
Learn to Program PIC Micrcontrollers in easy to use BasicLearn to Program PIC Micrcontrollers in easy to use BasicLearn to Program PIC Micrcontrollers in easy to use BasicLearn to Program PIC Micrcontrollers in easy to use BasicLearn to Program PIC Micrcontrollers in easy to use Basic

R e v i s i o n 5 . 2R e v i s i o n 5 . 2R e v i s i o n 5 . 2R e v i s i o n 5 . 2R e v i s i o n 5 . 2

User’s GuideUser’s Guide

Warranty
Basic Micro warranties its products against defects in material and
workmanship for a period of 90 days. If a defect is discovered, Basic
Micro will at our discretion repair, replace, or refund the purchase price of the
product in question. Contact us at support@basicmicro.com
No returns will be accepted without the proper authorization.

Copyrights and Trademarks
Copyright© 2001-2002 by Basic Micro, Inc. All rights reserved.
PICmicro® is a trademark of Microchip Technology, Inc. Basic Stamp
I/II and Parallax are registered trademarks of Parallax Inc. MBasic, The Atom
and Basic Micro are registered trademarks of Basic Micro Inc. Other
trademarks mentioned are registered trademarks of their respective
holders.

Disclaimer
Basic Micro cannot be held responsible for any incidental, or
consequential damages resulting from use of products manufactured
or sold by Basic Micro or its distributors. No products from Basic Micro should
be used in any medical devices and/or medical situations. No product should
be used in a life support situation.

Contacts
Email: sales@basicmicro.com
Tech support: support@basicmicro.com
Web: http://www.basicmicro.com

Discussion List
A web based discussion board is maintained at
http://www.basicmicro.com

Updates
In our continuing effort to provide the best and most innovative products,
software updates are made available by contacting us at
support@basicmicro.com

5

Table of Contents
Table o

f Co
ntents

Table o
f Co

ntents
Table o

f Co
ntents

Table o
f Co

ntents
Table o

f Co
ntents

6

Contents
Introduction ..12
What is MBasic ? .. 12
This Manual .. 12
On-line Discussion Forums .. 12
Updates .. 12
Technical Support .. 12

Basic PICmicro Setup13
Which PICmicro should I use ? ... 14
Basic PICmicro Schematic ... 14
What Next ? .. 15

Getting Started ..17
Software Installation .. 18
Configuring MBasic ... 18
What is an IDE ? .. 19
Getting Familiar with the IDE ... 19
Terminal Window Selection ... 21
Control Characters ... 21
User Tool Bar .. 22
Config Setup Menu ... 24
First Program .. 26
Error Reporting.. 28
Conclusion .. 29

In Circuit Debugger31
ICD Setup ... 32
USB To Serial Adapter .. 32
What is an ICD ? .. 33
Getting Familiar with the ICD Controls ... 33
Using the ICD .. 35
Exercise .. 36
Debug Mode .. 37
Variable Watch Window .. 37
Trouble Shooting ... 38

The Basic’s ...41
Bits, Bytes, Words, Longs .. 42
MSBs and LSBs .. 42

7

RAM, EEPROM and Program Memory.. 42
Built-in Hardware ... 42
Hexadecimal 101 ... 43
ASCII ... 43
Programming Practices ... 44
Optimizing .. 46
Line Labels .. 47
Variables .. 47
Arrays .. 48
Tables .. 49
Aliases ... 49
Variable Modifiers .. 49
Command Modifiers ... 53
Constants ... 56
Pins.. 57
Pin Variables ... 59

MBasic Specific’s ...61
Stack.. 62
Oscillator Settings .. 62
Internal RC Calibration ... 62
Memory .. 62
Compiling ... 62
Reserved Symbols ... 63
Device Specific Issues .. 63

MBasic and Assembly65
What is Assembly ? .. 66
Mixing Assembly and MBasic ... 66
In-line Assembly .. 66
Assembly and Variables .. 67

Math ...69
Numerical Types .. 70
Adding and Subtracting .. 70
Multiplication ... 70
Division ... 72
Integer Math in general .. 72
General Math Functions .. 73
Bitwise Operators .. 73
Comparison Operators ... 74
Logical Operators ... 74
Floating Point Math .. 75
Floating Point Format ... 75
Floating Point Example Program .. 75

8

Syntax ..79
ADin ... 80
ASM {...} .. 82
Branch.. 83
Button .. 85
Clear .. 88
Count ... 89
Data (EEPROM)... 90
Debug .. 92
Debugin .. 94
Do...While ... 96
DTMFout ... 97
DTMFout2 ... 99
End .. 101
For...Next .. 102
Freqout .. 105
Gosub...Return .. 106
Goto ... 107
High ... 108
I2Cin .. 109
I2Cout .. 112
If...Then...Elseif...Else...Endif ... 116
Input .. 120
Lcdread .. 121
Lcdwrite ... 123
Let ... 127
Low.. 128
Lookdown ... 129
Lookup ... 131
Nap .. 133
Output .. 134
OWIN ... 135
OWOUT .. 138
Pause ... 141
Pauseclk ... 142
Pauseus .. 143
PEEK...POKE .. 144
Pulsin ... 145
Pulsout ... 147
Pwm .. 148
Random.. 150
RCtime ... 151
Read .. 153
ReadDM.. 154
ReadPM .. 156
Repeat...Until .. 158
Reverse .. 159

9

Serdetect .. 161
Serin .. 164
Serout .. 170
Servo ... 176
Shiftin .. 178
Shiftout .. 182
Sleep ... 186
Sound .. 187
Sound2 ... 189
Spmotor ... 190
Stop ... 192
Swap ... 193
Toggle .. 194
While...Wend .. 195
Write.. 196
WriteDM ... 199
WritePM ... 201
Xin ... 203
Xout ... 207

Hardware Commands211
Hardware Commands ... 212
HSERIN..HSEROUT ... 213
SetHSerial .. 214
HPWM .. 215
SETPULLUPS ... 217

On Reset Commands219
On Reset Commands .. 220

Interrupt Commands223
Interrupts ... 224
Interrupt Sources ... 225
Set Interrupt Source .. 226
SETEXTINT ... 226
SETTMR0 .. 226
SETTMR1 .. 227
SETTMR2 .. 229
SETCAPTURE .. 230
GETCAPTURE .. 230
SETCOMPARE ... 231

10

BS2 Compatibility......................................235
Differences ... 236
Program Storage ... 236
DATA and EEPROM ... 236
Gosub...Return .. 236
Converting Basic Stamp II Program .. 236
DIRS .. 237
SERIN / SEROUT Timings.. 237
LCD Commands ... 237

Trouble Shooting239
My Program Won’t Run ? .. 240
My Program Still Won’t Run ? .. 240
Error trying to Program the PICmicro ? ... 240

Reserved Words ..241
Appendix - A ..253
Appendix - C ..255
Index ..262

11

In
tro

d
u

ctio
n

In
tro

d
u

ctio
n

In
tro

d
u

ctio
n

In
tro

d
u

ctio
n

In
tro

d
u

ctio
n

Introduction

12

Introduction
Welcome to the world of microcontrollers. We would like to Thank you for your
purchase.

What is MBasic ?
MBasic is an advanced programming language modeled after BASIC, creating
a cost effective and flexible way to program PIC Microcontrollers. MBasic
maintains the simplicity of Basic, but offers more power. MBasic includes a
super set of the BS2 instruction set, allowing you to easily port your current BS2
applications with little effort.

This Manual
This manual in general applies to MBasic and minimal hardware. It is not in
the scope of this manual to cover any Chip specific or Peripherals features of
PICmicros. Further information can be found in the Data Sheets available
from Microchip.com for all PICmicros.

This manual will explain the MBasic programming language in depth . The
main purpose of this manual is to teach the general syntax. Which will give
you, the end user, a good understanding of how to effectively use MBasic.

We will continue to update and improve this manual. All updates will be made
available for download from our web site at
http://www.basicmicro.com.

On-line Discussion Forums
We maintain discussion forums at http://www.basicmicro.com in order to help
you to connect with a wide range of related information and users. The dis-
cussion forums are free and will allow you to find information and help fast.

Updates
MBasic updates will be available to new and current customers. To receive
email notifications of updates, join the discussion forums at http://
www.basicmicro.com.

Technical Support
Technical support is provided via e-mail and the discussion forums at
www.basicmicro.com. When technical support is required please send e-mail
to support@basicmicro.com . In order to assure a proper response please
include a copy of the program you are having problems with, the hardware
you are using, MBasic revision number, prototyping board and so on. By
including this information with your e-mail, you can help us answer your ques-
tions quickly. Additional technical support is often provided by several experi-
enced users of the discussion forums at http://www.basicmicro.com

13

Basic PICmicro Setup
Basic PICm

icro
 Setup

14

W h i c h P I C m i c r o s h o u l d I u s e ?W h i c h P I C m i c r o s h o u l d I u s e ?W h i c h P I C m i c r o s h o u l d I u s e ?W h i c h P I C m i c r o s h o u l d I u s e ?W h i c h P I C m i c r o s h o u l d I u s e ?
Doing a quick search on the internet will turn up a ton of links and projects
with sample code using the 16F84. The 16F84 has 1K of code space and
68 bytes of RAM at a cost around $5.00 in small quantity. Microchip came
out with a 100% pin compatible chip that is a replacement for the 16F84.
This PICmicro is a 16F628 which has 2K of code space and 224 bytes of
RAM. The 16F628 also has many hardware features and it can be
purchased for about $2.50 in small quantity. Any sample code for the 16F84
will work with the 16F628. With the 16F628 you get more code space, more
ram for a smaller price.

The second chip of choice, the one this manual and most of the sample
code is written for is the 16F876. This is a 28 pin, 8K program space, 384
bytes of RAM PICmicro.

B a s i c P I C m i c r o S c h e m a t i cB a s i c P I C m i c r o S c h e m a t i cB a s i c P I C m i c r o S c h e m a t i cB a s i c P I C m i c r o S c h e m a t i cB a s i c P I C m i c r o S c h e m a t i c
The schematic shown is the most basic circuit for setting up a PICmicro. The
basic circuit consist of a resonator with built in caps, 10K resistor, power
and ground. The PICmicro requires +5Volts.

15

W h a t N e x t ?W h a t N e x t ?W h a t N e x t ?W h a t N e x t ?W h a t N e x t ?
You can build the circuit shown with the 16F628 or 16F876. You should
download the data sheet from Microchip.com on the chip you plan on using.
The best approach to experimenting with PICmicros is a development
platform. This will save endless hours with wiring troubles and faulty circuits.
There are several “Getting Started” packages available from the Basic
Micro web site. This isn’t a sales pitch this is years of experience with
PICmicros. Just about 90% of the problems you will run into is bad hard-
ware. Using something like the 2840 Solderless Development board and
ISP-PRO will dramatically reduce the amount of time you spend trouble
shooting hardware. Plus save time, the PICmicro can be programmed in
circuit. So for every typo, syntax error or program mistake, you won’t need to
remove the PICmicro from its circuit. There will be plenty of those. Now with
all that said lets get started.

