, 526
getDaysBeforeNextXmas() function, 525

getElem() method, 514
getElementByClassName() function, 480
getElementById() method, 352

getting reference to an HTML element
object, 478

getElementPosition() function, 414, 540
getElementsByClassName() method

(cMenuMgr), 290
getElementsByTagName() method, 479
getElementStyle() function, 299, 346
getExpandedWidgetState() function, 317,

327
getExpDate() function, 18
getFirstDay() function, 540
getFrameDoc() function, 176
getFrameSize() function, 187
getHours() method (Date), 525
getImgAreas() function, 122

object detection, using, 123
getInsideWindowHeight() method, 413
getInsideWindowWidth() method, 413
getLikeElements() function, 494
getMonthLen() function, 540
getPageEventCoords() function, 244

contextmenu mouse event location, 290
determining mouse event location in

coordinate plane of a
document, 245

getPositionedEventCoords() function, 244
deriving event coordinates inside a

positioned element, 245
getPropertyValue() method, 347
getRangeAt() method (selection), 511
getRawObject() function, 480
getSearchData() function, 186
global (g) regular expression modifier, 3, 13
global functions, 91
global scope for scriptable objects, 82
global variables, 86

defined in a subwindow’s document
scripts, 146

setting for browser detection, 112
window object, storing JavaScript

data, 278
GMT (Greenwich Mean Time), 30

using in timers, 532
goNextPage() function, 95
gradient, opacity, 380
greater-than or equals operator (>=), 114

browser version detection, 114
Internet Explorer version

comparisons, 115

566 | Index

H
handleArrowKeys() function, 258
handleCancel() and handleOK() methods

(parent), 153
handleCancel() function, 152
handleClick() function, 232
handleOK() function, 152
handleScrollClick() function, 431, 444
handleScrollStop() function, 431, 444
hasFeature() method, 125
hash property (location)

delimiter character and, 272
assigning anchor name string to, 271
navigating to any element on a page, 273

hash tables
indexes, numeric and non-numeric

values, 462
simulated, using for array lookups, 106
simulated. in drop-down navigation

menu, 299
simulating for fast array lookups, 69–71

height, width, and top style sheet properties
(iframe), 172

hexadecimal numbers, converting between
decimal numbers, 39

hidden frame, using as temporary data
store, 280

hide() function, 405
hideMenus() function, 300

menu component state, restoring to
initial, 304

hideProgressBar() function, 542
hiding subsidiary groups of form controls

until needed, 219
history, keeping pages out of, 273
horizontal scrolling, 445
hover (CSS pseudo-class), 343
href property (location)

assigning new page URL string to, 271
changing frame content from another

frame, 179
href property (styleSheet), 340
HTML

binding event handler functions to
elements, 203

blocks rendering for specific IE
versions, 339

comment tags, masking scripts from
nonscriptable browsers, 110

countdown timer application, 528–531
creating new elements, 470
element objects, getting references to, 478

grabbing copy of current HTML node
tree, 498

JavaScript objects, transforming into
HTML tables, 466–468

positioning elements, 392–451
scrollbar region awaiting scripted

scrollbars, 434
scrolling region and controller, 427
slide control elements, 446
slide show page and scripts, 516–519
transforming XML data into HTML

tables, 463–466
html element, 395
HTML module (DOM), 126
HTMLDocument object, URL property, 272
HTMLEvents module (DOM), 126
HTTP USERAGENT string, 110
hyperlink element (<a>), 268
hyperlinks (see links)

I
i (case-insensitive) regular expression

modifier, 3
id attribute

<map> tags, 359
of an element, assigning ID selector name

to, 336
 tags, 358
toggling style for a single element, 343

ID attributes, 195
ID names, 336
ID selectors

assigning style sheet rules to an
element, 336

defining for a style rule and assigning to
element id attribute, 336

toggling style for a single element, 343
identifiers (class names), 335
IE (Internet Explorer)

(see also browsers)
a:active pseudoclass, 374
carriage returns, 16
conditional comments, 339
cookie storage, 19
creating different versions on a

computer, 131
creating elements and inserting them into

a document, 472
currentStyle object, 346
detecting early versions, 113
DHTML event, 233
disabling form controls, 217

Index | 567

document fragments, 475
element content manipulation

methods, 476
element positioning, 395

centering in browser window, 413
event binding with attachEvent()

method, 238
event capture (for mouse events), 290
event coordinates inside a positioned

element, deriving, 246
event model, 235

equalizing with W3C event
model, 236–240

modifier keys, event object properties
for, 260

form submissions with Enter/Return
key, 214

framesets and frames as elements, 175
image caching, 355
importing browser-specific CSS

stylesheets, 338
keyCode property for keyboard

events, 256
location object properties, reading of, 269
making a new frameset, v.5.5 or later, 192
maximizing main window, 138
modal dialog window

simulation, 151–158
modal/modeless windows, 148–151
opacity for elements, 379
positioning main browser window, 137
race-ahead execution, preventing, 145
resizing frames, 189
selectstart event, 504
setting main window size, 136
standards-compatible mode, 349
synchronizing sounds to events, 267
text-based properties of element

objects, 474
transitions, 381–385

backward-compatible transition
types, 382

new-style transition filters, 383
version detection, 115
W3C DOM standard and, xv, 107
window.navigate() method, 272
windows object and, 132
XMLHttpRequest object, 459

if conditions, 97
branching script execution within, 112
cookies, testing for enabled/disabled

status, 129

methods, testing for, 125
object detection, using for, 121
object properties, testing for, 124
testing for browser-specific linking, 129

if/else, 97
iframe elements, 158, 456

height, width, and top properties, 172
inserting and populating, 476
references to content document, 514
sizing, 456

image files, CSS rules pointing to, 337
images

changing background images, 375
dynamically changing sizes, 366–367
page background, changing, 375
precaching

problems caused by server
configuration, 355

precaching for image rollover, 354
swapping (rollovers), 356

reducing image downloads with
CSS, 362–366

reducing image downloads with
JavaScript, 358–362

img elements
cached images and, 354
containers and, 398
detecting browser support of, 122
id attributes, 358
image sizes, 366
menu bar titles in drop-down navigation

menu, 302
imgSwap() function, 360

event handling, 361
implements construction, simulating, 76
!important (CSS directive), 344
incoming() function, 262
index properties (scrollBar objects), 432
indexes, array, 55

double indexes for multidimensional
arrays, 56

indexOf() method, 11
finding text to be replaced, 15

inequality operator (!=), 10
testing for inequality of two numbers, 35

infinity, 27
init() method, 425

calendar date picker, 541
DHTMLAPI object, 243

initAnime() function, 418
initCircAnime() function, 419, 421

568 | Index

initContextMenus() method
(cMenuMgr), 290

initExpand() function, 318, 328
initExpMenu() function, 318

binding to load event, 309
initialization methods of custom objects,

invoked from load event, 243
initLayerDialog() function, 162
initMaps() function, 360, 361
initMenus() function, 301
initProgressBar() function, 542
initScroll() function, 523
initScrollbars() function, 433
initScrollers() function, 427
initSLAnime() function, 416, 417
initSlide() function, 446
initXML() function, 459, 463, 486
initXMLOutline() function, binding to load

event, 321
inline value (style.display property), 408
innerHTML property, 468, 474
innerText property, 474
input elements

change event handler, real-time text box
validation, 199

invoking focus() method on, 208
(see also button-type input elements)

insertAdjacentHTML() method, 472, 475
insertBefore() method, 471
insertCell() method, 468
insertOutline() function, 329
insertRow() method, 468
insertSaying() function, 502
integers

number data type, 27
parseInt() method, 31, 32

interactivity with user, xvii
intercapitalization system (for hyphenated

CSS property names), 347
interface construction, 76
internationalization

date formats, 43
date validation, 50
number formats, 38
offset from GMT for Daylight Saving

Time or standard time, 47
invalid text field entries, auto-focusing, 207
isEMailAddr() function, 198

regular expression pattern testing for
email address, 202

isLen16() function, 198
for fixed-length string pattern, 202

isNaN() method, 33
isNotEmpty() function, 198

testing required email address field, 203
isNumber() function, 198

regular expression, using, 202
italic font style, setting for a paragraph, 332
iterations through arrays, minimizing for

script efficiency, 106

J
JavaScript

arrays, 51
in the browser, xiv
custom objects, 52
functions, 91
language version branching, 110
number data type, 27
regular expressions notation, 3
version detection, 110

