SECOND EDITION

JavaScript & DHTML Cookbook

Danny Goodman

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

JavaScript and DHTML Cookbook™, Second Edition
by Danny Goodman

Copyright © 2007, 2003 Danny Goodman. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Tatiana Apandi Cover Designer: Karen Montgomery
Production Editor: Laurel R.T. Ruma Interior Designer: David Futato
Proofreader: Audrey Doyle lllustrators: Robert Romano and Jessamyn Read

Indexer: Ellen Troutman Zaig

Printing History:
April 2003: First Edition.
August 2007: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, JavaScript and DHTML Cookbook, the image of
a howler monkey, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN-10: 0-596-51408-5
ISBN-13: 978-0-596-51408-2
[(M]

Preface ...

1. Strings

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13

2. Numbers and Dates

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Table of Contents

Concatenating (Joining) Strings

Improving String Handling Performance

Accessing Substrings

Changing String Case

Testing Equality of Two Strings

Testing String Containment Without Regular Expressions
Testing String Containment with Regular Expressions
Searching and Replacing Substrings

Using Special and Escaped Characters

Reading and Writing Strings for Cookies

Converting Between Unicode Values and String Characters
Encoding and Decoding URL Strings

Encoding and Decoding Base64 Strings

Converting Between Numbers and Strings

Testing a Number’s Validity

Testing Numeric Equality

Rounding Floating-Point Numbers

Formatting Numbers for Text Display

Converting Between Decimal and Hexadecimal Numbers
Generating Pseudorandom Numbers

Calculating Trigonometric Functions

Creating a Date Object

2.10 Calculating a Previous or Future Date 43

2.11 Calculating the Number of Days Between Two Dates 45
2.12 Validating a Date 47
3. ArraysandObjects 51
3.1 Creating a Simple Array 54
3.2 Creating a Multidimensional Array 56
3.3 Converting Between Arrays and Strings 57
3.4 Doing Something with the Items in an Array 59
3.5 Sorting a Simple Array 61
3.6 Combining Arrays 63
3.7 Dividing Arrays 64
3.8 Creating a Custom Object 65
3.9 Simulating a Hash Table for Fast Array Lookup 69
3.10 Doing Something with a Property of an Object 71
3.11 Sorting an Array of Objects 72
3.12 Customizing an Object’s Prototype 74
3.13 Converting Arrays and Custom Objects to Strings 79
3.14 Using Objects to Reduce Naming Conflicts 82
4. Variables, Functions, and Flow Control 85
4.1 Creating a JavaScript Variable 85
4.2 Creating a Named Function 89
4.3 Nesting Named Functions 92
4.4 Creating an Anonymous Function 93
4.5 Delaying a Function Call 94
4.6 Branching Execution Based on Conditions 97
4.7 Handling Script Errors Gracefully 101
4.8 Improving Script Performance 103
5. BrowserFeature Detection..................l 107
5.1 Detecting the Browser Brand 113
5.2 Detecting an Early Browser Version 113
5.3 Detecting the Internet Explorer Version 115
5.4 Detecting the Mozilla Version 116
5.5 Detecting the Safari Version 118
5.6 Detecting the Opera Version 119
5.7 Detecting the Client Operating System 120
5.8 Detecting Object Support 121

vi | Tableof Contents

5.9
5.10
5.11
5.12
5.13
5.14

Detecting Object Property and Method Support
Detecting W3C DOM Standard Support
Detecting the Browser Written Language
Detecting Cookie Availability

Defining Browser- or Feature-Specific Links
Testing on Multiple Browser Versions

6. Managing BrowserWindows

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Living with Browser Window Control Limitations
Setting the Main Window’s Size

Positioning the Main Window

Maximizing the Main Window

Creating a New Window

Bringing a Window to the Front

Communicating with a New Window
Communicating Back to the Main Window

Using Internet Explorer Modal/Modeless Windows
Simulating a Cross-Browser Modal Dialog Window
Simulating a Window with Layers

7. Managing MultipleFrames

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Creating a Blank Frame in a New Frameset
Changing the Content of One Frame from Another
Changing the Content of Multiple Frames at Once
Replacing a Frameset with a Single Page

Avoiding Being “Framed” by Another Site
Ensuring a Page Loads in Its Frameset

Reading a Frame’s Dimensions

Resizing Frames

Setting Frameset Specifications Dynamically

8. DynamicForms

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Auto-Focusing the First Text Field

Performing Common Text Field Validations
Preventing Form Submission upon Validation Failure
Auto-Focusing an Invalid Text Field Entry

Using a Custom Validation Object

Changing a Form’s Action

Blocking Submissions from the Enter Key

124
126
127
128
129
130

135
136
137
138
139
143
144
147
148
151
158

178
179
181
182
183
184
187
188
192

197
198
204
207
208
213
214

Table of Contents

vii

10. Page Navigation Techniques

9. Managing Events

8.8

8.9
8.10
8.11
8.12
8.13
8.14
8.15

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11

Advancing Text Field Focus with the Enter Key
Submitting a Form by an Enter Key Press in Any Text Box
Disabling Form Controls

Hiding and Showing Form Controls

Allowing Only Numbers (or Letters) in a Text Box
Auto-Tabbing for Fixed-Length Text Boxes

Changing select Element Content

Copying Form Data Between Pages

Equalizing the IE and W3C Event Models

Initiating a Process After the Page Loads

Appending Multiple Load Event Handlers

Determining the Coordinates of a Click Event

Preventing an Event from Performing Its Default Behavior
Blocking Duplicate Clicks

Determining Which Element Received an Event
Determining Which Mouse Button Was Pressed

Reading Which Character Key Was Typed

Reading Which Noncharacter Key Was Pressed
Determining Which Modifier Keys Were Pressed During an Event
Determining the Element the Cursor Rolled From/To
Synchronizing Sounds to Events

Loading a New Page or Anchor

Keeping a Page Out of the Browser History
Using a select Element for Navigation
Passing Data Between Pages via Cookies
Passing Data Between Pages via Frames
Passing Data Between Pages via URLs
Creating a Contextual (Right-Click) Menu
Creating Drop-Down Navigation Menus
Providing Navigation Trail Menus
Creating Expandable Menus

Creating Collapsible XML Menus

215
216
217
219
221
223
224
227

236
240
242
244
248
251
252
254
256
257
260
262
266

271
273
274
276
278
280
283
291
305
308
320

viii

Table of Contents

11. ManagingStyleSheets

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13

Assigning Style Sheet Rules to an Element Globally
Assigning Style Sheet Rules to a Subgroup of Elements
Assigning Style Sheet Rules to an Individual Element
Importing External Style Sheets

Importing Browser- or Operating System-Specific Style Sheets
Changing Imported Style Sheets After Loading
Enabling/Disabling Style Sheets

Toggling Between Style Sheets for an Element

Overriding a Style Sheet Rule

Turning Arbitrary Content into a Styled Element

Creating Center-Aligned Body Elements

Reading Effective Style Sheet Property Values

Forcing Recent Browsers into Standards-Compatibility Mode

12. Visual Effects for StationaryContent

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13

Precaching Images

Swapping Images (Rollovers)

Reducing Rollover Image Downloads with JavaScript
Reducing Rollover Image Downloads with CSS
Dynamically Changing Image Sizes

Changing Text Style Properties

Offering Body Text Size Choices to Users
Creating Custom Link Styles

Changing Page Background Colors and Images
Hiding and Showing Elements

Adjusting Element Transparency

Creating Transition Visual Effects

Drawing Charts in the Canvas Element

13. PositioningHTMLElements ..

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Making an Element Positionable in the Document Space
Connecting a Positioned Element to a Body Element
Controlling Positioning via a DHTML JavaScript Library
Deciding Between div and span Containers

Adjusting Positioned Element Stacking Order (Z-order)
Centering an Element on Top of Another Element
Centering an Element in a Window or Frame

333
334
336
337
338
340
341
342
343
344
345
346
348

354
356
358
362
366
367
370
374
375
378
379
381
385

397
398
400
407
409
410
412

Table of Contents

14.

15. Dynamic Content Applications

13.8

13.9
13.10
13.11
13.12
13.13
13.14

Creating Dynamic Content

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18
14.19
14.20
14.21

15.1
15.2
15.3
15.4
15.5
15.6
15.7

Determining the Location of a Nonpositioned Element
Animating Straight-Line Element Paths

Animating Circular Element Paths

Creating a Draggable Element

Scrolling div Content

Creating a Custom Scrollbar

Creating a Slider Control

Writing Dynamic Content During Page Loading
Creating New Page Content Dynamically
Including External HTML Content

Embedding XML Data

Embedding Data As JavaScript Objects
Transforming XML Data into HTML Tables
Transforming JavaScript Objects into HTML Tables
Converting an XML Node Tree to JavaScript Objects
Creating a New HTML Element

Creating Text Content for a New Element
Creating Mixed Element and Text Nodes
Inserting and Populating an iframe Element
Getting a Reference to an HTML Element Object
Referencing All Elements of the Same Class
Replacing Portions of Body Content

Removing Body Content

Using XMLHttpRequest for a REST Request
Using XMLHttpRequest for a SOAP Call

Sorting Dynamic Tables

Walking the Document Node Tree

Capturing Document Content

Displaying a Random Aphorism

Converting a User Selection into an Arbitrary Element
Automating the Search-and-Replace of Body Content
Designing a User-Editable Content Page

Creating a Slide Show

Auto-Scrolling the Page

Greeting Users with Their Time of Day

414
415
419
421
426
432
445

453
454
456
458
460
463
466
469
470
473
474
476
478
480
482
483
485
488
491
494
498

501
504
506
512
515
523
524

X

Table of Contents

15.8 Displaying the Number of Days Before Christmas 525

15.9 Displaying a Countdown Timer 527

15.10 Creating a Calendar Date Picker 534

15.11 Displaying an Animated Progress Bar 542

A. Keyboard Event CharacterValues 548
B. Keyboard KeyCodeValues ... 550
C. ECMAScript Reserved Keywords 552
Index 553
Table of Contents | xi

Preface

It may be difficult to imagine that a technology born as recently as 1995 would have
had enough of a life cycle to experience a rise and fall in popularity, followed now by
an amazing renaissance. Client-side scripting, begun initially with JavaScript embed-
ded in Netscape Navigator 2, has experienced such a roller coaster ride. A number of
early incompatibilities among major browsers caused many a content author’s head
to ache. But we learned to live with it, as a long period of stability in one platform—
Internet Explorer 6, in particular—meant that we could use our well-worn compati-
bility workarounds without cause for concern. Another stabilizing factor was the
W3C DOM Level 2 specification, which remained a major target for browser makers
not following Microsoft’s proprietary ways. Mozilla, Safari, and Opera used the
W3C DOM as the model to implement, even if Microsoft didn’t seem to be in a
hurry to follow suit in all cases.

Two factors have contributed to the rebirth of interest in JavaScript and Dynamic
HTML. The first is the wide proliferation of broadband connections. Implementing
large client-side applications in JavaScript can take a bunch of code, all of which
must be downloaded to the browser. At dial-up speeds, piling a 50-75 kilobyte script
onto a page could seriously degrade perceived performance; at broadband speeds,
nobody notices the difference.

But without a doubt, the major attraction these days is the now widespread availabil-
ity in all mainstream browsers of a technology first implemented by Microsoft: the
XMLHttpRequest object. It’s a mouthful (leading some to refer to it as, simply, XHR),
but it allows background communication between the browser and server so that a
script can request incremental data from the server and update only a portion of a
page. It is far more efficient than downloading a bunch of data with the page and less
visually disruptive than the old submit-and-wait-for-a-new-page process. To help put
a label on the type of applications one can build with this technology, the term Asyn-
chronous JavaScript and XML (Ajax) was coined. In truth, Ajax is simply a catchy
handle for an existing technology.

xiii

Ajax has opened the floodgates for web developers. Perhaps the most popular first
implementation was Google Maps, whereby you could drag your way around a map,
while scripts and the XMLHttpRequest object in the background downloaded adjacent
blocks of the map in anticipation of your dragging your way over there. It was
smooth, fast, and a real joy to use. And now, more powerful applications—word
processors, spreadsheets, email clients—are being built with JavaScript and
DHTML.

JavaScript in the browser was originally designed for small scripts to work on small
client-side tasks. It is still used that way quite a bit around the Web. Not every appli-
cation is a mega DHTML app. Therefore, this collection of recipes still has plenty of
small tasks in mind. At the same time, however, many recipes from the first edition
have been revised with scripting practices that will serve both the beginner and the
more advanced scripter well. Examples prepare you for the eventuality that your
scripting skills will grow, perhaps leading to a mega DHTML app in the future. Even
so, there are plenty of times when you need an answer to that age-old programming
question: “How do I...?”

About You

Client-side scripting and DHTML are such broad and deep subjects that virtually
every reader coming to this book will have different experience levels, expectations,
and perhaps, fears. No book could hope to anticipate every possible question from
someone wishing to use these technologies in his web pages. Therefore, this book
makes some assumptions about readers at various stages of their experience:

* You have at least rudimentary knowledge of client-side JavaScript concepts. You
know how to put scripts into a web page—where <script> tags go, as well as
how to link an external js file into the current page. You also know what vari-
ables, strings, numbers, Booleans, arrays, and objects are—even if you don’t
necessarily remember the precise way they’re used with the JavaScript language.
This book is not a tutorial, but you can learn a lot from reading the introduc-
tions to each chapter and the discussions following each solution.

* You may be a casual scripter, who wants to put a bit of intelligence into a web
page for some project or other. You don’t use the language or object model every
day, so you need a refresher about even some simple things, such as the correct
syntax for creating an array or preloading images for fast image rollover effects.

* While surfing the Web, you may have encountered some scripted DHTML effect
that you’d like to implement or adapt for your own pages, but either you can’t
decipher the code you see or you want to “roll your own” version to avoid copy-
right problems with the code’s original owner. If the effect or technique you’ve
seen is fairly popular, this cookbook probably has a recipe for it. You can use these
recipes as they are or modify them to fit your designs. There are no royalties or

xiv | Preface

copyrights to worry about, as long as you don’t offer these recipes to others as
part of a collection of scripts. Of course, if you wish to acknowledge this book in
your source code comments, that would be great!

* You may be an experienced web developer who has probed gingerly, if at all,
into client-side scripting. The horror stories of yore about browser incompatibili-
ties have kept your focus entirely on server-side programming. But now that so
many mainstream sites are using client-side scripting to improve the user experi-
ence, you are ready to take another look at what is out there.

* At the far end of the spectrum, you may be an experienced client-side DHTML
developer in search of new ideas and techniques. For instance, you may have
developed exclusively for the Internet Explorer browser on the Windows plat-
form, but you wish to gravitate toward standards-compatible syntax for future
coding.

Virtually every reader will find that some recipes in this book are too simple and oth-
ers are too complex for their experience level. I hope the more difficult ones chal-
lenge you to learn more and improve your skills. Even if you think you know it all,
be sure to check the discussions of the easier recipes for tips and insights that may be
new to you.

About the Recipes

It’s helpful for a reader to know upfront what biases an author has on the book’s
subject. To carry the cookbook metaphor too far, just as a culinary chef has identifi-
able procedures and seasonings, so do I format my code in a particular way and
employ programming styles that I have adopted and updated over the years.

More important than scripting style, however, are the implementation threads that
weave their way throughout the code examples. Because these examples may serve as
models for your own development, they are written for maximum clarity to make it
easy (I hope) for you to follow the execution logic. Names assigned to variables,
functions, objects, and the like are meant to convey their purpose within the context
of the example. One of the goals of coding is that the operation of a program should
be self-evident to someone else reading the code, even if that “someone else” is the
programmer who revisits the code six months later to fix a bug or add a feature.
There’s no sense in being cryptically clever if no one can understand what you mean
by assigning some value to a variable named x.

This book unabashedly favors the W3C DOM way of addressing document objects.
You can use this format to reference element objects in browsers starting with
Microsoft Internet Explorer 5 and the other mainstream browsers addressed in this
edition (Mozilla-based browsers, Safari, and Opera 7 or later), which means that the
vast majority of browsers in use today support this standard. Where IE (including

About the Recipes | xv

IE 7) does not support the standard (as in handling events), all recipes here include
efficient cross-browser implementations. You won’t find too much in the way of IE-
only solutions, especially if they would cover only the Windows version of IE.

The long period of browser stability we have enjoyed since the first edition means
that visitors to public sites almost never use what are now antique browsers—IE
prior to 5.5 and Netscape Navigator 4 or earlier. All recipes are optimized for the
current browsers, but they also try to prevent hassles for anyone driving by in her
steam-powered browser.

One credo dominates the recipes throughout this book: scripting must add value to
static content on the page. Don’t look to this book for scripts that cycle background
colors to nauseate visitors or make elements bounce around the page while singing
“Happy Birthday.” You may be able to figure out how to do those horrible things
from what you learn in this book, but that’s your business. The examples here, while
perhaps conservative, are intended to solve real-world problems that scripters and
developers face in professional-quality applications.

The scripting techniques and syntax you see throughout this book are designed for
maximum forward compatibility. It’s difficult to predict the future of any technol-
ogy, but the W3C DOM and ECMAScript standards, as implemented in today’s lat-
est browsers, are the most stable platforms on which to build client-side applications
since client-side scripting began. With a bit of code added here and there to degrade
gracefully in older browsers, your applications should be running fine well into the
future.

What'’s in This Book

The first four chapters focus on fundamental JavaScript topics. In Chapter 1, Strings,
you will see the difference between a string value and a string object. Regular expres-
sions play a big role in string parsing for these recipes. You will also see a reusable
library for reading and writing string data to cookies. Chapter 2, Numbers and Dates,
includes recipes for handling number formatting and conversions, as well as date cal-
culations that get used in later recipes. Perhaps the most important core JavaScript
language chapter is Chapter 3, Arrays and Objects. Recipes in this chapter provide
the keys to one- and multidimensional array creation, array sorting, object creation,
hash table simulation, and exploration of the prototype inheritance powers of
objects. You also see how creating custom objects for your libraries can reduce
potential naming conflicts as projects grow. Chapter 4, Variables, Functions, and
Flow Control, includes a recipe for improving overall script performance.

Chapter 5 through Chapter 8 provide solutions for problems that apply to almost all
scriptable browsers. In Chapter 5, Browser Feature Detection, you will learn how to
free yourself of the dreaded “browser sniffing” habit and use forward-compatible
techniques for determining whether the browser is capable of running a block of

xi | Preface

script statements. If multiple windows are your nemesis, then Chapter 6, Managing
Browser Windows, provides plenty of ideas to handle communication between win-
dows. A few recipes present suggestions for modal windows (or facsimiles thereof).
Not everyone is a frame lover, but Chapter 7, Managing Multiple Frames, may be of
interest to all, especially if you don’t want your site being “framed” by another site.
Intelligent forms—one of the driving forces behind the creation of client-side script-
ing—are the subject of Chapter 8, Dynamic Forms. Updated to modern techniques,
recipes include form validation (with or without regular expressions) and some cool
but subtle techniques found on some of the most popular web sites on the Internet.

Interactivity with the user is driven by event processing, and Chapter 9, Managing
Events, covers the most common event processing tasks you’ll encounter with
DHTML scripting. Events (and one of the libraries shown in Chapter 9) ripple
through most of the remaining chapters’ recipes. That includes many recipes in
Chapter 10, Page Navigation Techniques, where you’ll see how to implement a vari-
ety of menuing designs and pass data from one page to the next. Chapter 11, Manag-
ing Style Sheets, provides recipes for both basic and advanced style sheet techniques
as they apply to dynamic content, including how to load a browser- or operating sys-
tem-specific stylesheet into the page. Style sheets play a big role in Chapter 12, Visual
Effects for Stationary Content, where recipes abound for image rollovers and user-
controlled font sizes, to name a couple.

Chapter 13, Positioning HTML Elements, addresses numerous challenges in keeping
positioned elements under tight rein. A positioning library recipe is used extensively
throughout the rest of the book, including more recipes in this chapter for animating
elements, scrolling content, and creating a draggable element. In Chapter 14, Creat-
ing Dynamic Content, the W3C DOM and XMLHttpRequest object get good workouts
with recipes for tasks such as embedding JavaScript and XML data within a docu-
ment, transforming data into renderable HTML content, and sorting HTML tables
instantly on the client. Additional dynamic content recipes come in Chapter 15,
Dynamic Content Applications, where more complex recipes show you how to use
DHTML for a slide show, a user-editable document, and a pop-up calendar date
picker, among others.

Browser Platforms
Freed from having to worry much about compatibility with very old browsers, the
goal of each recipe’s design in this edition is to work in the following browsers:

* Microsoft Internet Explorer 6 or later

* Motzilla 1.7.5 (Firefox 1.0, Netscape 8.0, Camino 1.0) or later

* Apple Safari 1.2 or later (including the Windows version)

* Opera 7 or later

Browser Platforms | xvii

Many of the simpler scripts in early chapters work in browsers all the way back to
Netscape Navigator 2, but that is hardly the focus here. Occasionally, a recipe may
require a later version of Mozilla, Safari, or Opera, as noted clearly in the recipe. In
those cases, the recipe is designed to prevent script errors from appearing in slightly
older versions of these modern browsers.

You will also see many references in this book to designing pages to convey mission-
critical information for browsers that either aren’t equipped with JavaScript or have
scripting turned off. Beyond the browsers mentioned in the previous list, there are a
lot of users of browsers in portable wireless devices and browsers for users with
vision or motor skill impairments. Always keep accessibility in mind with your
designs.

Conventions Used in This Book

The following typographical conventions are used throughout this book:

Italic
Indicates pathnames, filenames, program names, sample email addresses, and
sample web sites; and new terms where they are defined

Constant width
Indicates any HTML, CSS, or scripting term, including HTML tags, attribute
names, object names, properties, methods, and event handlers; and all HTML
and script code listings

Constant width italic
Indicates method and function parameters or assigned value placeholders that
represent an item to be replaced by a real value in actual use

Constant width bold
Used to draw attention to specific parts of code

A s
g
A
\

L)
N
1S

This icon indicates a warning or caution.
= i:"" s

This icon signifies a tip, suggestion, or general note.

xviii | Preface

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “JavaScript & DHTML Cookbook,
Second Edition, by Danny Goodman. Copyright 2007 Danny Goodman, 978-0-596-
51408-2.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

Request for Comments

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-928-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, downloadable examples, and
any additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596 514082
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, resource centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Request for Comments | xix

Safari® Enabled

= When you see a Safari® Enabled icon on the cover of your favorite tech-
B§°a!°a" nology book, that means the book is available online through the
Trrerss O'Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

The physical act of writing a book—converting thoughts to keystrokes and charac-
ters on the screen—is a solitary one. But once the first draft is submitted, an army of
dedicated professionals join the author in shaping the work into a finished product.
When the army marches under the O’Reilly banner, the author can be assured of a
commitment to quality, even from many individuals whom the author never meets.

I extend my sincere appreciation to my editor, Tatiana Apandi, who magically kept
me on schedule. I also thank Rob Hoexter and Sergio Pereira, who provided invalu-
able contributions to improving the writing and scripting.

Much of the impetus for selecting the recipes for this book has come from the script-
ing public. Having read thousands of online forum threads since 1996, having lis-
tened to readers of my JavaScript and Dynamic HTML books for years, and having
observed search queries that lead visitors to my web site (http:/www.dannyg.com), 1
believe I have distilled the essence of the needs of most client-side scripters. Your
pain, confusion, and frustration with the technologies have not gone unnoticed. 1
hope this book provides the relief and understanding you deserve.

xx | Preface

CHAPTER 1
Strings

1.0 Introduction

A string is one of the fundamental building blocks of data that JavaScript works
with. Any script that touches URLs or user entries in form text boxes works with
strings. Most document object model properties are string values. Data that you read
or write to a browser cookie is a string. Strings are everywhere!

The core JavaScript language has a repertoire of the common string manipulation
properties and methods that you find in most programming languages. You can tear
apart a string character by character if you like, change the case of all letters in the
string, or work with subsections of a string. Most scriptable browsers now in circula-
tion also benefit from the power of regular expressions, which greatly simplify
numerous string manipulation tasks—once you surmount a fairly steep learning
curve of regular expression syntax.

Your scripts will commonly be handed values that are already string data types. For
instance, if you need to inspect the text that a user has entered into a form’s text box,
the value property of that text box object returns a value already typed as a string.
All properties and methods of any string object are immediately available for your
scripts to operate on that text box value.

Creating a String

If you need to create a string, you have a couple of ways to accomplish it. The sim-
plest way is to simply assign a quoted string of characters (known as a string literal)
to a variable (or object property):

var myString = "Fluffy is a pretty cat.";

Quotes around a JavaScript string can be either single or double quotes, but each
pair must be of the same type. Therefore, both of the following statements are
acceptable:

var myString = "Fluffy is a pretty cat.";
var myString = 'Fluffy is a pretty cat.';

But the following mismatched pair is illegal and throws a script error:
var myString = "Fluffy is a pretty cat.';

Having the two sets of quote symbols is handy when you need to embed one string
within another. The following document.write() statement that would execute while
a page loads into the browser has one outer string (the entire string being written by
the method) and nested sets of quotes that surround a string value for an HTML ele-
ment attribute:

document.write("");

You are also free to reverse the order of double and single quotes as your style
demands. Thus, the above statement would be interpreted the same way if it were
written as follows:

document.write('');

Two more levels of nesting are also possible if you use escape characters with the
quote symbols. See Recipe 1.9 for examples of escaped character usage in JavaScript
strings.