16

17

Getting Started

G
e

tting
 Starte

d
G

e
tting

 Starte
d

G
e

tting
 Starte

d
G

e
tting

 Starte
d

G
e

tting
 Starte

d

18

Software Installation
MBasic software will run on 95, 98, ME, NT, 2000, and XP. DOS is not
supported.

If the software is downloaded, double click the .exe application it will
automatically unzip. Then double click the setup.exe. Follow the on screen
prompts (It is not recommended to change the default directories until you
fully understand the software). Once the installation is complete restart your
computer.

If the software is installed from the CD-ROM; insert the CD-ROM into your
computer. If auto-run is enabled an installer menu will appear, select your
software and the installation process will begin automatically. Restart your
computer after the installation is complete.

Note: Explore the CD-ROM after installation, it contains sample code, data
sheets and more.

Configuring MBasic
If you are using the ISP-PRO programmer the COM port will need to be
configured. Open the System Setup Menu under Tools (Tools-> System
Setup) Choose the COM port the ISP-PRO is attached to.

COM Port
Selection

19

What is an IDE ?
IDE stands for Integrated Development Environment. The IDE associated
with MBasic software is used to perform all the tasks associated with using
PICmicros, such as Writing code, Compiling, and Programming.

Getting Familiar with the IDE
Take a few minutes to read through this section and familiarize yourself with
the IDE. Understanding all the features of the IDE will make it easier to use
MBasic more efficiently.

File Explorer Window Build Window Program Document

20

File Explorer Window
This window displays all the files on your computer. It is not auto updating,
occasionally you may need to right click on it and select refresh.

Build Window
The Build Window is used to display compiling information and progress of
the program being executed. Available program memory, ram and errors will
be listed here after compiling is complete. If an error is listed simply double
click on it and the IDE will automatically highlight the problem line of the
program.

Program Document
This is a multi document interface. You can have several programs open at
once. The IDE will only compile and deal with the current document that is in
focus.

User Tool Bar
This menu contains all the tasks that can be performed such as,
Compile, Program and Debug.

Standard Tool Bar
These are small Icons representing different shortcuts from the menu bar.
Dragging the cursor over each ICON will display a small message that
explains the function of that ICON.

Chip Selection Menu
This menu contains all the supported chip names. When programming or
creating a new file, the correct chip you are using must be selected using
this menu.

Standard Tool Bar User Tool Bar

Chip Selection Menu

21

Terminal Window Selection
The IDE comes with built-in RS-232 serial communication terminals much
like Hyper Term. You can have up to 4 terminal windows running at once.
The number of terminal windows connected to COM ports are also limited
by the number of COM ports your computer is equipped with.

Control Characters
The terminal window supports several control characters for cursor position-
ing. The following chart is a list of all the control characters supported. The
terminal window only supports the ASCII values. No symbols are pre-
defined.

Baud Com Parity Flow Control Echo Connect

Terminal Window Selection

Name ASCII Value Description

Clear Screen 0 Clear the screen and move cursor to
the home position

Home 1 Move cursor to the upper left corner
of the screen

Move to X,Y 2 Move cursor to location specified by X,Y
(i.e. 2,X,Y theses values can not be
greater than 255)

Cursor Left 3 Move cursor one character left.
Cursor Right 4 Move cursor one character right.
Cursor Up 5 Move cursor one character up.
Cursor Down 6 Move cursor one character down.
Bell 7 Beep PC speaker.
Backspace 8 Delete one character to the left.
Tab 9 Tab to next column.
Line Feed 10 Move cursor down one line.
Clear Right 11 Clear entire line to the right.
Clear Down 12 Clear screen contents below cursor.
Carriage Return 13 Move cursor to first position of next line.

22

T e r m i n a l W i n d o w F u n c t i o n sT e r m i n a l W i n d o w F u n c t i o n sT e r m i n a l W i n d o w F u n c t i o n sT e r m i n a l W i n d o w F u n c t i o n sT e r m i n a l W i n d o w F u n c t i o n s
Baud
The Baud menu sets the communication speed of the terminal window.
Baud rates from 300 to 460800 bits per second are possible.

Com
The Com menu is used to select the COM port the terminal window will
use. Only the COM ports available on your computer will be shown here.

Parity
The Parity menu is used to select if the parity is used or not being used.
Most setups will require No Parity.

Flow Control
The FlowControl menu is used to select software flow control. If Flow Control
is selected, the CTS and RTS hardware lines are used to control the flow of
data.

Echo
The Echo menu is used to display the sent character automatically. When
this menu is set to No Echo and a character is typed in the output screen,
nothing will be displayed, only data received will be shown. If Echo is
selected any character typed will be displayed.

Connect
Clicking the “Connect” button connects the serial port that the terminal
window is set to use. Once the serial port is open the connect button will
display “Disconnect” . As long as the serial port is open it will be unacces-
sible by other programs. Once you are finished close the connection.

User Tool Bar
Main programming functions are available as buttons on the tool bar.

Compile
The compile function will compile the current program and check for syntax
errors.

Assemble
Will pass an assembly file to the assembler.

 Compile Assemble Read Verify Erase Program Debug ConfigSetup

23

Read
This function will only work with the available Boot Loader or ISP-PRO and
a PICmicro conntected. Read will read the contents of the PIC and display
the file in HEX format to the screen.

Verify
The verify function will read in from the PICmicro and match the current open
file to verify they are the same.

Erase
This function will only work with the available Boot Loader or ISP-PRO and
a PICmicro conntected. Erase will clear or set all the programming locations
on the PICmicro to 3fff. Which is considered blank.

Program
The program button will compile, then program the target device. The
program function is one click.

Debug
The debug function will perform the same task as the Program option, but
will add special code the ICD and set the IDE to Debug mode. Debug
requires the ISP-PRO programmer our supported boot loader device.

Config Setup
The config setup menu is used to set the configuration settings on the
selected PICmicro. Most problems when programming are caused due to
improper configuration settings.

24

Oscillator Mhz

Code Protect Chip Specific Options Brownout

C o n f i g S e t u p M e n uC o n f i g S e t u p M e n uC o n f i g S e t u p M e n uC o n f i g S e t u p M e n uC o n f i g S e t u p M e n u
The config setup menu will list all the specific options for a selected device.
Any time before programming a target device the config setup menu should
be checked to ensure all the options are set correctly for the selected device.

Oscillator
The oscillator section will display all the different options available for a
selected device. These options will vary from device to device. Some of the
common options are as follows:

LowPower = Low power mode.
eXTernal = External oscillator.
HighSpeed = Set when oscillator is 10mhz and above.
RC = Sets internal RC circuit for oscillator.

The High Speed option should be selected during the design phase.
Afterwards other options can be used. To understand all the options
available refer to the specific target device data sheet.

25

Mhz
The mhz option is a list of available frequency the selected device can
operate within. When setting this option check the device for its maximum
range. Some parts can run up to 4mhz while others can run up to 20mhz.
There is no way for the software to detect which speed part is in use, so
this must be set according to the device being used.

Code Protect
The code protect section will display various options based on the device
selected. Some of the more common ones are as follows:

ALL = Code Protect all of the device.
1/2 = Code Protect the first half. 8K = 4K protected.
1F00 to 1FFF = Code Protect location 1F00 to 1FFF.
OFF = No Code Protect.

On some windowed UV erasable parts setting the code protect will ruin
them for further use. Once the code protect is set it can not be erased. On
flash parts this is not the case, they can be erase once code protected.

Chip Specific Options
The chip specific options will vary from device to device. The more common
options are as follows:

Data Protect = Code Protect the on Board EEPROM.
Watch Dog Timer = Watch Dog timer on / off.
Powerup Timer = Delayed program execution on / off.
Write Timer = Write Timer on / off.
MCLR = Set MCLR pin on / off.
Low Voltage Prg= LVP on / off Set this off always.

Brownout
The brownout option sets the brownout circuit on or off. The brownout detect
is an internal circuit on some devices. This circuit detects voltage levels.
When the voltage falls below a certain threshold this circuit will reset the
device and continue to reset the device until voltage levels return to normal.
This is used to prevent erratic device operation.

26

First Program
A 16F876 is assumed for this first example. If a different chip is used replace
the reference to 16F876 to your chip type. Most of the configuration settings
will be the same.

1. Select File ->New. A file type dialog will appear. Select Mbasic file.

2. Set the Chip Selection Menu to 16F876 as shown below.

3. Click the “Config Setup” button (or menu) select “High Speed” for the
oscillator type. If you are using a Basic Micro development board the factory
supplied oscillator is a 10mhz. In the config menu select “10” for the Mhz
setting. If your are using some other oscillator speed set the “Mhz” setting to
the speed in which you are using. Make sure “Low Voltage Programming”
is off (or unchecked). The remaining configuration settings are defaults and
will work in most situations. Once you have completed the above steps,
close the config setup menu. The config menu and header of your MBasic
file should look as shown (Provided you are using 16F876 and default
oscillator).

CPU = 16F876
MHZ = 10
CONFIG 16254

27

4. Next type in the following program:

Main
High B0
Pause 200
Low B0
Pause 200
End

5. Once you have entered the above program choose File -> Save As.
Wire up an LED as shown in the circuit below to pin B0.

6. Ensure the ISP-PRO is connected, power is on and attached to the
target device. Next click the “Program” button. This will compile your program
and download it to the PICmicro. If the PICmicro was programmed success-
fully no error messages should appear. If you do receive an error message

28

recheck your connections and ensure the correct COM port was selected for
the ISP-PRO.

If you have connected the LED correctly and successfully downloaded the
program you should have a blinking LED ! Congratulations you have
successfully programmed your first PICmicro !

E r r o r R e p o r t i n gE r r o r R e p o r t i n gE r r o r R e p o r t i n gE r r o r R e p o r t i n gE r r o r R e p o r t i n g
In next example program we are going to intentionally produce an error. This
next example will demonstrate the error reporting abilities of MBasic and
how to use it. Make sure to include the intentional misspelling of the Pause
command leaving off the “se”.

Type in the following program:

CPU = 16F876
MHZ = 10
CONFIG 16254

Main
High B0
Pau 200
Low B0
Pause 200

End

Once you have entered the example program, click “Compile”. MBasic will
report a few errors in the build window as shown.

29

By clicking on the actual error in the build window the cursor and a blue
arrow will indicate at what line the error occurred.

In most cases more than one error will be reported, even when there is only
one error. This is due to the first error causing MBasic to treat the following
values as garbage. Any time you get multiple errors start from the top down.

In many cases the error shown may have actually occurred on a line before
the actual line indicated. This is because MBasic may interpret the first error
as a label and the next statement did not make sense to the compiler. The
error reporting is a generalization of the actual error. In some cases it may
take some time to find the actual error.