JavaScript Object Notation (see JSON)
javascript: protocol, using with src

attribute, 178
javascript: URL in bookmarks, 320
join() method, 57

Array class, 7
.js source files, condensing, 106
JSON (JavaScript Object Notation), 54

conversions between objects and
strings, 81

retrieving data formatted as JavaScript
arrays and objects, 462

K
keepMenu() function, 300
key code values, 550
key codes vs. character codes, 258
key filtering function (allowing upper- and

lowercase letters), 222
key values

reading for character key presses, 256
reading for noncharacter keys, 257–260

keyboard combinations as scripted
shortcuts, 259

KeyboardEvents module (DOM), 127
keyCode property

event objects, 257
keyboard-related events, 256

Index | 569

keydown event, 256
keydown event handler, 257, 550
keypress event handler, 256, 550

allowing to succeed, 221
fields that need to advance focus to

another field in a form, 215
invoking submitViaEnter() function, 216
restricting entry to numerals, 223

keyup event, 256
keyup event handler, 257, 550

invoking autofocus() function, 223
invoking scripted accelerator key

behavior, 259
keywords (ECMAScript), 552

L
labels, adding to pie chart, 391
language attribute, <script> tags, 242
language codes, 128
language version branching, 110
languages, detecting native language for

browser, 127
law covering accessibility in the U.S., 112
<layer> tag, 396
layer object, removal from Netscape

Navigator browsers, 116
layerDialog.js library, 158, 160–163
layerDialogDrag.js library, 158, 163–166
layered browser window

simulation, 158–172
layers (positioned elements), 396
layerX and layerY properties (event

object), 245
legend or labels, adding to pie chart, 391
length measurements (CSS values), 348
length property of arrays, 55
less-than operator (<), using in array

iteration, 59
less-than or equal operator (<=), array

iteration and, 59
lettersOnly() function, 222
Level 2 and Level 3 DOM modules, 126
libraries, eliminating extraneous

functions, 406
<link> tags, 337

importing browser or operating
system-specific style sheets, 338

loading new style sheets to pages under
view, 340

linkClicks global variable, 156

links
creating custom link styles, 374
disabling/enabling in modal dialog

window simulation, 156
hyperlink tag invoking loadFrames(), 181
normal, hover, and active states of

elements, 365
links collection (document), 180
linkTo() function, 129
listProperties() function, 72
Load and Save (LS) module, DOM, 127
load event

binding initExpMenu() function to, 309
binding initXMLOutline() function

to, 321
load event handler

appending multiple, 242
assigned to <frame> tag in framesetting

document, 176
DHTML3API.js library, 406
focusing text boxes, 197
frame elements, 176
frame resizing, 191
frames and framesets, 176
frameset tag

invoking loadFrame() function, 186
iframe resizing, 456
locating in <frameset> tag, 153
retrieving cookie data and assigning it to

text input field, 277
retrieving search string data and assigning

to text input field, 281
script triggered by, changing destination

of a link, 130
slide show application, 522
using as trigger for scripted event binding

benefits of, 241
using as trigger to scripted event

binding, 240
loaded variable, 177
loadFrame() function, 186
loadFrames() function, 181
loadXMLDoc() method, 328, 486

XMLDoc object, 459
locale-specific formats for numbers, 39
location object, 268

browser subwindows, 147
hash property

delimiter character and, 272
assigning anchor name string to, 271
navigating to any element on a

page, 273

570 | Index

location object (continued)
href property

assigning new page URL string to, 271
changing frame content from another

frame, 179
pathname property, 307
replace() method, 273

keeping current page out of browser
history, 186

same origin policy, 269
scripted navigation shortcut, 272
search data, using in transitions, 385
search property, 272

location property (document),
deprecated, 272

loopObject global object, 546
loops, performance bottlenecks, 104
LS (Load and Save) module, DOM, 127

M
m (multi-line) regular expression modifier, 3
Macintosh

contextmenu event, blocking, 444
Ctrl-clicks (for right-clicks), 283
dialogLayer_macosX.css, 170
load event handler, causing script to

modify a link, 130
Mac OS X scrollbars, 445
metakey property for Command key, 260
Option key (Alt key), 261
right-click actions and, 255
Virtual PC 7, 131
window size, 138

mailto: URLs, 196
makeHashes() function, 299
makeMenus() function, 300, 301, 303
makeNewFrameset() function, 192
makeNewWindow() function, 143
makeTrailMenu() function, 305, 307
map elements (client-side), defining for image

rollover, 359
match() method, 13
Math object

ceil() method, 35
floor() method, 35
functions for trigonometric

calculation, 41
methods, listed, 28
properties, 28
properties, listed, 28
random() method, 41
round() method, 35

maximizeWindow() function, 138
Media Player 6.4 (Windows), 267
menu bar, customizing for drop-down

navigation menu, 302
menuReady global variable, 299
menus (see contextual menus; navigation)
menus array, 302
menus.css style sheet, 292
menus.js library, drop-down menu

library, 293–299
<meta> tags, assigning transition filters

to, 384
metaKey property (Macintosh), 260
methods

adding to objects, 74–78
anonymous function definitions assigned

to object properties, 94
context, 84
custom object property defined as

anonymous function, 84
propeties, creating for, 66
testing for, 124

Microsoft Windows (see Windows)
MIME type of the CSS source code, 331
modal dialog windows, 148–151

simulating cross-browser modal dialog
window, 151–158

modeless windows, 148–151
layered window simulation, 158–172

modifier keys (Ctrl, Alt, or Shift)
accelerator combinations utilizing, 259
browser simulations of right-click, 255
determining which were pressed during an

event, 260
modules, DOM, 126
mouse events

determining which mouse button was
pressed, 254

draggable element, 425
image rollover, 361
precaching images, 355
triggering scrolling, 432

mouse rollovers CSS-only solution, 343
mousedown event handlers, binding

dragObject.engageDrag() to
draggable elements, 425

MouseEvents module (DOM), 126
mousemove and mouseup events (Mozilla

and IE), 166
mouseout event handlers

adding to img elements on drop-down
navigation menu bar, 302

hiding a menu, problems with, 304

Index | 571

mouseout events
drop-down navigation menu, 300
revealing element to which cursor has

gone, 262
triggering toggleHighlight() method, 291

mouseover event handlers
adding to img elements on drop-down

navigation menu bar, 302
invoking function to check for

document.images, 122
mouseover events

a:hover pseudoclass, 374
drop-down navigation menu, 300
revealing element from which cursor

came, 262
triggering toggleHighlight() method, 291

mouseup event, invoking execMenu()
method, 291

moveBy() function, 405
using, 406

moveBy() method (window), 137
moveTo() function, 405

using, 406
moveTo() method

DHTMLAPI, 244
window object, 137

moveToBookmark() method
(rangeObject), 511

moveToClick() function, 244
Mozilla, 267

Base64 strings, encoding and
decoding, 26

browser archive, 131
canvas element, tutorial, 391
carriage returns, 16
const keyword defining true constant

value, 88
controlling content region of browser

window, 136
cookie storage, 19
detecting browser version, 116

Mozilla build versions vs. branded
browser, 117

event model, W3C DOM, 236
form submissions with Enter/Return

key, 214
frame resizing in early browsers, 189
Gecko engine for browsers, 114
image caching, 355
keyCode property, 257
making a new frameset, 192
maximizing main window, 138

modal dialog window
simulation, 151–158

modifying main window chrome, 133
opacity style control, 379
prototype traversals, shortcut syntax, 76
window object, 132
(see also browsers)

MozOpacity property (style), 380
MSIE string (Internet Explorer), 115
multidimensional arrays

converting to and from strings, 58
creating, 56
iterating through with nested for loop, 60
iterations through, eliminating for code

efficiency, 106
multi-line (m), regular expression modifier, 3
MutationEvents module (DOM), 126
myInitFunction() function, 241

N
\n (newline), 16
name attribute

frame elements, 174
map elements, 359

name/value pairs (properties), 66
named functions

creating, 89–92
nesting, 92

naming conflicts, reducing with use of
objects, 82–84

NaN (Not a Number) value, 33
navigate() method (window), 272
navigation, 268–330

collapsible XML menus,
creating, 320–330

creating contextual (right-click)
menu, 283–291

creating drop-down navigation
menus, 291–305

default data delivery to a page, 271
expandable menus, creating, 308–320
history, keeping pages out of, 273
loading a new page or anchor, 271–273
location object, 268
passing data between pages, 269

via cookies, 276
passing data between pages via

URLs, 280–283
passing data betwen pages

via frames, 278–280
pop-up/drop-down navigation

menus, 270

572 | Index

navigation (continued)
providing navigation trail menus, 305
select elements, using for, 274–276
trail menus, 305–308

inside a frameset, 308
navigation keys, behaviors in browsers and

operating systems, 258
navigator object

appName property, 113
appVersion property, 114

browser versions of early IE or
Netscape Navigator, 114

Mozilla-based browsers, 114
browser detection via, 112
cookieEnabled property, 128
language detection code, 127
oscpu property, 120
userAgent property, 113