If you need to include only one instance of a single or double quote within a string
(e.g., "Welcome to Joe's Diner."), you can do so without special characters. This is
because upon encountering the start of a string, JavaScript treats ensuing characters—
up to the next occurrence of the same quote symbol that starts the string—as part of
the string. Trouble arises, however, when two or more alternate quote symbols are
nested within the string (e.g., "Welcome to Joanne's and Joe's Diner."). In such
cases, you would have to use escaped apostrophes to keep the string together
("Welcome to Joanne\'s and Joe\'s Diner."). Or, you can always use escaped quotes
(even just one) inside a string, and then you won’t have to worry about the balanc-
ing act.

Technically speaking, the strings described so far aren’t precisely string objects in the
purest sense of JavaScript. They are string values, which, as it turns out, lets the
strings use all of the properties and methods of the global String object which inhab-
its every scriptable browser window. Use string values for all of your JavaScript text
manipulation. In a few rare instances, however, a JavaScript string value isn’t quite
good enough. You may encounter this situation if you are using JavaScript to com-
municate with a Java applet, and one of the applet’s public methods requires an
argument as a string data type. In this case, you might need to create a full-fledged
instance of a String object and pass that object as the method argument. To create
such an object, use the constructor function of the String object:

var myString = new String("Fluffy is a pretty cat.");

The data type of the myString variable after this statement executes is object rather
than string. But this object inherits all of the same String object properties and
methods that a string value has, and works fine with a Java applet.

2 | Chapter1: Strings

Regular Expressions

For the uninitiated, regular expressions can be cryptic and confusing. This isn’t the
forum to teach you regular expressions from scratch, but perhaps the recipes in this
chapter that demonstrate them will pique your interest enough to pursue their study.

The purpose of a regular expression is to define a pattern of characters that you can
then use to compare against an existing string. If the string contains characters that
match the pattern, the regular expression tells you what the text is that matches the
pattern and where the match occurs within the string, facilitating further manipula-
tion (perhaps a search-and-replace operation). Regular expression patterns are pow-
erful entities because they let you go much further than simply defining a pattern of
fixed characters. For example, you can define a pattern to be a sequence of five
numerals bounded on each side by whitespace. Another pattern can define the for-
mat for a typical email address, regardless of the length of the username or domain,
but the full domain must include at least one period.

The cryptic part of regular expressions is the notation they use to specify the various
conditions within the pattern. JavaScript regular expressions notation is nearly iden-
tical to regular expressions found in languages such as Perl. The syntax is the same
for all except for some of the more esoteric uses. One definite difference is the way
you create a regular expression object from a pattern. You can use either the formal
constructor function or the more compact literal syntax. The following two syntax
examples create the same regular expression object:

var re = /pattern/ [g | i | m]; // Literal syntax

var re = new Regkxp(["pattern", ["g"| "i" | "m"]11); // Formal constructor

The optional trailing characters (g, i, and m) indicate whether:

g The pattern should be applied globally (i.e., to every instance of the pattern in a
string)

i The pattern is case-insensitive

m Each physical line of the target string is treated as the start of a string

If you have been exposed to regular expressions in the past, Table 1-1 lists the regu-
lar expression pattern notation available in today’s browsers.

Table 1-1. Regular expression notation

Character Matches Example

\b Word boundary /\bto/ matches “tomorrow”
/to\b/ matches “Soweto”
/\bto\b/ matches “to”

\B Word nonboundary /\Bto/ matches “stool” and “Soweto”
/to\B/ matches “stool” and “tomorrow”
/\Bto\B/ matches “stool”

\d Numeral 0 through 9 /\d\d/ matches “42"

Introduction | 3

Table 1-1. Regular expression notation (continued)

Character Matches Example
\D Nonnumeral /\D\D/ matches “to”
\s Single whitespace /under\sdog/ matches “under dog”
\S Single nonwhitespace /under\Sdog/ matches “under-dog”
\w Letter, numeral, or underscore /1\w/ matches “1A"
\W Not a letter, numeral, or underscore /1\W/ matches “1%"
Any character except a newline /. ./ matches “Z3”
[...] Any one of the character set in brackets /3[aeiou]y/ matches “Joy”
["...] Negated character set /3[*eiou]y/ matches “Jay”
* Zero or more times /\d*/ matches ", “5", or “444"
? Zero or one time /\d?/ matches " or “5"
+ One or more times /\d+/ matches “5” or “444"
{n} Exactly n times /\d{2}/ matches “55"
{n,} n or more times /\d{2, }/ matches “555”
{n,m} At least n, at most m times /\d{2,4}/ matches “5555"
" At beginning of a string or line /"Sally/ matches “Sally says...”
$ At end of a string or line /Sally.$/ matches “Hi, Sally.”

See Recipes 1.6 through 1.8, as well as Recipe 8.2, to see how regular expressions can
empower a variety of string examination operations with less overhead than more
traditional string manipulations. For in-depth coverage of regular expressions, see
Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly).

1.1 Concatenating (Joining) Strings

Problem

You want to join together two strings or accumulate one long string from numerous
sequential pieces.

Solution

Within a single statement, use the plus (+) operator to concatenate multiple string
values:

var longString = "One piece " + "plus one more piece.";

To accumulate a string value across multiple statements, use the add-by-value (+=)
operator:

var result =
result += "My name is
result += " and my age is

nn,
>

+ document.myForm.myName.value;
" + document.myForm.myAge.value;

4 | Chapter1: Strings

The add-by-value operator is fully backward-compatible and is more compact than
the less elegant approach:

result = result + "My name is " + document.myForm.myName.value;

Discussion

You can use multiple concatenation operators within a single statement as needed to
assemble your larger string, but you must be cautious about word wrapping of your
source code. Because JavaScript interpreters have a built-in feature that automati-
cally inserts semicolons at the logical ends of source code lines, you cannot simply
break a string with a carriage return character in the source code without putting the
syntactically correct breaks in the code to indicate the continuation of a string value.
For example, the following statement and format triggers a syntax error as the page
loads:

var longString = "One piece "
more piece.";

+ "plus one

The interpreter treats the first line as if it were:

var longString = "One piece " + "plus one;

To the interpreter, this statement contains an unterminated string and invalidates
both this statement and anything coming after it. To break the line correctly, you
must terminate the trailing string, and place a plus operator as the final character of
the physical source code line (do not put a semicolon there because the statement
isn’t finished yet). Also, be sure to start the next line with a quote symbol:

var longString = "One piece " + "plus one " +

"more piece.";
Additionally, whitespace outside of the quoted string is ignored. Thus, if you wish to
format the source code for improved readability, you can even indent the second line
without affecting the content of the string value:

var longString = "One piece " + "plus one " +

"more piece.";
Source code carriage returns do not influence string text. If you want to include a
carriage return in a string, you need to include one of the special escaped characters
(e.g., \n) in the string. For example, to format a string for a confirm dialog box so
that it creates the illusion of two paragraphs, include a pair of the special newline
characters in the string:

var confirmString = "You did not enter a response to the last " +

"question.\n\nSubmit form anyway?";
Note that this kind of newline character is for string text that appears in dialog boxes
or other string-only containers. It is not a newline character for text that is to be ren-
dered as HTML content. For that kind of newline, you must explicitly include a

tag in the string:

var htmlString = "First line of string.
Second line of string.";

1.1 Concatenating (Joining) Strings | 5

See Also

Recipe 1.2 for a technique to improve performance; Recipe 1.9 to see how to include
special control characters (such as a carriage return) in a string value.

1.2 Improving String Handling Performance

Problem

You wish to improve the execution speed of routines manipulating large amounts of
text.

Solution

Use a JavaScript array as a temporary storage device when accumulating large
chunks of text. The push(') method of an array object allows you to assemble indi-
vidual text blocks in the desired order—the method appends to the end of the array.
When it comes time to use the full text (e.g., to assign a large string of HTML code
to the innerHTML property of an element object), use the join() method of the array
object, specifying an empty string as the delimiter character.

Although the technique is intended for large text blocks, the following example uses
small strings to demonstrate the sequence:
var txtArray = new Array();
txtArray.push("<tr>");
txtArray.push("<td>Boston</td><td>24</td><td>10</td><td>Partly Cloudy</td>");
txtArray.push("</tr>");
txtArray.push("<tr>");
txtArray.push("<td>New York</td><td>21</td><td>14</td><td>Snow</td>");
txtArray.push("</tr>");
document.getElementById("weatherTBody").innerHTML = txtArray.join("");
txtArray = null;
The sequence ends by emptying the array so that the browser will free up memory
occupied by the array.

Discussion

String concatenation, especially when it involves either large amounts of text or an
inordinate amount of pieces being stitched together via the add-by-value (+=) opera-
tor, can be a performance hog in browsers. You may never notice the problem if your
strings are not very large, but the signs start to appear when you use standard string
concatenation in repeat loops that assemble huge strings. These situations are excel-
lent candidates for using an array as the temporary string data holder. Scripts typi-
cally execute array manipulation with much better performance than string
manipulation.

6 | Chapter1: Strings

Note that, just as with strings, your code is responsible for handling details, such as
spaces between words in joined text. If spaces are needed, they should go in the text
being pushed onto the end of the array. Alternatively, if a space is needed between
absolutely every string stored in the array, you can specify a space character as the
parameter to the join() method:

var finalString = txtArray.join(" ");

The character you specify as the parameter (if any) is inserted between array items as
they are output as a single string.

Invoking the join() method does not alter the contents of the array. To minimize
the impact on browser memory once the array’s contents are no longer needed, you
should assign null to the array, thus allowing the browser’s garbage collector to do
its job.

1.3 Accessing Substrings

Problem

You want to obtain a copy of a portion of a string.

Solution

Use the substring() method (in all scriptable browsers) to copy a segment starting at
a particular location and ending either at the end of the string (omitting the second
parameter does that) or at a fixed position within the string, counting from the start
of the string:

var myString = "Every good boy does fine.";

var section = myString.substring(o, 10); // section is now "Every good"
Use the slice() method (in IE 4 or later and all modern scriptable browsers) to set
the end position at a point measured from the end of the string, using a negative
value as the second parameter:

var myString = "Every good boy does fine.";

var section = myString.slice(11, -6); // section is now "boy does"
Use the nonstandard, but widely supported, variant called substr() to copy a seg-
ment starting at a particular location for a string length (the second parameter is an
integer representing the length of the substring):

var myString = "Every good boy does fine.";

var section = myString.substr(6, 4); // section is now "good"
If the sum of the two arguments exceeds the length of the string, the method returns
a string from the start point to the end of the string.

1.3 Accessing Substrings | 7

Discussion

Parameters for the ECMA-compatible slice() and substring() methods are num-
bers that indicate the zero-based start and end positions within the string from which
the extract comes. The first parameter, indicating the start position, is required.
When you use two positive integer values for the slice() method arguments (and
the first argument is smaller than the second), you receive the same string value as
the substring() method with the same arguments.

Note that the integer values for substring() and slice() act as though they point to
spaces between characters. Therefore, when a substring() method’s arguments are
set to 0 and 4, it means that the substring starts to the right of the “zeroeth” position
and ends to the left of the fourth position; the length of the string value returned is
four characters, as shown in Figure 1-1.

0123 4567 8 910
Every‘gkkd

su.bstring(o, 4)

Figure 1-1. How substring end points are calculated

If you should supply argument values for the substring() or substr() methods in an
order that causes the first argument to be larger than the second, the JavaScript inter-
preter automatically reverses the order of arguments so that the end pointer value is
always larger than the start pointer. The slice() method isn’t as forgiving and
returns an empty string.

None of the substring methods modifies the original string object or value in any
way. This is why you must capture the returned value in a variable, or apply the
returned value as an argument to some other function or method.

See Also

Recipe 1.7 for testing whether a string contains a substring.

1.4 Changing String Case

Problem

You want to convert a string to all upper- or lowercase letters.

8 | Chapter1: Strings

Solution

Use the two dedicated String object methods, tolLowerCase() and toUpperCase(), for
case changes:

var myString = "New York";

var lcString = myString.tolowerCase();

var ucString = myString.toUpperCase();
Both methods return modified copies of the original string, leaving the original
intact. If you want to replace the value of a variable with a case-converted version of
the original string (and thus eliminate the original string), reassign the results of the
method to the same variable:

myString = myString.tolLowerCase();

Do not, however, redeclare the variable with a var keyword.

Discussion

Because JavaScript strings (like just about everything else in the language) are case-
sensitive, it is common to use case conversion for tasks such as testing the equiva-
lency of a string entered into a text box by a user against a known string in your
code. Because the user might include a variety of case variations in the entry, you
need to guard against unorthodox entries by converting the input text to all upper-
case or all lowercase letters for comparison (see Recipe 1.5).

Another common need for case conversion is preparing user entries for submission
to a database that prefers or requires all uppercase (or all lowercase) letters. You can
accomplish this for a user either at the time of entry or during batch validation prior
to submission. For example, an onchange event handler in a text box can convert the
text to all uppercase letters as follows:

<input type="text" name="firstName" id="firstName" size="20" maxlength="25"
onchange="this.value=this.value.toUpperCase()" />

Simply reassign a converted version of the element’s value to itself.

See Also

Recipe 1.5 for a practical example of case conversion simplifying an important string
task.

1.5 Testing Equality of Two Strings

Problem

You want to compare a user’s text entry against a known string value.

1.5 Testing Equality of Two Strings | 9

Solution

Convert the user input to either all uppercase or all lowercase characters, and then
use the JavaScript equality operator to make the comparison:
if (document.myForm.myTextBox.value.tolLowerCase() == "new york") {
// process correct entry }
By using the results of the case conversion method as one of the operands of the
equality expression, you do not modify the original contents of the text box. (See
Recipe 1.4 if you want to convert the text in the text box to all of one case.)

Discussion

JavaScript has two types of equality operators. The fully backward-compatible, stan-
dard equality operator (==) employs data type conversion in some cases when the
operands on either side are not of the same data type. Consider the following vari-
able assignments:

var stringA = "My dog has fleas.";

var stringB = new String("My dog has fleas.");
These two variables might contain the same series of characters but are different data
types. The first is a string value, while the second is an instance of a String object. If
you place these two values on either side of an equality (==) operator, JavaScript tries
various evaluations of the values to see if there is a coincidence somewhere. In this
case, the two variable values would show to be equal, and the following expression:

stringA == stringB
returns true.

But the other type of equality operator, the strict equality operator (===), performs no
data type conversions. Given the variable definitions above, the following expression
evaluates to false because the two object types differ, even though their payloads are
the same:

stringA === stringB

If the logic of your code requires you to test for the inequality of two strings, you can
use the inequality (!=) and strict inequality (!==) operators. For example, if you want
to process an incorrect entry, the branching flow of your function would be like the
following:

if (document.getElementById("myTextBox").value.toLowerCase() != "new york") {

// process incorrect entry

}
The same data type conversion issues apply to the inequality and strict inequality
operators as to their opposite partners.

Although the equality and inequality operators go to great lengths to find value
matches, you may prefer to assist the process by performing obvious data type

10 | Chapter1: Strings

conversions in advance of the operators. For instance, if you want to see if an entry
to a numeric text box (a string value) is a particular number, you could let the equal-
ity operator perform the conversion for you, as in:

if (document.getElementById("myTextBox").value == someNumericVar) { ... }

Or you could act in advance by converting one of the operands so that both are the
same data type:

if (parseInt(document.getElementById("myTextBox").value) == someNumericVar) { ... }

If you are accustomed to more strongly typed programming languages, you can con-
tinue the practice in JavaScript without penalty, while perhaps boosting your script’s
readability.

See Also

Recipe 2.1 for converting between string and number values; Recipe 3.3 for convert-
ing between strings and arrays; Recipe 3.13 for converting a custom object to a string
value.

1.6 Testing String Containment Without Reqular
Expressions

Problem

You want to know if one string contains another, without using regular expressions.

Solution

Use the JavaScript index0f() string method on the longer string section, passing the
shorter string as an argument. If the shorter string is inside the larger string, the
method returns a zero-based index integer of the start position of the smaller string
within the larger string. If the shorter string is not in the larger string, the method
returns -1.

For logic that needs to branch if the smaller string is not contained by the larger
string, use the following construction:

if (largeString.indexOf(shortString) == -1) {

// process due to missing shortString

}
For logic that needs to branch if the smaller string is contained somewhere within the
larger string, use the following construction:

if (largeString.indexOf(shortString) != -1) {

// process due to found shortString

}

1.6 Testing String Containment Without Regular Expressions | 11

In either case, you are not interested in the precise position of the short string but
simply whether it is anywhere within the large string.

Discussion

You may also find the integer returned by the index0f() method to be useful in a
variety of situations. For example, an event handler function that gets invoked by all
kinds of elements in the event-propagation (bubbling) chain wants to process events
that come only from elements whose IDs begin with a particular sequence of charac-
ters. This is an excellent spot to look for the returned value of zero, pointing to the
start of the larger string:
function handleClick(evt) {
var evt = (evt) ? evt : ((window.event) ? window.event : null);
if (evt) {
var elem = (evt.target) ? evt.target : ((evt.srcElement) ?
evt.srcElement : null);

if (elem && elem.id.indexOf("menuImg") == 0) {
// process events from elements whose IDs begin with "menuImg"

}
}

Be aware that if the larger string contains multiple instances of the shorter string, the
index0f() method returns a pointer only to the first instance. If you're looking to
count the number of instances, you can take advantage of the index0f() method’s
optional second parameter, which specifies the starting position for the search. A
compact repeat loop can count up the instances quickly:
function countInstances(mainStr, srchStr) {
var count = 0;
var offset = 0;
do {
offset = mainStr.indexOf(srchStr, offset);
count += (offset != -1) 2 1 : 0;
} while (offset++ != -1)
return count

}
Counting instances is much easier, however, using regular expressions (see Recipe
1.7). Although many factors can influence performance, for the task of testing only
for string containment, the index0f() approach is typically faster than using a regu-
lar expression.

See Also

Recipe 1.7 for using regular expressions to test string containment.

12 | Chapter1: Strings

1.7 Testing String Containment with Regular
Expressions

Problem

You want to use regular expressions to know whether one string contains another.

Solution

Create a regular expression with the short string (or pattern) and the global (g) modi-
fier. Then pass that regular expression as a parameter to the match() method of a
string value or object:

var re = /a string literal/g;

var result = longString.match(re);
When a global modifier is attached to the regular expression pattern, the match()
method returns an array if one or more matches are found in the longer string. If
there are no matches, the method returns null.

Discussion

To work this regular expression mechanism into a practical function, you need some
helpful surrounding code. If the string you are looking for is in the form of a string
variable, you can’t use the literal syntax for creating a regular expression as just
shown. Instead, use the constructor function:

var shortStr = "Framistan 2000";

var re = new RegExp(shortStr, "g");
var result = longString.match(re);
After you have called the match() method, you can inspect the contents of the array
value returned by the method:
if (result) {
alert("Found " + result.length +

} else {
alert("Sorry, no matches.");
}

When matches exist, the array returned by match() contains the found strings. When
you use a fixed string as the regular expression pattern, these returned values are
redundant. That’s why it’s safe in the previous example to pull the first returned
value from the array for display in the alert dialog box. But if you use a regular
expression pattern involving the symbols of the regular expression language, each of
the returned strings could be quite different, but equally valid because they adhere to
the pattern.

instances of the text: " + result[o0]);

1.7 Testing String Containment with Regular Expressions | 13

As long as you specify the g modifier for the regular expression, you may get multi-
ple matches (instead of just the first). The length of the array indicates the number of
matches found in the longer string. For a simple containment test, you can omit the g
modifier; as long as there is a match, the returned value will be an array of length 1.

See Also

“Regular Expressions” in the introduction to this chapter; Recipe 8.2 for using regu-
lar expressions in form field validations.

1.8 Searching and Replacing Substrings

Problem

You want to perform a global search-and-replace operation on a text string.

Solution

The most efficient way is to use a regular expression with the replace() method of
the String object:

var re = /a string literal/g;

var result = mainString.replace(re, replacementString);
Invoking the replace() method on a string does not change the source (original)
string. Capture the changed string returned by the method, and apply the result
where needed in your scripts or page. If no replacements are made, the original string
is returned by the method. Be sure to specify the g modifier for the regular expres-
sion to force the replace() method to operate globally on the original string; other-
wise, only the first instance is replaced.

Discussion

To work this regular expression mechanism into a practical function, you need some
helpful surrounding code. If the string you are looking for is in the form of a string
variable, you can’t use the literal syntax for creating a regular expression as just
shown. Instead, use the constructor function:

var searchStr = "F2K";

var replaceStr = "Framistan 2000";

var re = new RegExp(searchStr , "g");

var result = longString.replace(re, replaceStr);
In working with a text-based form control or an element’s text node, you can per-
form the replace() operation on the value of the existing text, and immediately
assign the results back to the original container. For example, if a div element con-
tains one text node with scattered place holders in the form of (ph), and the job of
the replace() method is to insert a user’s entry from a text box (called myName), the
sequence is as follows:

14 | Chapter1: Strings

var searchStr = "\\(ph\\)";

var re = new RegExp(searchStr, "g");

var replaceStr = document.getElementById("myName").value;

var div = document.getElementById("boilerplate");

div.firstChild.nodeValue = div.firstChild.nodeValue.replace(re, replaceStr);
The double backslashes are needed to escape the escape character before the paren-
theses characters, which are otherwise meaningful symbols in the regular expression
pattern language.

It is also possible to implement a search-and-replace feature without regular expres-
sions, but it’s a cumbersome exercise. The technique involves substantial text pars-
ing using the index0f() method to find the starting location of text to be replaced.
You need to copy preceding text into a variable and strip away that text from the
original string; keep repeating this find-strip-accumulate tactic until the entire string
is accounted for, and you have inserted the replacement string in place of each found
search string. This was necessary in the early browsers, but the far more convenient
and efficient regular expressions are implemented in almost all scriptable browsers
that are now in use.

See Also

“Regular Expressions” in the introduction to this chapter; Recipe 14.15 for addi-
tional body text replacement techniques in modern browsers.

1.9 Using Special and Escaped Characters

Problem

You want to add low-order ASCII characters (tab, carriage return, etc.) to a string.

Solution

Use the escape sequences shown in Table 1-2 to represent the desired character. For
example, to include a quotation mark inside a literal string, use \", as in:

var msg = "Today's secret word is \"thesaurus.\"";

Discussion

The core JavaScript language includes a feature common to most programming lan-
guages that lets you designate special characters. A special character is not one of the
plain alphanumeric characters or punctuation symbols, but has a particular meaning
with respect to whitespace in text. Common characters used these days include the
tab, newline, and carriage return.

A special character begins with a backslash, followed by the character representing the
code, such as \t for tab and \n for newline. The backslash is called an escape character,

1.9 Using Special and Escaped Characters | 15

instructing the interpreter to treat the next character as a special character. To
include these characters in a string, include the backslash and special character inside
the quoted string:
var confirmString = "You did not enter a response to the last " +
"question.\n\nSubmit form anyway?";
If you want to use one of these symbols between variables that contain string values,
be sure the special character is quoted in the concatenation statement:

var myStr = lineTextl + "\n" + lineText2;

Special characters can be used to influence formatting of text in basic dialog boxes
(from the alert(), confirm(), and prompt() methods of the window object) and
textarea form controls. Table 1-2 shows the recognized escaped characters and their
meanings.

Table 1-2. String escape sequences

Escape sequence Description

\b Backspace

\t Horizontal tab (ASCII 9)

\n Line feed (newline, ASCII 10)
\v Vertical tab

\f Form feed

\r Carriage return (ASCII 13)

\" Double quote

\' Single quote

\\ Backslash

Note that to include a visible backslash character in a string, you must use a double
backslash because a single one is treated as the invisible escape character. Use the
escaped quote symbols to include single or double quotes inside a string.

While you can use an escaped character in tests for the existence of, say, line feed
characters in a string, you have to exercise some care when doing so with the con-
tent of a textarea element. The problem accrues from a variety of implementations
of how user-entered carriage returns are coded in the textarea’s content. IE for Win-
dows and Opera (all platforms) inserts two escaped characters (\r\n in that
sequence) whenever a user presses the Enter key to make a newline in a textarea.
Other browsers, including Mozilla and Safari, have settled on a single \n character.
This variety in character combinations makes searches for user-typed line breaks dif-
ficult to perform accurately across browsers and operating systems.

Going the other way—creating a string for script insertion into a textarea value—is
easier because modern browsers accommodate all symbols. Therefore, if you assign
just \n or the combination \r\n, all browsers interpret any one of them as a carriage
return, and convert the escape character(s) to match their internal handling.