C o n c l u s i o nC o n c l u s i o nC o n c l u s i o nC o n c l u s i o nC o n c l u s i o n
In most cases programming PICmicros can be that easy. However there
are many factors to each PICmicro that may make the learning process
difficult to a beginner. You must in several cases refer to the data sheet for
the specific device you are using. MBasic is not an end all stop for program-
ming PICmicros. There are several hardware specific issues you may have
to learn, in order to use any given PICmicro.

30

31

In Circuit Debugger

In Circuit D
ebug

g
er

In Circuit D
ebug

g
er

In Circuit D
ebug

g
er

In Circuit D
ebug

g
er

In Circuit D
ebug

g
er

32

I C D S e t u pI C D S e t u pI C D S e t u pI C D S e t u pI C D S e t u p
There are a few options that must be set before you begin to use the ICD.
The first option is what COM port you wish to use. This is only valid if your
are using a Boot Loader chip or have more than one ISP-PRO. Otherwise
the COM port will need to stay the same as the COM port selected for the
attached ISP-PRO. The next option is the speed at which the ICD will run
at. The maximum value for most computers will be 115K baud. When using
the ICD, if you get erratic operations attempt to lower your baud speed.

U S B T o S e r i a l A d a p t e rU S B T o S e r i a l A d a p t e rU S B T o S e r i a l A d a p t e rU S B T o S e r i a l A d a p t e rU S B T o S e r i a l A d a p t e r
Since USB to Serial adapters can handle higher speeds, you can set the
ICD to a faster speed. The ISP-PRO must be attached with a USB to
Serial adapter.

COM Port Setting for the ICD
ICD Baud Mode

33

What is an ICD ?
ICD stands for In Circuit Debugger. The ICD provides an easy way to
DEBUG your code on-the-fly. With MBasic’s ICD you can watch your code
run line-by-line live as each instruction is executed by the PICmicro MCU. In
the past ICDs have been complicated and could only be used by the most
experienced users. With MBasic’s ICD this is no longer the case, any user
can easily learn to use the ICD built into MBasic.

Getting Familiar with the ICD Controls

Debug Tool Bar

Debug Menu

34

Connect
The connect button is used to establish communications between the ICD /
Watch Window and the target device. This is done automatically after
programming using the “Debug” button. A green bar will highlight the first line
of code indicating it has successfully connected. Once connection has been
established the button will change to “Disconnect”

Toggle Break Point
If a break point is not set on the line with the cursor, the toggle break point
will set a break point on that line. If a break point is set it will clear it.

Animate
The animate button will animate the displayed program line-by-line as it is
executed on the target device. This is done with a high lighted green line
across the screen. This mark indicates the current line of code being ex-
ecuted. The marker will flow with the program as it is executed.

Run
The run button will start program execution on the target once the connec-
tion is established.

Reset
Reset is used to restart the program currently running on the target device.
Reset does not clear out any previously stored values in ram, which means
any previous values stored in variables will still be there. To clear all the
RAM locations when your program starts running make sure to use a
CLEAR command in the beginning of the program. This will set all variables
to zero’s each time Reset is used when running the ICD.

Pause
The pause button will pause program execution, to resume the program,
click RUN or ANIMATE.

Step Into
The step button allows you to step through the current running program line-
by-line

Step Over
This allows the program to step over a routine, mainly a gosub and or
for..next loop.

Step Out
Step out will allow you to step out of a gosub routine. This allows you to
skip any gosub in your program and go to the next line after the routine.

35

Run To Cursor
Clicking on any part of the displayed program will produce a blinking cursor.
Using the “Run to Cursor” function will allow the program to run until the
cursor is reached.

Show Variables
The variable button if clicked, will open a small new window that displays
all the current variables used in the current program and the current values in
HEX, Decimal, Binary and floating point. (Note: AutoUpdate must be
enabled for these values to be updated.)

Show SFRs
SFRs stands for Special Function Registers. These are the registers built
into the PICmicro MCU. Some examples are the GIE, ADCON and so on. If
the SFRs button is clicked a small window will display all the current SFRs
used in the current program and their status.

Show Ram
The ram button if clicked, will open a small window that displays all the ram
values in the Atom.

Show Gosub Stack
Displays the gosub stack. This indicates where a program is in a gosub
routine. Useful if a program has many levels of gosubs. (Note: For ad-
vanced Users.)

Set Auto Update
The auto update feature if checked will automatically update the SFR,
Variable, RAM and Stack screens when the program is in animate mode.

Using the ICD
To best illustrate the ICD, we will setup and run a simple program. Once
you have completed this exercise you should be able to use the ICD with
any program.

Important Note
When using the ICD, the running program has an added delay anywhere
from .5ms to 500ms per command. The user must take this into account
when any timing critical commands or program functions are being de-
bugged.

36

Exercise
Start the IDE, create a new file. Save the file as icd.bas. It will be referred to
as such in the remainder of this section (Refer to Getting Started section for
basic setup)

CPU = 16F876
MHZ = 10
CONFIG 16254

Temp var Byte
Temp1 Var Word

Temp1 = 0
Temp = 0

Main
For temp = 1 to 20

Temp1 = Temp1 + 10
Debug [DEC Temp1,13]
If Temp1 = 50 then skip

Next
Goto Main

Skip
Debug [“OK”,13]
Temp1 = 60

Goto Main

37

Once you have entered the program, save it. Make sure the target device is
connected and power is applied. Next, click the “Debug” button on the tool
bar.

The program will compile, then a progress bar will appear. This indicates the
target device is being programmed. Once this is finished the IDE will change
to debug mode. If the program did not compile, check your program for
syntax errors.

Debug Mode

After the IDE is in debug mode, a green line will appear at the beginning of
your program. This is indicates a connection has been established. Next,
click the Auto update button. Then click the Variable button, another window
will appear. This is the variable watch window. Click the AutoUpdate button
to enable updating of the status windows. Now click Animate.

Variable Watch Window

Variables

Hex Value Decimal Value Binary Value

Current
Line

38

Once the program is running the variable watch window will update the
status of each variable used in the program. It will display the values in
Hex, Dec, Binary and Real.

Shown is the actual program running, The ICD will show a small yellow
arrow and a green bar, indicating where the program is at during execution.

Watch the flow of the program. If the program was entered correctly, after
the variable, Temp1, equals 50, the program should jump down to the Skip
label. The text “OK” should appear in the watch window. The program
should then return to the label Main.

Congratulations you have successfully mastered the ICD!

Important Notes
When running debug, there is a block of code that is added to your pro-
gram. This code is added to allow the IDE to gather information about the
program being executing such as variable values, what is the current
program line and so on. This information is provided to the IDE after each
line is executed. Because of this, Debug is much slower than running a
program normally. Timing sensitive programs will be affected.

When running in debug mode a PC is required to run the target device.
Once you have finished using debug reprogram the target device with the
“Program” button.

Trouble Shooting
Q. Error: ISP-PRO not connected

 A. Check power is applied and the serial cable is connected. Check to
ensure the correct comm port has been selected.

Q. A connection has been established, but nothing is happening ?

A. Make sure Auto Update has been checked and after the connection is
made, click “Animate”. Check your syntax.

Q. My program runs and then stops part way through the execution for no
apparent reason ?

A. Commands such as SERIN, SEROUT, SHIFTIN, SHIFTOUT or any
command that affects pins and ports on the target device will cause this
problem if they are used to modify the I/O pins the ICD is using to talk to
the target device.

39

Q. After I’m done debugging and I disconnect thePC the PICmicro dies ?

A. Once you are finished debugging, you must reprogram the PICmicro with
the normal program button.

Q. During debug the PICmicro is real slow ?

A. When the PICmicro is programmed using debug, extra code is added.
During debug the PIC’s entire RAM contents is dumped after every instruc-
tion.

40

41

The Basic’s

The Basic’s

42

Bits, Bytes, Words, Longs
Throughout this manual and when dealing with programming languages in
general, bits, bytes and words will be referred to often. The following is a
quick break down:

Type Bit Size Range
Bit 1 1 or 0
Nib 4 0 to 15
Byte 8 0 to 255
SByte 8 -127 to +128
Word 16 0 to 65535
SWord 16 -32767 to +32768
Long 32 -2147483647 to +2147483648

MSBs and LSBs
Another often referred to term is LSB or MSB. These terms mean LSB =
Least significant bit, MSB = Most significant bit. A byte value of %11110000,
the MSB is %1 and the LSB is %0. MSB is the first bit on the left. LSB is
the first bit on the right.

RAM, EEPROM and Program Memory
RAM is random access memory, this type of memory is used to store
variable values, and system values. RAM is also used to store the return
location of GOSUB statements. The more RAM available, the more vari-
ables or variable arrays can be used. The 16F876 has about 300 bytes of
user RAM available on average.

EEPROM is on chip data storage. This is commonly used to store values
that will remain even when the PICmicro is powered down. The EEPROM
stores data in byte size. It can store 256 bytes depending on what
PICmicro is used. (Refer to the device data sheet)

Program Memory is the actual memory where your program will reside. The
size of available program memory will limit the size of your program. The
more complicated the program will be, the more memory you will want.

Built-in Hardware
Built-in Hardware refers to additional hardware that is independent of the
main microcontroller. Examples of Built-in Hardware are Analog To Digital
converters, Pulse Width Modulators, UARTS, Timers and so on. Built-in
hardware adds pseudo multi tasking abilities to the PICmicro, because in
most cases it can be setup in your program and left to run while the
program does other things.

43

Hexadecimal 101
The hexadecimal number system, also known as "hex" and "base 16",
uses 16 characters as its numbers. We normally use the characters
0123456789; this is the "decimal" or "base 10" system.

Computers don’t understand decimal numbers; they "know" only two states;
on/off, yes/no, high/low, 1/0. The smallest unit of information they can store
is a "bit", short for "binary digit". One bit can store one state; 1 or 0 (On or
Off).

Computers count higher than 1 the same way we do; they group the digits
to make larger numbers. In base 10, 9+1=10. In base 2 (also known as
"binary"), 1+1=10. (That’s "one zero", not "ten".)

Binary numbers get long in a hurry. For example, the decimal number 201 is
11001001 in binary. However, if we group them in groups of four bits (1100
1001) then each group can have 16 possible combinations.

So, how do we represent 16 combinations with only 10 numbers avail-
able? We turn to the alphabet to make up the difference. We need 6 more
characters, so we use A-F. Using the example above, 1100 binary=12
decimal="C" hex; 1001 binary=9 decimal=9 hex.

Since we are using the same characters in the various bases, we need
some way to tell them apart. Is 1101 in binary, decimal, or hex? Binary is
usually represented by adding a "b" to the end or “%” to the beginning; i.e.
1101b, %1101. Decimal is either a "d" or is not specified.

Hex is designated in several ways. The following all mean the same thing:
$C9 and 0xC9.