IE 7, 115
IE version detection, 115
Mozilla browsers, detecting

version, 116
Opera browser version, 119
operating system information, 120
Safari version detection and, 118

NEGATIVE_INFINITY property
(Number), 27

Netscape Navigator
changing select element options, 224
detecting early (pre-Mozilla)

versions, 113
positioned elements, <layer> tag, 396
setting main window size, 136
v.4 browser, bypassing frameset loading

routine when printing a page, 185
versioning anomalies, 114
(see also browsers)

Netscape, browser archive for more recent
versions, 131

new keyword, 65
newline characters, 16

 tags, compared to, 5
in strings, 5

newWindow global variable, 144
next() function, 520, 521
node tree modification methods, 471
noncharacter key presses, reading, 257–260
nonscriptable browsers, 109

masking scripts from, 110
normal, hover, and active states (hyperlink

elements), 365
normalize() method, 474

<noscript> tags, 109
Not a Number (NaN) value, 33
number data type, 27, 32
Number object

creating numbers, 28
NaN value, 34
properties, 27
toLocaleString() method, 38

numberOnly() function, 256
comparison expressions in if

statement, 257
numbers, 27

allowing only numbers in a form text
box, 221

converting between decimal and
hexadecimal, 39

converting between strings, 31
decimal and hexadecimal,

conversions, 39
formatting for text display, 36–39

inserting commas, 38
locale-specific formats, 38

no differentiation in numeric data types
by kind of number, 32

random number generation, 41
rounding floating-point values, 35
testing for equality, 34
testing validity, 33
trigonometric functions, calculating, 41

numeralsOnly() function, 221

O
object detection, 111, 121

assigning browser global variables, 112
object2String() function, 79, 80
object-oriented programming vs. JavaScript

custom objects, 52
objects

arrays of, 68
form content converted to, 227
simulated hash tables for lookups, 106
sorting, 72–74

arrays vs., 52
converting XML node tree to JavaScript

objects, 469
custom objects, 52

converting to strings, 79–81
creating, 65–69
wrapping validations functions in, 203

customizing prototype, 74–78
data embedded as JavaScript

objects, 460–462

Index | 573

JSON (JavaScript Object Notation), 54,
81, 462

properties, 69
examining or modifying values, 71

property and method support,
detecting, 124

prototype inheritance, 76
referencing element objects, 351
transforming JavaScript objects into

HTML tables, 466–468
using separately or with arrays, 53
using to reduce naming conflicts, 82–84

objectsArraysStrings.js library, 79
code, 79
custom object values, passing and

reassemling via URLs, 282
offset measures, base element, 411
offsetLeft and offsetTop properties, 415
offsetParent property, 415
offsetX and offsetY properties, 425

event object, 246
olData (outline data) object, 316

creating, 318
deploying outline as hardcoded

HTML, 320
“on” event handlers, naming, 238
onclick event handler, modal dialog window

simulation, 153
oncontextmenu event handler, 248, 283
one-dimensional arrays

converting to strings, 57
(see also arrays)

onreadystatechange property,
XMLHttpRequest, 488

opacity property (style), 379
open() method (window), 135

creating new window, 139
preserving reference to subwindow, 145
subwindow references, 146
window attributes, listed, 140

open() method (XMLHttpRequest), 487
openCenteredWindow() function, 142
opener property, 147
openLayerDialog() function, 158, 172
openLayerDialog() method

(dialogLayer), 162
openSimDialog() function, 152, 156

arguments assigned to properties of
dialogWin global object, 157

Opera
archive for more recent versions, 131
browser detection, 113
carriage returns, 16
controlling content region of browser

window, 136
event coordinates inside a positioned

element, deriving, 246
form submissions, Enter/Return key

and, 214
keyCode property for keyboard

events, 257
modal dialog window

simulation, 151–158
version detection, 119
(see also browsers)

operating systems
detecting for client, 120
function and navigation keys, behavior

of, 258
importing operating system-specific CSS

style sheets, 338
scrollbar appearance, 445
userAgent string, 120

OPML (Outline Processing Markup
Language), 321

documents, 329
Option key (Alt key on Macintosh), 261
OR operator (||), 67

assigning browser-supported event object
to evt variable, 237

origCols global variable, 189
outgoing() function, 262
outline elements (OPML document), 329

adding information for your outline, 330
outlineItem() constructor function, 316
overlapping elements, 398
overriding a style sheet rule, 343

P
page navigation (see navigation)
pageX and pageY properties (event), 245
Parallels program (Windows OS

emulator), 131
parent frameset, 174
parent object, handleCancel() handleOK()

methods, 153
parent window reference, 183
parentheses (), invoking functions, 90

574 | Index

parseFloat() method, 31, 32
browser version detection using, 114
NaN return value, 33

parseInt() method, 31, 32
extracting integer value of browser

versions, 114
hexadecimal to decimal conversion, 39
NaN return value, 33
number base conversions, 40

path, beginning for drawing in canvas
element, 387

pathname property (location), 307
performance (scripts), improving, 103–106
pie chart (dynamic), creating on a web

page, 387–391
pixel size, adjusting for browser

windows, 136
pixels

shifting browser window by, 137
unit of measure for web page content

layout, 396
Play() command (IE), 267
play() method (filter), 381, 384
playSound() function, 266
pop() method, 63
populateTable() function, 541
pop-ups

blocking, 133
calendar date picker, 534
pop-up or pop-under windows, 132
pop-up/drop-down navigation

menus, 270
position property, absolute value, 397
positioning HTML elements, 392–451

adjusting stacking order (z-order), 409
animating circular element

paths, 419–421
animating circular paths, 419
animating straight-line element

paths, 415–419
centering an element in a window or

frame, 412–414
recentering after user actions, 414

centering one on top of another, 410–412
connecting a positioned element to a body

element, 398
controlling via DHTML3API.js

library, 400–407
creating a draggable element, 421–426
creating a slider control, 446–451
creating custom scrollbar, 433–446

determining location of a nonpositioned
element, 414

div vs. span containers, 407
evolving contexts, 395
<layer> tags, 396
making an element positionable in

document space, 397
positioning scope, 393
problems with older and underpowered

browsers, 395
scope, 393
scrolling div content, 426–432

HTML scrolling region and
controller, 427

types of positioning, 394
units of measure, 396

positionMenu() function, 300
POSITIVE_INFINITY property

(Number), 27
POST method and location.replace()

method, 273
precaching of images, 354

eliminating need for, 362
monitoring, 547

preloadImages() method, 354
preparePie() function, 389
prev() function, 520
previous date, calculating, 44
progress bar (animated), 542–547
properties

assigning function reference to, 90
creating for custom objects, 65
creating for methods, 66
CSS, 347
CSS property names containing

hyphens, 353, 368
CSS style properties, changing for

text, 367–370
custom object property name defined as

anonymous function, 84
defining for an array, 69
event objects, IE and W3C DOM

equivalents, 235
modal/modeless dialog windows, 150
object

adding, 74–78
assigning anonymous function

definitions to, 94
assigning event as, 238
examining or modifying values, 71
sorting, comparison functions and, 73
testing for, 124