16 | Chapter1: Strings

See Also

Recipe 1.1 for tips on concatenating strings—tips that apply equally to escaped
string characters.

1.10 Reading and Writing Strings for Cookies

Problem

You want to use cookies to preserve string data from one page visit to the next.

Solution

Use the cookies.js library shown in the Discussion as a utility for saving and retriev-
ing cookies in modern browsers. To set a cookie via the library, invoke the
setCookie() function, passing, at a minimum, the cookie’s name and string value as
arguments:

setCookie("userID", document.entryForm.username.value);
To retrieve a cookie’s value, invoke the library’s getCookie() function, as in:

var user = getCookie("userID");

Discussion

Example 1-1 shows the code for the entire cookies.js library.

Example 1-1. cookies.js library

// utility function to retrieve an expiration date in proper
// format; pass three integer parameters for the number of days, hours,
// and minutes from now you want the cookie to expire (or negative
// values for a past date); all three parameters are required,
// so use zeros where appropriate
function getExpDate(days, hours, minutes) {
var expDate = new Date();
if (typeof days == "number" 88 typeof hours == "number" &%
typeof minutes == "number") {
expDate.setDate(expDate.getDate() + parseInt(days));
expDate.setHours (expDate.getHours() + parseInt(hours));
expDate.setMinutes(expDate.getMinutes() + parseInt(minutes));
return expDate.toUTCString();

}

// utility function called by getCookie()
function getCookieval(offset) {
var endstr = document.cookie.indexOf (";", offset);
if (endstr == -1) {
endstr = document.cookie.length;
}

1.10 Reading and Writing Strings for Cookies | 17

Example 1-1. cookies.js library (continued)

return decodeURI(document.cookie.substring(offset, endstr));

}

// primary function to retrieve cookie by name
function getCookie(name) {
var arg = name + "=";
var alen = arg.length;
var clen = document.cookie.length;
var i = 0;
while (i < clen) {
var j = i + alen;
if (document.cookie.substring(i, j) == arg) {
return getCookieVal(j);
}
i = document.cookie.index0f(
if (1 == 0) break;

, 1) + 15

} nn

return "";

}

// store cookie value with optional details as needed
function setCookie(name, value, expires, path, domain, secure) {
document.cookie = name + "=" + encodeURI(value) +
((expires) ? "; expires=" + expires : "") +

ath) ? "; path=" + path : "") +
P p p

((domain) ? "; domain=" + domain : "") +
((secure) ? "; secure" : "");

}

// remove the cookie by setting ancient expiration date
function deleteCookie(name,path,domain) {
if (getCookie(name)) {
document.cookie = name + +
((path) ? "; path=" + path : "") +
((domain) ? "; domain=" + domain : "") +
"; expires=Thu, 01-Jan-70 00:00:01 GMT";

}

The library begins with a utility function (getExpDate()) that your scripts use to
assist in setting an expiration date for the cookie. A second utility function
(getCookieVal()) is invoked internally during the reading of a cookie.

Use the getCookie() function in your scripts to read the value of a named cookie pre-
viously saved. The name you pass to the function is a string. If no cookie by that
name exists in the browser’s cookie filing system, the function returns an empty

string.

To save a cookie, invoke the setCookie() function. The first two parameters (the
cookie’s name and the value to be preserved on the client) are required. If you intend
the cookie to last beyond the user quitting the browser, be sure to set an expiration

18 | Chapter1: Strings

date as the third parameter. Filter the expiration time period through the
getExpDate() function shown earlier so that the third parameter of setCookie() is in
the correct format.

One last function, deleteCookie(), lets you delete an existing cookie before its expi-
ration date. The function is hardwired to set the expiration date to the start of the
JavaScript date epoch.

Load the library into your page in the head portion of the document:
<script src="cookies.js"></script>

All cookie values you save must be string values; all cookie values you retrieve are
string values. Strings, however, can contain characters that upset their storage and
proper retrieval later on. To compensate for this issue, the cookies.js library uses the
global encodeURI() and decodeURI() methods to handle conversions. These methods
improve on (and supercede) the old escape() and unescape() methods.

A browser cookie is the only way to preserve a string value on the client between vis-
its to your web site. Scripts on your page may read only cookies that were saved from
your domain and server. If you have multiple servers in your domain, you can set the
fifth parameter of setCookie() to share cookies between servers at the same domain.

Browsers typically limit capacity to 20 name/value pairs of cookies per server; a
cookie should be no more than 4,000 characters, but more practically, the value of
an individual named cookie should be less than 2,000 characters. In other words,
cookies are not meant to act as high-volume data storage facilities on the client. Also,
browsers automatically send domain-specific cookie data to the server as part of each
page request. Keep the amount of data small to limit the impact on dial-up users.

When you save a cookie, the name/value pair resides in the browser’s memory. The
data, if set to expire sometime in the future, is written to the cookie filesystem only
when the browser quits. Therefore, don’t be alarmed if you don’t see your latest
entry in the cookie file while the browser is still running. Different browsers save
their cookies differently (and in different places in each operating system). IE stores
each domain’s cookies in its own text file, whereas Mozilla gangs all cookies together
in a single text file.

All of this cookie action is made possible through the document.cookie property. The
purpose of the cookies.js library is to act as a friendlier interface between your scripts
and the document.cookie property, which isn’t as helpful as it could be in extracting
cookie information. Although you can save a cookie with several parameters, only
the value of a cookie is available for reading—not the expiration date, path, or
domain details.

Cookies are commonly used to preserve user preference settings between visits. A
script near the top of the page reads the cookie to see if it exists, and, if so, applies
settings to various content or layout attributes while the rest of the page loads. Rec-
ipe 12.7 shows how this can work to let users select a relative font size and preserve

1.10 Reading and Writing Strings for Cookies | 19

the settings between visits. For example, the function that preserves the user’s font
size choice saves the value to a cookie named fontSize, which is set to expire in 180
days if not updated before then:

setCookie("fontSize", styleID, getExpDate(180, 0, 0));
The next time the user visits, the cookie is read while the page loads:
var styleCookie = getCookie("fontSize");

With the information from the cookie, the script applies the previously selected style
sheet to the page. If the cookie was not previously set, the script assigns a default
style sheet to use in the interim.

Just because cookies can store only strings, don’t let that get in the way of preserving
information normally stored in arrays or custom objects. See Recipe 3.12 and Recipe
8.14 for ways to convert more complex data types to strings for preservation, and
then restore their original form after retrieval from the cookie on the next visit.

See Also

Recipe 10.4 for passing data between pages via cookies; Recipe 12.7 for an example
of using cookies to preserve a user’s style preference; Recipe 3.12 and Recipe 8.14 for
ways of converting arrays and objects to cookie string values; Recipe 3.14 for a way
to reduce the global “footprint” of this library.

1.11 Converting Between Unicode Values and String
Characters

Problem

You want to obtain the Unicode code number for an alphanumeric character or vice
versa.

Solution

To obtain the Unicode value of a character of a string, use the charCodeAt() method
of the string value. A single parameter is an integer pointing to the zero-based posi-
tion of the character within the string:

var code = myString.charCodeAt(3);

If the string consists of only one character, use the 0 argument to get the code for
that one character:

var oneChar = myString.substring(12, 13);
var code = oneChar.charCodeAt(0);

The returned value is an integer.

20 | Chapter1: Strings

To convert a Unicode code number to a character, use the fromCharCode() method of
the static String object:

var char = String.fromCharCode(66);

Unlike most string methods, this one must be invoked only from the String object
and not from a string value.

Discussion

ASCII values and Unicode values are the same for the basic Latin alphanumeric
(low-ASCII) values. But even though Unicode encompasses characters from many
written languages around the world, do not expect to see characters from other
writing systems displayed in alert boxes, text boxes, or rendered pages simply
because you know the Unicode values for those characters; the browser and operat-
ing system must be equipped for the language encompassed by the characters. If the
character sets are not available, the characters generated by such codes will be ques-
tion marks or other symbols. A typical North American computer won’t know how
to produce a Chinese character on the screen unless the target writing system and
font sets are installed for the OS and browser.

See Also

Recipe 1.3 for other ways to extract single-character substrings.

1.12 Encoding and Decoding URL Strings

Problem

You want to convert a string of plain text to a format suitable for use as a URL or
URL search string, or vice versa.

Solution

To convert a string consisting of an entire URL to a URL-encoded form, use the
encodeURI() global method, passing the string needing conversion as an argument.
For example:

document.myForm.action = encodeURI(myString);

If you are assembling content for values of search string name/value pairs, apply the
encodeURIComponent() global method:

var srchString = "?name=" + encodeURIComponent(myString);

Both methods have complementary partners that perform conversions in the oppo-
site direction:

decodeURI(encodedURIString)
decodeURIComponent (encodedURIComponentString)

1.12 Encoding and Decoding URL Strings | 21

In all cases, the original string is not altered when passed as an argument to these
methods. Capture the results from the value returned by the methods.

Discussion

Although the escape() and unescape() methods have been available since the first
scriptable browsers, they have been deprecated in the formal language specification
(ECMA-262) in favor of a set of new methods. The new methods are available in IE
5.5 or later and other modern browsers.

These new encoding methods work by slightly different rules than the old escape()
and unescape() methods. As a result, you must encode and decode using the same
pairs of methods at all times. In other words, if a URL is encoded with encodeURI(),
the resulting string can be decoded only with decodeURI().

The method names use “URI” (Universal Resource Identifier). A URI is an all-
encompassing reference to obtain any network-accessible item (document, object,
etc.). A URL (Universal Resource Locator) is a type of URI that includes both a net-
work location for the item, as well as an indication of the access mechanism (e.g.,
http:). That the method names adopt the more general URI nomenclature is not
unusual. For most client-side web authoring in HTML, CSS, and JavaScript, the
terms URI and URL are interchangeable.

The differences between encodeURI() and encodeURIComponent() are defined by the
range of characters that the methods convert to the URI-friendly form of a percent
sign (%) followed by the hexadecimal Unicode value of the symbol (e.g., a space
becomes %20). Regular alphanumeric characters are not converted, but when it
comes to punctuation and special characters, the two methods diverge in their cover-
age. The encodeURI() method converts the following symbols from the characters in
the ASCII range of 32 through 126:

space " % < > [N1 ~ " { | }

For example, if you are assembling a URL with a simple search string on the end,
pass the URL through encodeURI() before navigating to the URL to make sure the
URL is well formed:

var newURL = "http://www.megacorp.com?prod=Gizmo Deluxe";

location.href = encodeURI(newURL);

// encoded URL is: http://www.megacorp.com?prod=Gizmo%20Deluxe
In contrast, the encodeURIComponent() method encodes far more characters that
might find their way into value strings of forms or script-generated search strings.
Encodable characters unique to encodeURIComponent() are shown in bold:

space " # $ % & + , / : ; < => v @ [N1~ { |}

You may recognize some of the encodeURIComponent() values as those frequently
appearing within complex URLs, especially the ?, &, and = symbols. For this reason,

22 | Chapter1: Strings

you want to apply the encodeURIComponent() only to values of name/value pairs
before those values are inserted or appended to a URL. But then it gets dangerous to
pass the composite URL through encodeURI() again because the % symbols of the
encoded characters will, themselves, be encoded, probably causing problems on the
server end when parsing the input from the client.

If, for backward-compatibility reasons, you need to use the escape() method, be
aware that this method uses a heavy hand in choosing characters to encode. Encod-
able characters for the escape() method are as follows:

space '\ " # ¢ % & (), ;< =>2@0 [N1~ {0y~

The @ symbol, however, is not converted in Internet Explorer browsers via the
escape() method.

You can see now why it is important to use the matching decoding method if you
need to return one of your encoded strings back into plain language. If the encoded
string you are trying to decode comes from an external source (e.g., part of a URL
search string returned by the server), try to use the decodeURIComponent() method on
only those parts of the search string that are the value portion of a name/value pair.
That’s typically where the heart of your passed information is, as well as where you
want to obtain the most correct conversion.

See Also

Recipe 10.6 for passing data to another page via URLs, during which value encoding
is used.

1.13 Encoding and Decoding Base64 Strings

Problem

You want to convert a string to or from Base64 encoding.

Solution

Use the functions of the base64.js library shown in the Discussion. Syntax for invok-
ing the two functions is straightforward. To encode a string, invoke:

var encodedString = baseb4Encode("stringToEncode");
To decode a string, invoke:

var plainString = base64Decode("encodedString");

Discussion

Example 1-2 shows the entire base64.js library.

1.13 Encoding and Decoding Base64 Strings | 23

Example 1-2. base64.js library

// Global lookup arrays for base64 conversions
var encb4list, dec6b4list;

// Load the lookup arrays once
function initBase64() {
encbalist = new Array();
decb4list = new Array();
var i;
for (i =0; i< 26; i++) {
encb4list[encb4list.length] = String.fromCharCode(65 + i);
}

for (i =0; i< 26; i++) {
encb4list[encb4list.length] = String.fromCharCode(97 + i);
}

for (i = 0; i< 10; i++) {
encb4list[encb4list.length] = String.fromCharCode(48 + i);
}

encbalist[enc64list.length] = "+";
encb4list[enc64List.length]
for (i = 0; 1< 128; i++) {

dec64list[dec64list.length] = -1;
}

for (1 =0; 1< 64; i++) {
decb4list[enco4list[i].charCodeAt(0)] = i;
}

[
~
\-.—

}

// Encode a string
function base64Encode(str) {
var ¢, d, e, end = 0;
var u, v, W, X;
var ptr = -1;
var input = str.split("");
var output = "";
while(end == 0) {
c = (typeof input[++ptr] != "undefined") ? input[ptr].charCodeAt(0) :

((end = 1) 2 0 : 0);

d = (typeof input[++ptr] != "undefined") ? input[ptr].charCodeAt(0) :
((end += 1) 2 0 : 0);

e = (typeof input[++ptr] != "undefined") ? input[ptr].charCodeAt(0) :
((end += 1) 2 0 : 0);

u = encé4list[c >> 2];

v = encb4List[(0x00000003 & c) << 4 | d >> 4];

w = encb4List[(0x0000000F & d) << 2 | e >> 6];

X = encb4list[e & 0x0000003F];

// handle padding to even out unevenly divisible string lengths
if (end >= 1) {x = "=";}
if (end == 2) {w = "=";}
if (end < 3) {output += u + v + w + Xx;}
}
// format for 76-character line lengths per RFC

24 | Chapter1: Strings

Example 1-2. base64.js library (continued)

var formattedOutput = "";

var linelength = 76;

while (output.length > lineLength) {
formattedOutput += output.substring(o, linelength) + "\n";
output = output.substring(linelLength);

}

formattedOutput += output;

return formattedOutput;

}

// Decode a string
function base64Decode(str) {
var c=0, d=0, e=0, f=0, i=0, n=0;
var input = str.split("");
var output = "";
var ptr = 0;
do {
f = input[ptr++].charCodeAt(0);
i = dec64list[f];
if (f>=08% f<1288%1i!=-1) {

c=1<2;
}else if (n% 4 ==1) {
c=c| (i»4);
d = (1 & 0X0000000F) << 4;
}else if (n% 4 ==2) {
d=d | (i>2);
e = (i & 0x00000003) << 6;
} else {
e=¢e | i;
}
n++;

if(n%4==0){
output += String.fromCharCode(c) +
String.fromCharCode(d) +
String.fromCharCode(e);
}

} while (typeof input[ptr] != "undefined");

output += (n % 4 == 3) ? String.fromCharCode(c) + String.fromCharCode(d) :
((n % 4 == 2) ? String.fromCharCode(c) : "");

return output;

}

// Self-initialize the global variables
initBase64();

The library begins with two global declarations and an initialization function that
creates lookup tables for the character conversions. At the end of the library is a
statement that invokes the initialization function.

1.13 Encoding and Decoding Base64 Strings | 25

Scripts may call the base64Encode() function directly to convert a standard string to a
Base64-encoded string. The value of the original string is not changed, but the func-
tion returns an encoded copy. To convert an encoded string to a standard string, use
the base64Decode() function, passing the encoded string as an argument.

All Mozilla-based browsers include global methods that perform the same conver-
sions shown at length in the solution. The atob() method converts a Base64-
encoded string to a plain string; the btoa() method converts a plain string to a
Base64-encoded string. These methods are not part of the ECMAScript standard
used as the foundation for these browser versions, so it’s unclear when or if they will
find their way into other browsers.

Frankly, there hasn’t been a big need for Base64 encoding in most scripted web
pages, but that’s perhaps because the facilities weren’t readily available. A Base64-
encoded string contains a very small character set: a—z, A~Z, 0-9, +, /, and =. This low
common denominator scheme allows data of any type to be conveyed by virtually
any Internet protocol. Binary attachments to your email are encoded as Base64
strings for their journey en route. Your email client decodes the simple string and
generates the image, document, or executable file that arrives with the message. You
may find additional ways to apply Base64-encoded data in your pages and scripts. To
learn more about Base64 encoding, visit http://www.ietf.org/rfc/rfc2045.txt.

See Also
Recipe 1.12 for URL-encoding techniques.

26 | Chapter1: Strings

CHAPTER 2
Numbers and Dates

2.0 Introduction

Designers of friendly scripting languages might have nonprogrammers in mind when
they first define the scope of their languages, but it’s difficult for any such language
to be taken seriously by professional programmers unless some of the nerdy basics
are there. Math may be anathema to scripters not schooled in computer science, but
even an accessible language such as JavaScript has a solid complement of features to
accommodate the kinds of arithmetic, trigonometric, and other operations typically
supported by a programming language. Date manipulation—also numerically inten-
sive, as it turns out—is well supported in JavaScript as well. This chapter includes
recipes for both of these areas.

JavaScript Numbers

For most scripters, the interior details about how JavaScript treats numbers is of lit-
tle importance. In fact, the more you know about programming languages and differ-
ent types of numbers, the more you need to forget in order to use JavaScript
numbers. Unlike other languages, JavaScript has only one kind of number data type.
All integers and floating-point values are represented by the same data type in Java-
Script: number.

Internally, a JavaScript number is an IEEE double-precision 64-bit value. JavaScript
provides a usable range of number values from 2.2E-208 to 1.79E+308 (boundary
values obtainable by the static Number object properties Number .MIN_VALUE and Number.
MAX_VALUE, respectively). JavaScript treats numbers beyond these limits as infinity,
represented by Number.NEGATIVE INFINITY and Number.POSITIVE INFINITY. It is
unlikely that you will ever refer to these four properties in your scripts, but the lan-
guage has them for the sake of completeness.

Number values do not carry any formatting with them. If a value needs places to the
right of the decimal to signify a fractional part of an integer, those places are there.
But if a variable that once held a number with 10 digits to the right of the decimal is

27

modified through an arithmetic operation to become an integer, the decimal and
zeros to the right of the decimal disappear.

As with JavaScript strings (see Chapter 1), numbers are most commonly values (of
data type number), but may also be created as more formal objects through the Number
object constructor. Therefore, both of the following statements produce a piece of
data that evaluates to the same number:

var myNum = 55;

var myNum = new Number(55);
But if you examine the data types of the two objects (via the typeof operator), the
first is number and the second is object. A number value inherits the properties and
methods of the Number object, many of which are discussed in this chapter.

The Math Object

Available in every JavaScript context is a static Math object that provides a standard
set of math constants and methods for working with numbers and trigonometry. At
no time do your scripts create an instance of the Math object. It is simply “there” as a
resource for your scripts to use as needed.

Table 2-1 shows the properties of the Math object. All of them are well-known con-
stants in math circles. You can use these constants within JavaScript expressions. For
example, to calculate the circumference of a circle (times the diameter) whose
diameter measure is in a variable d, the statement is:

var circumference = d * Math.PI;

Table 2-1. Math object properties (constants)

Property Description

E Euler’s constant (2.718281828459045)

LN2 Natural logarithm of 2 (0.6931471805599453)

LN10 Natural logarithm of 10 (2.302585092994046)

LOG2E Log base-2 of Euler’s constant (1.4426950408889634)
LOG10E Log base-10 of Euler’s constant (0.4342944819032518)
PI 70 (3.141592653589793)

SORTZ_2 Square root of 1/2 (0.7071067811865476)

SORT2 Square root of 2 (1.4142135623730951)

The long list of Math object methods is located in Table 2-2. Many of them support
trigonometric operations, some of which can come into play for path animation
with positioned elements. Others provide math services that are useful from time to
time, such as taking a number to a power, rounding, and getting the minimum or
maximum of a pair of number values. As with most JavaScript methods, the values
passed as arguments to the methods are not altered in any way. Capture the results
in a variable.

28 | Chapter2: Numbersand Dates

Table 2-2. Math object methods

Method Description

abs (number) Returns the absolute value of number

acos (number) Returns the arc cosine (in radians from +0 to 7t) of number (from -1to +1)

asin(number) Returns the arc sine (in radians from -7t/2 to +1t/2) of number (from -1to +1)

atan(number) Returns the arc tangent (in radians from -7t/2 to +/2) of number (between
NEGATIVE _INFINITY and POSITIVE INFINITY)

atan2(y, x) Returns the arc tangent (in radians from -7t to +7t) of the quotient y/x

ceil(number) Returns the next higher integer that is greater than or equal to number

cos (number) Returns the cosine (in radians) of number (also in radians between
NEGATIVE_INFINITY and POSITIVE_INFINITY)

exp (humber) Returns Euler’s constant raised to the number power

floor (number) Returns the next lower integer that is less than or equal to number

log(number) Returns the natural logarithm (base e) of number

max(number1, number2)
min(number1, number2)

pow(number1, number2)

Returns the greater value of number1 or number2
Returns the lesser value of number1 or number2

Returns the value of numbex1 raised to the number2 power

random() Returns a pseudorandom number between 0 and 1
round (number) Returns an integer of number+1if number is greater than or equal to number +0.5;
otherwise, returns integer of number
sin(number) Returns the sine (in radians) of number (also in radians)
sqrt(number) Returns the square root of number
tan(number) Returns the tangent (in radians) of number (also in radians)
Dates and Times

Since the very beginning of the JavaScript language, one of its most powerful objects
has been the Date object. It is a global object in that every window (or frame) has a
static Date object sitting in the background, ready to be invoked at any time. With
only a couple of exceptions, the way you work with dates is to create an instance of
the Date object via the constructor function for this object:

var myDate = new Date();

Creating an instance of the Date object (which I call a date object—with a lowercase
d) is like taking a snapshot of an instant in time. A date object contains information
about the date and time, down to the millisecond, but it is not a ticking clock. Even
so, you can use the myriad functions associated with every date object to read indi-
vidual components of the date and time (year, month, day, hour, and so on). A par-
allel set of methods let you set the date and/or time of that date object instance.
That’s one way you can perform some date or time arithmetic, as shown in Recipes
2.10and 2.11.

Introduction | 29

Be aware that the date object operates solely on the client computer in which the
page is loaded. There is no connection with the server clock or its timekeeping abili-
ties. This means that your date and time calculations are entirely at the mercy of the
accuracy (and proper setting) of the client computer’s internal clock. Not only must
the date and time be reasonably accurate, but the time zone setting is critical. If the
user is located in California, but the computer’s time zone settings are for New York,
the computer will be thinking strictly in New York time. This could disturb some
date and time calculations, as shown in Recipe 15.9.

If a script is concerned with the “ticking clock,” the script must periodically create a
new date object instance to get the latest snapshot of the clock—and then perhaps
compare it against some known deadline. Again, the discussion in Recipe 15.9 shows
how to do this.

Working with dates in JavaScript can be rather puzzling at times. Perhaps the most
difficult concept to comprehend is when you create a date object (either for the
present or for some other date and time), the object instance stores its value as an
integer representing the number of milliseconds from the start of January 1, 1970.
More importantly, the point of reference for all date values is Coordinated Universal
Time (UTC), which is essentially the same as Greenwich Mean Time (GMT). What
makes this hard to understand is that when you create a date object instance and ask
to view its value, the JavaScript interpreter automatically returns the computer’s
local date and time for that object, even though the GMT value is stored. For exam-
ple, if you create a date object on a computer running in New York City at 10:00 P.M.
on Friday night, the date object preserves that date and time in GMT, or (during
standard time months) five hours later than the time in New York (3:00 A.M. on Sat-
urday). But if you ask to view the value of the date object (say, in an alert dialog
box), the value reports itself to be 10:00 P.M. on Friday.

For the most part, this discrepancy between a date object’s internal calculation and
external display is of no consequence. Since all of your date objects behave the same
way, calculations such as the amount of time separating two date objects yield the
same results. You need to worry about this GMT offset business only when your cal-
culations involve times in two different time zones. See Recipe 15.9 for an example of
how to account for time zone offsets.

Look to recipes in this chapter for examples of how to perform date calculations; see
Chapter 15’s recipes for additional practical applications in dynamic pages. The Date
object is a powerful beast that, once tamed, can enliven the personalization features
and dynamic aspects of your pages.

30 | Chapter2: Numbersand Dates

2.1 Converting Between Numbers and Strings

Problem

You want to change a number data type to a string data type, or vice versa.