Most people use the "$" form. And yes, $FB00 is the same as $0000FB00.

Also, note that hex digits mostly come in pairs. Two digits together are
known as a "byte", and are treated as a single unit.

ASCII
MBasic will automatically convert quoted text into its respective ASCII
values. This is useful when you are trying to work with the literal value of
characters.
Example:

SEROUT 1,I9600,[“A”]

The above code example will transmit the ASCII value of the character in
quotes.

44

Programming Practices
As with all programming you may rewrite a program several times before
finishing it. In the process you may not remember what you were attempting
to do with your program during one of these rewrites. This will lead to spend-
ing unnecessary time trying to figure out what you were attempting to do. The
best way around this is to use comments as you go along. This may seem
tedious but after you have written a program and have not touched it in
several weeks or just days, you will begin to appreciate the value of com-
ments. Using comments in your program will help you to pick up where you
left off. When using comments have them tell you something useful that can
be easily understood. An example of this is:

time var byte
time = 0
for time = 0 to 10 step 1
high B0
pause time
low B0
next
end

The above program works but what does it do ? Take a look below.

 time var byte ; Variable definition for timer
 LED con B0 ; Constant pointer for Pin 0

 time = 0 ; Initialize timer variable

 for time = 0 to 10 step 1 ; Loop to count through timer

high LED ; Set LED on
pause time ; Delay for current timer value
low LED ; Set LED off

 next ; Loop
 end

As you can see, commenting a program is the difference between night and
day. By looking at the second example it was clear that it was a small
program to blink an LED. By using comments, variable names and con-
stants your program will be easier to follow in general. So if later in the pro-
gram you decide to do more with the LED you could simply use the constant
LED instead of B0. This may not be an issue in a short program, but can be
very helpful in larger programs. Imagine trying to keep track of what ten differ-
ent pins do, by just using 0,2,7,12.

45

 Other coding techniques such as labeling sections of code using names that
describe the purpose of the code can greatly increase the ease of program-
ming.

;Program to flash an LED at different rates
timer var byte;
bigtimer var word
LED con B0 ; Alias PIN B0 to LED

Start:
gosub SlowFlasher
gosub FastFlasher
goto ENDPROG

SlowFlasher:
for timer = 0 to 100 ; Flash 100 times
Toggle LED ; if LED on turn off, If LED off turn on
pause 1000 ; Pause 1 sec
next

return

FastFlasher:
for timer = 0 to 10000 ‘ Flash 10000 times
Toggle LED ‘ if LED on turn off, If LED off turn on
pause 10 ‘ pause 10 ms
next

return

ENDPROG:
end

Note: Comments can begin with a semi colon or a single quote.

46

Optimizing
MBasic software can only optimize a user’s program in the sense of
emphasizing on code reuse and avoiding redundancy. There are many
ways to write a program to accomplish a task. An example of this is:

Temp var Byte

Main
Serout B0, I9600,[“Hello World”]
Serin B1,I9600,[Temp]

If Temp = “O” Then Fish
Serout B0, I9600,[“Hello World”]

Fish
Serin B1,I9600,[Temp]
If Temp = “K” Then Main

Goto Fish

The above program sends some serial data out and waits for a specific
response. The coding style will generate larger code size and slower
programs. A more efficient way to write the above program is shown below:

Temp var Byte

Main
Gosub DoLoop
Gosub OutLoop

If Temp = “O” Then Gosub OutLoop
If Temp = “K” Then Gosub DoLoop
Goto Main

DoLoop
Serout B0, I9600,[“Hello World”]

Return

OutLoop
Serin B1,I9600,[Temp]

Return

The optimizing is in the Gosub statements, if this program was to get larger
you could call the DoLoop and OutLoop labels again and again. Opposed
to inserting the same SERIN / SEROUT statements all over the program.

47

Line Labels
In order to access different sections of code you must use line labels. Unlike
the original Basic language, MBasic does not use line numbers. As an ex-
ample:

Loop: goto Loop ;This line repeats infinitely

The above goto statement GOTO calls a line label LOOP, which is in front
of the GOTO statement. The above line will repeat infinitely. Line labels can not
be duplicated or used as variable names once defined as a label.

Variables
Variables are used to store temporary information in the program. They are
created using the VAR keyword. Variables can be BITs, NIBBLEs, BYTEs,
WORDs and LONGs. Before you can use a variable it must be defined.

Variable name: Variable: Size:
Temp Var Byte

The above states; Temp will contain a byte (8 bits)

Variable names must start with a letter. They can contain letters, numbers
and special characters. However they can not be the same name as
MBaic commands, or labels used in a program. The same variable name
can not be defined twice with the Var statement. MBasic does not distin-
guish between upper and lower case, so the name TVAR is equivalent to
TVar. The maximum character length can be up to 1024 characters.

Some examples of defined variables:

DOG Var Bit ;0 to 1
POST Var Nib ;0 to 15
LOG Var Byte ;0 to 255
STICK Var Word ;0 to 65535
TREE Var Long ;0 to 4,294,967,295

Some Tips on assigning sizes to Variables:
1. When assigning sizes to variables, keep in mind what the variable is
being used for. Such as, storing the literal value of the letter A, which will
require a Byte (0 to 255).
2. A variable should be the smallest size to hold the largest value that will
be stored. If a variable will hold the High / Low transition of an input pin (1
or 0), use a bit.

48

3. If you are storing character sized values with the SERIN command you
would use a byte sized variable. If a variable exceeds its maximum size,
the excess bits will be truncated. If you were to load the binary value
%11110000 into a NIB sized variable the %1111 part would be lost.

Arrays
As your programs begin to perform more complex tasks, there will be times
when you want a variable to hold many values. An Array is a structure
that can store multiple values of the same type. For example, you can
create an array that can hold five different values of the same type as
shown below:

Temp var Word(5)

The number 4 in parenthesis shows the variable temp has 5 cells. Once
the array has been defined, each cell can be accessed by its number:

Temp(0) = 10
Temp(1) = 25
Temp(2) = 45
Temp(3) = 55
Temp(4) = 65

The above will assign the value of 10 to the first cell in the 5 cell array, 25 to
the second cell and so on. Using arrays can simplify your program as
shown below:

Temp Var Byte(5) ;variable temp now has 5 cells
Count Var Byte

For Count = 0 to 4 ;increment each cell
Temp(Count) = Count +2 ;the value is cell number + Count + 2
Next

The above code example will load each array, 0 to 4 (5 cells) with the array
number + 2. Which if done manually would equal the following:

Temp(0) = 2
Temp(1) = 3
Temp(2) = 4
Temp(3) = 5
Temp(4) = 6

49

Tables
Tables are made up of constant values which can be byte, word or long
size. One example of tables would be if you had a program that sent data
to a LCD screen. If your program was setup to send data to the LCD in a
menu format. The menu format was made up of many different text mes-
sages that would appear conditionally. Instead of copying the text strings
over and over where ever they are need in the program you could use a
table as shown:

Splash ByteTable “Hello”
FirstMenu ByteTable “Enter An Option”

LCDWRITE B7\B5\B6, OUTA, [str Splash\5]
LCDWRITE B7\B5\B6, OUTA, [str firstmenu\15]

Since there is five characters in our first Byte table we can use the STR
modifier with a count of 5 to send out all the data in the table. In our second
table there is 15 characters so we use a count of 15 to output all the data.
The Table format is shown below:

Label TableType Data, Data,Data

Label is the name of the table used to call or access the table. TableType
is the size of the table data. Tables can be ByteTable, WordTable,
LongTable or FloatTable. Data is the constant values or constant expres-
sion stored in the table.

Aliases
Aliases are alternate names for defined variables. As an example:

DOG Var Byte ;DOG is assigned as an 8 bit variable (Byte)
CAT Var DOG ;CAT now points to the variable DOG

In the above example if DOG were equal to 10, any time the variable CAT
was accessed it would equal 10 since it points to the same RAM location.
Aliases are a good idea when you want to use a temporary variable with
a name that suits its function.

Variable Modifiers
Variable modifiers are used to access only parts of aliases. An example
would be if you wrote the word value of %0111111100000001 but only
required access to the high byte of the word. You would then use a modifier
with the alias as shown below:

50

Dog Var Word
Cat Var Dog.HighByte

If the binary value of %0111111100000001 was written to Dog, by modifying
the alias Cat with the HighByte modifier you would only see %01111111
when Cat was accessed. If the LowByte modifier was used you would
then see %00000001.

Another example of modifiers and aliases:

MyTimer1 var Byte
MyTimer2 var MyTimer1.LowNib

MyTimer1 = %11110000 ;Mytimer1 now equals 240
Mytimer2 = %1001 ;MyTimer1 now equals 249

In the above examples by using MyTimer1 with MyTimer2 you can easily
effect the value of the aliased variable. In the case of MyTimer2 you are
able to modify only the low nibble of the aliased byte. The following is a
break down of a Word and Byte sized value:

HighByte is the first 8 bits of a word from left to right and Lowbyte being the
opposite.

HighNib is the first 4 bits of a byte from left to right and LowNib being the
last 4 bits.

HighByte LowByte
Word Value %1100110101000101

HighNib LowNib
Byte Value %11001101

51

The table below shows all the different modifiers that can be used:

Modifier Create alias to
LOWBIT bit 0 of variable
BIT0 bit 0 of variable
BIT1 bit 1 of variable
BIT2 bit 2 of variable
BIT3 bit 3 of variable
BIT4 bit 4 of variable
BIT5 bit 5 of variable
BIT6 bit 6 of variable
BIT7 bit 7 of variable
BIT8 bit 8 of variable
BIT9 bit 9 of variable
BIT10 bit 10 of variable
BIT11 bit 11 of variable
BIT12 bit 12 of variable
BIT13 bit 13 of variable
BIT14 bit 14 of variable
BIT15 bit 15 of variable
BIT16 bit 16 of variable
BIT17 bit 17 of variable
BIT18 bit 18 of variable
BIT19 bit 19 of variable
BIT20 bit 20 of variable
BIT21 bit 21 of variable
BIT22 bit 22 of variable
BIT23 bit 23 of variable
BIT24 bit 24 of variable
BIT25 bit 25 of variable
BIT26 bit 26 of variable
BIT27 bit 27 of variable
BIT28 bit 28 of variable
BIT29 bit 29 of variable
BIT30 bit 30 of variable
BIT31 bit 31 of variable
HIGHBIT Always the highest bit
LOWNIB nibble low of variable

52

NIB0 nibble 0 of variable
NIB1 nibble 1 of variable
NIB2 nibble 2 of variable
NIB3 nibble 3 of variable
NIB4 nibble 4 of variable
NIB5 nibble 5 of variable
NIB6 nibble 6 of variable
NIB7 nibble 7 of variable
HIGHNIB nibble high of variable
LOWBYTE byte low of variable
BYTE0 byte 0 of variable
BYTE1 byte 1 of variable
BYTE2 byte 2 of variable
BYTE3 byte 3 of variable
HIGHBYTE byte high of variable
LOWWORD word low of variable
WORD0 First 16 bytes
WORD1 Last 16 bytes
HIGHWORD word high of variable

53

Command Modifiers
Command modifiers can be used to modify data in a command directly.
Modifiers can be used with any commands that show {Modifier} in their
syntax. An example would be if you used the SERIN command and stored
a value into a variable called temp. The values stored in temp would reflect
the ASCII value of the characters received. To modify the value stored in the
variable temp an example would be:

SERIN 0, i9600, [DEC TEMP]

If the characters 123 were received then the value held in the variable temp
would be 123 (One Hundred and Twenty Three). If HEX was used as the
modifier in place of DEC the value would be $123 or BIN the value would
be %1111011. There are Input and Output modifiers as shown below:

I/O Modifiers
dec Decimal Value
hex Hexadecimal Value
bin Binary Value
str Input or Output Array Variables

Signed I/O Modifiers
sdec Decimal Value
shex Hexadecimal Value
sbin Binary Value

Indicated I/O Modifiers
ihexHexadecimal Value
ibin Binary Value

Combination I/O Modifiers
ishex Hexadecimal Value
isbin Binary Value

Output Only Modifiers
rep Output character n times
real Output Floating point numbers

Input Only Modifiers
waitstr Compares count characters to variable array waits until equal or

until optional eol character is found in variable array
wait Wait n string of characters

skip Skip n input

54

HEX - DEC - BIN
Converts a value to decimal, binary or hexadecimal.