Index | 575

style, 332
testing for, 124
window, for window.open()

method, 140
prototype inheritance, 52, 76

interpreter following prototype
inheritance chain, 76

prototype, customizing, 74–78
providing navigation trail menus, 305
pseudoclasses (CSS), 343

defining separate style sheet rules for
various link states, 374

pseudorandom numbers, generating, 41
push() method

appending items to end of an array, 63
appending items to existing array, 55

pushUndoNew() function, 510, 511

Q
queue manager for load event handlers, 242
quirks mode

considerations in scrollbar creation, 443
IE (Internet Explorer), 346

quoting strings, 1
using escape characters, 2

R
\r (carriage return), 16
\r\n (newline), 16
random number generation, 41
Range module (DOM), 126
Range object, 500, 506, 511

selectionManager object, 505
rangeObject

getBookmark() method, 511
moveToBookmark() method, 511

rangeReplace.js library, 507
code, 507–510

readData() function, 279
readystate event (XMLHttpRequest), 488
readyState property (XMLHttpRequest), 328
readystatechange event, 460
real-time form validation, 195
recipient of style sheet rule, 332
record-based XML data, 465
references

evaluation, avoiding inefficiency, 105
function, assigning to a property, 90
subwindow references returned by

window.open(), 146

referencing elements, 351
DHTMLAPI functions and, 406
from events, 353
NN4 and IE, 396

regular expressions, 3
email address validation function, 207
form validation, use in, 196
modifier characters (g, i, m, or

combinations), 3
notation, 3
number formatting, inserting commas, 38
testing strings for containment of

substrings, 13
in text field validation functions, 202

relatedTarget property (W3C DOM), 262
relative positioning, 394
relative URLs, 271
relative-positioned elements

absolute-positioned element inside, 408
binding to an absolute-positioned

element, 398
releaseDrag() function, 425, 445
remove() function, 485
remove() method, select element, 226
removeChild() method, 483
removeEvent() function, 238
repetitive expression evaluation,

minimizing, 105
replace() method (location), 273

keeping current page out of browser
history, 186

replace() method (String), 14
replaceChild() method, 471, 482
requestHide() function, 300, 304
reserved keywords, 552
resetTimer() function, 95
resize event handler, 411
resizeLeft() function, 189
resizeTo() and resizeBy() methods

(window), 136
REST (Representational State Transfer)

SOAP vs., 489
using XMLHttpRequest for, 485–488

restoreFrame() function, 189
Return key (see Enter/Return key)
return statement (in functions), 91
returnValue property (window), 148
revealTrans() filter, 382
RGB format, color values, 370
right-click menus (see contextual menus)

576 | Index

rollovers, image, 356
reducing image downloads with

CSS, 362–366
reducing image downloads with

JavaScript, 358–362
rounding floating-point numbers, 35
rows of a table, removing, 484
runProgressBar() function, 546
runSpecial() function, 259

S
Safari

carriage returns, 16
controlling content region of browser

window, 136
detecting version, 118
event model, W3C DOM, 237
form submissions with Enter/Return

key, 214
keyCode property for keyboard

events, 257
maximizing main window, 138
modal dialog window, 148
modal dialog window

simulation, 151–158
(see also browsers)

same-origin security policy
browsers, 134

access to main window from
subwindows, 148

closing subwindows, 147
frames and, 177
location object, 269

saveData() function, 276
scope, variables, 86
screen coordinate point, moving browser

window to, 137
screen object properties, 139
screenX/screenY properties, 247
script performance, improving, 103–106
<script> tags

language attribute, 242
loading external .js files, placement

of, 106
src attribute, 54
using document.write() for, 455

scripting, adding value to static page
content, xvi

scrollBar objects, 443
index properties, 432

scrollBar() function, 431, 443, 445

scrollbars
creating, 433–446
frame size measurement and, 187

scrollBars.js library
code, 435–443
initScrollbars() function, 433

scrollButtons.js library, 428
code, 429

scrollBy() function, 431
custom scrollbar, 444

scrollBy() method, 523
scrolled position of a window, accessing, 413
scrolling

auto-scrolling pages, 523
div content, 426–432

HTML scrolling region and
controller, 427

scrollLeft and scrollTop properties, 413
scrollWindow() function, 523
scrollX and scrollY properties (window), 524
search property (location), 272
searching and replacing

automating for body content, 506–511
substrings, 14

security
browser windows, 133
frames, 177
IE allowing scripts to move window off

the screen, 137
IE for Windows, cross-domain security

breeches, 146
moving pseudo-maximized browser

window outside display, 139
same-origin policy (see same-origin

security policy)
seekLayer() function, 480
select element

add() and remove() methods, 226
changing options, 224–227
date input implemented as, 203
using for navigation, 274–276

select() method, 198
auto-focusing invalid text field entry, 207

selectedIndex property (select element), 276
selection object, 506

getRangeAt() method, 511
selection2Element() method, 506
selectionManager object, 505

saveStart() method, 506
selection2Element() method, 506

selector (designating style rule
recipient), 332

Index | 577

selectstart event (IE), 504
self window reference, 183
send() method (XMLHttpRequest), 487,

515
server configuration, checking for problems

with image precaching, 355
server process URLs, 54
session IDs, 269
setAttribute() method, 471
setbgImage() function, 377
setCities() function, 225

W3C DOM version, 226
setCookie() function, 17, 18, 376
setCurrMonth() function, 541
setDragEvents() method, 166
setElementEvents() function, 212
setEvents() function, 504

user-editable content page, 512
setHeights() function, 522
setIconBorder() function, 372
setImages() function, 532
setImgSize() function, 366
setInterval() method, 97

animation of state transitions, 369
auto-scrolling application, 523
countdown timer application, 527
progress bar application, 546
setTimeout() method vs., 532
slide show application, 522
straight-line animation process, 417

setLinkTargets() function, 180
setRequestHeader() method

(XMLHttpRequest), 487
setScrollEvents() function, 431
setSelectedElement() function, 166
setSkin() function, 340
setTimeout() method, 95

animation of state transitions, 369
cleaning up menus no longer needed, 300
controlling amount of time between

function calls, 96
functions referencing a new object, 146
hiding a menu, 304
invoking focusElement() function, 207
progress bar application, 546
scroll initialization in IE, 427
setInterval() vs., 532

setZIndex() function, 405
setZIndex() method, 409
Shift key (see modifier keys)
shift() method, 63

shiftKey property (event object), 260
shopping cart for a web site, accumulating

ordered items in fields of a hidden
frame, 280

shortcuts, scripting keyboard combinations
for, 259

show() function, 405
showArrival() function, 264
showCalendar() function, 535, 540
showContextMenu() method

(cMenuMgr), 290
showDeparture() function, 264
showMenu() function, 267, 300
showModalDialog() method (window), 148

displaying form to be submitted to a
server, 151

main window passing element object
reference to modal dialog
window, 149

properties for, 150
showModelessDialog() method

(window), 148
properties for, 150
returning reference to modeless dialog

window, 149
showProgressBar() function, 542
signed scripts, 132
simModal.js library, 151
Simple Object Access Protocol (see SOAP)
single quotes (') in strings, 1
skins (web page UIs)

allowing users to choose, 340
selectable, implementing by

enabling/disabling style sheets, 341
slice() method, 7, 8, 65
slide shows, creating, 515–523

automatic cycling through slides, 522
slideControl.js library

code, 448–450
initSlide() function, 446

slideObject, 450
slider control, creating, 446–451
sliderObject

dragIt() method, 450
zone and updateFunction properties, 450

smiley face, drawing inside a canvas
element, 387

SOAP
choice between REST and, 486
using XMLHttpRequest for a

call, 488–491

578 | Index

SOCmodalWindow.js library, 151
sort() method, 61, 73

array sorting, inefficiencies of, 105
sorting

arrays of objects, 72–74
dynamic tables, 491–494
simple arrays, 61

sortTable() function, 492
sounds, synchronizing to events, 266
source code downloads, performance

and, 106
source code, hiding from view, 250
source files, condensing, 106
span element, 158, 190, 345

container for positioned element
absolute- or fixed-positioned

element, 408
div element vs., 407

special characters, 15
splice() method, 64
split() method, 58
srBatch() function, 507, 510
src and noResize properties (frame), 176
srcElement property (IE), 252
srQuery() function, 507, 510
stacking order (z-order) of positioned

elements, adjusting, 409
standards-compatible mode, 349
status property (XMLHttpRequest), 488
stopPropagation() method, 250
straight-line element paths,

animating, 415–419
strict equality operator (= = =), 10

testing numbers for equality, 35
strict inequality operator (!= =), 10

testing for inequality of two numbers, 35
string literal, 1
String object, creating instance of, 2
string variables, changing case of, 9
string2Array() function, 79
string2FormObj() function, 228, 230
string2Object() function, 79
stringForms.js library, 227

code, 227–230
multiple selections of select-multiple

select element, 230
passing a form’s control set from page to

page, 282
strings, 1–26

Base64, encoding and decoding, 23–26
changing case, 8
concatenating, 4

avoiding excessive, 106

converting arrays and custom objects
to, 79–81

converting between arrays, 57
converting between numbers, 31
converting between Unicode values and

string characters, 20
creating, 1
handling performance, improving, 6
quoting, 1

using escape characters, 2
reading and writing for cookies, 17–20
regular expressions (and pattern

matching), 3
searching and replacing substrings, 14
sorting string values in properties, 73
substrings, accessing, 7
testing containment with regular

expressions, 13
testing containment without regular

expressions, 11
testing equality, 9
URL, encoding and decoding, 21–23
using special and escaped characters, 15
values compared to objects, 2

stripCommas() function, 39
<style> tag, 331
style attribute, 331

style sheet rule assigned via, 332
style object

display and visibility properties, 162
display property, 378

altering value to control element
flow, 408

left and top properties, 415
MozOpacity property, 380
opacity property, 379
position property, 397
visibility property, 378
zIndex property, 409

style properties
background-related, changing on body

element, 375
changing for text, 367–370

style property (element), 353
styleSheet object

disabled property, 341
href property, 340

stylesheets
dialogLayer_macosX.css, 170
dialogLayer_win9x.css, 168
dialogLayer_win9xQ.css, 166
dialogLayer_winxp.css, 169