Solution

To convert a number value to a string value, use the toString() method of a num-
ber value:

var numAsStringValue = numValue.toString();

You can also create an instance of a String object by passing the number as an argu-
ment to the String object constructor:

var numAsStringObject = new String(numValue);

To convert a string to a number, use the parseInt() global method if the desired
result is an integer only, or the parseFloat() global method if the number could be
or is definitely a floating-point number:

var intValue = parseInt(numAsString, 10);

var floatValue = parseFloat(numAsString);
If you use parseFloat() and the number passed as an argument is an integer, the
result will also be formatted as an integer, without a decimal and trailing zero. Both
the parseInt() and parseFloat() functions work with all scriptable browser versions.

Discussion

In many cases, the JavaScript interpreter tries to cast values between number and
string data types automatically. For example, if you multiply a number times a string
version of the number, the string is automatically converted to a number value, and
the operation succeeds. This kind of casting doesn’t always work, however. For
instance, the addition (+) operator plays two roles in JavaScript: adding numbers and
concatenating strings. When you place this operator between a number and a num-
ber that is actually a string value, the string wins the battle, and the two numbers
get concatenated together as a string. Thus, the expression 2 + "2" equals "22" in
JavaScript.

Most commonly, you need to convert a string to a numeric value when you perform
math operations on values entered by the user in form text boxes. The value prop-
erty of any text field supplies the data as a string value. To add values from two text
boxes to fill a third requires converting each operand to a number before doing the
math. Then you can assign the resulting number value to the value property of the

2.1 Converting Between Numbers and Strings | 31

third text box, where the number automatically converts to a string value because
that’s the only data type acceptable in a text box. For example:

var vall = parseFloat(document.getElementById("firstNum").value);

var val2 = parseFloat(document.getElementById("secondNum").value);

var result = vall + val2;

document.getElementById("sum").value = result;
Unlike most other programming languages, JavaScript does not differentiate numeric
data types by the kind of number. A number is a number, whether it happens to be
an integer or a floating-point number. The distinction made by the two number pars-
ing methods is that even if the source string contains a number with a decimal point
and digits to the right of the decimal, only the integer portion is returned from
parseInt(). This behavior comes in handy when the source string starts with a num-
ber but has additional string characters following it. For example, the navigator.
appVersion property returns a string similar to the following:

4.0 (compatible; MSIE 6.0; Windows 98; 0312461)

If you want to get the integer that starts this string, you can apply the parseInt()
method:

var mainVer = parselnt(navigator.appVersion, 10);

Similarly, if the string starts with a floating-point number (say, 4.2), you could use
parseFloat() to get a numeric copy of just the leading number. In other words, both
methods try to grab as much of their kinds of numbers as they can from the front of
the string. When they encounter a nonnumeric value, the copying stops, and they
return whatever number has been collected up to that point.

It’s a good idea to specify the optional second parameter to parseInt() as a 10, signi-
fying that you want the value treated as a base-10 value. If you don’t, and the string
begins with a zero and either an 8 or a 9, the string number is treated as an octal value
(whose allowable digits are 0 through 7), and the 8 and 9 digits are treated as nonnu-
meric. The parseFloat() method always returns a base-10 value (see Recipe 2.6).

As for converting a number to a string, an old trick from the earliest days of Java-
Script still works. It’s simply an extrapolation of the behavior just explained that
forces the addition operator to give priority to string concatenation over numeric
addition. If you “add” an empty string to a number value, the result of the operation
is a string version of that number:

var numAsString = numval +

nn,
)

The syntax isn’t particularly elegant, but it is compact and fully backward-compatible.
If you see this construction in some old code, now you know where it comes from.

See Also

Recipe 2.6 for converting between different number bases.

32 | Chapter2: Numbersand Dates

2.2 Testing a Number’s Validity

Problem

You want to be sure a value is a number before performing a math operation on it.

Solution

If the value you’re testing can come from any kind of source, the safest bet is to use
the typeof operator on the value. Applying this operator to any numeric value evalu-
ates to the string number. Therefore, using it in a conditional expression looks like
this:

if (typeof someVal == "number") {
// OK, operate on the value numerically
}

But some JavaScript methods, such as parseInt() and parseFloat(), return a special
value, NaN (“Not a Number”), signifying that they were unable to derive the number
you desired. Operations expecting numeric operands or arguments that encounter
values evaluating to NaN also generally return NaN. To test for this condition, use the
isNaN() method, which returns true if the value is not a number. For example:

var myVal = parseInt(document.getElementById("myAge").value);

if (isNaN(myval)) {

alert("Please check the Age text box entry.");

} else {
// OK, operate on the value numerically
}

Discussion

Don’t get the wrong impression about the isNaN() method from the second example
just shown. It is not a suitable approach to validating numeric input to a text box.
That’s because the parseInt() and parseFloat() methods return the first numbers
(if any) they encounter in the string value passed as an argument. If someone enters
32G into a text box intended for an age, the parseInt() method pulls off the 32 por-
tion, but the full value of the text box is not valid for your database that expects a
strictly numeric value for that field. See Recipe 8.2 for more robust ways of validat-
ing numeric text entries.

You don’t have to perform validity testing on absolutely every value about to
undergo a math operation. Most values in your scripts tend to be under strict con-
trol of the programmer, allowing data-typing kinks to be worked out before the
script is put into production. You need to exercise care, however, whenever user
input enters the equation.

2.2 Testinga Number's Validity | 33

Look to the NaN value as a debugging aid. If some calculation is failing, use alert dia-
log boxes or debuggers to show the values of the operands and components. Any
value that reports itself to be NaN means that it has problems at its source that need
fixing before your calculation can even get started.

As a point of trivia, the NaN value is, believe it or not, a number data type, and is also
a property of the static Number object.

See Also

Recipe 8.2 for numeric data entry validation in a form.

2.3 Testing Numeric Equality

Problem

You want to know whether two numeric values are equal (or not equal) before con-
tinuing processing.

Solution

Use the standard equality operator (==) in a conditional statement:

if (firstNum == secondNum) {
// OK, the number values are equal
}
Values on either side of the equality operator may be variables or numeric literals.
Typical practice places the suspect value to the left of the operator, and the fixed
comparison on the right.

Discussion

JavaScript has two types of equality operators. The fully backward-compatible, stan-
dard equality operator (==) employs automatic data type conversion in some cases
when the operands on either side are not of the same data type. Consider the follow-
ing variable assignments:

var numA = 45;

var numB = new Number(45);
These two variables might contain the same numeric value, but they are different
data types. The first is a number value, while the second is an instance of a Number
object. If you place these two values on either side of an equality (==) operator, Java-
Script tries various evaluations of the values to see if there is a coincidence some-
where. In this case, the two variable values would show to be equal, and the
following expression:

numA == numB

returns true.

34 | Chapter2: Numbersand Dates

But the other type of equality operator, the strict equality operator (===), performs no
data type conversions. Given the variable definitions above, the following expression
evaluates to false because the two object types differ, even though their payloads are
the same:

numA === numB

If one equality operand is an integer and the other is the same integer expressed as a
floating-point number (such as 4 and 4.00), both kinds of equality operators find
their values and data types to be equal. A number is a number in JavaScript.

If the logic of your code requires you to test for the inequality of two numbers, you
can use the inequality (!=) and strict inequality (!==) operators. For example, if you
want to process an entry for a special value, the branching flow of your function
would be like the following:

if (parseInt(document.getElementById("myTextBox").value) != 0) {
// process entry for non-zero values

}

The same issues about data type conversion apply to the inequality and strict ine-
quality operators as to their opposite partners.
See Also

Recipe 2.1 for converting between number and string value types.

2.4 Rounding Floating-Point Numbers

Problem

You want to round a floating-point value to the nearest whole number.

Solution

Use the Math.round() method on the value:
var roundedVal = Math.round(floatingPointValue);

The operation does not disturb the original value. Capture the rounded result in a
variable.

Discussion

The Math.round() method uses the following algorithm: any floating-point value that
is greater than or equal to x.5 is rounded up to x+1; otherwise, the returned value is x.

JavaScript’s Math object contains some other useful methods for trimming floating-
point numbers of their fractional parts. Math.floor() and Math.ceil() return the next
lowest and next highest integer values, respectively. For example, Math.floor(3.25)

2.4 Rounding Floating-Point Numbers | 35

returns 3, while Math.ceil(3.25) returns 4. With negative values, the rules still apply,
but the results seem backward at first glance: Math.floor(-3.25) returns the next
lowest integer, -4; Math.ceil(-3.25) returns -3. For positive values, you can use the
Math.floor() method as a substitute for what some other languages treat as obtain-
ing the integer part of a number.

Anytime a floating-point number evaluates to a number equal to an integer value, the
decimal and digits to the right of the decimal go away. A variable can hold a floating-
point number in one statement and be modified to an integer in the next. This drives
some programmers crazy because they were indoctrinated by other languages to treat
each type of number as a different data type.

See Also

“The Math Object” in the introduction to this chapter.

2.5 Formatting Numbers for Text Display

Problem

You want to display the results of numeric calculations with a fixed number of digits
to the right of the decimal.

Solution

Two global methods of the JavaScript language (and ECMA standard) simplify the
display of numbers with a specific number of digits. These methods are imple-
mented in IE 5.5 or later for Windows and other modern browsers (Mozilla, Safari,
and Opera). To obtain a string containing a number with digits to the right of the
decimal, use the toFixed() method, as in the following;:

document.getElementById("total").value = someNumber.toFixed(2);

The argument to the toFixed() method is the number of digits to the right of the
decimal. Even if the number is an integer, the resulting string has a decimal and two
zeros to the right of the decimal.

To obtain a string containing a number with a total fixed number of digits, use the
toPrecision() method, as in the following:

document.getElementById("rate").value = someNumber.toPrecision(5);

The argument to the toPrecision() method is the total number of digits in the
returned string value, including digits to the left and right of the decimal (the deci-
mal is not counted). If the original value has fewer digits than the method argument
calls for, the result is padded with zeros to the right of the decimal; an argument
smaller than the number of integer digits yields a value in scientific notation. Here
are some examples:

36 | Chapter2: Numbersand Dates

var num = 123.45;

preciseNum = num.toPrecision(7); // preciseNum is now 123.4500
preciseNum = num.toPrecision(4); // preciseNum is now 123.5
preciseNum = num.toPrecision(3); // preciseNum is now 123
preciseNum = num.toPrecision(2); // preciseNum is now 1.2e+2

For older browsers, number formatting is a more cumbersome process, but one that
can be encapsulated in the formatNumber() utility function shown in the Discussion.
Invoke the function by passing either a number or string that can be cast to a num-
ber and an integer signifying the number of places to the right of the decimal for the
returned string:

document.myForm.total.value = formatNumber(someNumber, 2);

The result from this function is a string intended for display on the page, not further
calculation. The string can conceivably contain an error message, but you can mod-
ify the function to change how errors are reported.

Discussion

In the now rare case that you need number formatting for browsers such as IE 5 or
Netscape 4, you can use the formatNumber() reusable utility function shown in
Example 2-1. It also works in the newest browsers.

Example 2-1. formatNumber() function for text display of numbers

function formatNumber (num, decplaces) {
// convert in case it arrives as a string value
num = parseFloat(num);
// make sure it passes conversion
if (!isNaN(num)) {
// multiply value by 10 to the decplaces power;
// round the result to the nearest integer;
// convert the result to a string
var str = "" + Math.round (eval(num) * Math.pow(10,decplaces));
// exponent means value is too big or small for this routine
if (str.index0f("e") != -1) {
return "Out of Range";
}
// if needed for small values, pad zeros
// to the left of the number
while (str.length <= decplaces) {
str = "0" + str;
}

// calculate decimal point position

var decpoint = str.length - decplaces;

// assemble final result from: (a) the string up to the position of

// the decimal point; (b) the decimal point; and (c) the balance

// of the string. Return finished product.

return str.substring(o,decpoint) + "." + str.substring(decpoint,str.length);
} else {

return "NaN";
}

2.5 Formatting Numbers for Text Display | 37

When you use the newer built-in methods (toFixed() and toPrecision()) to set the
number format, you should be aware of the way truncated numbers are rounded. All
rounding is based on the value of the next digit to the right of the last visible digit in
the returned string. For example, if you format the number 1.2349 to two digits to
the right of the decimal, the returned value is 1.23 because the next digit to the right
of the 3 is a 4.

It should be clear that none of the methods or functions shown in this recipe operate
in the same way that more sophisticated number formatting in other programs work.
There is nothing about adding commas for large numbers or a leading currency sym-
bol. Such extras need to be handled through your own scripts.

Inserting commas for displaying large numbers can be accomplished easily on the
integer portion of a number through regular expressions. Here is a simple function
that inserts commas in the appropriate places, regardless of the size of the number
(in plain, nonscientific notation, that is):

function formatCommas(numString) {
// extract decimal and digits to right (if any)
var re = /\.\d{1,}/;
var frac = (re.test(numString)) ? re.exec(numString) :
// divide integer portion into three-digit groups
var int = parseInt(numString,10).toString();
re = /(-2\d+)(\d{3})/;
while (re.test(int)) {
int = int.replace(re, "$1,$2");
}

return int + frac;

o,
1

}

This function accepts as a parameter a string version of any integer or floating-point
value.

While on the subject of commas, it’s not unusual for users to enter large numbers
with commas, but the database or other backend processing does not allow commas
in numbers. If that’s the case, you can use a form’s submit event handler to modify
the value of a text box that contains commas and strip those commas before sub-
mitting the form. It can all take place during the client-side batch validation of the
form. The function to remove commas also uses regular expressions, and looks like
the following:
function stripCommas(numString) {
var re = /,/g;
return numString.replace(re,"");
}
One final point about number formatting involves a comparatively new JavaScript
method of the Number object called tolLocaleString(), invoked as:

var formattedString = myNumber.tolocaleString();

38 | Chapter2: Numbersand Dates

The formal ECMAScript specification does not recommend any particular format-
ting for this method because it is largely dependent on how the browser maker
wishes to align formatting with localized customs. For now, only Internet Explorer
(at least for the U.S. version) does anything special when invoking this method on a
number value. All numbers are formatted to two places to the right of the decimal
(dollars and cents without any currency symbol). IE for Windows also inserts com-
mas for large numbers. While Mozilla, Safari, and Opera support this method, they
perform no additional formatting for numbers.

Bear in mind that other parts of the world use different symbols where North Ameri-
cans use commas and decimals. For example, in Europe, it’s not uncommon to find
commas and periods used in the opposite manner, so that the number 20,000.50
would be displayed as 20.000,50. If your audience uses that system, you could mod-
ify the functions above to work within that system. The most deeply nested state-
ment of the formatCommas () function would be:

numString = numString.replace(re, "$1.$2");
and the first statement of the stripCommas() function would be:
var re = /\./g;

You’d also probably want to change the names of both functions to formatPeriods()
and stripPeriods(), respectively. This is just the kind of cultural variation that the
tolocaleString() method was intended to solve. Now it is up to the browser mak-
ers to agree on an implementation that works across the board.

See Also

Recipe 8.3 for using the submit event handler to trigger batch validation and other
last-instant tasks on a form prior to submission.

2.6 Converting Between Decimal and Hexadecimal
Numbers

Problem

You want to change a decimal number to its hexadecimal equivalent, and vice versa.

Solution

The core JavaScript language provides facilities for going from hexadecimal to deci-
mal and back again, but through two separate mechanisms.

To get a hexadecimal number as a string into its decimal equivalent, use the
parseInt() method and specify the second parameter as 16:

var decimalVal = parseInt(myHexNumberValue, 16);

2.6 Converting Between Decimal and Hexadecimal Numbers | 39

For myHexNumberValue, you can use either the hexadecimal characters for the num-
ber, or the format required for hexadecimal arithmetic in JavaScript: the hexadeci-
mal characters preceded by 0x or 0X (a zero followed by an X). Here are some
examples with string literals in the two formats:

var decimalVal = parseInt("1f", 16);

var decimalval = parseInt("oxif", 16);
To convert a decimal number to a hexadecimal string equivalent, use the toString()
method of the Number object, specifying base 16 as the argument:

var hexVal = (255).toString(16) // result = "ff"

Because JavaScript automatically converts hexadecimal numbers to their decimal
equivalents for arithmetic operations, the hexadecimal conversion is needed only for
display of a hexadecimal result.

Discussion

Hexadecimal arithmetic isn’t used much in JavaScript, but the language provides
rudimentary support for base 16 numbers. As long as you signify a hexadecimal
number value with the leading 0x, you can perform regular arithmetic on that value
to your heart’s content. But be aware that the results of those operations are returned
in base 10, which allows the odd possibility of using hexadecimal and decimal val-
ues in the same expression:

var result = Oxff - 200;

Hexadecimal digits a through f may be expressed in your choice of upper- or lower-
case letters.

The parseInt() method is frequently a handy tool for getting values in other bases
into decimal. For example, you obtain a decimal equivalent of a binary number
string by specifying base 2 as the second argument of the method:

var decimalval = parselnt("11010011", 2);

Converting in the other direction (from decimal to other bases) is aided by the
toString() method that you can apply to any number value (not string values). This
works not only for hexadecimal values, as shown earlier, but for octal (base 8) and
binary (base 2) values as well:

var decimalVal = parseFloat(document.getElementById("textBox").value);
var binaryVal = decimalVal.toString(2);

See Also

Recipe 2.1 for converting between number and string value types.

40 | Chapter2: Numbersand Dates

2.7 Generating Pseudorandom Numbers

Problem

You want to generate a random number.

Solution

The Math.random() method returns a pseudorandom number between 0 and 1. To
calculate a pseudorandom integer value within a range starting with zero, use the
formula:

var result = Math.floor(Math.random() * (n + 1));

where n is the highest acceptable integer of the range. To calculate a pseudorandom
integer number within a range starting at a number other than zero, use the formula:

var result = Math.floor(Math.random() * (n - m + 1)) + m;
where m is the lowest acceptable integer of the range, and n is the highest acceptable
integer of the range.

Discussion

The previous examples focus on random integers, such as the kind you might use for
values of a game cube (a die with numbers from 1 through 6). But you can remove
the Math.floor() call to let the rest of the expression create random numbers with
decimal fractions if you need them.

JavaScript’s random number generator does not provide a mechanism for adjusting
the seed to ensure more genuine randomness. Thus, at best you can treat it as a pseu-
dorandom number generator.

See Also

“The Math Object” in the introduction to this chapter.

2.8 (alculating Trigonometric Functions

Problem

You want to invoke a variety of trigonometric functions, perhaps for calculating ani-
mation paths of a positioned element.

Solution

JavaScript’s Math object comes with a typical complement of functions for trigono-
metric calculations. Each one requires one or two arguments and returns a result in

2.8 Calculating Trigonometric Functions | 41

radians. Arguments representing angles must also be expressed in radians. The fol-
lowing statement assigns the sine of a value to a variable:

var sineValue = Math.sin(radiansInput);

All Math object methods must be invoked as methods of the static Math object, as
shown above.

Discussion

See the introduction to this chapter for a summary of all Math object methods and
constants. You can see an application of trigonometric functions in Recipe 13.10,
which calculates the circular path for a positioned element to follow on the page.

See Also

“The Math Object” in the introduction to this chapter; Recipe 13.10 where some
trigonometric operations help calculate points around a circular path.

2.9 C(reating a Date Object

Problem

You want to create an instance of a Date object to use for date calculations or display.

Solution

Use the Date object constructor method with any of the acceptable arguments signi-
fying a date (and, optionally, a time for that date):

var myDate = new Date(yyyy, mm, dd, hh, mm, ss);

var myDate = new Date(yyyy, mm, dd);

var myDate = new Date("monthName dd, yyyy hh:mm:ss");

var myDate = new Date("monthName dd, yyyy");

var myDate = new Date(epochMilliseconds);
With all of these constructions, you can generate a date object for any point in his-
tory (reliably back to approximately 100 A.D.) or the future (thousands of millennia
hence). When you create a date object without specifying the time, all time values
are automatically set to zero—the very start of that day.

To create a date object with the current date and time, omit all arguments:
var now = new Date();

The accuracy of the value assigned by the Date object constructor is entirely depen-
dent upon the accuracy of the client computer’s internal clock and control panel set-
tings. Correct setting of the computer’s local time zone and daylight saving time
option is essential to accurate date and time calculations based on the current date.

42 | Chapter2: Numbersand Dates

Discussion

Notice that the arguments for the Date object constructor—as specified in the
ECMAScript standard—have no variation that readily accepts shortcut ways of
entering dates (such as mm/dd/yyyy, or the numerous variations used around the
world). Instead, numerical entries need to be broken into the component parts to be
passed as discrete arguments for the constructor. If you need to generate a date
object from user entries in a text box (or, better still, a series of three text boxes),
you can pass the value properties of those text boxes directly as arguments of the
constructor:
var dateEntry = new Date(document.getElementById("year").value,
document.getElementById("month").value,
document.getElementById("date").value);
This is one of those many places where the JavaScript engine automatically attempts
to cast a string value to the required number value.

Despite the lack of ECMA standard support for entry in formats such as mm/dd/yyyy
or mm-dd-yyyy, browsers support them. Therefore, you can get away with supplying
one of those formats to a constructor method, but remember that the sequence is
assured to work only in browsers and operating systems whose date formats support
that sequence. A North American browser, for instance, will misinterpret dates for-
matted as dd/mm/yyyy, which is a very common format outside North America.

It’s important to remember that all of this date object creation and manipulation
occurs strictly on the client. A client-side date object has no connection with the
server’s clock or time zone. At best, a server can timestamp a page as it leaves the
server, but that has nothing to do with a date object on the client. Any attempt at
synchronizing a client-side date object with the server clock is doomed due to latency
between the serving of the page and the rendering in the client.

See Also

Recipes 2.10 and 2.11 for date calculations; Recipe 2.12 for using regular expres-
sions to validate date entries in a form; Recipes 15.8 and 15.9 for applications of a
date object in showing how much time is left before a future event.

2.10 CQalculating a Previous or Future Date

Problem

You want to obtain a date based on a specific number of days before or after a
known date.

2.10 Calculating a Previous or Future Date | 43

Solution

The basic technique is to create a date object with a known date, and then add or
subtract any number of units from that known date. After that, you can read the
components of the modified date object to obtain the string or numerical representa-
tion of the date.

For example, we’ll calculate the date that is 10 days from the current date. After cre-
ating a date object for now, a statement reads the date component (a calendar date
within the month) and then sets the date value ahead by 10 days:

var myDate = new Date();

myDate.setDate(myDate.getDate() + 10);
At this point, the myDate object contains the future date in milliseconds, irrespective
of months, dates, and years. But if you then read myDate’s string version (or locale
string), you see the future date correctly calculated:

document.myForm.deadline.value = myDate.tolocaleDateString();

Discussion

You can move the date forward or back by any increment you like, even when it
doesn’t seem logical. For example, if a date object is currently pointing to the 25th of
a month, you can get the date 10 days in the future by adding 10 to the date:

myDate.setDate(myDate.getDate() + 10);

Even though 25 plus 10 is 35, the date object corrects for the number of days in the
object’s month, and calculates the correct date in the following month, 10 days after
the 25th.

By keeping its internal workings strictly at the millisecond level, a date object can
easily adapt itself to month and year boundaries. Details about the month, date, and
year are calculated internally and returned only upon request. For example, you add
10 days to the 25th of June (which has 30 days), you arrive at the 5th of July; but add
10 days to the 25th of July (which has 31 days), and you reach the 4th of August.
The JavaScript interpreter takes care of all such irregularities for you.

A date object has numerous functions for getting and setting components of the date,
ranging from the millisecond to the year. Table 2-3 shows the most common meth-
ods and their value ranges.

Table 2-3. Date methods

Read Write Values Description

getTime() setTime(val) 0-... Number of milliseconds since 1Jan1970 at
00:00:00 UTC

getSeconds () setSeconds (val) 0-59 Number of seconds after the minute stored in the
object

44 | Chapter2: Numbersand Dates

Table 2-3. Date methods (continued)

Read Write Values Description

getMinutes() setMinutes(val) 0-59 Number of minutes after the hour stored in the
object

getHours () setHours(val) 0-23 Number of hours in the date stored in the object

getDay() setDay(val) 0-6 Day of the week (Sunday = 0, Monday = 1, etc.)

getDate() setDate(val) 1-31 Date number

getMonth() setMonth(val) 0-1 Month in the object’s year (January = 0)

getFullYear() setFullYear(val) 1970-... Four-digit year

All of these methods deal with time in the client computer’s local time zone. If you
need to work on a more global scale, see Recipe 15.9.

See Also

Recipe 2.9 for creating a date object; Recipe 2.11 for calculating the number of days
between two dates; Recipes 15.7, 15.8, and 15.9 for more date applications.

2.11 (alculating the Number of Days Between Two
Dates

Problem

You want to find out how many days come between two known dates.