SERIN 0,i9600, [DEC TEMP]

SDEC - SHEX - SBIN
Converts a value to decimal, binary or hexadecimal then signs the value
with “-” for negative or nothing for positive.

SERIN 0,i9600, [SDEC TEMP]

IHEX - IBIN
Converts a value to binary or hexadecimal then assigns an indicator “%” or
“$”.

SEROUT 1,i9600, [IBIN TEMP] ;sends out “%11100110”

ISHEX - ISBIN
Converts a value to binary or hexadecimal. Assigns an indicator “%” or “$”.
Then adds a sign “-” for negative numbers.

SEROUT 1,i9600, [ISBIN TEMP] ;sends out “%-11100110”

REP
Repeats character n times.

SEROUT 1,i9600, [REP TEMP\10] ;sends the value in temp 10 times

STR
str var\count{\eol char} - Store values in array(var) until count characters
received or EOL (End of line) character received. The EOL will override the
count value if both EOL and count values are specified.

SERIN 1,i9600, [STR TEMP\10\”E”] ;stores values in an array until “E” is
received or 10 charcaters have been received.

WAITSTR
waitstr var\count{\eol char} - Compares n characters to variable array,
waiting until equal or until EOL (End of line) is found. The EOL will override
the count value if both EOL and count values are specified. If no EOL is
specified, there is no default end of line character and the count will com-
plete.

55

SERIN 1,i9600, [WAITSTR TEMP\10\”E”] ;compares values in an array
until “E” is received or 10 characters have been received.

WAIT
wait (constant list) - Constant list can be "text" or 1,2,3,4,5(comma delim-
ited). The wait modifier will wait for the specific characters.

SERIN 1,i9600, [WAIT 1,”a”,3,”c”] ;waits until 1, “a”, 3, “c” has been re-
ceived.

SKIP
skip count - Skip n characters received.

SERIN 1,i9600, [SKIP\10 TEMP] ;skips 10 characters before loading
anything into the variable temp.

56

Constants
Constants are fixed values and once declared their values do not change in
a program. When creating a program it can be beneficial to use constants for
certain values that don’t change. Such as the following:

Meter CON 1 ;Meter is a constant = 1

Centimeter CON 100 ;Centimeter is a constant = 100

Millimeter CON 1000 ;Millimeter is a constant = 1000

This way you can keep your program readable. Another good use of the
constant is when you have values that are based on other values:

Meter CON 1 ;Meter is a constant = 1

Centimeter CON Meter * 100 ;Centimeter is a constant = 100

Millimeter CON Centimeter * 10 ;Millimeter is a constant = 1000

In the above example “centimeter” and “millimeter” values were derived from
the constant “meter”. There are a 100 centimeters in a meter and a 1000
millimeters in a meter.

Pin names are also considered to be constants so they can be used in the
following way:

RedLed Con A0
GreenLed Con 0

Main
High RedLed
High GreenLed

Goto Main

RedLed and GreenLed are now constants that point to the pin A0. When
writing complex programs it may be beneficial to use constant labels as
shown above. One thing to consider is constants are always true so they
should not be used in comparison expressions like below:

Tpin Con Bo

Input Tpin
If Tpin = 0 Then SomeLabel

57

The previous If...Then statement will always be true since constants can not
be modified. The correct way to perform a true / false statement on a constant
pin would be as shown below:

Tpin Var PortB.bit0

Input Tpin
If Tpin = 0 Then SomeLabel

Tpin can no longer be a constant since we are checking the state of a pin.
Since constant do not change, Tpin will need to be a variable pointing to the
pin bit. Using a variable will allow the value stored in Tpin to change from 1 to
0.

Pins
Pins are a description of an I/O pin on a microcontroller. Ports are defined as a
group of pins. Usually 8 pins make up a port (Byte). Ports that are short of a
full eight pins are still accessed the same way as if there were all eight pins
when reading or witting to the whole port. The non existent pins bits will simply
be ignored.

INPUT B1 ; Sets Pin 1 on port B as an Input

Pin names (Depending on MCU type):

A0 to A5
B0 to B 7
C0 to C7
D0 to D7
E0 to E 7

Pin names for Stamp compatibility:

A0 - A5 = 0-5
B0 - B 7 = 8-15
C0 - C7 = 16-23
D0 - D7 = 24-31
E0 - E 7 = 32-39

The above stamp compatibility pins only apply to a PICmicro controller.

Pins can be called by either name A0 or 0, B0 or 8 and so on. This was
added to simplify compatibility with converting a stamp program and add
flexibility to your programs.

58

As discussed earlier pin names are constant. Since a constant can not change,
using direct pin names will not always work as might be expected. As an
example:

If A1 = 1 Then Main

The above statement will always be true since A1 is a constant. Shown
below is the correct way to access the pin condition:

If PortA.Bit1 = 1 Then Main

The above statement PortA.Bit1 is a pointer to pin A1. Since we are now
looking directly at A1, we can now check its condition for a true / false state-
ment.

Ports can be access all at once. To do this you would treat the port name as
a variable.

PORTA = $ff ;set all pins in PortA High

The above example is a little misleading. You have set all the PINS high;
however without setting the pins to be outputs you haven’t done anything
yet. There are three ways to set port status. You can use the input/output
commands which will set individual pins or you can treat the PORTs I/O
address as a variable using either the ports TRIS variable or the BS2 style
DIRS command.

TRISA = $00 ;set all pins in PortA to outputs
DIRL = $00 ;sets all pins on PortA to outputs

There is one TRIS variable for each PORT. Note; you have to set the
individual bits OFF to make them OUTPUTS.

TRISB = $F0 ;Set PINS 0-3 to be outputs. Set PINS
4-7 to be INPUTS (hex value)

Or with binary values:

TRISB = %11110000;Set PINS 0-3 to be outputs. Set PINS
4-7 to be INPUTS (binary value)

The BS2 direction commands work the same as the TRIS variables except
they are predefined and only allow access to the first two ports (A & B).

59

I m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t e
PORT and TRIS variables. Because they are true variables you can use
them just like any other variable. Using a PORT that has some pins set to
input and some pins set to output can lead to problems when debugging.

E x a m p l eE x a m p l eE x a m p l eE x a m p l eE x a m p l e
The example program below illustrates using an entire port in a loop to
illuminate a row of LEDs:

LEDpin VAR byte
counter VAR byte

for counter = 8 to 15
; Counter specifies the pin to be activated (B0 to B7)

LEDpin = counter ;starts at PORTB PIN 8
HIGH LEDpin ;LED on
pause 10 ;wait 10 milliseconds
LOW LEDpin ;LED off
pause 10 ;wait 10 milliseconds

next ;repeat loop
end

In the example you will notice that NO pin names have been used. This is
because each pin also has a number associated with it for Basic Stamp com-
patibility.

Pin Variables
Sometimes it may be easier to deal with individual bits, bytes or nibbles of
a port. MBasic has special names to make it easier to deal with small
pieces of each register. Below is a table of port names that are Basic
Stamp compatible. To determine which name is associated with what pin
refer to the Pins section of this manual.

Name: Byte Name: Nibble Names: Bit Names:
 INS INL, INH INA, INB IN0 – IN7

INC, IND IN8 – IN15 ;Input pins

 OUTS OUTL, OUTH OUTA, OUTB OUT0 – OUT7
OUTC, OUTD OUT8 – OUT15 ;Output pins

 DIRS DIRL, DIRH DIRA, DIRB DIR0 – DIR7
DIRC, DIRD DIR8 – DIR15 ;I/O direction

60

The previous chart is for Basic Stamp compatibility only. Below is the correct
port names for accessing pieces of a port in Mbasic.

MBasic does not differentiate between input or output when accessing port
pins. You would simply use the port name in your command. The command
would either access the port as an output or input depending on the
command. An example would be as shown:

PortB = %1111111

The above statment sets all the pins on port B high. The next statement
sets only B0 to B3 high:

PortB.nib0 = %1111

The following table shows the MBasic port names.

Name: Byte Name: Nibble Names: Bit Names:
PORT PORTA, PORTB NIB0, NIB1 BIT0 – BIT7

PORTC, PORTD
PORTE

61

MBasic Specific’s

M
Basic Specific’s

62

S t a c kS t a c kS t a c kS t a c kS t a c k
The below option is for advance users only and therefore doesn’t appear in
the header file. The STACK setting is set as word size and defaults to a size
of 20 words. This mean that the compiler uses word sizes instead of byte
sizes for the stack. Rarely will the stack need to be adjusted. Setting the stack
to something else other than the default is not recommend unless by an expe-
rienced user. The maximum stack size available for any supported chip can
be determined by the amount of RAM available in the first bank of memory for
the chip being used.

STACK = 20

O s c i l l a t o r S e t t i n g sO s c i l l a t o r S e t t i n g sO s c i l l a t o r S e t t i n g sO s c i l l a t o r S e t t i n g sO s c i l l a t o r S e t t i n g s
All of the time sensitive instructions, use constant values, that do not change
regardless of the processor speed. When compiling a program, MBasic will
automatically adjust the timings of speed sensitive commands. This feature
will allow a program to be re-compiled for different speeds without modification.
If a program is run on a faster chip than it was compiled for, all timings will be off
unless the program has been re-compiled for that speed.