Index | 579

influence on layered pseudowindow
elements, 166

rules for collapsible XML navigation
menu, 321

(see also CSS)
StyleSheets module (DOM), 126
submit event (form object), validation

routines triggered by, 196
submit event handler, 38

batch validation failure, preventing form
submission, 204

batch validation function triggered for text
box validation, 199

reliance on for client-side form
validation, 207

short-circuiting in form tag to prevent
premature submissions, 214

submit() method (form), form submissions
and, 214

submitForm() function, 251
submitViaEnter() function, 216
substr() method, 7
substring() method, 7, 8
substrings, searching and replacing, 14
sumData() function, 391
Summer Time, 46
swap() function, 267

invoked by mouse event handlers of
navigation menu bar images, 301

swappable images (rollovers)
countdown timer, 528

swapping images (rollovers), 356
reducing image downloads with

CSS, 362–366
reducing image downloads with

JavaScript, 358–362
swapState() function, 317, 327
switch, 97
synchronizing sounds to events, 266
system-generated actions, 231

T
table element, 463
table event handlers, HTML for, 263
table-modification methods, W3C

DOM, 467
tables, sorting dynamic tables, 491–494
tagName property, 471
target attribute of the <a> tag, 180
target property (W3C DOM), 252

text
content for a new element, creating, 473
formatting numbers for display, 36–39
offering users choice of body text

size, 370–374
style properties, changing, 367–370

text blocks, temporary storage in arrays, 6
text box event handlers, HTML for, 263
text box values, performing math on, 31
text cursor, advancing through fields in

fixed-length text boxes, 223
text fields

advancing focus with Enter key, 215
allowing only numbers or text, 221
auto-focusing first text field, 197
auto-focusing invalid entry, 207
submitting a form with Enter key press in

any text box, 216
validation, 198–204

date entries, 203
failure of, halting form

submission, 204–207
text ranges, 500
text/css MIME type, 331
text/javascript content type, 461
textarea elements

displaying array entries as vertical list
in, 58

escape characters and, 16
using for data storage, 280

TextEvents module (DOM), 127
TextRange object, 500, 501, 506

bookmarks, 511
findText() method, 510
selectionManager object, 505

th element, 491
this keyword

in constructor function, 66
in function definition, 67

thumb-dragging operation, scrollbar, 444
time of day greeting, 524
toElement property (IE), 262
toFixed() method, 36
toggle() function, 317, 328
toggleFrame() function, 189

in parent frame, 191
toggleHighlight() function, 267, 291
togglePurDec() function, 219
toLocaleString() method (Number), 38
toLowerCase() method, 9, 74
top keyword, referencing nested frames, 175

580 | Index

top window reference, 183
toPrecision() method, 36
toString() method, 31

number conversions from decimal to
other bases, 40

toUpperCase() method, 9
trail.js library, 305

code, 306
trailMenu object, 307
transforming

JavaScript objects into HTML
tables, 466–468

XML data into HTML tables, 463–466
transition filters (IE), 382
transition property (filter), 383
transition visual effects, 381–385
transparency, adjusting for an element, 379
Traversal module (DOM), 126
TreeWalker object, 497
trigonometric functions, calculating, 41
try/catch construction, 101
type attribute (<style> tags), 331
type property, using to differentiate form

control types, 208
typeof operator, testing a number’s

validity, 33

U
UIEvents module (DOM), 126
unblockEvents() event handler, 152
undoObject, 510
undoReplace() function, 511
unescape() method, 22
Unicode, conversion between string values

and, 20
United States English (en-us), 128
United States law covering accessibility, 112
units of measure for content layout, 396
Universal Resource Identifiers (see URIs)
Universal Resource Locator (see URLs)
unload event handler

guarding against problems in states
between page loadings, 300

locating in <frameset> tag, 153
passing data between pages via

frames, 278
using to store cookie data, 276

unshift() method
appending item to beginning of an

array, 63
inserting item as first array entry, 55

updateDisplay() function, 451

updateFunction function reference, 446
updateScroll() function, 444
updateThumb() function, 444
URIs

defined, 22
encodeURI() and decodeURI()

methods, 19
URL property (document), 272
URLs

adjusting for a subwindow, 146
assigning new page URL to

location.href, 271
CGI URL assigned to action property of a

form, 213
for CSS files, 337
defined, 22
encoding and decoding, 21–23
mailto:, assigned to action attribute of

form element, 196
passing data between pages via, 280–283
server process, 54
server process URLs, 54

userAgent string, operating systems, 120
user-editable content page, 512–515
user-generated actions, 231
UTC (Coordinated Universal Time), 30

V
validateForm() function, 205
validateSampleForm() function, 212
validation

dates, 47–50
form validation strategies, 195
text fields, 198–204

failure of, halting form
submission, 204–207

wrapping validation functions in
custom validation object, 203

using custom validation object, 208–212
validator object, 209
value property (select element), 275
var keyword, 86

defining variables inside functions, 86
variables

assigning data to, 88
assigning strings to, 1
case-sensitivity of names, 88
creating, 85
DOM objects assigned to, 89
global variables, setting for browser

detection, 112
naming rules and conventions, 88

Index | 581

scope, 86
subwindow references assigned to, 144
window global variables, storing data

in, 279
verifyLoad() function, 328
Views module (DOM), 126
Virtual PC (Microsoft), 131
virtualizing Windows on a Mac, 131
visibility property (style), 162, 378

inherit value, 378
visual effects for stationary content, 351–391

adjusting element transparency, 379
changing image sizes

dynamically, 366–367
changing page background colors and

images, 375
changing text style properties, 367–370
creating custom link styles, 374
drawing chars in the canvas

element, 385–391
hiding and showing elements, 378
offering body text size choices to

users, 370–374
precaching images, 354
reducing rollover image downloads with

CSS, 362–366
reducing rollover image downloads with

JavaScript, 358–362
referencing element objects, 351
referencing elements from events, 353
swapping images (rollovers), 356
transition visual effects, 381–385

W
W3C DOM standard, xv

Core module objects, browser support
for, 125

detecting browser support of, 126
event model

equalizing with IE event
model, 236–240

modifier keys, event object properties
for, 260

framesets and frames as elements, 175
Level 2 event model, 235
table-modification methods, 467

walkChildNodes() function, 495
web pages

assuring loading in frameset, 184–187
background colors and images,

changing, 375

copying form data between, 227–230
default data delivery to a page, 271
design considerations, 108
embedding data in, 53
keeping out of browser history, 273
navigation (see navigation)
passing data between, 269
passing data between via cookies, 276
positioning scope for HTML

elements, 393
skins, enabling users to choose, 340
testing on multiple browsers, 130

web publishing, units of measure for content
layout, 396

web sites, accessibility for disabled
persons, 112

wedges of a pie chart, calculating, 391
window chrome, 133

Boolean attributes controlling, 142
window object, 132

dialogArguments property, 148
starting point to access main window

content, 150
element object references and, 351
find() method, 511
frames, 174
global variables, storing JavaScript data

in, 278
load event, 240
moveTo() and moveBy() methods, 137
navigate() method, 272
open() method, 135

creating new window, 139
opener property for windows created

via, 147
preserving reference to

subwindow, 145
subwindow references, 146
window attributes, listed, 140

references to, 183
resizeTo() and resizeBy() methods, 136
returnValue property, 148
scrollX and scrollY properties, 524
setTimeout() method, 95
showModalDialog() method, 148
showModelessDialog() method, 148

Windows
creating different Windows and IE

versions on a computer, 131
dialogLayer_win9x.css, 168
dialogLayer_win9xQ.css, 166
dialogLayer_winxp.css, 169