Solution

Use the daysBetween() function shown in the Discussion to obtain an integer signify-
ing the number of whole days between two dates that are passed as parameters to the
function. For example:

var projectlength = 0;
// validate form entries with checkDate() function from Recipe 2.12
var startField = document.getElementById("startDate");
var endField = document.getElementById("endDate");
if (checkDate(startField) && checkDate(endField)) {
var startDate = new Date(startField.value);
var endDate = new Date(endField.value);
projectLength = daysBetween(startDate, endDate);

if (projectLength > 0) {
alert("You\'ve specified " + projectlLength + " days for this project.");
}

2.1 Calculating the Number of Days Between Two Dates | 45

Discussion

Example 2-2 shows the daysBetween() utility function. The function’s two argu-
ments are date objects.

Example 2-2. daysBetween() function for calculating days between dates

function daysBetween(date1, date2) {
var DSTAdjust = 0;
// constants used for our calculations below
oneMinute = 1000 * 60;
var oneDay = oneMinute * 60 * 24;
// equalize times in case date objects have them
date1.setHours(0);
datel.setMinutes(0);
datel.setSeconds(0);
date2.setHours(0);
date2.setMinutes(0);
date2.setSeconds(0);
// take care of spans across Daylight Saving Time changes
if (date2 > date1) {
DSTAdjust =
(date2.getTimezoneOffset() - datel.getTimezoneOffset()) * oneMinute;
} else {
DSTAdjust =
(datel.getTimezoneOffset() - date2.getTimezoneOffset()) * oneMinute;

var diff = Math.abs(date2.getTime() - datel.getTime()) - DSTAdjust;
return Math.ceil(diff/oneDay);
}

The calculation is based on the number of milliseconds between the two dates.
Because it is possible that one or both of the arguments’ date objects could have been
created with times (as happens when invoking the Date() constructor method with-
out parameters), the function sets the times of both objects to zero.

You probably noticed the code in the daysBetween() function that revolves around
the DSTAdjust variable. This adjustment is needed when the span of time between the
two dates includes a local time change—known as Daylight Saving Time in North
America, and Summer Time in many other parts of the world.

While every day has a fixed number of milliseconds (as far as JavaScript is con-
cerned), the days in which the time changes occur can have an artificial measure of
23 or 25 hours. When the function sets the hours, minutes, and seconds of the date
objects to zero, the values are assigned to the local time of the client computer. Con-
sider what happens during the change back to standard time, when the day with the
change lasts for 25 hours. If that day is a Sunday, and you want to count the number
of days between Friday and Monday, the total number of milliseconds between those
two days will have one hour’s worth of extra milliseconds in the total difference
between the two dates. Without adjusting for this extra hour, the daysBetween()

46 | Chapter2: Numbersand Dates

function returns an integer showing one more day than is actually there (by taking
the ceiling of the result of dividing the total number of elapsed milliseconds by the
number of milliseconds in one day).

It’s almost magic that the date management mechanism of the JavaScript interpreter
(working in concert with the operating system) knows that for a given locale (as
determined by the operating system), the offset from GMT is one measure during
Daylight Saving Time and another measure during standard time. It is that intelli-
gent offset measure that the daysBetween() function uses to determine the amount of
adjustment to make to the calculation (and is not affected by legislated changes to
Daylight Saving Time start and end dates). For a date span that does not cross one of
these boundary cases, the value of DSTAdjust is zero; but during those breaks, the
variable holds the number of minutes difference between the two dates (the
getTimezoneOffset() method returns a value in minutes).

See Also

Recipe 15.8 for a dynamic display of the number of shopping days until Christmas;
Recipe 15.9 for a dynamic countdown timer.

2.12 Validating a Date

Problem

You want to validate a date entered by the user in a form.

Solution

Use the checkDate() function shown in the Discussion. This function takes a text
input element as its sole argument and expects the user to enter a date value in either
mm/dd/yyyy or mm-dd-yyyy format. For example, the following validation function
could be triggered from a change event handler of a date entry form field:
function validateDate(fld) {
if (!checkDate(fld)) {

// focus if validation fails

fld.focus();

fld.select();

}
}

Discussion

Before you undertake validating a date entry, you must clearly understand your
assumptions about the users, the purpose of the entry, and what you want to report
back to the users for invalid entries. It’s comparatively easy to test whether a field
expecting a date in the mm/dd/yyyy format has numbers in the right places, but that

2.12 ValidatingaDate | 47

typically is not good enough. After all, you don’t want someone to get away with
entering the 45th of June into a date field.

The checkDate() validation function in Example 2-3 assumes that users will enter
dates in either mm/dd/yyyy or mm-dd-yyyy formats (in that order only), and that the
validation must test for the entry of a true date. There is no boundary checking here,
so practically any year is accepted. As a form-validation function, this one takes a ref-
erence to the text input element as the sole argument. Upon successful validation,
the function returns true; otherwise, the user receives an alert message with some
level of detail about the error, and the function returns false.

Example 2-3. Basic date validation function

function checkDate(f1ld) {
var mo, day, yr;
var entry = fld.value;
var re = /\b\d{1,2}[\/-]\d{1,2}[\/-]\d{4}\b/;
if (re.test(entry)) {
var delimChar = (entry.indexOf("/") != -1) 2 "/" : "-";
var delimi = entry.indexOf(delimChar);
var delim2 = entry.lastIndexOf(delimChar);
mo = parselnt(entry.substring(o, delim1), 10);
day = parselnt(entry.substring(delimi+1, delim2), 10);
yr = parselnt(entry.substring(delim2+1), 10);
var testDate = new Date(yr, mo-1, day);
if (testDate.getDate() == day) {
if (testDate.getMonth() + 1 == mo) {
if (testDate.getFullYear() == yr) {
return true;
} else {
alert("There is a problem with the year entry.");
}

} else {
alert("There is a problem with the month entry.");

}
} else {
alert("There is a problem with the date entry.");

}
} else {

alert("Incorrect date format. Enter as mm/dd/yyyy.");
}

return false;

}

The basic operation of the checkDate() function is to first validate the format of the
entry against a regular expression pattern. If the format is good, the function creates
a date object from the entered numbers. Then the components of the resulting date
object are compared against the initial entries. If there is any discrepancy between
the two sets of numbers, a problem with the entry exists. It helps that the JavaScript
Date object constructor accepts out-of-range dates and calculates the effective date
from those wacky values. When the user enters 2/30/2007, the resulting date object

48 | Chapter2: Numbersand Dates

is for 3/2/2007. Since the month and date no longer coincide with the entries, it’s
clear that the user entered an invalid date.

Although this function uses a regular expression only to verify the basic format of the
date entry, it uses more rudimentary string parsing for the detailed analysis of the
entry. This tactic is needed for backward-compatibility to overcome incomplete
implementations of advanced regular expression handling in browsers prior to IE 5.5
for Windows. The checkDate() function works in all mainstream browsers from Ver-
sion 4 onward.

In a high-volume data-entry environment, where productivity is measured in opera-
tors’ keystrokes and time spent per form, you want to build more intelligence in a
form. For example, you want to allow two-digit year entries, but code the validation
routine so that it fills the field with the expanded version of the date because the
backend database requires it. Moreover, the two-digit entry needs to be done in a
maintenance-free way so that the range of allowable years for two-digit dates contin-
ues to modify itself as the years progress. Example 2-4 is an enhanced version of the
checkDate() function with these upgrades shown in bold.

Example 2-4. Enhanced date validation function

function checkDate(fld) {
var mo, day, yr;
var entry = fld.value;
var relong = /\b\d{1,2}[\/-]\d{1,2}[\/-]\d{4}\b/;
var reShort = /\b\d{1,2}[\/-]\d{1,2}[\/-]\d{2}\b/;
var valid = (relong.test(entry)) || (reShort.test(entry));
if (valid) {
var delimChar = (entry.indexOf("/") != -1) 2 "/" : "-";
var delimi = entry.indexOf(delimChar);
var delim2 = entry.lastIndexOf(delimChar);
mo = parselnt(entry.substring(o, delim1), 10);
day = parseInt(entry.substring(delimi+1, delim2), 10);
yr = parselnt(entry.substring(delim2+1), 10);
// handle two-digit year
if (yr < 100) {
var today = new Date();
// get current century floor (e.g., 2000)
var currCent = parseInt(today.getFullYear() / 100) * 100;
// two digits up to this year + 15 expands to current century
var threshold = (today.getFullYear() + 15) - curxCent;
if (yr > threshold) {
yr += currCent - 100;
} else {
yr += currCent; }
}
var testDate = new Date(yr, mo-1, day);
if (testDate.getDate() == day) {
if (testDate.getMonth() + 1 == mo) {
if (testDate.getFullYear() == yr) {

2.12 ValidatingaDate | 49

Example 2-4. Enhanced date validation function (continued)

// fill field with database-friendly format
fld.value = mo + "/" + day + "/" + yr;
return true;
} else {
alert("There is a problem with the year entry.");

}
} else {

alert("There is a problem with the month entry.");

}
} else {

alert("There is a problem with the date entry.");

}
} else {

alert("Incorrect date format. Enter as mm/dd/yyyy.");
}

return false;

}

You can short-circuit a lot of the potential problems for date validation—including
the one involving cultural differences in date formats—by providing either three text
boxes (for month, day, and year in any order), or three select lists. Even the select
list solution isn’t free from validation, however, because you have to make sure that
the user has chosen a valid combination (e.g., not something like June 31). You can
get creative in this regard by using dynamic forms to repopulate the date list each
time the user changes the month (see Recipe 8.14).

Date fields are generally important to the form in which they exist. Don’t skimp on
the thoroughness of validation for dates either on the client or on the server.

See Also

Recipe 8.2 for additional form field validation functions.

50 | Chapter2: Numbersand Dates

CHAPTER 3
Arrays and Objects

3.0 Introduction

Most programming tasks involve moving data around in memory. A lot of the data
involved in browser-based JavaScript activity consists of objects that are part of the
rendered document. But very often your scripts arrive at the client accompanied by
data provided by a server or hardwired in the script (as arrays or custom objects). Or
you may find it convenient to create more flexible data structures that mirror the ren-
dered content on the page. For example, it may be easier and faster to sort a table’s
data inside a JavaScript array and re-render the table rather than playing Tower of
Hanoi games with cells and rows of a table one by one.

One of the most important jobs you have as a programmer is designing the data
structures that your scripts will be working with. It’s not unusual to start the plan-
ning of a major scripting job by scoping out the data structures that will facilitate
DHTML-enhanced user interface features. When you do so, you will find JavaScript
arrays and custom objects to be the containers and organizers of your data. These
containers give your scripts a regular way to access the data points and a clean way
to structure the data to make it easy to visualize the abstract comings and goings dur-
ing script execution.

JavaScript Arrays

The loose data typing that pervades JavaScript carries over to arrays, but even more
so. Unlike similar structures in many other programming languages, a JavaScript
array is not limited to a specific size chiseled in stone at the time of its creation. You
can add or delete items from an array at will. It is an extraordinarily flexible data
store.

Another feature of the JavaScript array is that each entry in the array can hold data of
any type. It’s no problem mixing strings, numbers, Booleans, and objects within the
same array. You can even change the data and data type for a single array entry at
any time. Neither of these practices may be advisable from a programming-style
point of view, but they’re possible nevertheless.

51

Arrays are indexed by zero-based integers. In other words, to reference the first entry
in an array named myArray, use myArray[0]. A reference to the array entry returns the
entry’s value. To assign a value to an entry, use the simple assignment (=) operator.
You may also use the add-by-value (+=) operator to add a number or append a string
to an array entry, as appropriate.

The basic JavaScript array is a one-dimensional kind of array. But as you will see in
Recipes 3.2 and 3.9, you can create more complex array structures, including multi-
dimensional arrays (arrays of arrays), and arrays whose entries are complex custom
objects.

JavaScript Custom Objects

The “looseness” of the JavaScript language, as exhibited in the way it handles data
typing, arrays, and variable values, extends to its concept of objects. Forget what you
know about object-oriented programming techniques and relationships between
objects. The notions of traditional classes, subclasses, and message passing have lit-
tle application in JavaScript (although some of these ideas may come to the language
in the future). Instead, think of a custom object as simply a convenient container for
data in which the data values have labels that make it easier to remember what’s
what. Custom object syntax is just like the syntax you use for other JavaScript and
DOM objects: it follows the “dots” rule (e.g., myObject.myProperty and myObject.
myMethod()).

One of the hazards of bringing too much object-oriented programming experience to
scripting is that you might tend to turn every piece of data into an object, even when
the overhead (in terms of source code space) to generate the object outweighs any
functional or readability benefit you might get from using objects. It’s not uncom-
mon for an object-oriented approach to a simple problem to obfuscate the relation-
ships among data points. But if your scripts frequently need to refer to some data
associated with an entity that hangs around in the global variable space, it probably
makes good sense to use an object there. In later chapters of this book, you will see
many objects used as repositories for bits of information related to a particular item,
such as the details of a drop-down menu.

Despite the cautions expressed here about the difference between objects in Java-
Script (which are based on a concept called prototype inheritance) and true object-
oriented environments, you can simulate a goodly amount of genuine OOP ideas
with custom objects. Recipe 3.12 demonstrates a few of these simulations.

Choosing Between Arrays and Objects

So, when do you use an array, and when do you use an object? Think of an array as
an ordered list of similar kinds of data. The list, itself, signifies the purpose or kind of
data it contains, such as a series of coworker names or the titles of all books on a
shelf. The position of one item among the others is not important, although you

52 | Chapter3: Arraysand Objects

might like to sort the list to, perhaps, show the contents in alphabetical order. Hav-
ing the items in this kind of “blind” list means that at some point you will be look-
ing through all items in the list, perhaps to pull out their values for insertion into an
HTML element for display.

An object, on the other hand, is best used to encapsulate information about a single
entity. A coworker object might contain properties for the person’s name and age; a
book object could have dozens of properties for information points such as title,
author, publisher, category, and so on. The properties are explicitly named so that
you can readily access the value of a single property directly (e.g., book3.publisher).
You can also equip an object with methods whose actions operate on the object and
its properties (see Recipe 3.8).

As you will see in Recipe 3.7 and elsewhere, there is an advantage in creating an
array of objects. The “array-ness” gives your scripts the ability to iterate through the
entire list of objects; the “object-ness” lets the same script inspect a specific property
of each object in the array to perform tasks like lookups. An array of book objects,
for instance, lets a looping construct look through the entire list of books and inspect
the author property of each item to accumulate the title property values of those
objects whose author property meets a particular criterion.

Be prepared to use arrays and objects by themselves, as well as in combination. Not
only are you likely to use an array of objects, but a property of an object may be an
array. For example, an object that represents a book might define the author prop-
erty as an array to accommodate multiple authors. A book with a single author has a
one-entry array for that property, but the scripts that go diving for authors know to
expect an array data type there, as well as use appropriate comparison tools against
the entries in the array.

As dry as this chapter’s subject may seem at first glance, it may be the most impor-
tant one in the entire book. Most of the recipes from this chapter are used in later
chapters repeatedly because they are fundamental building blocks for a lot of
Dynamic HTML and other scripting.

Getting Data into the Page

Most of the recipes in this chapter show data arrays and objects embedded directly
within the page of the examples. This approach works for a fixed set of data or, after
the page has loaded, data dynamically read from the page or user entry forms. But
you can also embed data from live sources—server databases—with the help of
server programming.

If you use a server environment (such as ASP, JSP, ColdFusion, PHP, and many
more) that assembles each page’s content by way of server-side templates and pro-
grams, you can use the same environment to retrieve data from your databases and
convert the returned data sets into JavaScript arrays and objects to be delivered with
the rest of the page. Another approach is to let the external script-loading capability

Introduction | 53

of browsers (via the src attribute of the <script> tag) point to a server process URL.
The URL contains query data that the server program uses to fetch the database
data, then the server converts the returned data into JavaScript arrays and objects for
output to the client, delivered in the format and MIME type of a .js file. The data
becomes part of the page’s scripts, just as if it were directly embedded in the page.

Perhaps the most intriguing possibilities, however, arise from a technology that is
now common to every scriptable browser. An object called XMLHttpRequest makes it
possible for a rendered page to make requests to a server process without disturbing
the current page. Typically, the process returns data in the form of an XML docu-
ment, from which a browser script may readily extract data to update portions of the
rendered page. The technology has been given a more convenient name: Asynchro-
nous JavaScript and XML, or Ajax for short.

Such data retrieval is not limited to XML. Instead, a server process can return to the
XMLHttpRequest object a string consisting of a JavaScript array and custom object
code. Once received at the browser, a single statement (eval()) converts the string
into full-fledged JavaScript arrays and objects, ready for further manipulation. This
so-called JavaScript Object Notation (JSON) is yet another way to feed server data to
an already rendered page.

3.1 (Creating a Simple Array

Problem

You want to create a simple array of data.

Solution

JavaScript provides both a long way and a shortcut to generate and populate an
array. The long way is to use the Array object constructor. If you specify no parame-
ters for the constructor, you create an empty array, which you may then populate
with data entry by entry:

var myArray = new Array();

myArray[0] = "Alice";

myArray[1] = "Fred";

You do not have to declare a fixed size for an array when you create it, but you may
do so if you wish, by passing a single integer value as a parameter to the constructor
method:

var myArray = new Array(12);

This creates an array of 12 entries whose values are null.

54 | Chapter3: Arraysand Objects

If you supply more than one comma-delimited parameter to the constructor method,
the arguments are treated as data for the array entries. Thus, the following statement:

var myArray = new Array("Alice", "Fred", "Jean");
creates a three-item array, each item containing a string value.

A shortcut approach to the same action lets you use square brackets to symbolize the
array constructor:

var myArray = ["Alice", "Fred", "Jean"];

Discussion

After you create an array (through any of the syntaxes just shown), you can add to it
by assigning a value to the array with the next numeric index in sequence. If your
script doesn’t know how large an array is when it needs to add to it, you can use the
length property of the array to help out. Because the length integer is always one
larger than the highest zero-based index value of the array, the length value can act
as the index for the next item:

myArray[myArray.length] = "Steve";

In fact, you can use this construction to populate any existing array object, including
an empty one. This is particularly helpful if you are populating a large array and need
to change values in the source code from time to time. Rather than trying to juggle
fixed index numbers in a long series of assignment statements, use the length prop-
erty, and order the assignment statements so that all items are in the desired array
order. The indexes will take care of themselves when the statements run, even if you
change the order in the source code tomorrow.

If your pages limit IE browsers to version 5.5 or later, you should use the ECMA-
standard push() method of arrays to append items to an existing array. Thus, in
place of the first example shown in the Solution, you would use the following syntax:

var myArray = new Array();

myArray.push("Alice");

myArray.push("Fred");

Your code can use the same method to add new items to the array at any time. If the
order of items in an array requires that a new item be inserted as the first array entry
(occupying the zeroth position), use the unshift() method of an array. Index values
for all subsequent items increment by one as a result of the insertion.

See Also

Recipe 3.2 for creating a more complex array; Recipe 3.8 for a discussion about cre-
ating an array of objects; Recipe 3.3 for converting an array’s entries to a string value.

3.1 CreatingaSimpleArray | 55

3.2 Creating a Multidimensional Array

Problem

You want to consolidate data in an array construction of two dimensions—such as a
table—or even more dimensions.

Solution

Create an array of arrays. As an example, consider the following small table of
regional sales data:

Description Q1 Q2 Q3 4

East 2300 3105 2909 4800
Central 1800 1940 2470 4350
West 900 1200 1923 3810

To place the data portions of this table into an array that has three items (one for
each region row), in which each item contains an array of four nested items (sales fig-
ures for each quarter column for that region), you can use a variety of array-creation
syntaxes. A comparatively long version creates each of the nested arrays first, and
then assigns those nested arrays to the outer array:

var eastArray = new Array(2300, 3105, 2909, 4800);

var centralArray = new Array(1800, 1940, 2470, 4350);

var westArray = new Array(900, 1200, 1923, 3810);
var salesArray = new Array(eastArray, centralArray, westArray);

The most compact array creation approach is to use the bracket shortcuts exclusively:

var salesArray = [[2300, 3105, 2909, 4800],
[1800, 1940, 2470, 4350],
[900, 1200, 1923, 3810]];

To access any nested item within salesArray, use a double index. For example, to
reach the first item (East Q1), the reference is:

salesArray[0][0] // 2300

There are no commas or other symbols allowed between the bracketed index values
in this kind of reference. The first index applies to the first-level array, while the sec-
ond applies to the nested arrays. Therefore, to reach the Central region’s Q3 sales,
the reference is:

salesArray[1][2] // 2470

You may read and write to these multidimensional array items just like any other
array items.

56 | Chapter3: Arraysand Objects

Discussion

There is no practical limit to the number of nesting levels you can create for a multi-
dimensional array. For each dimension, lengthen the reference to the most deeply
nested items with another bracketed index value. See Recipe 3.4 for using loops to
inspect every item in a deeply nested array.

One potential problem with using a multidimensional array is that you may lose
track of what a particular entry represents. When you look at the array creation
examples just shown, the numbers lose their contextual meaning with respect to
region or quarter. Their position in the two-dimensional array is all that the num-
bers know about. It is up to the rest of your scripts to keep the relationships between
the data points and their meanings straight. In many cases, you may be better served
by creating an array of custom objects. The objects can contain properties that pro-
vide labels and context for the raw data. See Recipes 3.8 and 3.9 for additional
thoughts on the issue.

See Also

Recipe 3.4 to see how to iterate through simple and multidimensional arrays; Recipe
3.8 for using an array of objects in place of a multidimensional array; Recipe 3.9 for a
custom object implementation of the sales example and how to create a simulated
hash table to speed access to a particular entry.

3.3 (Converting Between Arrays and Strings

Problem

You want to obtain a string representation of an array’s data or change a string to an
array.

Solution

Array objects and string values have methods that facilitate conversion between these
data types, thus allowing arrays to be conveyed to other pages via URL search strings
or cookies.

To convert a simple (one-dimensional) array to a string, first select a character that
can act as a unique delimiter character between the array values when they become
embedded in a string. The character cannot appear in any of the data entries. Specify
that character as the sole parameter to the join() method of the array. The follow-
ing statement uses a comma as a delimiter between entries after the conversion to
string form:

var arrayAsString = myArray.join(",");

The original array is not disturbed in the course of this transformation.

3.3 Converting Between Arrays and Strings | 57

If you have a string with a delimiter character separating individual points of data
that you want to convert to an array, specify that character as the parameter of the
split() method of your string value or object:

var restoredArray = myRegularString.split(",");

The split() method performs the task of an array constructor, automatically pass-
ing the values between delimiters as items of the new array. The delimiter characters
do not become part of the array’s value.

Discussion

Although the preceding examples show only single characters used as the so-called
separators for the string versions, you can use any string. For example, if you
intended to display the array entries as a vertical list in a textarea element, you could
use the \n special character to force carriage returns between the items. Similarly, if
the data was to be formatted as an XHTML list, you could use the string
 as
the separator of the join() method; or if the array items have all the necessary
XHTML code in them, specify an empty string as the join() method parameter.
Then use the resulting string as a value to assign to an element’s innerHTML property
for display in the body text of a page.

Use the join() method only on simple arrays. For a multidimensional array, the
method is safe to use on any of the most deeply nested arrays, which are, them-
selves, simple arrays.

Even more powerful is the split() method of a string value or object. You can use
regular expressions as the separator parameter. For example, consider the string of
comma-delimited dollar values:

var amounts = "30.25,120.00,45.09,200.10";

If you want to create an array of just the integer portions of those values, you could
create a regular expression whose pattern looks for a period, followed by two numer-
als and an optional comma (to accommodate the final entry):

var amtArray = amounts.split(/\.\d{2},?/); // result = [30, 120, 45, 200,]

One by-product of the use of the split() method on a string when the separator is at
the end of the string is that the method creates an array entry for the nonexistent
item following the end separator. Most typically, the separator does not come at the
end of the string, but if it does, watch out for this extra empty array entry.

An optional second parameter of the split() method lets you supply an integer rep-
resenting the number of items from the string to send to the new array. Thus, if the
string value always ends in the separator character or sequence, you can limit the
split() method to the actual number of items in the string (assuming your scripts
know or derive that information from string parsing or other activities). This parame-
ter is not part of the formal ECMAScript standard, but is implemented in mainstream
browsers.

58 | Chapter3: Arraysand Objects

In practice, converting arrays to a string is limited to array data that is easily repre-
sented in strings, such as numbers, Booleans, and other strings. If an array’s items
consist of references to objects (either custom or DOM), such objects don’t have a
suitable or meaningful string representation. For an array of DOM objects, you
might consider grabbing the id properties of the objects and preserving them in the
string. Although the characteristics of the objects won’t be conveyed, if the same
objects exist in another page, the IDs can be used (via the document.
getElementById() method) to resurrect a proper reference to the object. See Reci-
pes 3.13 and 8.14 for ideas about converting objects to strings.

See Also

Recipe 3.13 for a way to convert data consisting of custom objects and arrays to a
string that can later rebuild the objects and arrays; Recipe 8.14 to convert form data
to strings for transfer to another page.

3.4 Doing Something with the Items in an Array

Problem

You want to loop through all entries of an array and read their values.