I n t e r n a l R C C a l i b r a t i o nI n t e r n a l R C C a l i b r a t i o nI n t e r n a l R C C a l i b r a t i o nI n t e r n a l R C C a l i b r a t i o nI n t e r n a l R C C a l i b r a t i o n
To calibrate the IntRC of a chip that has internal RC, (12C671) use the option
register. Refer to the device data sheet for settings. Below is an example of
the IntRC calibration register:

OSCCAL = %10000000

M e m o r yM e m o r yM e m o r yM e m o r yM e m o r y
There are no issue with MBasic and using a PICmicro MCU with more than
2K. MBasic was actually designed to become more efficient beyond 1K. The
latest trend with new micro controllers has been larger programming space
averaging 8K and above. MBasic was designed to take advantage of this.
Since some of the more common PICmicro MCUs available are 16F87x which
range from 4K to 8K. All bank and page switching is done automatically. This
allows hassle free programming.

C o m p i l i n gC o m p i l i n gC o m p i l i n gC o m p i l i n gC o m p i l i n g
When MBasic compiles a program it first takes the program and breaks it
down into pieces. It then takes these pieces and inserts the necessary as-
sembly code. Once this task is complete the compiler will generate an .ASM
file. This .ASM file is then passed to MPASM which then takes the .ASM file
and converts it to the final .HEX file. This resulting .HEX file is then used to
program the PICmicro MCU.

63

R e s e r v e d S y m b o l sR e s e r v e d S y m b o l sR e s e r v e d S y m b o l sR e s e r v e d S y m b o l sR e s e r v e d S y m b o l s
When creating a BASIC program using MBasic there are some special con-
siderations to take into account. The first, MBasic uses an underscore ‘_’ to
define some commands internally. So the use of an underscore first to define a
variable or label is not allowed in a BASIC program (i.e. : _cat or _label).
Command names such as SERIN cannot be defined as a variable or a
label. Please refer to the IDE help file for a list of reserved words.

D e v i c e S p e c i f i c I s s u e sD e v i c e S p e c i f i c I s s u e sD e v i c e S p e c i f i c I s s u e sD e v i c e S p e c i f i c I s s u e sD e v i c e S p e c i f i c I s s u e s
Read the data sheets on each microcontroller you are using. Some devices
have features that can interfere with normal pin operations if not setup cor-
rectly. The best example is the 16F87x. The 87x PORT A defaults to analog
which will cause erratic behavior if the port is used digitally, like blinking LEDs.
In most cases MBasic will automatically set pins to digital.

64

65

MBasic and Assembly

M
Basic and A

ssem
bly

66

W h a t i s A s s e m b l y ?W h a t i s A s s e m b l y ?W h a t i s A s s e m b l y ?W h a t i s A s s e m b l y ?W h a t i s A s s e m b l y ?
Assembly language is the main programming language used to program
microcontrollers. MBasic actually translates your Basic program into an
assembly file which is then passed to an assembler to produce the
resulting hex file, used for programming the microcontroller. An example
assembly program is shown below:

movlw 10
movwf Temp
movlw 50

asmloop
addwf LongTemp
skpnc
incf LongTemp+1,F
decfsz Temp
goto asmloop

M i x i n g A s s e m b l y a n d M B a s i cM i x i n g A s s e m b l y a n d M B a s i cM i x i n g A s s e m b l y a n d M B a s i cM i x i n g A s s e m b l y a n d M B a s i cM i x i n g A s s e m b l y a n d M B a s i c
Assembly language routines can be added at any time and anywhere in a
MBasic program. They are passed as is, from the program and inserted di-
rectly into the compiled assembly file. There are several advantages to com-
bining assembly language with MBasic. For the beginner using small snip-
pets can aid in learning and understanding microcontrollers better. For the pro-
fessional MBasic can be used to create PAUSE, IF...THEN, SERIN, SEROUT
routines in BASIC, quicker and easier than in assembly.

I n - l i n e A s s e m b l yI n - l i n e A s s e m b l yI n - l i n e A s s e m b l yI n - l i n e A s s e m b l yI n - l i n e A s s e m b l y
MBasic allow single assembly command insertion or blocks of assembly in
a Basic program. An example is shown below:

temp var byte

clrf temp
main

High B0
Pause 500
if temp < 20 then skip
Low B0

skip
 incf temp,f
 goto main

end

67

In line assembly routines can easily be called by a BASIC program by
using the following method:

Cat
ASM
{ movlw 10

movwf temp
}

Return

To call the assembly routine simply use a GOSUB command. To return to
where the GOSUB command made the call use a RETURN command after
the enclosing bracket for the ASM command. The label must be in place
before the ASM command.

A s s e m b l y a n d V a r i a b l e sA s s e m b l y a n d V a r i a b l e sA s s e m b l y a n d V a r i a b l e sA s s e m b l y a n d V a r i a b l e sA s s e m b l y a n d V a r i a b l e s
Reading and writing variables that are defined in BASIC using assembly can
been done with MBasic.A variable can be accessed from assembly that is
defined as a byte in Basic. Accessing Nib, bit, or word size variables gets a
little more complicated. It is outside the scope of this manual to describe this
process.

68

69

Math

M
ath

M
ath

M
ath

M
ath

M
ath

70

Numerical Types
Numbers can be defined in two different ways. Binary numbers are defined
using only 0 and 1. Hexadecimal uses characters ‘0’ to ‘F’. Binary and hexa-
decimal numbers must have an indicator.

1234 or d’1234’ : Standard Decimal number
$1F2A or 0x1F2A : Hexadecimal notation
%1001 or b’1001’ : Binary notation

The character $(string) indicates Hexadecimal and the percentage sign %
indicates binary data. These special characters must be used in order to let
the Atom know what numerical types they are.

Adding and Subtracting

temp VAR byte
temp = 100 ; byte variables can NOT exceed 255 in value
temp = temp - 99 ; Valid since Value of temp is still positive
temp = 0
temp = temp -127 ; Here is where it gets interesting

As you can see in the above example the last value of temp should be
negative. When dealing with negative numbers in unsigned variable types
you will actually be storing the maximum value that variable can hold - the
absolute value of the number (i.e.: instead of -127 you are storing 128). In
order for MBasic to use negative numbers correctly (without help from the
user), you should use signed variable types (i.e.: SByte,SWord or Long).

BITs can’t be negative
NIBs can’t be negative
SBytes -127 to +128
SWords -32767 to +32768
LONGs -2147483647 to +2147483648

Multiplication
Mbasic can perform 32x32 bit multiplication (i.e. 4,294,967,295 x
4,294,967,295 max.). If you use the maximum values only the low 32 bits
will be returned. That is why a second multiplication command is used. The
‘**’ command allows you to get the high 32bits of data from the multiplica-
tion. So as the example below shows, you must use two commands to get
the full value from a large multiplication:

71

lowmult VAR long
highmult VAR long
middilemult VAR long

lowmult = 4,294,967,295 * 4,294,967,295
; returns the LOW 32 bits of * value = 5119617025

highmult = 4,294,967,295 * 4,294,967,295
; returns the HIGH 32 bits of * value = 1844674406

middlemult = 4,294,967,295 */ 4,294,967,295
; returns the MIDDLE word of * value = 7440651196

Using the */ function is equivalent to multiplying by the HIGH 16bit number +
(LOW 16bit number / 65536). This allows simple fractional multiplication with-
out using the floating point math system (which is significantly slower than
integer math)

example1:
temp var long ;temp needs to equal 1000 * .05

;to calculate the fraction .05 for use with the following MULM(‘*/’) function use
this formula. fraction = 0.05 * 65536 = 3276.8 ~= 3276
temp = 1000 */ 3276 ;temp will equal 49

example2:
temp var long ;temp needs to equal 1000 * 3.145

temp = 1000 */ 206110 ;temp = 3000 + 144 = 3144

You should note that some round off error will occur.

72

Division
Mbasic can perform 32x32 bit division (i.e. 4,294,967,295 / 4,294,967,295
max.). The division command has two separate commands associated with it.
The first command ‘/ ‘ will return the quotient value. Which is the actual result
from the divide. The second command “//”, is used to return the remainder if there
is one :

divval VAR word
divrem VAR word
divval = 65000 / 101 ; Returns the Quotient value = 643
divrem = 65000 // 101 ; Returns the remainder value = 57

Integer Math in general
Mbasic uses standard algebraic syntax. In Basic Stamp math: 2+2 * 5 / 10
would equal 2. In Mbasic 2+2*5/10 = 3. This is because each math operator
has a precedence. The multiply and divide operators have equal prece-
dence. In the above calculation 2*5 will be calculated first (equaling 10), then
the divide by 10 (equals 1), then the addition of 2 (equaling 3). To ensure the
above equation works as you expect you need to use parenthesis (i.e.:
((2+2)*2) /2 would equal the Basic Stamp syntax.

Operator Precedence:
Order: Operation:
1st Not, ABS, SIN, COS, - (NEG), DCD, NCD, SQR, Random,

FNEG, INT, FLOAT, DEC2BCD, BCD2DEC
2nd <, <=, =, >=, >, <>
3rd And, Or, Xor
4th Rev, Dig
5th <<, >>
6th MAX, MIN
7th &, |, ̂ , !&, !|, !^
8th *, **, */, /, //, FMUL, FDIV
9th +, -, FADD, FSUB

73

General Math Functions
The following is a list of special math functions MBasic can perform.

UNARY Commands
variable = COMMAND value

ABS Absolute value
SIN sine of value(0-255)
COS cosine of value(0-255)
DCD 2 to the nth power(n = value)
NCD smallest power of 2 that is GREATER than value.
SQR square root of value.
DEC2BCD Integer to packed BCD format
BCD2DEC Packed BCD to integer.

BINARY Commands
variable = value1 COMMAND value2

MAX smaller of the two values.
MIN larger of the two values.
DIG digit of value 1 at value2 position.
REV reverses value2 bits of value1 starting with LSB

Bitwise Operators
Bitwise operators are commands that directly effect the bits of a value.

Bitwise operators
variable = value1 COMMAND value2

{!}& (AND) AND bits of value1 with {Inverted}value2
variable = %01010101 & %00001111
;variable equals %0101

{!}| (OR) ;value1 OR value2
variable = %11110000 | %00001111
;variable = %11111111

{!}^ (XOR) ;value1 XOR value2
variable = %10101010 ̂ %11110000
;variable equals %01011010

>> (SHIFTRIGHT) ;value1 bits shifted right value2 times
variable = %11110000 >> 4
;variable equals %1111

<< (SHIFTLEFT) ;value1 shifted left value2 times
variable = %00001111 << 4
; variable equals %11110000

74

Comparison Operators
Comparison operators are used when comparing two or more values.
Examples are the IF...THEN and LOOKDOWN commands.

Logical Operators
Logical operators are slightly different in use than comparison operators. When
using an IF...THEN statement that contains more than one comparison you
must combine them using a logical operator. The example below illustrates
this:

If (Variable < 100) AND (Variable > 10) Then Label

As you can see from the example if BOTH are true then the program jumps
to the label.