582 | Index

Windows (continued)
function key scripting, 259
maximizing/minimizing windows, 138
Media Player (6.4), 267
properties and methods tied to browser

and OS, 132
right-clicks, 283
Windows Vista, IE 7, 115

windows (browser), 132–172
abuse of, 132
bringing a window to the front, 143
centering elements in, 412–414
communicating with a new

window, 144–147
creating new windows, 139–143
cross-browser modal dialog window,

simulating, 151–158
IE modal/modeless windows, 148–151
main window, communicating back

to, 147
maximizing main window, 138
positioned HTML elements and, 393
positioning main window, 137
resizing main window, 136

scripting size of open window, 137
secondary windows, problems with, 143
simulating windows with layers, 158–172
things you cannot do, 133
window control limitations, living

with, 135
Windows key, 261
Winer, Dave, 321
with construction, avoiding for better script

performance, 104
word wrapping, JavaScript source code, 5
write() method (document)

creating new frameset from top or parent
frame, 193

creating new page content
dynamically, 455

displaying a random aphorism, 501
embedded in body for customized

content, 453
invoked after page loading to modify page

content, 454

X
XHTML specification, frame-specific

version, 173
XML

collapsible menus, creating, 320–330
converting node tree to JavaScript

objects, 469
creating elements and inserting into a

document, 472
embedding XML data in an HTML

page, 458–460
XML module (DOM), 126
XML: OPML (Outline Processing Markup

Language), 321
XML2JS() function, 469
XMLDoc object, 459
XMLDoc() function, 328, 458

creating cross-browser object for
XMLHttpRequest, 485

XMLHttpRequest object, 54
data delivery to a page, 271
loading XML data, 459
methods, 487
properties, 487
readystate event, 464
retrieval of XML data from a URL, 328
retrieving data formatted as JavaScript

arrays and objects, 462
send() method, 515
using for a REST request, 485–488
using for a SOAP call, 488–491

XMLoutline.js library, 320
code, 321–327

Y
ynOnly() function, 222

Z
zIndex property (style), 409
z-index property, setting, 405, 425
zone coordinates for a slider, 450
zone object, 446
z-order (stacking order) of positioned

elements, adjusting, 409

About the Author
Danny Goodman has been writing about personal computers and consumer elec-
tronics since the late 1970s. In 2006, he celebrated 25 years as a freelance writer and
programmer, having published hundreds of magazine articles, several commercial
software products, and, with the release of this volume, 45 computer-related books.
Through the years, his most popular book titles—on HyperCard, AppleScript, Java-
Script, and Dynamic HTML—have covered programming environments that are
accessible to nonprofessionals, yet powerful enough to engage experts. His Dynamic
HTML: The Definitive Reference, now in its third edition, is an O’Reilly bestseller.

Colophon
The animal on the cover of JavaScript & DHTML Cookbook is a howler monkey.
Howler monkeys are so named because of the very loud sounds they make, which
can be heard up to two miles away. They are considered the loudest landliving
animals. They have two hollow hyoid bones that allow them to make the powerful
sounds for which they are known.

Male howler monkeys are black, and females range from a brown to a light tan color.
They have a large neck and a large lower jaw (containing the large hyoid bones),
short legs, and a long, prehensile tail. All baby howler monkeys are born with brown
fur, but the fur on the males eventually changes to black. These monkeys can grow
up to 2 feet in height and can weight up to 16 pounds. The males are usually signifi-
cantly larger than the females.

Howlers travel and live in packs of one to three males and two to seven females.
There is one dominant male in each group. They spend the majority of their time in
trees. Their howling vocalizations are used to mark their territories as well as to
communicate with other packs of monkeys. Their diet consists mostly of leaves, but
they also eat fruit and bugs. They are becoming an endangered species due to the
shrinking size of the forests in which they live.

The cover image is from Cuvier’s Animals. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and
the code font is LucasFont’s TheSans Mono Condensed.

	JavaScript & DHTML Cookbook
	Table of Contents
	Preface
	About You
	About the Recipes
	What’s in This Book
	Browser Platforms
	Conventions Used in This Book
	Using Code Examples
	Request for Comments
	Safari® Enabled
	Acknowledgments

	Strings
	1.0 Introduction
	Creating a String
	Regular Expressions

	1.1 Concatenating (Joining) Strings
	Problem
	Solution
	Discussion
	See Also

	1.2 Improving String Handling Performance
	Problem
	Solution
	Discussion

	1.3 Accessing Substrings
	Problem
	Solution
	Discussion
	See Also

	1.4 Changing String Case
	Problem
	Solution
	Discussion
	See Also

	1.5 Testing Equality of Two Strings
	Problem
	Solution
	Discussion
	See Also

	1.6 Testing String Containment Without Regular Expressions
	Problem
	Solution
	Discussion
	See Also

	1.7 Testing String Containment with Regular Expressions
	Problem
	Solution
	Discussion
	See Also

	1.8 Searching and Replacing Substrings
	Problem
	Solution
	Discussion
	See Also

	1.9 Using Special and Escaped Characters
	Problem
	Solution
	Discussion
	See Also

	1.10 Reading and Writing Strings for Cookies
	Problem
	Solution
	Discussion
	See Also

	1.11 Converting Between Unicode Values and String Characters
	Problem
	Solution
	Discussion
	See Also

	1.12 Encoding and Decoding URL Strings
	Problem
	Solution
	Discussion
	See Also

	1.13 Encoding and Decoding Base64 Strings
	Problem
	Solution
	Discussion
	See Also

	Numbers and Dates
	2.0 Introduction
	JavaScript Numbers
	The Math Object
	Dates and Times

	2.1 Converting Between Numbers and Strings
	Problem
	Solution
	Discussion
	See Also

	2.2 Testing a Number’s Validity
	Problem
	Solution
	Discussion
	See Also

	2.3 Testing Numeric Equality
	Problem
	Solution
	Discussion
	See Also

	2.4 Rounding Floating-Point Numbers
	Problem
	Solution
	Discussion
	See Also

	2.5 Formatting Numbers for Text Display
	Problem
	Solution
	Discussion
	See Also

	2.6 Converting Between Decimal and Hexadecimal Numbers
	Problem
	Solution
	Discussion
	See Also

	2.7 Generating Pseudorandom Numbers
	Problem
	Solution
	Discussion
	See Also

	2.8 Calculating Trigonometric Functions
	Problem
	Solution
	Discussion
	See Also

	2.9 Creating a Date Object
	Problem
	Solution
	Discussion
	See Also

	2.10 Calculating a Previous or Future Date
	Problem
	Solution
	Discussion
	See Also

	2.11 Calculating the Number of Days Between Two Dates
	Problem
	Solution
	Discussion
	See Also

	2.12 Validating a Date
	Problem
	Solution
	Discussion
	See Also

	Arrays and Objects
	3.0 Introduction
	JavaScript Arrays
	JavaScript Custom Objects
	Choosing Between Arrays and Objects
	Getting Data into the Page

	3.1 Creating a Simple Array
	Problem
	Solution
	Discussion
	See Also

	3.2 Creating a Multidimensional Array
	Problem
	Solution
	Discussion
	See Also

	3.3 Converting Between Arrays and Strings
	Problem
	Solution
	Discussion
	See Also

	3.4 Doing Something with the Items in an Array
	Problem
	Solution
	Discussion
	See Also

	3.5 Sorting a Simple Array
	Problem
	Solution
	Discussion
	See Also

	3.6 Combining Arrays
	Problem
	Solution
	Discussion
	See Also

	3.7 Dividing Arrays
	Problem
	Solution
	Discussion
	See Also

	3.8 Creating a Custom Object
	Problem
	Solution
	Discussion
	See Also

	3.9 Simulating a Hash Table for Fast Array Lookup
	Problem
	Solution
	Discussion
	See Also

	3.10 Doing Something with a Property of an Object
	Problem
	Solution
	Discussion
	See Also

	3.11 Sorting an Array of Objects
	Problem
	Solution
	Discussion
	See Also

	3.12 Customizing an Object’s Prototype
	Problem
	Solution
	Discussion

	3.13 Converting Arrays and Custom Objects to Strings
	Problem
	Solution
	Discussion
	See Also

	3.14 Using Objects to Reduce Naming Conflicts
	Problem
	Solution
	Discussion
	See Also

	Variables, Functions, and Flow Control
	4.0 Introduction
	4.1 Creating a JavaScript Variable
	Problem
	Solution
	Discussion
	See Also