Solution

Use a for loop to build an incrementing index counter, limited by the length of the
array. Although not particularly practical, the following sequence demonstrates how
to iterate through an array and reference individual entries of the array from inside
the loop:

var myArray = ["Alice", "Fred", "Jean", "Steve"];

for (var i = 0; 1 < myArray.length; i++) {

alert("Item " + i + " is:" + myArray[i] + ".");
}

The limit expression portion of the for loop uses the less-than (<) operator on the
length property of the array. Because index values are zero-based, but the length
property contains the actual count of items, you want to keep the maximum index
value at one less than the count of items. Therefore, do not use the less-than or equal
to (<=) operator. If you want the loop to operate in reverse order, initialize the loop
counter variable (i) to be the length minus 1:

for (var i = myArray.length - 1; i >= 0; i--) {

alert("Item " + i + " is:" + myArray[i] + ".");
}
You don’t have to redeclare the counter variable with the var statement if you have
initialized it in a separate var statement or in a previous loop earlier within the same
function.

3.4 Doing Something with the ltemsinanArray | 59

Discussion

It’s not uncommon to loop through an array (or collection of DOM objects) to find a
match for some value within the array, and then use the index of the found item to
assist with other lookup tasks. For example, the following parallel (but distinctly sep-
arate) arrays contain data with individuals’ names and their corresponding ages:

var namelist = ["Alice", "Fred", "Jean", "Steve"];

var agelist = [23, 32, 28, 24];
You can use these parallel arrays as a lookup table. The following function receives a
name string as a parameter, and looks for the matching age in the second array:

function agelookup(name) {

for (var i = 0; 1 < namelist.length; i++) {
if (namelist[i] = = name) {
return agelist[i];

} non

return "Could not find " + name + ".";

}

Similarly, you can examine a property of objects within a collection, and use the
“found” index to read or write properties of the target items. The following function
empties all of the text boxes on a page, even if the page contains multiple forms:
function clearTextBoxes() {
var alllnputs = document.getElementsByTagName("input");
for (var i = 0; i < alllnputs.length; i++) {
if (allInputs[i].type = = "text") {
allInputs[i].value = ""
}

}

For a multidimensional array, you need a multidimensional (i.e., nested) for loop
construction to access each item. For example, given the two-dimensional array dem-
onstrated in Recipe 3.2, the following nested for loops are able to reference each
item and accumulate the numeric values from all entries of the two-dimensional
array:
var total = 0;
var i, j;
for (i = 0; i < salesArray.length; i++) {
for (j = 0; j < salesArray[i].length; j++) {
total += salesArray[i][j];
}
}
The nested array uses a separate loop counting variable (). If you visualize the multi-
dimensional array as the table shown in Recipe 3.2, the outer-counting variable (i)
works along the rows, and the nested counting variable (j) works down the columns.

60 | Chapter3: Arraysand Objects

Thus, the sequence of operations in this construction goes across the rows of the cor-
responding table as follows:

row 0, cell 0

row 0, cell 1

row 0, cell 2

row 0, cell 3

row 1, cell 0

row 1, cell 1

See Also

Recipe 3.9 for a speedy alternative to parallel array lookups using a simulated hash
table; Recipe 3.2 for creating a multidimensional array.

3.5 Sorting a Simple Array

Problem

You want to sort an array of numbers or strings.

Solution

To sort an array of numbers from lowest to highest, use the plain sort() method of
the array object:

myArray.sort();

This action modifies the order of the items within the array, and its original order
cannot be restored unless your scripts have preserved that information elsewhere.
Sorting a multidimensional array sorts only the outermost level.

Discussion

You can use the same parameter-less method on an array of string items, but the
sorting is performed according to the ASCII values of the string characters. There-
fore, if the strings in the array are not homogenous with respect to case, you may
receive the array sorted such that all strings starting with uppercase letters sort ahead
of those starting with lowercase letters (because ASCII values for uppercase letters
are smaller than those for lowercase letters, as shown in Appendix A). For more
complex and numeric sorting, however, you need to define a comparison function
and invoke it from the sort() method.

A comparison function used with array sorts is a very powerful component of the
JavaScript language and data manipulation. To invoke the comparison function, pass
a reference to the function as the sole parameter of the sort() method.

3.5 SortingaSimpleArray | 61

Sorting through a comparison function causes the interpreter to repeatedly send
pairs of values from the array to the function. The function should have two parame-
ter variables assigned to it. The job of the function is to compare each pair of values,
and return a value of less than zero, zero, or greater than zero, depending on the rela-
tionships between the two values:

<0 The second passed value should sort later than the first value.
0 The sort order of the two values should not change.

>0 The first passed value should sort later than the second.

As an example, consider an array consisting of numeric values. If you invoke the
sort() method without any parameters, the default sorting routine treats the values
like strings and sorts them according to their ASCII values, which puts the number
10 sorting earlier than 4 because the first character of 10 is a lower ASCII value than
that for 4.

To sort the values in genuine numerical order, you need to create a sorting function
that explicitly compares the values as numbers:
function compareNumbers(a, b) {

return a - b;

}
Invoke the sort through the statement:
myArray.sort(compareNumbers);

Behind the scenes, the JavaScript interpreter repeatedly sends pairs of values from
the array to the function. If, during one of the trips to the comparison function the
returned value is less than zero, it means that the second value is larger than the first
and should be pushed down the sorting order. After rippling through all the values,
the array is in the desired sorting order. To change the order of the sorting so that
numbers are sorted in descending order, rework the comparison function as follows:

function compareNumbers(a, b) {

return b - a;

}
For more complex sorting, including how you could sort by the number of charac-
ters in array item strings, see Recipe 3.11.

See Also

Recipe 3.11 for sorting arrays of objects based on values of a property in the objects.

62 | Chapter3: Arraysand Objects

3.6 Combining Arrays

Problem

You want to blend two or more separate arrays into one larger array.

Solution

To join arrays together, use the concat() method of the array object, passing a refer-
ence to the other array as a parameter:

var comboArray = myArray.concat(anotherArray);

Arrays joined through the concat() method are not altered. Instead, the concat()
method returns the combined array as a new value, which you can preserve in a sepa-
rate variable. The base array (the one used to invoke the concat() method) comes
first in the combined array.

For combining multiple arrays, pass the additional arrays as comma-delimited
parameters to the concat() method:

var comboArray = myArray.concat(otherArrayl, otherArray2, otherArray3);

The combined array has items in the same order as they appear in the comma-delimited
arguments.

Discussion

The concat() method is not limited to tacking one array onto another. Comma-
delimited parameters to the method can be any data type. A value of any data type
other than an array becomes another entry in the main array—in the same sequence
as the parameters. You can even combine arrays and other data types in the group of
parameters passed to the method.

In addition to the concat() method, a quartet of array methods let you treat an array
like a stack for tacking on and removing items from the frontend or backend of the
array. The push() method lets you append one or more items to the end of an array;
the corresponding pop() method removes the last item from the array and returns its
value. You can perform the same operations at the beginning of the array with the
unshift() (append) and shift() (remove) methods. All four of these methods are
implemented in IE 5.5 or later and all modern scriptable browsers.

See Also

Recipe 3.5 for sorting an array—something you may wish to do once you add to an
array; Recipe 3.7 for dividing an array.

3.6 CombiningArrays | 63

3.7 Dividing Arrays

Problem

You want to divide one array into two or more array segments.

Solution

To divide an array into two pieces, use the splice() method on the original array
(the method is available in IE 5.5 or later and all modern scriptable browsers). The
splice() method requires two parameters that signify the zero-based index of the
first item, and the number of items from there to be removed from the original array.
For example, consider the following starting array:

var myArray = [10, 20, 30, 40, 50, 60, 70];

To create two arrays that have three and four items, respectively, first decide which
items are to remain in the original array. For this example, we’ll remove the first
three items to their own array:

var subArray = myArray.splice(o, 3);
After the splice() method executes, there are now two arrays as follows:

myArray: [40, 50, 60, 70]
subArray: [10, 20, 30]

You can extract any sequence of contiguous items from the original array. After the
extraction, the original array collapses to its most compact size, reducing its length to
the number of items remaining. The two arrays do not maintain any connection with
each other after the splice() method executes.

Discussion

The splice() method does more than merely cut out a group of entries from an
array. Optional parameters to the method let you both remove and insert items in
their place all in one step. Moreover, you don’t have to replace removed items with
the same quantity of new items. To demonstrate, we’ll start with a simple array:

var myArray = [10, 20, 30, 40, 50, 60, 70];

Our goal is to extract the middle three items (preserved as their own array for use
elsewhere), and replace these items with two new items:

var subArray = myArray.splice(2, 3, "Jane", "Joe");
After the splice() statement executes, the two arrays have the following content:

myArray: [10, 20, "Jane", "Joe", 60, 70]
subArray: [30, 40, 50]

Using the splice() method is the best way to delete entries from within an array. If
you simply invoke the method without capturing the returned result, the items

64 | Chapter3: Arraysand Objects

specified by attributes are gone, and the length of the array closes up to the remain-
ing items.

To insert an item into an array at a specific location, specify the zero-based index
location as the first parameter, zero for the second parameter (deleting zero items),
and the inserted value (or comma-separated values) as the last parameter. For example:

var myArray = [10, 20, 30, 40];

myArray.splice(2, 0, 25);

// myArray is now [10, 20, 25, 30, 40]
One other array method, slice(), allows you to copy a contiguous section of an
array and create a separate, new array with those entries. The difference between
slice() and splice() is that slice() does not alter the original array. Parameters to
slice() are integers of the starting index of the group to extract and the ending
index. (Or else, omit the ending index to take every entry to the end of the array.)

See Also

Recipe 3.6 for combining two or more arrays into a single array.

3.8 (reating a Custom Object

Problem

You want to create a custom object for your data structure.

Solution

As with creating arrays, object creation has both a long form and a compact form.
The long form requires that you define a constructor function, while the compact
form uses special inline symbols to denote the structure of the object.

A constructor function looks like any other JavaScript function, but its purpose is to
define the initial structure of an object—its property and method names—and per-
haps to populate some or all of the properties with initial values. Values to be
assigned to properties of the object are typically passed as parameters to the func-
tion, and statements in the function assign those values to properties. The following
constructor function defines an object with two properties:
function coworker(name, age) {
this.name = name;
this.age = age;

}
To create objects with this constructor, invoke the function with the new keyword:

var empl = new coworker("Alice", 23);
var emp2 = new coworker("Fred", 32);

3.8 (reating a Custom Object | 65

The this keyword in the constructor function localizes the context of the function to
the object being created. As the function is reused for each object it creates, the con-
text limits itself just to the one object under construction.

If you prefer not to use a constructor function, you can create objects with a short-
cut syntax that defines an object inside curly braces. Property names and values are
defined inside the curly braces as name/value pairs with a colon between the name
and value, and each pair is comma-delimited. Property names cannot begin with a
numeral. For example, the two objects just shown can be created using the shortcut
syntax as follows:

var empl = {name:"Alice", age:23};

var emp2 = {name:"Fred", age:32};
After the objects are created, you access a property value just like you do with other
JavaScript objects. For example, to display data from the emp2 object in an alert dia-
log box, the statement looks like the following;:

alert("Employee " + emp2.name + " is " + emp2.age + " years old.");

After an object exists, you can add a new property to that instance by simply assign-
ing a value to the property name of your choice. For example, to add a property
about the cubicle number for Fred, the statement is:

emp2.cubeNum = 320;

After that assignment, only emp2 has that property (see Recipe 3.12 for more power-
ful assignments). There is no requirement that a property be predeclared in its con-
structor or shortcut creation code. This also means that you can be quite cavalier in
your object creation to the point of generating a blank object and then populating it
explicitly property by property:

var empl = new Object();

empl.name = "Alice";

empl.age = 23;
This kind of object creation is usually more difficult to maintain in the source code
and also takes up much more space if you need to create many similar objects.

Discussion

We’ve covered how to create properties for a custom object. Doing the same with
methods is no more difficult. All it requires is that the method initially be defined in
your source code as a JavaScript function; then assign a reference to that function as
a value for a method name in either the constructor function or name/value pair
inside curly braces. Continuing with the simple employee objects just shown, let’s
add a method to the object that displays an alert dialog box with the employee’s
name and age. Begin by defining the function that will do the work when invoked
through one of the objects:

66 | Chapter3: Arraysand Objects

function showAll() {
alert("Employee

+ this.name + " is " + this.age +

" years old.");

}
Then assign the function to a method name in the constructor function:

function coworker(name, age) {
this.name = name;
this.age = age;
this.show = showAll;

}

Or add the assignment to the shortcut constructors:

var empl = {name:"Alice", age:23, show:showAll};
var emp2 = {name:"Fred", age:32, show:showAll};

To invoke the method, do so via one of the objects:
empl.show();

Note how the context of the object passes through to the function when it is invoked
as a method of the object. The this keyword in the function definition points back to
the context of the object that invoked the method, and thus has immediate access to
its companion properties.

JavaScript provides an extra shortcut operator in constructor functions that lets you
automatically assign a default value to any property that has a null value passed to it
in the function’s parameter variables. For example, in the coworker object construc-
tor function, if the statement that invokes the function leaves the second parameter
blank, the age parameter variable is initialized as a null value. To provide a valid but
harmless default value (of zero) to that property, the syntax is as follows:
function coworker(name, age) {
this.name = name;
this.age = age || 0;
this.show = showAll;
}
The operator is the regular JavaScript OR operator. If the first value evaluates to a
boolean false (e.g., null, undefined, zero, an empty string, and so on), the second
value is assigned to the property. You can use this construction in any variable
assignment in JavaScript.

One advantage to the longer constructor function approach is that you can include
calls to other functions from inside the constructor. For example, you might wish to
invoke some initialization routines with the object immediately as it is being created.
Simply add the call to the function as another statement inside the constructor func-
tion. You can even pass a reference to the object under construction by passing this
as a parameter. The following example builds on the coworker(') constructor func-
tion previously shown.

3.8 Creating a Custom Object | 67

A separate function displays an alert dialog box each time an object is created:

function verify(obj) {
alert("Just added " + obj.name + ".");

}

function coworker(name, age) {
this.name = name;
this.age = age;
this.show = showAll;
verify(this);

}

If the external function returns a value, the constructor function can assign that value
to a property of the object.

If you are going to the trouble of creating a constructor function for a complex data
structure, more than likely you are doing it for multiple instances of that object. But
instead of having these objects floating around the window’s scripting space as inde-
pendent global variables, it will probably be more convenient to store these objects
in an array of objects. As shown in Recipe 3.4, the array data structure facilitates iter-
ating through a collection of similar items. For example, you could use an array of
coworker objects to look through all records in search of those coworkers within a
specific age range, and accumulate the names of those who meet your criteria.

Very little extra is needed to generate an array of objects while you are in the process
of generating the objects themselves. The following demonstrates how a series of
calls to a constructor function can be blended into an array constructor:

var employeeDB = new Array();

employeeDB[employeeDB.length] = new coworker("Alice", 23);
employeeDB[employeeDB.length] = new coworker("Fred", 32);
employeeDB[employeeDB.length] = new coworker("Jean", 28);
employeeDB[employeeDB.length] = new coworker("Steve", 24);

You can do the same with shortcut syntax:

var employeeDB = new Array();

employeeDB[employeeDB.length] = {name:"Alice", age:23, show:showAll};
employeeDB[employeeDB.length] = {name:"Fred", age:32, show:showAll};
employeeDB[employeeDB.length] = {name:"Jean", age:28, show:showAll};
employeeDB[employeeDB.length] = {name:"Steve", age:24, show:showAll};

Or you can go the whole route with shortcut syntax (albeit with one long statement):

var employeeDB = [{name:"Alice", age:23, show:showAll},
{name:"Fred", age:32, show:showAll},
{name:"Jean", age:28, show:showAll},
{name:"Steve", age:24, show:showAll}];

Finally, here’s the function that looks for all coworkers in a certain age group:

function findInAgeGroup(low, high) {
var result = new Array();
for (var i = 0; i < employeeDB.length; i++) {

68 | Chapter3: Arraysand Objects

if (employeeDB[i].age >= low &3 employeeDB[i].age <= high) {
result = result.concat(employeeDB[i].name);
}
}

return result;
}
This function returns an array of the names of those whose ages fall between the low
and high values passed as parameters.

As discussed in Recipes 3.9 and 3.11, an array of objects is one of the most flexible
complex data structures available to JavaScript coders. During the design phase of
your applications, look for opportunities to group together similar objects in arrays.

See Also

Recipe 3.9 for generating a fast hash table from an array of objects; Recipe 3.11 for
sorting an array of objects based on object property values; Recipe 3.14 for minimizing
object naming conflicts; Recipe 4.4 for using anonymous functions in object creation.

3.9 Simulating a Hash Table for Fast Array Lookup

Problem

You want to be able to go directly to an entry in an array (especially an array of
objects or a multidimensional array) without having to loop through the entire array
in search of that item.

Solution

By taking advantage of the fact that a JavaScript array is a JavaScript object, you can
define properties for an array without interfering with the true array portion of the
object. Properties can be referenced by name either by string (in parentheses, like
array index value) or following a period like a typical object property.

The key to implementing this construction for an existing array is that you must gen-
erate a property for each entry with a unique value. If you are implementing this for
an array of objects, use a property value that is unique for each entry as the hash
table lookup index.

As a simple example with the coworker objects created in other recipes of this chap-

ter, we’ll assume no two coworkers have the same name. Thus, we’ll use the name

property of the coworker objects as property names for the hash table. Immediately

after the array of coworker objects is populated, we execute the following statements:
for (var i = 0; i < employeeDB.length; i++) {

employeeDB[employeeDB[i].name] = employeeDB[i];
}

3.9 Simulating a Hash Table for Fast Array Lookup | 69

Without the hash table, to find the age of a coworker, you have to loop through the
employeeDB array in search of a match against the name property of each entry. With
the simulated hash table, however, simply reference the unique object bearing the
name of the person you’re looking for, and retrieve the age property of that object:

var JeansAge = employeeDB["Jean"].age;

You typically use the string way of referring to the object because variable lookup
information will likely be coming from a text source: a text input box or a string
value of a select element.

Discussion

[cannot overemphasize the importance of the uniqueness of the property name. If
you unknowingly have two assignments to the same property value, the last one to
execute is the one that sticks.

If one property of an object is not enough to make it unique, you may need to com-
bine values to obtain that uniqueness. For example, the following table’s data could
be made into a convenient array of objects:

Description Q1 Q2 Q3 04

East 2300 3105 2909 4800
Central 1800 1940 2470 4350
West 900 1200 1923 3810

Each cell of numeric data should be its own object, with other properties assisting in
identifying the context of the number. For example:
var sales = new Array();

sales[sales.length] = {period:"q1", region:"east", total:2300};
sales[sales.length] = {period:"q2", region:"east", total:3105};

sales[sales.length] = {period:"q4", region:"west", total:3810};

None of the label properties—the properties you’d likely be using to look up sales
information—is totally unique. The East region is shared by four objects, and the Q1
period is shared by three objects. But a combination of the region and period names
generates a unique identifier for a given object. Thus, if we use a name of the form
region period (e.g., east_q1), other scripts can perform lookups to reach individual
records. Therefore, the hash table maker comes after the object creation statements
above:
for (var i = 0; i < sales.length; i++) {
sales[sales[i].region + " " + sales[i].period] = sales[i];

}
To access the third quarter sales for the central region, use the following reference:

sales["central g3"].total

70 | Chapter3: Arraysand Objects

Another important point about the names of hash table indices is that they cannot be
numbers or start with a numeral. Remember that these indices are property names,
and therefore must follow the same rules of all properties of JavaScript objects,
including the avoidance of reserved keywords (see Appendix C) and native prop-
erty and methods names of JavaScript objects (e.g., constructor, length, join, push,
pop, sort).

When a hash table entry is assigned a reference to an object (as happens in the pre-
ceding examples), each hash table entry simply points to the original object without
duplicating the data. Any change you assign to an object’s property in the array of
objects is reflected in the hash table reference to that object’s property.

Anytime you have a large multidimensional array or collection of objects through
which your scripts will be looking for matching records, try to add the simulated
hash table to your array. It gives you the best of both worlds: the ability to iterate
through the collection when you need to use every entry, and the ability to dive into
a specific record without any looping.

See Also

Recipes 8.13, 10.8, and 14.5 for real-world examples of the simulated hash table in
action.

3.10 Doing Something with a Property of an Object

Problem

You want to examine (or modify) the values of properties belonging to an object, but
the object and its properties may change from one examination to another.

Solution

Use a for/in loop to access every property of an object, regardless of the property’s
name. The following function assembles a list of properties and their values for any
object passed as an argument to the function:
function listProperties(obj, objName) {
var result = "";
for (var i in obj) {
result += objName + "." + i + "=" + obj[i] + "\n";

alert(result);
}
In this special type of loop, the variable (i in this example) is automatically assigned
the name of each property (in string form) as the loop progresses through the list of
available properties for the object. By using the string name as an index to the object
(obj[i] in this example), the value of that property is returned.

3.10 Doing Something with a Property of an Object | 71

Discussion

Figure 3-1 shows what the alert dialog box generated by the function would display
for one of the sales objects defined in Recipe 3.9 if you invoke the following:

listProperties(sales[0], "sales[0]");

JavaScript

<192,168.1.100=
sales[0].period=q1

sales[0].region=east
sales[0].kotal=2300

= on this page

Figure 3-1. Object property enumeration example

The type of property enumeration shown in the listProperties() function in the
Solution is useful not only for custom objects but also for DOM objects. When using
it with DOM objects, some browser-specific behaviors reveal themselves. For exam-
ple, IE for Windows enumerates all of the event handler properties of the object.
Morzilla, Safari, and Opera enumerate properties and methods. The order of enumer-
ated items is determined by the inner workings of the browser (rarely alphabetical),
but your scripts can accumulate results in an array and sort the array before display-
ing the data.

See Also

Recipe 3.4 for looping through all entries of an array; Recipe 3.11 for sorting arrays.

3.11 Sorting an Array of Objects

Problem

You want to sort an array of objects based on the value of one of the properties of the
objects.

Solution

Sorting an array of objects relies on a logical extension of the comparison function
described for simple arrays in Recipe 3.5. Define a comparison function as usual, but
let the actual comparisons work on the properties of the objects being passed to the
function two at a time.

72 | Chapter3: Arraysand Objects

To demonstrate the concept, we’ll start with the array of sales objects:

var sales = new Array();
sales[sales.length] = {period:"q1", region:"east", total:2300};
sales[sales.length] = {period:"q2", region:"east", total:3105};

sales[sales.length] = {period:"g4", region"west", total:3810};

If you want to sort the sales array in descending order of the values of the total
properties of each object, define a comparison function that returns the appropriate
values based on the arithmetic:

function compareTotals(a, b) {

return b.total - a.total;

}
Because each array entry passed as parameters a and b is an object, you can use those
parameter variables to reference the properties of the objects as they pass through in
waves during the full sort operation. To sort the array by way of the comparison
function, pass the function’s reference to the sort() method of the array:

sales.sort(compareTotals);

Recall that the sort() method modifies the order of the original array. But you can
invoke other sort() methods (that call other comparison functions) to re-sort the
array by other criteria.

Discussion

Comparison functions can get rather elaborate if necessary. It all depends on the
kind of data in your object properties and what kind of sorting you need to perform.
For example, if an object is defined with separate properties for month, day, and
year, and if you want to sort the objects by the dates that those numbers represent,
the comparison function can create date objects from those values and then com-
pare the resulting date objects:
function compareDates(a, b) {
var dateA = new Date(a.year, a.month, a.date);

var dateB = new Date(b.year, b.month, b.date);
return dateA - dateB;

}
If sorting is required of string values in properties, you have to be more explicit in the
comparisons you perform and the values you return. You may also want to elimi-
nate case as a factor by comparing values converted to all upper- or all lowercase
characters. The following function sorts string values of the lastName property of an
array of objects:

function compareNames(a, b) {

var nameA = a.lastName.tolowerCase();

var nameB = b.lastName.tolLowerCase();
if (nameA < nameB) {return -1}

3.1 Sorting an Array of Objects | 73

if (nameA > nameB) {return 1}
return 0;
}
The return values from the function fall into the three categories described for all
array sorting in Recipe 3.5. And because the tolLowerCase() method of a string
doesn’t disturb the case of the original string, the object values are ready to be dis-
played as entered into the data structure.

Avoid excessive string manipulation in comparison functions. They can negatively
impact performance on large (hundreds of items) arrays.

See Also

Recipe 3.5 for basic array sorting concepts; Recipe 14.19 for using object sorting to
sort data for rendering in a Dynamic HTML table.

3.12 Customizing an Object’s Prototype

Problem

You want to add a property or method to objects that have already been created or
are about to be created.