Logical Op. Description
AND Logical AND
OR Logical OR
XOR Logical Exclusive OR
NOT..AND Logical NAND
NOT...OR Logical NOR
NOT..XOR Logical NXOR

= Equal
<> Not Equal
< LessThan
> GreaterThan
<= LessThan Equal
>= GreaterThan or Equal

Compare Op. Description

75

Floating Point Math
Mbasic can perform 32x32 bit IEEE 754 Compliant Floating Point calcula-
tions. 32 bit floating point math is CPU intensive since the PICmicro is only
an 8 bit processor. Some special commands are required to handle floating
point math. No command can actually use floating point math in its variable
or expression. You will need to do some conversion with the floating point
value to send it (except when using the REAL modifier) using SEROUT or
receive it using SERIN.

INT = Convert floating point number to integer number
FLOAT = Convert integer number to floating point number
FNEG = negates floating point numbers
FADD = Adds two floating point numbers
FSUB = Subtracts two floating point numbers
FMUL = Multiplies two floating point numbers
FDIV = Divides two floating point numbers
FLOATTABLE = stores constant floating point data in flash

Floating Point Format
The floating point math Mbasic uses differs some what from the normal
IEEE 754 floating point standard. The differences are minor. The next section
gives a good indicator on how they differ.

Floating Point Example Program

temp var long
temp2 var long

Fconst Con 1.12345
;Stores the Microchip format floating point number 1.12345

Iconst Con INT 1.12345
; Truncates the value 1.12345 to 1

Main
temp = 0 ;Stores the integer value 0 in temp
temp2 = float 0 ;Stores the floating point value 0.0 in temp2

The first part of the program stores the integer number 0 in Temp and the
floating-point number 0.0 in Temp2.

temp = 1.12345

We then store the floating point number 1.12345 in Temp.

temp = fconst

76

temp2 = iconst

Fconst is a floating point constant that was defined at the begging of the
program. So Temp is equal to 1.12345. We also defined iconst which is an
integer constant.

temp = float 1
of
temp = 1.0

We now load the floating point value of 1 into Temp. As shown above, if a
constant is to be used in a floating point calculation it must be represented
as a floating point number. The second case above the number is auto-
matically understood to be a floating point value by the compiler because of
the .0 extension. In the first example the float command must be used
because there is no way for the compiler to tell whether the constant should
be an integer or a floating point number

temp = temp fmul float 2
or
temp = temp fmul 2.0

Next we multiply the value in Temp by a floating point number 2. The result
of Temp is now 2.0 which is a floating point number.

temp = float 567

Above we load Temp with FP (Floating Point) number 567.0. We then
divide Temp with 5.0 which is a FP number.

temp = temp fdiv float 5
or
temp = temp fdiv 5.0

Temp now equals 113.4.

temp = float 123
or
TEMP = FLOAT 123.0

Above we load Temp with FP (Floating Point) number 123.0. We then add
Temp with 123.5 which is a FP number.

temp = temp fadd float 123.5

77

or
temp = temp fadd 123.5

Temp now equals 246.5.

temp = float 123
temp = temp fsub float 123.5
or
temp = 123.0
temp = temp fsub 123.5

Temp now is equal to 0.5. Since Temp is now equal to 0.5 we negate
Temp from its self below and we end up with -0.5. Floating point math also
will handle negative numbers.

temp = fneg temp

Important Notes
All variables that will contain a floating point number must be 32 bits
(Longs).

78

79

Syntax
Syn

tax
Syn

tax
Syn

tax
Syn

tax
Syn

tax

80

A D i nA D i nA D i nA D i nA D i n
ADIN pin,clk,adsetup{,var}
Sets up the Hardware A/D converter, and stores the value in an optional
var.

Pin can be a constant or variable. The pin specifies which analog pin
to use with the ADIN command some microcontrollers only have 2, while
others have 8 or more (refer to the device data sheet for details)

Clk can be a constant or variable. The Clk option sets the sampling
time for the A/D conversion. There are only 4 choices for Clk 0, 1, 2, 3
(0-2 are based on internal cycles) CLK option 3 is based on an internal
RC divisor (refer to the device data sheet)

Adsetup can be a constant or variable. Adsetup is used to setup the
ADCON1 register (refer to the device data sheet for details on the
ADCON1 register)

Var can only be a variable. Var specifies where the conversion result
will be stored.

Explanation
Analog to Digital conversion allows your program to receive an analog
signal and convert it into digital values. The AD hardware can read 0 to 5
volts. The ADIN command can be used to start the A/D conversion and
wait for the result or it can be used to multi task by starting the hardware A/
D conversion and processing the result later in the program.

The program below converts an analog input on RA0. The following
example will output the decimal value of the conversion to the debug
window.

temp var word ;temp is now a word sized variable

AN0 con 0 ;this sets the pin AN0 / RA0,

CLK con 2 ;CLK options are 0, 1, 2, 3 (0-2 are based on int cycles)
 ;CLK option 2 is based on 1/16 of the external osc speed
 ;the CLK slow does down the sampling time.

ADSETUP con %10001110 ;sets up the ADCON1 register
 ;AN0 / RA0 is now analog

main
 ADIN AN0,CLK,ADSETUP,temp
 ;loads the variable temp with the sample

81

A d s e t u pA d s e t u pA d s e t u pA d s e t u pA d s e t u p
ADCON1 sets the A/D converter pin options. Which allows you to set
some or all of the A/D pins to analog, with several other options as shown
in Table2-3. The last four bits which are 1110 in the example program
shownset pin RA0 / AN0 to analog and the remainder pins to digital. The
first bit which is 1 in the example program is the left and right justify. 1 =
Right Justified, 0 = Left Justified.

ADCON1 REGISTER SETTINGS: (Table 2-3)

A = Analog input, D = Digital I/O

Note Not all channels are available on all chips with A/D. Refer to the
device data sheet for details.

 debug[dec temp,13] ;out puts the value in temp
 goto main

S c h e m a t i cS c h e m a t i cS c h e m a t i cS c h e m a t i cS c h e m a t i c
The below schematic shows the configuration for the above code to work
properly. The 20K pot can be moved from RA0 / AN0 to another analog pin
but the ADSETUP value will need to be changed along with the specified
pin.

82

A S M { . . . }A S M { . . . }A S M { . . . }A S M { . . . }A S M { . . . }
ASM...{Assembly commands}
In-line Assembly

E x p l a n a t i o nE x p l a n a t i o nE x p l a n a t i o nE x p l a n a t i o nE x p l a n a t i o n
ASM {..} instructions allow the use of assembly in MBasic. The command,
when used, will tell the compiler that the code in between the two brackets is
in assembly and it is to be passed directly to the assembler. These com-
mands can be used as freely as needed.

E x a m p l eE x a m p l eE x a m p l eE x a m p l eE x a m p l e
Temp VAR byte

LongTemp VAR word

main

ASM
{

clrf LONGTEMP & 0x7F
movlw 10 ;load W with 10
movwf TEMP & 0x7F ;store 10 in Temp
movlw 50

asmloop
addwf LONGTEMP & 0x7F,f ; Add 25 to LongTemp
skpnc ; If Low byte of longtemp carries
incf (LONGTEMP+1) & 0x7F,F ; Increment Long Temp+1
decfsz TEMP & 0x7F,f ; Loop 10 times
goto asmloop

}
debug [DEC longtemp,13] ;longtemp will increment each

loop
goto main

I m p o r t a n t N o t e sI m p o r t a n t N o t e sI m p o r t a n t N o t e sI m p o r t a n t N o t e sI m p o r t a n t N o t e s
All variables used in the in-line assembly must be either words or bytes.
Also note that words are denoted by the variable name and the variable
name+1 (ie:Longtemp and Longtemp+1)

It is not in the scope of this manual to teach Assembly language. The ASM
command is strictly for advanced users that completely understand assem-
bly language. No support is offered for assembly language programming.

83

Branch
BRANCH index, [Label1,...LabelN]
Go to the Label specified by index.

Index is a variable or constant that specifies the address to branch
to.

Label1,...LabelN are labels that specify where to branch to.

Explanation
The Branch command allows the program to jump to different locations
based on a variable index. The BRANCH instruction can be useful to
simplify something like the following:

IF temp = 0 THEN dog ;temp =0; go to label dog
IF temp = 1 THEN cat ;temp =1: go to label cat
IF temp = 2 THEN mouse ;temp =2: go to label mouse

BRANCH can be used to organize the above into a single statement:

BRANCH temp, [dog, cat, mouse]

The above works the same as the previous IF...THEN example. If the
value is greater than 3 the BRANCH does nothing and the program
continues to the next line.

Example
In the following example we have 5 players 0-4. We will display each
player in turn. As each player is displayed our variable Player is
incremented. The value in Player is index to the constant list used in the
Branch command.

Player var byte 'Used to hold the current player number
Player = 0 'Start out as first player

'The main loop
loop:
 debug ["#",dec player," "]
 Branch Player,[Mike,Joe,Fred,Bill,Jane]

 'Fall through because there is no player #5
debug ["Don’t know who this is. Lets start over.",10,13,10,13]
player = 0 'Reset to first player
goto loop 'Now go do it again

'These are the branch routines
Mike:

84

 debug ["Mike's Turn ",13]
 Player = Player + 1 'Get next player

goto loop

Joe:
debug ["Joe's Turn ",13]
Player = Player + 1 'Get next player

goto loop

Fred:
debug ["Fred's Turn ",13]
Player = Player + 1 'Get next player

goto loop

Bill:
debug ["Bill's Turn ",13]
Player = Player + 1 'Get next player

goto loop

Jane:
debug ["Jane's Turn ",13]
Player = Player + 1 'Get next player

goto loop

This program shows how the BRANCH command can be used. First we
assign our variable a value of 0. Then we define our labels. Since the first
position is considered 0 and the variable index equals 0 the branch command
will cause the program to jump to the first label in the brackets [Mike]

85

Button
BUTTON pin, downstate, delay, rate, bytevariable, targetstate, address
Debounce, button input, perform auto-repeat, and branch to address if button
is in target state. Button circuits may be active-low or active-high.

Pin is a variable/constant that specifies the I/O pin to use. This
pin will be made an input.

Downstate is a variable/constant (0 or 1) that specifies which
logical state occurs when the button is pressed.

Delay is a variable/constant (0–255) that specifies how long the
button must be pressed before auto-repeat starts. The delay is
measured in cycles of the Button routine. Delay has two special
settings: 0 and 255. If Delay is 0, Button performs no debounce or
auto-repeat. If Delay is 255, Button performs debounce, but no
auto-repeat.

Rate is a variable/constant (0–255) that specifies the number of
cycles between auto repeats. The rate is expressed in cycles of the
Button routine.

Bytevariable is the work space for Button.