	4.2 Creating a Named Function
	Problem
	Solution
	Discussion
	See Also

	4.3 Nesting Named Functions
	Problem
	Solution
	Discussion
	See Also

	4.4 Creating an Anonymous Function
	Problem
	Solution
	Discussion
	See Also

	4.5 Delaying a Function Call
	Problem
	Solution
	Discussion
	See Also

	4.6 Branching Execution Based on Conditions
	Problem
	Solution
	Discussion
	See Also

	4.7 Handling Script Errors Gracefully
	Problem
	Solution
	Discussion

	4.8 Improving Script Performance
	Problem
	Solution
	Discussion
	See Also

	Browser Feature Detection
	5.0 Introduction
	Developing a Browser Strategy
	When There Is No JavaScript
	Masking Scripts from Nonscriptable Browsers
	Detecting the JavaScript Version
	Object Detection: The Way to Go
	Setting Global Variables
	DHTML and Accessibility

	5.1 Detecting the Browser Brand
	Problem
	Solution
	Discussion
	See Also

	5.2 Detecting an Early Browser Version
	Problem
	Solution
	Discussion
	See Also

	5.3 Detecting the Internet Explorer Version
	Problem
	Solution
	Discussion
	See Also

	5.4 Detecting the Mozilla Version
	Problem
	Solution
	Discussion
	See Also

	5.5 Detecting the Safari Version
	Problem
	Solution
	Discussion
	See Also

	5.6 Detecting the Opera Version
	Problem
	Solution
	Discussion
	See Also

	5.7 Detecting the Client Operating System
	Problem
	Solution
	Discussion
	See Also

	5.8 Detecting Object Support
	Problem
	Solution
	Discussion
	See Also

	5.9 Detecting Object Property and Method Support
	Problem
	Solution
	Discussion
	See Also

	5.10 Detecting W3C DOM Standard Support
	Problem
	Solution
	Discussion

	5.11 Detecting the Browser Written Language
	Problem
	Solution
	Discussion
	See Also

	5.12 Detecting Cookie Availability
	Problem
	Solution
	Discussion
	See Also

	5.13 Defining Browser- or Feature-Specific Links
	Problem
	Solution
	Discussion
	See Also

	5.14 Testing on Multiple Browser Versions
	Problem
	Solution
	Discussion

	Managing Browser Windows
	6.0 Introduction
	Window Abuse
	Window No-Nos

	6.1 Living with Browser Window Control Limitations
	Problem
	Solution
	Discussion
	See Also

	6.2 Setting the Main Window’s Size
	Problem
	Solution
	Discussion
	See Also

	6.3 Positioning the Main Window
	Problem
	Solution
	Discussion
	See Also

	6.4 Maximizing the Main Window
	Problem
	Solution
	Discussion
	See Also

	6.5 Creating a New Window
	Problem
	Solution
	Discussion
	See Also

	6.6 Bringing a Window to the Front
	Problem
	Solution
	Discussion
	See Also

	6.7 Communicating with a New Window
	Problem
	Solution
	Discussion
	See Also

	6.8 Communicating Back to the Main Window
	Problem
	Solution
	Discussion
	See Also

	6.9 Using Internet Explorer Modal/Modeless Windows
	Problem
	Solution
	Discussion
	See Also

	6.10 Simulating a Cross-Browser Modal Dialog Window
	Problem
	Solution
	Discussion
	See Also

	6.11 Simulating a Window with Layers
	Problem
	Solution
	Discussion
	See Also

	Managing Multiple Frames
	7.0 Introduction
	Frames As Window Objects
	Framesets and Frames As Elements
	Frames and Events
	Frame No-Nos

	7.1 Creating a Blank Frame in a New Frameset
	Problem
	Solution
	Discussion
	See Also

	7.2 Changing the Content of One Frame from Another
	Problem
	Solution
	Discussion
	See Also

	7.3 Changing the Content of Multiple Frames at Once
	Problem
	Solution
	Discussion
	See Also

	7.4 Replacing a Frameset with a Single Page
	Problem
	Solution
	Discussion
	See Also

	7.5 Avoiding Being “Framed” by Another Site
	Problem
	Solution
	Discussion
	See Also

	7.6 Ensuring a Page Loads in Its Frameset
	Problem
	Solution
	Discussion
	See Also

	7.7 Reading a Frame’s Dimensions
	Problem
	Solution
	Discussion
	See Also

	7.8 Resizing Frames
	Problem
	Solution
	Discussion
	See Also

	7.9 Setting Frameset Specifications Dynamically
	Problem
	Solution
	Discussion
	See Also

	Dynamic Forms
	8.0 Introduction
	Referencing Forms and Controls
	Form Validation Strategies
	Email Submissions and Return Pages

	8.1 Auto-Focusing the First Text Field
	Problem
	Solution
	Discussion
	See Also

	8.2 Performing Common Text Field Validations
	Problem
	Solution
	Discussion
	See Also

	8.3 Preventing Form Submission upon Validation Failure
	Problem
	Solution
	Discussion
	See Also

	8.4 Auto-Focusing an Invalid Text Field Entry
	Problem
	Solution
	Discussion
	See Also

	8.5 Using a Custom Validation Object
	Problem
	Solution
	Discussion
	See Also

	8.6 Changing a Form’s Action
	Problem
	Solution
	Discussion
	See Also

	8.7 Blocking Submissions from the Enter Key
	Problem
	Solution
	Discussion
	See Also

	8.8 Advancing Text Field Focus with the Enter Key
	Problem
	Solution
	Discussion
	See Also

	8.9 Submitting a Form by an Enter Key Press in Any Text Box
	Problem
	Solution
	Discussion
	See Also

	8.10 Disabling Form Controls
	Problem
	Solution
	Discussion
	See Also

	8.11 Hiding and Showing Form Controls
	Problem
	Solution
	Discussion
	See Also

	8.12 Allowing Only Numbers (or Letters) in a Text Box
	Problem
	Solution
	Discussion
	See Also

	8.13 Auto-Tabbing for Fixed-Length Text Boxes
	Problem
	Solution
	Discussion
	See Also

	8.14 Changing select Element Content
	Problem
	Solution
	Discussion
	See Also

	8.15 Copying Form Data Between Pages
	Problem
	Solution
	Discussion
	See Also

	Managing Events
	9.0 Introduction
	The Event-Scripting Process
	Event Types
	Event Models

	9.1 Equalizing the IE and W3C Event Models
	Problem
	Solution
	Discussion
	See Also

	9.2 Initiating a Process After the Page Loads
	Problem
	Solution
	Discussion
	See Also

	9.3 Appending Multiple Load Event Handlers
	Problem
	Solution
	Discussion
	See Also

	9.4 Determining the Coordinates of a Click Event
	Problem
	Solution
	Discussion
	See Also

	9.5 Preventing an Event from Performing Its Default Behavior
	Problem
	Solution
	Discussion
	See Also

	9.6 Blocking Duplicate Clicks
	Problem
	Solution
	Discussion
	See Also

	9.7 Determining Which Element Received an Event
	Problem
	Solution
	Discussion
	See Also

	9.8 Determining Which Mouse Button Was Pressed
	Problem
	Solution
	Discussion
	See Also

	9.9 Reading Which Character Key Was Typed
	Problem
	Solution
	Discussion
	See Also

	9.10 Reading Which Noncharacter Key Was Pressed
	Problem
	Solution
	Discussion
	See Also

	9.11 Determining Which Modifier Keys Were Pressed During an Event
	Problem
	Solution
	Discussion
	See Also

	9.12 Determining the Element the Cursor Rolled From/To
	Problem
	Solution
	Discussion
	See Also

	9.13 Synchronizing Sounds to Events
	Problem
	Solution
	Discussion
	See Also

	Page Navigation Techniques
	10.0 Introduction
	The location Object
	Passing Data Between Pages
	Pop-Up/Drop-Down Navigation Menus
	Default Data Delivery to a Page

	10.1 Loading a New Page or Anchor
	Problem
	Solution
	Discussion
	See Also

	10.2 Keeping a Page Out of the Browser History
	Problem
	Solution
	Discussion
	See Also

	10.3 Using a select Element for Navigation
	Problem
	Solution
	Discussion
	See Also

	10.4 Passing Data Between Pages via Cookies
	Problem
	Solution
	Discussion
	See Also

	10.5 Passing Data Between Pages via Frames
	Problem
	Solution
	Discussion
	See Also

	10.6 Passing Data Between Pages via URLs
	Problem
	Solution
	Discussion
	See Also

	10.7 Creating a Contextual (Right-Click) Menu
	Problem
	Solution
	Discussion
	See Also

	10.8 Creating Drop-Down Navigation Menus
	Problem
	Solution
	Discussion
	See Also

	10.9 Providing Navigation Trail Menus
	Problem
	Solution
	Discussion
	See Also

	10.10 Creating Expandable Menus
	Problem
	Solution
	Discussion
	See Also

	10.11 Creating Collapsible XML Menus
	Problem
	Solution
	Discussion
	See Also

	Managing Style Sheets
	11.0 Introduction
	Adding Styles to a Document
	Style Sheet Rule Syntax
	The Cascade and Specificity