Solution

To add a property or method to a group of objects built from the same constructor,
assign the property or method name and its default value to the prototype property
of the object. To demonstrate this concept, we’ll start with the coworker object con-
structor from Recipe 3.8 and create four instances of this object, all stored in an
array:
function coworker(name, age) {
this.name = name;
this.age = age || 0;
this.show = showAll;
}

var employeeDB = new Array();

employeeDB[employeeDB.length] = new coworker("Alice", 23);
employeeDB[employeeDB.length] = new coworker("Fred", 32);
employeeDB[employeeDB.length] = new coworker("Jean", 28);
employeeDB[employeeDB.length] = new coworker("Steve", 24);

Each object has two properties and one method assigned to it. Each object’s prop-
erty values are private to that particular object instance. And although each object
shares a method name (and the same function code for that method), when the
method executes, it does so within the private context of the single object’s instance
(e.g., the this keyword in the method code refers to the object instance only).

74 | Chapter3: Arraysand Objects

Before or after the object instances exist, you can add a property that belongs to the
prototype—an abstract object that represents the “mold” from which the object
instances are made. When you assign a property and value to the prototype of the
constructor, all object instances—including those that have already been created—
gain this new property and value. For example, we can add a property to the
coworker constructor that provides employment status information. The default
value at the time the prototype property is assigned is the string “on duty”:

coworker.prototype.status = "on duty";

Each object in the employeeDB array immediately inherits the status property, which
is read via the following reference (for any item in the array indexed with integer 1):

employeeDB[1].status

Here is where things get interesting. If you modify the value of the status property of
an instance of the object, the value is private to that instance only (akin to overriding
a property in a subclass in other languages). All other objects continue to share the
default prototype property value. Therefore, if you execute the following statement:

employeeDB[2].status = "on sick leave";

the value of all of the other object instances (and any new objects you create via the
coworker constructor) show their status to be “on duty.”

Overridden property values are durable. If, after the above modifications, you change
the value of the prototype property, the private property values assigned individually
do not reflect the prototype change. For example, changing the prototype status
property to reflect the company-wide vacation period is accomplished as follows:

coworker.prototype.status = "on vacation";

But the value of employeeDB[2].status continues to be “on sick leave” because the
local value was explicitly overridden.

From any object reference that inherits a prototype property, you can reach the pro-
totype’s value, even if that value has been overridden by the object instance. The
object’s constructor property points to the constructor function that maintains infor-
mation about the prototype. For example, the following statement tests the equality
of the local status property against the prototype status property:

if (employeeDB[2].status != employeeDB[2].constructor.prototype.status) {

// the two values aren't the same, so the local value has been overridden

}
Referencing the constructor’s prototype is the JavaScript equivalent of calling super
in some truly object-oriented languages.

3.12 Customizing an Object’s Prototype | 75

Discussion

The following discussion assumes you have experience with, or working knowledge
of, object-oriented programming concepts in languages such as Java. Even if you
don’t, feel free to read along to witness some of the advanced intricacies and possibil-
ities with the JavaScript language.

All objects accessible by JavaScript—custom objects, global language objects, and
DOM objects (in Mozilla and Opera 9)—are subject to prototype inheritance.
Whenever a statement includes a reference to an object’s property (or method), the
JavaScript interpreter follows a prototype inheritance chain to find the value (if it
exists along the chain) that currently applies. The rules that the interpreter follows
are relatively simple:

* If the object has a private value assigned to that property (as is the case more
than 99 percent of the time), that is the value returned by the reference.

* If no local value exists, the interpreter looks for that property and value in the
constructor prototype for that object.

* If no property or value exists in the constructor prototype, the interpreter fol-
lows the prototype chain all the way to the basic Object object if necessary.

* When no property by that name exists in the prototype inheritance chain, the
interpreter indicates an “undefined” value for that property.

When a prototype inheritance chain consists of two or more objects, you can also
use scripts to access points higher up the chain. For example, an Array constructor
inherits from the basic Object constructor. In other words, it is conceivable that a
prototype property influencing an instance of an array could be defined for the
Object or Array constructor prototype. As shown in the Solution, a reference to the
Array’s prototype property is:
myArray.constructor.prototype.propertyName
To reach one level higher, access the (Object) constructor of the (Array) constructor:

myArray.constructor.constructor.prototype.propertyName

Mozilla-based browsers implement a proprietary shortcut syntax for these kinds of
upward prototype traversals: the proto property (with a double underscore
before and after the word). I mention it here in case you encounter this syntax in fur-
ther research about simulating object-oriented techniques in JavaScript. The short-
cut equivalents to these references are:

myArray. proto_ .propertyName
myArray. proto_ . proto__ .propertyName

There is no shortcut equivalent in other browsers.

It is possible in JavaScript to simulate what some programming languages describe as
an interface or implements construction—a way of empowering one object with the

76 | Chapter3: Arraysand Objects

properties and methods of another object without creating a subclass of the shared
object. The approach to this implementation is not particularly intuitive, but it
works nicely once you have it set up.

To demonstrate, we’ll start with the now familiar coworker object, which contains
basic information about a person. In creating another object for project team mem-
bers, we find that the coworker object already contains some properties that we’d like
to reuse in the project team members object. We’ll use two object constructors: one
for coworker objects and one for project team members:
// coworker object constructor
function coworker(name, age) {
this.name = name;
this.age = age;
this.show = showAll;
}
// teamMember object constructor
function teamMember(name, age, projects, hours) {
this.projects = projects;
this.hours = hours;
this.member = coworker;
this.member(name, age);

}
Notice in the teamMember constructor function that the coworker constructor function
is assigned to this.member. In other words, invoking the member() method of a
teamMember object creates a new coworker object. And in fact, the next statement of
the teamMember constructor function invokes the member() method, passing two of
the incoming parameters to the coworker() function. Creating a series of teamMember
objects takes the following form:

var projectTeams = new Array();
projectTeams[projectTeams.length] = new teamMember(“"Alice", 23, ["Gizmo"], 240);

projectTeams[projectTeams.length] = new teamMember("Fred", 32, ["Gizmo","Widget"],
325);

projectTeams[projectTeams.length] = new teamMember("Jean", 28, ["Gizmo"], 200);

projectTeams[projectTeams.length] = new teamMember("Steve", 23, ["Widget"], 190);
The result of blending these two constructor functions is that when you create a
teamMember object, it has four properties (projects, hours, name, and age) and two
methods (showAl1l() and member()). Your scripts wouldn’t have much reason to invoke
the member() method because it’s used internally by the teamMember (') function. But all
other pieces of the teamMember object are readily accessible and meaningful to your
scripts.

An unusual side effect to the connection between these nested objects is that the
teamMember objects do not have the coworker constructor in their prototype chain.
Therefore, if you assign a property and value to the prototype of the coworker con-
structor, none of the teamMember objects gains that property.

3.12 Customizing an Object’s Prototype | 77

There is, however, a way to place the coworker constructor in the prototype chain of
the teamMember object: assign a blank coworker object to the prototype of the
teamMember constructor:

teamMember.prototype = new coworker();

You must do this before creating instances of the teamMember object, but you can hold
off on assigning specific coworker object prototype properties or methods until later.
Then you can do something like the following:

coworker.prototype.status = "on duty";

After this statement runs, all instances of teamMember have the additional status prop-
erty with the default setting. And, just like any prototype property or method, you
can override the private value for a single instance without disturbing the default val-
ues of the other objects.

In Mozilla and Opera 9, many of these language capabilities add potentially enor-
mous power to the DOM you use every day. These browsers give scripters access to
the constructors of every type of DOM object, thus allowing you to add prototype
properties and methods to any class of DOM object. For example, if you wish to
empower all table elements with a method that removes all rows of nested tbody ele-
ments, first define the function that acts as the method, and then assign the function
to a prototype method name:
function clearTbody() {
var tbodies = this.getElementsByTagName("tbody");
for (var i = 0; i < tbodies.length; i++) {
while (tbodies[i].rows.length > 0) {
tbodies[i].deleteRow(0);
}
}

}
HTMLTableElement.prototype.clear = clearTbody;

Thereafter, you can invoke the clear() method of any table element object to let it
remove all of its rows:

document.getElementById("myTable").clear();

Given the fact that Mozilla-based browsers and Opera 9 expose every W3C DOM
object type to scripts, just like the HTMLTableElement, you may get all kinds of wild
ideas about extending the properties or methods of all HTML elements or text
nodes. Go crazy!

78 | Chapter3: Arraysand Objects

3.13 Converting Arrays and Custom Objects to Strings

Problem

You want to convert the details of an array or a custom object into string form for
conveyance as a URL search string or preservation in a cookie, and then be able to
reconstruct the array or object data types from the string when needed later.

Solution

Use the objectsArraysStrings.js script library shown in the Discussion. To convert a
custom object to string form, invoke the object2String() function, passing a refer-
ence to the object as a parameter:

var objAsString = object2String(myObj);

To convert an array (including an array of custom objects) to string form, invoke the
array2String() function, passing a reference to the array as a parameter:

var arrAsString = array2String(myArray);
To reconvert the strings to native data types, use the corresponding library function:

var myArray = string2Array(arrayString);
var myObj = string20bject(objString);

Discussion
Example 3-1 shows the code for the objectsArraysString.js library.

Example 3-1. objectsArraysString.js conversion library

function object2String(obj) {
var val, output = "";
if (obj) {
output += "{";
for (var i in obj) {
val = obj[i];
switch (typeof val) {
case ("object"):
if (val[o]) {

output += 1 + ":" + array2String(val) + ",";
} else {

output += 1 + ":" + object2String(val) + ","
}
break;

case ("string"):
output += 1 +
break;
default:
output += 1 +

+ encodeURI(val) + "',";

+ val +

3.13 Converting Arrays and Custom Objects to Strings | 79

Example 3-1. objectsArraysString.js conversion library (continued)

}
}
output = output.substring(0, output.length-1) + "}";
}
return output;
}
function array2String(array) {
var output = "";
if (array) {
output += "[";

for (var i in array) {
val = array[i];
switch (typeof val) {
case ("object"):
if (val[o]) {
output += array2String(val) + ",";
} else {
output += object2String(val) + ",";
}

break;
case ("string"):
output += """ + encodeURI(val) + "',";
break;
default:
output += val + ",";
}
}
output = output.substring(o, output.length-1) + "]";
}

return output;

}

function string20bject(string) {
eval("var result = " + decodeURI(string));
return result;

}

function string2Array(string) {
eval("var result = " + decodeURI(string));
return result;

}

The first two functions of the library perform the conversion to strings. The first,
object2String(), works through the properties of a custom object, and assembles a
string in the same format used to generate the object in the curly-braced shortcut
syntax. The sole parameter to the function is a reference to the custom object you
wish to convert. The returned value is a string, including the curly braces surround-

ing the text.

80 | Chapter3: Arraysand Objects

To demonstrate the effect of object2String(), start with a simple object constructor:

function coworker(name, age, dept) {
this.name = name;
this.age = age;
this.department = dept;
}
Create an instance of the object:
var kevin = new coworker("Kevin", 28, "Accounts Payable");
Convert the object to a string via the object2String() library function:
var objStr = object2String(kevin);
The value of objStr becomes the following string:

{name: 'Kevin',age:28,department: 'Accounts%20Payable"}

In the second library function, array2String(), an array passed as the parameter is
converted to its square bracket-encased shortcut string equivalent. Each function
relies on the other at times. For example, if you are converting an object to a string,
and one of its properties is an array, the array portion is passed through
array2String() to get the desired format for that segment of the full string. Con-
versely, converting an array of objects requires calls to object2String(') to format the
object portions.

To reconstruct the object or array data type from the string, use one of the final two
functions that applies to the outermost construction of the string. The two functions
perform the same operation, but the names are provided for each conversion type to
improve readability of the code that invokes them. Despite warnings elsewhere in this
book about performance degradation of the eval() function, its use is necessary here.

Let the type of the outermost data structure govern which of the two convert-to-
string functions you use. Even though your custom objects may be the most impor-
tant part of your script data structure conceptually, they may be found within an
array of those objects, as shown in Recipe 3.8. In this case, convert the entire array of
objects to a single string by invoking array2String(), and let it handle the object
conversion along the way.

Conversions between objects and strings are the foundation of JSON (JavaScript
Object Notation), one of the ways you can use Ajax technology to access server data
from the current page. See Recipe 14.5 for more details.

See Also

Recipes 3.1 and 3.8 to see the shortcut array and object creation syntax emulated here
in string form; Recipe 4.8 for a discussion about the eval() function; Recipe 10.6 for
an example of this library being used to pass objects between pages via URLs; Reci-
pes 14.5 and 14.7 for using strings to transfer objects from server to page via Ajax.

3.13 Converting Arrays and Custom Objects to Strings | 81

3.14 Using Objects to Reduce Naming Conflicts

Problem

You want to minimize the possibility of script object naming conflicts, especially in
larger projects involving multiple script sources.

Solution

Make use of what is known as encapsulation, an automatic feature of JavaScript
objects. Each property or method name you define for an object is private to that
object. For example, if you define an object that contains three properties and two
methods, the only name that is accessible to other script statements outside of the
object is the identifier you use for the entire object. The five names you use for the
properties and methods can be used anywhere else without fear of naming conflicts.
Access to the internal properties and methods is via the standard objectName.
propertyName and objectName.methodName() syntax.

Discussion

At issue here is the global (i.e., window-wide) scope for scriptable objects. Every glo-
bal variable and, importantly, every non-nested named function has global scope.
For example, if you import two external .js libraries into a page, and both define a
function using the same function name, only the one that is defined later in source
code order prevails. So, too, with global variables that may be defined in multiple .js
files. When multiple authors work on a project, or if you use third-party script files,
you may be unaware of the conflicts looming when all files are loaded into a single
page.

Contributing even more to the problem is that some browsers—notably IE and
Safari—expose IDs of all named HTML elements to the global scope. Thus, if you
have a form containing a text input element whose ID is total, you cannot have any
JavaScript global variable or function by that name.

To demonstrate the “savings” in global names, we will transform the cookies.js
library from Recipe 1.10. The original library contains five functions, each of which
occupies a global name spot: getExpDate, getCookieVal, getCookie, setCookie, and
deleteCookie. The replacement library contains a single object, cookieMgr, which
becomes the gateway to invoking the functions.

Example 3-2 shows the code for the revised cookie manager library, with changes
shown in bold.

82 | Chapter3: Arraysand Objects

Example 3-2. cookieManager.js library

var cookieMgr = {
// utility function to retrieve an expiration date in proper
// format; pass three integer parameters for the number of days, hours,
// and minutes from now you want the cookie to expire (or negative
// values for a past date); all three parameters are required,
// so use zeros where appropriate
getExpDate : function(days, hours, minutes) {
var expDate = new Date();
if (typeof days == "number" &8 typeof hours == "number" &3
typeof minutes == "number") {
expDate.setDate(expDate.getDate() + parseInt(days));
expDate.setHours(expDate.getHours() + parseInt(hours));
expDate.setMinutes(expDate.getMinutes() + parseInt(minutes));
return expDate.toGMTString();

}
b
// utility function called by getCookie()
getCookieVal : function(offset) {
var endstr = document.cookie.indexOf (";", offset);
if (endstr == -1) {
endstr = document.cookie.length;
}
return decodeURI(document.cookie.substring(offset, endstr));
b
// primary function to retrieve cookie by name
getCookie : function(name) {
var arg = name + "=";
var alen = arg.length;
var clen = document.cookie.length;
var i = 0;
while (i < clen) {
var j = i + alen;
if (document.cookie.substring(i, j) == arg) {
return this.getCookieval(j);
i = document.cookie.indexOf(" "
if (i == 0) break;

» 1) + 15

} nn

return "";
b
// store cookie value with optional details as needed
setCookie : function(name, value, expires, path, domain, secure) {
document.cookie = name + "=" + encodeURI(value) +
((expires) ? "; expires=" + expires : "") +
((path) ? "; path=" + path : "") +
((domain) ? "; domain=" + domain : "") +
((secure) ? "; secure" : "");
b
// remove the cookie by setting ancient expiration date
deleteCookie : function(name,path,domain) {

3.14 Using Objects to Reduce Naming Conflicts

Example 3-2. cookieManager.js library (continued)

if (this.getCookie(name)) {
document.cookie = name + +
((path) ? "; path=" + path : "") +
((domain) ? "; domain=" + domain : "") +
"; expires=Thu, 01-Jan-70 00:00:01 GMT";

}
s

The new library consists of one global object and five internal functions. Each func-
tion is coded as an anonymous function (see Recipe 4.4). When a JavaScript custom
object property name (to the left of the colon) is defined as an anonymous function
(to the right of the colon), the property becomes a method of the object. Therefore,
following the example from the Discussion section of Recipe 1.10, invoking the
methods to set and get cookie values from other script statements would look like
the following;:

cookieMgr.setCookie("fontSize", styleID, cookieMgr.getExpDate(180, 0, 0));

var styleCookie = cookieMgr.getCookie("fontSize");
Notice in Example 3-2 that when a script statement within the object needs to
invoke another method of the same object, it must provide the context within which
the method operates. While you could refer to the object by name (cookieMgr), that
tactic limits you to always using that specific name for the object. Instead, use the
this operator to point to the current object, as shown in the getCookie() and
deleteCookie() methods.

See Also

Recipe 3.8 for creating JavaScript objects; Recipe 4.4 for more on anonymous functions.

84 | Chapter3: Arraysand Objects

CHAPTER 4
Variables, Functions, and Flow Control

4.0 Introduction

This chapter covers a miscellany of core JavaScript topics. A couple of these recipes
(or your own variations on them) may be part of your daily menu. If you don’t use
these constructions frequently, let this chapter serve to refresh your memory, and
give you models to get you back on track when you need them.

Even simple subjects, such as JavaScript variables and functions, have numerous
nuances that are easy to forget over time. On another front, scripters without formal
programming training tend to be rather loose in their attention to detail in the error
department—something that can come back to bite you. On the other hand, the
browser implementations of some of the details of exception handling are far from
compatible. If you aren’t yet using exception-handling techniques in your scripts,
you should get to know the concepts. As time goes on and the full W3C DOM
becomes implemented in browsers, the notion of “safe scripting” will include regu-
lar application of exception-handling practices.

This chapter ends with some suggestions about improving script performance. Most
scripts can scrape by with inefficiencies, but larger projects that deal with complex
document trees and substantial amounts of hidden data delivered to the client must
pay particular attention to performance. You’ll learn some practices here that you
should apply even to short scripts.

4.1 (Creating a JavaScript Variable

Problem

You want to create a JavaScript variable value either in the global space or privately
within a function.

85

Solution

Use the var keyword to define the first instance of every variable, whether you assign
a value to the variable immediately or delay the assignment until later. Any variable
defined outside of a function is part of the global variable scope:

var myVar = someValue;

All script statements on the page, including those inside functions, have read/write
access to a global variable.

When you define a variable with var inside a function, only statements inside the
function can access that variable:

function myFunction() {
var myFuncVar = someValue;

}

Statements outside of the function cannot reach the value of a variable whose scope
is limited to its containing function.

Discussion

A JavaScript variable has no inherent limit to the amount of data it can hold. Maxi-
mum capacity is determined strictly by memory available to the browser application—
information not accessible to your scripts.

Variable scope is an important concept to understand in JavaScript. Not only is a
global variable accessible by all script statements in the current window or frame, but
statements in other frames or windows (served from the same domain and server)
can access those global variables by way of the window or frame reference. For
example, a statement in a menu frame can reference a global variable named myVar in
a frame named content as follows:

parent.content.myVar

You don’t have to worry about the same global variable names colliding when they
exist in other windows or frames, because the references to those variables will
always be different.

Where you must exercise care is in defining a new variable inside a function with the
var keyword. If you fail to use the keyword inside the function, the variable is treated
as a global variable. If you have defined a global variable with the same name, the
function’s assignment statement overwrites the value originally assigned to the glo-
bal variable. The safest way to avoid these kinds of problems is to always use the var
keyword with the first instance of any variable, regardless of where it’s located in
your scripts. Even though the keyword is optional for global variable declarations, it
is good coding style to use var for globals as well. That way you can readily see
where a variable is first used in a script.

86 | Chapter4: Variables, Functions, and Flow Control

Although some programming languages distinguish between the tasks of declaring a
variable (essentially reserving memory space for its value) and initializing a variable
(stuffing a value into it), JavaScript’s dynamic memory allocation for variable values
unburdens the scripter of memory concerns. A variable is truly variable in JavaScript
in that not only can the value stored in the variable change with later reassignments
of values, but even the data type of the variable’s value can change (not that this is
necessarily good programming practice, but that’s simply a by-product of Java-
Script’s loose data typing).

Speaking of good programming practice, it is generally advisable to define global
variables near the top of the script, just as it’s also advisable to define heavily used
variables inside a function at the top of the function. Even if you don’t have a value
ready to assign to the variable, you can simply declare the variable as undefined with
a statement like the following:

var myVar;

If you have multiple variables that you’d like to declare, you may do so compactly by
separating the variable names with commas:

var myVar, counter, fred, i, j;
You may even combine declarations and initializations in a comma-delimited statement:
var myVar, counter = 0, fred, i, j;

In examples throughout this book, you typically find variables being declared or ini-
tialized at the top of their scope regions, but not always. It’s not unusual to find
variables that are about to be used inside a for loop defined (with their var key-
words) just before the loop statements. For example, if a nested pair of loops is in the
offing, I may define the loop counter variables prior to the outer loop’s start:

var i, j;

for (i = 0; i < arrayl.length; i++) {

for (j = 0; j < arrayi[i].array2.length; j++) {

}
}

This is merely my style preference. But in any case, this situation definitely calls for
declaring the variables outside of the loops for another reason. If you were to use the
var keywords in the loop counter initialization statements (e.g., var j = 0;), the
nested loop would repeatedly invoke the var declaration keyword each time the
outer loop executes. Internally, the JavaScript interpreter creates a new variable
space for each var keyword. Fortunately, the interpreter is also able to keep track of
which variable repeatedly declared is the current one, but it places an unnecessary
burden on resources. Declare once, then initialize and reassign values as often as
needed. Thus, in complex functions that have two or more outer for loops, you
should declare the counter variable at the top of the function, and simply initialize
the value at the start of each loop.

4.1 (reating a JavaScript Variable | 87

As for selecting the names for your variables, there are some explicit rules and
implicit customs to follow. The explicit rules are more important. A variable name
cannot:

* Begin with a numeral

* Contain any spaces or other whitespace characters

* Contain punctuation or symbols except the underscore character
* Be surrounded by quote marks

* Be a reserved ECMAScript keyword (see Appendix C)

Conventions among programmers with respect to devising names for variables are
not rigid, nor do they affect the operation of your scripts. They do, however, help in
readability and maintenance when it comes time to remember what your script does
six months from now.

The main idea behind a variable name is to help you identify what kind of value the
variable contains (in fact, names are commonly called identifiers). Littering your
scripts with a bunch of one- or two-letter variables won’t help you track values or
logic when reading the script. On the other hand, there are performance reasons (see
Recipe 4.8) to keep names from getting outrageously long. The shorter the better,
but not to the point of cryptic ciphers. If you need two or more words to describe the
value, join the words together via underscore characters, or capitalize the first char-
acter of any words after the first word (a convention used throughout this book).
Thus, either of the variable names in the following initializations is fine:

var teamMember = "George";

var team_member = "George";
Apply these rules and concepts to the identifiers you assign to HTML element name
and id attributes, as well. Your scripts will then have no trouble using these identifi-
ers in DOM object references.

Variable names are case-sensitive. Therefore, it is permissible (although not neces-
sarily advisable) to reuse an identifier with different case letters to carry different
values. One convention that you might employ is to determine which variables won’t
be changing their values during the execution of your scripts (i.e., you will treat them
as constants) and make their names all uppercase. Mozilla-based browsers imple-
ment a forthcoming ECMAScript keyword called const, which you use in place of
var to define a true constant value. No other browser supports this keyword yet, so
you can use variables as constants and keep modification statements away from
them.

JavaScript assigns data to a variable both “by reference” and “by value,” depending
on the type of data. If the data is a true object of any kind (e.g., DOM object, array,
custom object), the variable contains a “live” reference to the object. You may then
use that variable as a substitute reference to the object:

88 | Chapter4: Variables, Functions, and Flow Control

var elem = document.getElementById("myTable");

var padWidth = elem.cellPadding;
But if the data is a simple value (string, number, Boolean, object property other than
an object), the variable holds only a copy of the value, with no connection to the
object from which the value came. Therefore, the padWidth variable shown above
simply holds a string value; if you were to assign a new value to the variable, it would
have no impact on the table element. To set the object’s property, go back to the
object reference and assign a value to the property:

elem.cellPadding = "10";

If an object’s property value is itself another object, the variable receives that data as
an object reference, still connected to its object:

var elem = document.getElementById("myTable");

var elemStyle = elem.style;

elemStyle.fontSize = "18px";
Exercise care with DOM objects assigned to variables. It may seem as though the
variable is a mere copy of the object reference, but changes you make to the variable
value affect the document node tree.

Global variables share the same scope with all non-nested named functions. In IE
and Safari, this same scope is shared with IDs of HTML element objects. In large
projects, you may wish to move the declaration of related groups of variables into a
custom object as properties. See Recipe 3.14 for more on this subject.