	11.1 Assigning Style Sheet Rules to an Element Globally
	Problem
	Solution
	Discussion
	See Also

	11.2 Assigning Style Sheet Rules to a Subgroup of Elements
	Problem
	Solution
	Discussion
	See Also

	11.3 Assigning Style Sheet Rules to an Individual Element
	Problem
	Solution
	Discussion
	See Also

	11.4 Importing External Style Sheets
	Problem
	Solution
	Discussion
	See Also

	11.5 Importing Browser- or Operating System-Specific Style Sheets
	Problem
	Solution
	Discussion
	See Also

	11.6 Changing Imported Style Sheets After Loading
	Problem
	Solution
	Discussion
	See Also

	11.7 Enabling/Disabling Style Sheets
	Problem
	Solution
	Discussion
	See Also

	11.8 Toggling Between Style Sheets for an Element
	Problem
	Solution
	Discussion
	See Also

	11.9 Overriding a Style Sheet Rule
	Problem
	Solution
	Discussion
	See Also

	11.10 Turning Arbitrary Content into a Styled Element
	Problem
	Solution
	Discussion
	See Also

	11.11 Creating Center-Aligned Body Elements
	Problem
	Solution
	Discussion
	See Also

	11.12 Reading Effective Style Sheet Property Values
	Problem
	Solution
	Discussion
	See Also

	11.13 Forcing Recent Browsers into Standards- Compatibility Mode
	Problem
	Solution
	Discussion
	See Also

	Visual Effects for Stationary Content
	12.0 Introduction
	Referencing Element Objects
	Referencing Elements from Events
	Getting to an Element’s Style

	12.1 Precaching Images
	Problem
	Solution
	Discussion
	See Also

	12.2 Swapping Images (Rollovers)
	Problem
	Solution
	Discussion
	See Also

	12.3 Reducing Rollover Image Downloads with JavaScript
	Problem
	Solution
	Discussion
	See Also

	12.4 Reducing Rollover Image Downloads with CSS
	Problem
	Solution
	Discussion
	See Also

	12.5 Dynamically Changing Image Sizes
	Problem
	Solution
	Discussion
	See Also

	12.6 Changing Text Style Properties
	Problem
	Solution
	Discussion
	See Also

	12.7 Offering Body Text Size Choices to Users
	Problem
	Solution
	Discussion
	See Also

	12.8 Creating Custom Link Styles
	Problem
	Solution
	Discussion
	See Also

	12.9 Changing Page Background Colors and Images
	Problem
	Solution
	Discussion
	See Also

	12.10 Hiding and Showing Elements
	Problem
	Solution
	Discussion
	See Also

	12.11 Adjusting Element Transparency
	Problem
	Solution
	Discussion
	See Also

	12.12 Creating Transition Visual Effects
	Problem
	Solution
	Discussion
	See Also

	12.13 Drawing Charts in the Canvas Element
	Problem
	Solution
	Discussion

	Positioning HTML Elements
	13.0 Introduction
	Positioning Scope
	Positioning Types
	Evolving Contexts
	Incompatibility Hazards
	Units of Measure
	The Erstwhile <layer> Tag

	13.1 Making an Element Positionable in the Document Space
	Problem
	Solution
	Discussion
	See Also

	13.2 Connecting a Positioned Element to a Body Element
	Problem
	Solution
	Discussion
	See Also

	13.3 Controlling Positioning via a DHTML JavaScript Library
	Problem
	Solution
	Discussion
	See Also

	13.4 Deciding Between div and span Containers
	Problem
	Solution
	Discussion
	See Also

	13.5 Adjusting Positioned Element Stacking Order (Z-order)
	Problem
	Solution
	Discussion
	See Also

	13.6 Centering an Element on Top of Another Element
	Problem
	Solution
	Discussion
	See Also

	13.7 Centering an Element in a Window or Frame
	Problem
	Solution
	Discussion
	See Also

	13.8 Determining the Location of a Nonpositioned Element
	Problem
	Solution
	Discussion
	See Also

	13.9 Animating Straight-Line Element Paths
	Problem
	Solution
	Discussion
	See Also

	13.10 Animating Circular Element Paths
	Problem
	Solution
	Discussion
	See Also

	13.11 Creating a Draggable Element
	Problem
	Solution
	Discussion
	See Also

	13.12 Scrolling div Content
	Problem
	Solution
	Discussion
	See Also

	13.13 Creating a Custom Scrollbar
	Problem
	Solution
	Discussion
	See Also

	13.14 Creating a Slider Control
	Problem
	Solution
	Discussion
	See Also

	Creating Dynamic Content
	14.0 Introduction
	14.1 Writing Dynamic Content During Page Loading
	Problem
	Solution
	Discussion
	See Also

	14.2 Creating New Page Content Dynamically
	Problem
	Solution
	Discussion
	See Also

	14.3 Including External HTML Content
	Problem
	Solution
	Discussion
	See Also

	14.4 Embedding XML Data
	Problem
	Solution
	Discussion
	See Also

	14.5 Embedding Data As JavaScript Objects
	Problem
	Solution
	Discussion
	See Also

	14.6 Transforming XML Data into HTML Tables
	Problem
	Solution
	Discussion
	See Also

	14.7 Transforming JavaScript Objects into HTML Tables
	Problem
	Solution
	Discussion
	See Also

	14.8 Converting an XML Node Tree to JavaScript Objects
	Problem
	Solution
	Discussion
	See Also

	14.9 Creating a New HTML Element
	Problem
	Solution
	Discussion
	See Also

	14.10 Creating Text Content for a New Element
	Problem
	Solution
	Discussion
	See Also

	14.11 Creating Mixed Element and Text Nodes
	Problem
	Solution
	Discussion
	See Also

	14.12 Inserting and Populating an iframe Element
	Problem
	Solution
	Discussion
	See Also

	14.13 Getting a Reference to an HTML Element Object
	Problem
	Solution
	Discussion
	See Also

	14.14 Referencing All Elements of the Same Class
	Problem
	Solution
	Discussion
	See Also

	14.15 Replacing Portions of Body Content
	Problem
	Solution
	Discussion
	See Also

	14.16 Removing Body Content
	Problem
	Solution
	Discussion
	See Also

	14.17 Using XMLHttpRequest for a REST Request
	Problem
	Solution
	Discussion
	See Also

	14.18 Using XMLHttpRequest for a SOAP Call
	Problem
	Solution
	Discussion
	See Also

	14.19 Sorting Dynamic Tables
	Problem
	Solution
	Discussion
	See Also

	14.20 Walking the Document Node Tree
	Problem
	Solution
	Discussion
	See Also

	14.21 Capturing Document Content
	Problem
	Solution
	Discussion
	See Also

	Dynamic Content Applications
	15.0 Introduction
	15.1 Displaying a Random Aphorism
	Problem
	Solution
	Discussion
	See Also

	15.2 Converting a User Selection into an Arbitrary Element
	Problem
	Solution
	Discussion
	See Also

	15.3 Automating the Search-and-Replace of Body Content
	Problem
	Solution
	Discussion
	See Also

	15.4 Designing a User-Editable Content Page
	Problem
	Solution
	Discussion

	15.5 Creating a Slide Show
	Problem
	Solution
	Discussion
	See Also

	15.6 Auto-Scrolling the Page
	Problem
	Solution
	Discussion
	See Also

	15.7 Greeting Users with Their Time of Day
	Problem
	Solution
	Discussion
	See Also

	15.8 Displaying the Number of Days Before Christmas
	Problem
	Solution
	Discussion
	See Also

	15.9 Displaying a Countdown Timer
	Problem
	Solution
	Discussion
	See Also

	15.10 Creating a Calendar Date Picker
	Problem
	Solution
	Discussion
	See Also

	15.11 Displaying an Animated Progress Bar
	Problem
	Solution
	Discussion
	See Also

	Keyboard Event Character Values
	Keyboard Key Code Values
	ECMAScript Reserved Keywords
	Index