See Also

Chapters 1, 2, and 3 for a discussion on assigning values of different types—strings,
numbers, arrays, and objects—to variables; Recipe 4.8 for the impact of variable name
length on performance; Recipe 3.14 for ways to minimize global variable space naming
collisions.

4.2 C(reating a Named Function

Problem

You want to define a function that can be invoked from any statement in the page.

Solution

For a function that receives no parameters, use the simple function declaration format:

function myFunctionName() {
// statements go here

}

4.2 (CreatingaNamed Function | 89

If the function is designed to receive parameters from the statement that invokes the
function, define parameter variable names in the parentheses following the function
name:

function myFunctionName(paramVar1, paramVar2[, ..., paramVarN]) {

// statements go here

}
You can define as many unique parameter variable identifiers as you need. These
variables become local variables inside the function (var declarations are implied).
Following JavaScript’s loosely typed conventions, parameter variables may hold any
valid data type, as determined by the statement that invokes the function and passes
the parameters.

Curly braces that contain the statements belonging to the function are required only
when two or more statements are inside the function. It is good practice to use curly
braces anyway, even for one-line statements, to assist in source code readability (a
convention followed throughout this book).

The majority of long scripts throughout this book employ named functions, some
with parameters, others without. Real-world examples abound, especially in reci-
pes containing external JavaScript libraries, such as the DHTML API library in
Recipe 13.3.

Discussion

A function is an object type in JavaScript, and the name you assign to the function
becomes a case-sensitive identifier for that object. As a result, you cannot use a
JavaScript-reserved keyword as a function name, nor should you use a function
name that is also an identifier for one of your other global entities, such as variables
or (in IE and Safari) element IDs. If you have two functions with the same name in a
page, the one that comes last in source code order is the only available version. Java-
Script does not implement the notion of function or method overloading found in
languages such as Java (where an identically named method with a different number
of parameter variables is treated as a separate method).

Invoke a function using parentheses:

myFunc();

myFunc2("hello",42);
At times, you will need to assign a function’s reference to a property. For example,
when you assign event handlers to element object properties (see Chapter 9), the
assignment consists of a function reference. Such a reference is the name of the func-
tion but without parentheses, parameters, or quotes:

document.onclick = myFunc;

This kind of property assignment is merely setting the stage for a future invocation of
the function, where parameters may be passed, if necessary.

90 | Chapter4: Variables, Functions, and Flow Control

Some programming languages distinguish between executable blocks of code that
operate on their own and those that return values. In JavaScript, there is only one
kind of function. If the function includes a return statement, the function returns a
value; otherwise, there is no returned value. Functions used as what other environ-
ments might call subroutines commonly return values simply because you define
them to perform some kind of information retrieval or calculation, and then return
the result to the statement that invoked the routine. When a function returns a value,
the call to the function evaluates to a value that can be assigned immediately to a
variable or be used as a parameter value to some other function or method. Recipe
15.7 demonstrates this feature. Its job is to display the part of the day (morning,
afternoon, or evening) in a welcome greeting that is written to the page as it loads. A
function called getDayPart() (defined in the head portion of the page) calculates the
current time and returns a string with the appropriate day part:
function dayPart() {
var oneDate = new Date();
var theHour = oneDate.getHours();
if (theHour < 12) {
return "morning";
} else if (theHour < 18) {
return "afternoon";
} else {
return "evening";

}
}

That function is invoked as a parameter to the document.write() method that places
the text in the rendered page:

<script type="text/javascript">
document.write("Good " + dayPart() +
</script>
<noscript>Welcome</noscript>

to GiantCo.

and welcome")

It is not essential to pass the same number of arguments to a function, as you have
defined parameter variables for that function. For example, if the function is called
from two different places in your script, and each place provides a different number
of parameters, you can access the parameter values in the function by way of the
arguments property of the function rather than by parameter variables:
function myFunc() {
for (var i = 0; i < myFunc.arguments.length; i++) {

// each entry in the arguments array is one parameter value
// in the order in which they were passed

}

A typical function (except a nested function, as described in Recipe 4.3) exists in the
global context of the window housing the current page. Just as with global variables,
these global functions can be referenced by script statements in other windows and

4.2 (CreatingaNamed Function | 91

frames. See “Frames As Window Objects” in Chapter 7 for examples of referencing
content in other frames.

How large a function should be is a matter of style. For ease of debugging and main-
tenance, it may be appropriate to divide a long function into sections that either
branch out to subroutines that return values or operate in sequence from one func-
tion to the next. When you see that you use a series of statements two or more times
within a large function, these statements are excellent candidates for removal to their
own function that gets called repeatedly from the large function.

The other stylistic decision in your hands is where you place the curly braces. This
book adopts the convention of starting a curly brace pair on the same line as the
function name, and closing the pair at the same tab location as the function declara-
tion. But you can place the opening curly brace on the line below the function name,
and left-align it if you like:

function myFunc()

// statements go here

}

Some coders feel this format makes it easier to keep brace pairs in sync. For a one-
line function, the single statement can go on the same line as the function name:

function myFunc() {//statement goes here}

Adopt the style that makes the most logical sense to you and your code-reading eye.

See Also

Recipe 4.1 for a discussion about variables “by reference” and “by value”—a discussion
that applies equally to function parameter variables; Recipe 4.3 for nesting functions.

4.3 Nesting Named Functions

Problem

You want to create a function that belongs to only one other function.

Solution

You can nest a function inside another function according to the following syntax
model:

function myFuncA() {
// statements go here
function.myFuncB() {
// more statements go here

}

92 | Chapter4: Variables, Functions, and Flow Control

In this construction, the nested function may be accessed only by statements in the
outer function. Statements in the nested function have access to variables declared in
the outer function, as well as to global variables. Statements in the outer function,
however, do not have access to the inner function’s variables.

Discussion

The basic idea behind nested functions is that you can encapsulate all activity related
to the outer function by keeping subroutine functions private to the outer function.
Because the nested function is not directly exposed to the global space, you can reuse
the function name in the global space or for a nested function inside some other
outer function.

See Also

Recipe 4.1 for a discussion of variable scope.

4.4 (Creating an Anonymous Function

Problem

You want to define a function in the form of an expression that you can, for exam-
ple, pass as a parameter to an object constructor or assign to an object’s method.

Solution

You can use an alternative syntax for defining functions without creating an explic-
itly named function (as shown in Recipe 4.2). Called an anonymous function, this
syntax has all the components of a function definition except its identifier. The syn-
tax model is as follows:

var someReference = function() {statements go here};

Statements inside the curly braces are semicolon-delimited JavaScript statements.
You can define parameter variables if they’re needed:

var someReference = function(paramVaril[,..., paramVarN]) {statements go here};
Invoke the function via the reference to the function:

someReference();

Discussion

Anonymous function creation returns an object of type function. Therefore, you can
assign the right side of the statement to any assignment statement where a function
reference (the function name without parentheses) is expected. To demonstrate,
we’ll make a version of a shortcut object constructor from Recipe 3.8. It starts with

4.4 (reating an Anonymous Function | 93

an ordinary function definition that gets invoked as a method of four objects defined
with shortcut syntax:

function showAll() {

alert("Employee " + this.name + " is " + this.age +

" years old.");

}
var employeeDB = [{name:"Alice", age:23, show:showAll},
{name:"Fred", age:32, show:showAll},
{name:"Jean", age:28, show:showAll},
{name:"Steve", age:24, show:showAll}];
Notice how in the object constructors, a reference to the showAll() function is assigned
to the show method name. Invoking this method from one of the objects is done in the

following manner:
employeeDB[2].show();

For the sake of example, we assign an anonymous function to the first object. The
anonymous function is custom-tailored for the first object and replaces the reference
to showAll():
var employeeDB = [{name:"Alice", age:23,
show:function()
{alert("Alice\'s age is not open to the public.")}},
{name:"Fred", age:32, show:showAll},
{name:"Jean", age:28, show:showAll},
{name:"Steve", age:24, show:showAll}];
Now, if you invoke employeeDB[0].show(), the special alert displays itself because the
anonymous function is running instead of the showAll() function. We have saved
the need to create an external function with its own identifier just to act as an inter-
mediary between the show method name and the statements to execute when the
method is invoked.

Assigning anonymous function definitions to object properties—thus creating object
methods—is a good way to remove groups of related functions from the global
scope. In large projects containing multiple libraries or frameworks (often from
multiple authoring sources), unintentionally redundant function names can cause
havoc. See Recipe 3.14 for suggestions on minimizing such conflicts.

See Also

Recipe 4.3 for creating traditional named functions; Recipe 3.14 for using anony-
mous functions to reduce global naming conflicts.

4.5 Delaying a Function Call

Problem

You want a function to run at a specified time in the near future.

94 | Chapter4: Variables, Functions, and Flow Control

Solution

Use the window. setTimeout() method to invoke a function one time after a delay of a
number of milliseconds. You essentially set a timer to trigger a function of your
choice. In its most common form, the function is referenced as a string, complete
with parentheses, as in the following example:

var timeoutID = setTimeout("myFunc()", 5000);

The method returns an ID for the time-out operation and should be preserved in a
global variable or property of a global object. If, at any time before the delayed func-
tion fires, you wish to abort the timer, invoke the clearTimeout() method with the
time-out ID as the parameter:

clearTimeout (timeoutID);

Once the timer is set, other script processing may proceed as usual, so it is often a
good idea to place the setTimeout() call as the final statement of a function.

Discussion

It’s important to understand what the setTimeout() method doesn’t do: it does not
halt all processing in the manner of a delay that suspends activity until a certain time.
Instead, it simply sets an internal countdown timer that executes the named func-
tion when the timer reaches zero. For example, if you are creating a slide show that
should advance to another page after 15 seconds of inactivity from the user, you
would initially set the timer via the load event handler for the page and the
resetTimer() function:

var timeoutID;

function goNextPage() {

location.href = "slide3.html";
}

function resetTimer() {
clearTimeout (timeoutID);
timeoutID = setTimeout("goNextPage()", 15000);
}
You would also set an event handler for, say, the mousemove event so that each time
the user activates the mouse, the autotimer resets to 15 seconds:

window.onmousemove = resetTimer;

The resetTimer() function automatically cancels the previously set time-out before it
triggers the goNextPage() function, and then it starts a new 15-second timer.

If the function you are invoking via the delay requires parameters, you can assemble
a string with the values, even if those values are in the form of variables within the
function. But—and this is important—the variable values cannot be object refer-
ences. Parameters must be in a form that will survive the conversion to the string
needed for the first argument of the setTimeout() method. Recipe 8.4 demonstrates

4.5 Delayinga FunctionCall | 95

how you can convey names of DOM form-related objects as ways of passing an
object reference. The tricky part is in keeping the quotes in order:

function isEMailAddr(elem) {

var str = elem.value;

var re = /*[\w-]+(\.[\w-1+)*@([\w-]+\.)+[a-zA-Z]{2,7}$/;

if (!str.match(re)) {
alert("Verify the e-mail address format.");
setTimeout("focusElement(""
return false;

} else {
return true;

+ elem.form.name + "', + elem.name + "')", 0);

}
}

In this example, the focusElement() function requires two parameters that are used
to devise a valid reference to both a form object and a text input object. Both parame-
ters of the focusElement() function are strings. Because the first argument of
setTimeout() is, itself, a string, you have to force the “stringness” of the parameters
to focusElement() by way of single quotes placed within the extended string concate-
nation sequence. (The zero milliseconds shown in the example is not a mistake for
this application. Learn why in the Discussion for Recipe 8.4.)

Conveniently, setTimeout() also accepts a function reference as its first parameter,
thus opening up the possibility of using an anonymous function in that spot. Staying
with the previous example, we can invoke multiple method calls within a single
anonymous function, as in the following:

setTimeout(function() {elem.focus(); elem.select();}, 0);
This approach circumvents all the string machinations of the other format.

If you are looking for a true delay between the execution of statements within a
function or sections of a function, JavaScript has nothing comparable to commands
available in some other programming languages. But you can accomplish the same
result by dividing the original function into multiple functions—one function for
each section that is to run after a delay. Link the end of one function to the next by
ending each function with setTimeout(), which invokes the next function in
sequence after the desired amount of time:

function mainFunc() {
// initial statements here
setTimeout("funcPart2()", 10000);
}
function funcPart2() {
// initial statements here
setTimeout ("finishFunc()", 5000);
}
function finishFunc() {
// final batch of statements here
}

96 | Chapter4: Variables, Functions, and Flow Control

The related functions don’t have to be located adjacent to each other in the source
code. If all related functions need to operate on the same set of values, you can cas-
cade the value as parameters (provided the parameters can be represented as nonob-
ject values), or you can preserve them as global variables. If the values are related, it
may be a good reason to define a custom object with values assigned to labeled prop-
erties of that object to make it easier to see at a glance what each function segment is
doing with or to the values.

Another JavaScript method, setInterval(), operates much like setTimeout(), but
repeatedly invokes the target function until told to stop (via the clearInterval()
method). The second parameter (an integer in milliseconds) controls the amount of
time between calls to the target function.

See Also

Recipe 8.4 for using setTimeout() to keep script execution synchronized; Recipe 12.6
for an example of using a self-contained counter variable in a repeatedly invoked func-
tion to execute itself a fixed number of times; Recipes 13.9 and 13.10 for applications
of setInterval() in animation.

4.6 Branching Execution Based on Conditions

Problem

You want your scripts to execute sections of code based on external values, such as
Booleans, user entries in text boxes, or user choices from select elements.

Solution

Use the if, if/else, or switch flow control construction to establish an execution
path through a section of your scripts. When you need to perform a special section
of script if only one condition is met, use the simple if construction with a condi-
tional expression that tests for the condition:
if (condition) {
// statements to execute if condition is true

}
To perform one branch under one condition and another branch for all other situa-
tions, use the if/else construction:
if (condition) {
// statements to execute if condition is true

} else {
// statements to execute if condition is false
}

4.6 Branching Execution Based on Conditions | 97

You can be more explicit in the else clause by performing additional condition tests:

if (conditionA) {
// statements to execute if conditionA is true
} else if (conditionB) {
// statements to execute if conditionA is false and conditionB is true
} else {
// statements to execute if both conditionA and conditionB are false
}

For multiple conditions, you should consider using the switch statement if the condi-
tions are based on string or numeric value equivalency:
switch (expression) {
case valueA:
// statements to execute if expression evaluates to valueA
break; // skip over default
case valueB:
// statements to execute if expression evaluates to valueB
break; // skip over default

default:
// statements to execute if expression evaluates to no case value
}

The break statements in each of the case branches ensure that the default branch
(which is optional) does not also execute.

Discussion

A condition expression in the if and if/else constructions is an expression that evalu-
ates to a Boolean true or false. Typically, such expressions use comparison operators
(==, ===, l=, l==, ¢, <=, >, >=) to compare the relationship between two values. Most of
the time, you are comparing a variable value against some constant or known value:
var theMonth = myDateObj.getMonth();
if (theMonth == 1) {
// zero-based value means the date is in February
monLength = getlLeapMonthLength(myDateObj);

} else {
monLength = getMonthLength(theMonth);
}

JavaScript offers some additional shortcut evaluations for condition expressions.
These shortcuts come in handy when you need to branch based on the existence of
an object or property. Table 4-1 lists the conditions that automatically evaluate to
true or false when placed inside the parentheses of a condition expression. For
example, the existence of an object evaluates to true, which allows a construction
such as the following to work:

if (myobj) {
// myObj exists, so use it

98 | Chapter4: Variables, Functions, and Flow Control

Table 4-1. Condition expression equivalents

True False

String has one or more characters Empty string

Number other than zero 0

Nonnull value null

Referenced object exists Referenced object does not exist

Object property is defined and evaluates to a string of oneor Object property is undefined, or its value is an empty string or
more characters or a nonzero number zero

When testing for the existence of an object property (including a property of the glo-
bal window object), be sure to start the reference with the object, as in the following:

if (window.innerHeight) { ... }

But you also need to be careful when testing for the existence of a property if there is
a chance that its value could be an empty string or zero. Such values force the condi-
tional expression to evaluate to false, even though the property exists. Therefore, it
is better to test for the data type of the property with the typeof operator. If you're
not sure about the data type, test the data type against the undefined constant:
if (typeof myObj.myProperty != "undefined") {
// myProperty exists and has a value of some kind assigned to it
}
If there is a chance that neither the object nor its property exists, you need to group
together conditional expressions that test for the existence of both. Do this by test-
ing for the object first, then the property. If the object does not exist, the expression
short-circuits the test of the property:
if (myObj 8& typeof myObj.myProperty != "undefined") {
// myObj exists, and so does myProperty
}
If, instead, you test for the property first, the test fails with a script error because the
expression with the object fails unceremoniously.

JavaScript also provides a shortcut syntax that lets you avoid the curly braces for
simple assignment statements that execute differently based on a condition. The syn-
tax is as follows:

var myValue = (condition) ? valuel : value2;

If the condition evaluates to true, the righthand expression evaluates to the first
value; otherwise, it evaluates to the second value. For example:

var backColor = (temperature > 100) ? "red" : "blue";

4.6 Branching Execution Based on Conditions | 99

Several recipes in later chapters use this shortcut construction frequently, even to
two levels deep. For example:
var backColor = (temperature > 100) ? "red" : ((temperature < 80) ?
"blue" : "yellow");
This shortcut expression is the same as the longer, more readable, but less elegant
version:
var backColor ;
if (temperature > 100) {
backColor = "red";
} else if (temperature < 80) {
backColor = "blue";

} else {
backColor = "yellow";
}

When you have lots of potential execution branches, and the triggers for the various
branches are not conditional expressions per se, but rather the value of an expres-
sion, then the switch construction is the way to go. In the following example, a form
contains a select element that lets a user choose a size for a product. Upon making
that choice, a change event handler in the select element triggers a function that
inserts the corresponding price for the size in a text box:
function setPrice(form) {
var sizelist = form.sizePicker;
var chosenItem = sizelist.options[sizelist.selectedIndex].value;

switch (chosenItem) {
case "small" :

form.price.value = "44.95";
break;

case "medium" :
form.price.value = "54.95";

break;
case "large" :
form.price.value = "64.95";
break;
default:
form.price.value = "Select size";

}
If the switch expression always evaluates to one of the cases, you can omit the
default branch, but while you are in development of the page, you might leave it
there as a safety valve to alert you of possible errors if the expression should evaluate
to an unexpected value.

See Also

Most of the recipes in Chapter 15 use the shortcut conditional statement to equalize
disparate event models.

100 | Chapter4: Variables, Functions, and Flow Control

4.7 Handling Script Errors Gracefully

Problem

You want to process all script errors out of view of users, and thus prevent the
browser from reporting errors to the user.

Solution

The quick-and-dirty, backward-compatible way to prevent runtime script errors
from showing themselves to users is to include the following statements in a script
within the head portion of a page:

function doNothing() {return true;}

window.onerror = doNothing;
This won’t stop compile-time script errors (e.g., syntax errors that the interpreter dis-
covers as the page loads). It also won’t reveal to you, the programmer, where errors
lurk in your code. Add this only if you need to deploy a page before you have fully
debugged the code (essentially sweeping bugs under the rug); remove it to test your
code.

In IE 5 or later, Mozilla, Safari, and Opera 7 or later, you can use more formal error
(exception) handling. If you are allowing your pages to load in older browsers, you
may need to prevent those browsers from coming into contact with the error-handling
code. To prevent earlier browsers from tripping up on the specialized syntax used for
this type of processing, embed these statements in <script> tags that specify Java-
Script 1.5 as the language attribute (language="JavaScript1.5").

Wrap statements that might cause (throw) an exception in a try/catch construction.
The statement to execute goes into the try section, while the catch section processes
any exception that occurs:

<script type="text/javascript" language="JavaScript1.5">

function myFunc() {

try {
// statement(s) that could throw an error if various conditions aren't right

}
catch(e) {

// statements that handle the exception (error object passed to e variable)
}

i/script>
Even if you do nothing in the required catch section, the exception in the try section
is not fatal. Subsequent processing in the function, if any, goes on, provided it is not
dependent upon values created in the try section. Or, you can bypass further pro-
cessing in the function and gracefully exit by executing a return statement inside the
catch section.

4.7 Handling Script Errors Gracefully | 101

Discussion

Each thrown exception generates an instance of the JavaScript Error object. A refer-
ence to this object reaches the catch portion of a try/catch construction as a parame-
ter to the catch clause. Script statements inside the catch clause may examine
properties of the object to learn more about the nature of the error. Only a couple of
properties are officially sanctioned in the ECMAScript standard so far, but some
browsers implement additional properties that contain the same kind of information
you see in script error messages. Table 4-2 lists informative Error object properties
and their browser support.

Table 4-2. Error object properties

Property IE/Windows Mozilla Safari Opera Description

description 5 n/a n/a n/a Plain-language description of error

fileName n/a all n/a n/a URI of the file containing the script throwing the
error

lineNumber n/a all n/a n/a Source code line number of error

message 55 all all 7 Plain-language description of error (ECMA)

name 55 all all 7 Error type (ECMA)

numbex 5 n/a n/a n/a Microsoft proprietary error number

stack n/a 1.0.1 n/a n/a Multi-line string of function references leading
to error

Error messages are never intended to be seen by users. Use the description or
message property of an Exrror object in your own exception handling to decide how to
process the exception. Unfortunately, the precise message from the various browsers
is not always identical for a given error. For example, if you try to reference an unde-
fined object, IE reports the description string as:

"myObject’ is undefined
Morzilla, on the other hand, reports:
myObject is not defined

This makes cross-browser exception handling a bit difficult. In this case, you could
try to fudge it by performing string lookups (regular expression matches) for the
object reference and the fragment “defined” as in the following:

try {
window.onmouseover = trackPosition;

}
catch(e) {
var msg = (e.message) ? e.message : e.description;
if (/trackPosition/.exec(msg) 8& /defined/.exec(msg)) {
// trackPosition function does not exist within page scope
}
}

102 | Chapter4: Variables, Functions, and Flow Control

You can also intentionally throw an exception as a way to build exception handling
into your own processing. The following function is a variation of a form validation
function that tests for the entry of only a number in a text box. The try clause tests
for an incorrect value. If found, the clause creates its own instance of an Error object
and uses the throw method to trigger an exception. Of course, the thrown exception
is immediately caught by the following catch clause, which displays the alert mes-
sage and refocuses the text box in question:

function processNumber(inputField) {
try {

var inpVal = parselnt(inputField.value, 10);

if (isNaN(inpval)) {
var msg = "Please enter a number only.";
var err = new Error(msg);
if (lerr.message) {

err.message = msg;

}

throw err;

}

// it's safe to process number here

catch (e) {
alert(e.message);
inputField.focus();
inputField.select();

}

This kind of function is invoked by both a change event handler for the text field and
a batch validation routine, as described in Chapter 8.

4.8 Improving Script Performance

Problem

You want to speed up a sluggish script.

Solution

When swallowing small doses of code, JavaScript interpreters tend to process data
speedily. But if you throw a ton of complex and deeply nested code at a browser, you
may notice some latency, even after all the data has been downloaded in the browser.

Here are a handful of useful tips to help you unclog potential processing bottlenecks
in your code:

* Avoid using the eval(') function.
¢ Avoid the with construction.

* Minimize repetitive expression evaluation.

4.8 Improving Script Performance | 103

* Use simulated hash tables for lookups in large arrays of objects.
* Avoid excessive string concatenation.
* Investigate download performance.

* Avoid multiple document.write() method calls.

Look for these culprits especially inside loops, where delays become magnified.

Discussion

One of the most inefficient functions in the JavaScript language is eval(). This func-
tion converts a string representation of an object to a genuine object reference. It
becomes a common crutch when you find yourself with a string of an object’s name
or ID, and you need to build a reference to the actual object. For example, if you
have a sequence of mouse rollover images comprising a menu, and their names are
menuImgl, menuImg2, and so on, you might be tempted to create a function that
restores all images to their normal image with the following construction:
for (var i = 0; 1 < 6; i++) {
var imgObj = eval("document.menuImg" + 1i);
imgObj.src = "images/menuImg" + i + "_normal.jpg";
}
The temptation is there because you are also using string concatenation to assemble
the URL of the associated image file. Unfortunately, the eval() function in this loop
is very wasteful.

When it comes to referencing element objects, there is almost always a way to get from
a string reference to the actual object reference without using the eval() function. In
the case of images, the document. images collection (array) provides the avenue. Here is
the revised, more streamlined loop:
for (var i = 0; 1 < 6; i++) {
var imgObj = document.images["menuImg" + i];
imgObj.src = "images/menuImg" + i + " _normal.jpg";

If an element object has a name or ID, you can reach it through some collection that
contains that element. The W3C DOM syntax for document.getElementById() is a
natural choice when working in browsers that support the syntax and you have the
element’s ID as a string. But even for older code that supports names of things like
images and form controls, there are collections to use, such as document.images and
the elements collection of a form object (document.myForm.elements["elementName"]).
For custom objects, see the later discussion about simulated hash tables. Hunt down
every eval() function in your code and find a suitable, speedier replacement.

Another performance grabber is the with construction. The pur