Targetstate is a variable/constant (0 or 1) that specifies which
state the button should be in for a branch to occur.
(0=not pressed, 1=pressed)

Address is a label that specifies where to branch if the button is
in the target state.

Explanation
When a button is pressed or a switch flipped, the contacts make or break a
connection. During this a 1 to 20-ms burst of noise occurs as the contacts
scrape and bounce against each other. The BUTTON command has a
feature that prevents this noise from being interpreted as more than one
switch action. This is called debounce.

The BUTTON command also will react to a button press the way a com-
puter keyboard does. When a key is pressed, a character will appear on
the screen. If the key is held down, there is a small delay, then a rapid
stream of characters appear on the screen. The BUTTON command has an
auto-repeat function that can be set up to act the same way.

BUTTON was designed to be used inside a program loop. Each time cycle
through the loop, the BUTTON command checks the state of the specified
pin. When it first detects the DownState it debounces the switch. Then with

86

TargetState, it either branches to address based on what the TargetState is
set to (TargetState = 1 then jump or TargetState = 0 then don’t).

If the connected switch stays in a down state, BUTTON will count the
number of program loops that execute. When this count equals Delay,
BUTTON will once again trigger the action specified by TargetState and
address. After which, if the switch remains in DownState, BUTTON waits
the Rate number of cycles between actions. There is a work space
variable which is used by BUTTON to keep track of how many cycles
have occurred since the pin switched to TargetState or since the last auto-
repeat. BUTTON will not stop program execution. In order for the BUTTON
commands delay and auto repeat functions to work properly it must be
executed from within a program loop.

Example
The following program is an auto repeat example of the button command.
This demonstration requires a button wired to pin 1. Using state 1 as
shown in the schematic. Place a LED between pin 2 and VSS. When you
click the button you get a single led blink. Hold the button down and it auto
repeats.

'The button command needs a work variable.
work var byte
work =0

Input B1 'Button
output B2 'LED
low B2 'Make sure our display pin is low to begin with

Loop:
Button B1,1,20,2,work,1,press
pause 20 'We need some delay or its too fast.

goto loop

'This is where you do your button work
press:

high B2
pause 10
low B2

goto loop

87

Schematic

State 0 State 1

88

Clear
CLEAR
Clear user RAM.

Explanation
The Clear command will clear (Set to 0’s) all of the user ram. User ram is set
aside space for all the variables a user program will use. If the Atom is reset
using RES / ATN, any values left in RAM will remain. To clear out the ram and
set all variables to a value of 0 use the Clear command. It is a good idea to
use the Clear command to create a known state after each reset. It can also
be used any where in the program to set all variables to zero.

Example
Temp Var Byte
Temp1 Var Byte

Main
Temp = Temp + 1
Temp1 = Temp1 + 2

Goto Main

If the above program ran through 20 complete loops Temp would equal 20
and Temp1 would equal 40. If the PICmicro was then reset using ATN / RES
the ram space for Temp and Temp1 would still equal 20 and 40. The only way
to clear this ram space is to completely power down the PICmicro, or set
Temp = 0 and Temp1 = 0 at the beginning of the program, or use the Clear
command. For a large program with several variables it would be easier to
use the Clear command.

Temp Var Byte
Temp1 Var Byte

Clear ;clears all variables (RAM)

Main
Temp = Temp + 1
Temp1 = Temp1 + 2

Goto Main

The above program will now set Temp and Temp1 to zero each time the
PICmicro is reset or the program is ran.

89

Count
COUNT pin, period, variable

Count the number of cycles (0-1-0) on the specified pin during period number
of milliseconds and store that number in variable (Minimum of 4us pulse width).

Pin is a variable/constant that specifies the I/O pin to use.
This pin will be placed into input mode by writing a 0 to the
corresponding bit of the TRIS register.

Period is a variable/constant (1 to 4294967296) specifying the time
in milliseconds during which to count.

Variable is a variable (usually a word) in which the count will be
stored.

Explanation
COUNT checks the state of PIN in a tight loop and will count the low to high
transitions. COUNT is ideal for figuring out frequency of certain waves or tim-
ings based on an incoming signal. The PICmicro can COUNT signals with a
minimum pulse width of 4µs.

Example
The program demonstrates the count command.

counter var word 'Use this to hold the count
Input B0 'Set the pin to input

Loop:
count B0,1000,counter

' If duration is 1 second the we will get the freq in hertz.

debug ["Frequency: ",dec counter,10,13] 'Lets display it
 goto loop

The above program will count the low to high transitions on PIN B0 for 1
second and then store the results in the variable counter. If the state of pin B0
changes 100 times in one second the value stored in counter would equal
100.

90

Data (EEPROM)
DATA {@address,} value, {@address,} value

Data command will pre-load the eeprom on the PICmicro during program-
ming. The Data command is not a run time command.

Address is optional and specifies the first address to start at.
Multiple address values can be used after each value is written.
The Data command will start writing at the first location of the
eeprom by default. Address must be a number.

Value are constant values that will be written to the PICmicro’s on
board eeprom. These values must be constants since the values are
placed during programming.

Explanation
The DATA command can be used for an easy method to access the built in
EEPROM of the PICmicro. When using a DATA command, all the values
specified will be placed in the EEPROM starting at location 0 by default
unless an address is specified. To write or read data during run time from the
internal EEPROM, refer to the READ / WRITE or READDM / WRITEDM
commands.

Example
DATA 10,20,”Hello”

Stores the values 10,20 and the ASCII values for
 “Hello” , on the internal EEPROM starting at location 0.

DATA @5, 10,20,”Hello”

Stores the values 10,20 and the ASCII values for
 “Hello” , on the internal EEPROM starting at location 5.

DATA @5, ”Hello”, @10, “Good Bye”

Stores the ASCII values for
 “Hello” , on the internal EEPROM starting at location 5 and the ASCII
values for “Good Bye”

This next example shows how to pre-load values into the PICmicro’s on
board EEPROM and use the READ command to read them out.

91

'The data statement defaults to address 0.
Data 12,26,3,32

'Variables used to hold the data
day1 var byte
day2 var byte
day3 var byte
day4 var byte

clear 'Set all variables to 0

'Now read in the data
read 0,day1
read 1,day2
read 2,day3
read 3,day4

'Just display it forever
main:

 debug ["Day1 default=",dec day1,10,13]
 debug ["Day2 default=",dec day2,10,13]
 debug ["Day3 default=",dec day3,10,13]
 debug ["Day4 default=",dec day4,10,13]
 debug [10,13]

goto main

*(See read, write commands)

92

Debug
DEBUG [{Options} item, {{Options} item}]
Sends values of specified variables or constants to the debug watch
window.

Options are DEC, HEX, BIN or REAL. These modifiers will convert
Item to DEC = Decimal, HEX = Hexadecimal, BIN = Binary digits or
REAL = Value.

Item can be a constant or variable. There is no limit to the amount
of items used other than program memory.

Explanation
The DEBUG command will send any values stored in a given variable or
constant to the debug watch window. The DEBUG command is also linked
with the IDE’s in circuit debugger (Refer to the In Circuit Debugger section
of this manual). Variables used by themselves are automatically truncated
to character size.

Example
dog VAR byte

dog = 14

DEBUG [DEC dog,13]
 ;output the decimal 14 to the debug window with a carriage return

The above sample will output the decimal number 14 to the debug window.
The ,13 is the decimal value of a carriage return. This is not necessary, but it
makes the data coming into the debug window easier to read. If a carriage
return is not used the data will simply scroll across the screen line by line. If
HEX was used in place of DEC, the hexadecimal value of the number 14
would have been sent E.

 DEBUG ["TEMP"]

 The above line of code would send the word TEMP to the debug window.

Using Debug
Once you have placed DEBUG statements in your program you will need
to use the Debug button on the IDE to program the PICmicro. If you use the
normal program mode the statements will be ignored. This allows the
DEBUG statements to be placed and then later ignored without removing
them and affecting your program. (Refer to the In Circuit Debugger section
of this manual)

93

Important Note
When using the ICD, the running program has an added delay anywhere
from .5ms to 500ms per command. Any timing critical commands or program
functions will be off.

Once you have placed DEBUG statements in your program you will need
to use the DEBUG button on the IDE to program the PICmicro. If you use
the normal program mode the statements will be ignored.

SEE ALSO

DEBUGIN
In Circuit Debugger (ICD)

94

Debugin
DEBUGIN [(Options) item]
Receives byte values from the IDE DEBUG window and stores them in a
specified variable on the Atom.

Options are DEC, HEX, BIN or REAL. These modifiers will convert
Item to DEC = Decimal, HEX = Hexadecimal, BIN = Binary digits or
REAL = Value.

Item can only be a byte variable. Stores the received byte value in
the specified variable.

Explanation
The DEBUGIN command allows you to send data to your program on-the-
fly from the IDE DEBUG Watch Window and stores them in a specified
variable. This can be useful for adjusting a program on the fly.

Example
dog VAR byte

DEBUG DOG
 ;stores byte value in DOG received from IDE DEBUG window.

The above line will simply take the value received and store in the variable
DOG.

This next example demonstrates the Debugin command used with the
Debug command.

'Holds age for use with the debugin command.
age var byte
age=0

'Our main loop
main:

debug ["Enter your age _"] 'Output
debugin [dec age] 'Input. Load value into age variable

'Now display the result
debug ["Wow you are ",dec age," years old",10,13,10,13]

goto main

95

Using Debugin
Once your program is ready for testing simply click the DEBUG button for
programming. After programming is complete the Debug Watch Window will
come into focus at the bottom of your screen. See figure 2-

1. Once the window is in focus and programming is complete you will need to
connect (Refer to the In Circuit Debugger section of this manual). To send
data to the running program, click in the watch window, a cursor should ap-
pear. You can now type your data in this screen and it will automatically be
sent to the running program.

Important Notes
If the PROGRAM button is used instead of the DEBUG button the DE-
BUG and DEBUGIN statements will be ignored and not affect the running
program.

SEE ALSO:
DEBUG

96

Do...While
Do statements While some expression is true
Repeat a group of commands while expression is true

Expression is any combination of variables, constants, math
and logic operators

Explanation
Execute a group of commands while some expression is true. DO...WHILE
will run at least once. True can be any other value than 0.

Example
The below program will execute until Temp is equal to 0:

temp VAR byte
temp = 100

Do
temp = temp -1 ;program will count down from 100 to 0

While temp <> 0 ;keep going until temp is equal to 0

The above program will count down from 100 to 0. The symbol <> means
not equal so as long as the variable temp is not equal to 0 (a true condi-
tion) the program will continue to decrement the variable temp until it equals
0 (a false condition).

The example requires a button tied to pin B1 with pull down resistor tied to
VSS and other side of the button tied to VDD.

input B1
output B2 'led tied between vss and pinB2

'The main loop
Main

'Check to see if the button is down
if portb.bit1 = 1 then
high B2 : pause 300 : low B2 'Blink the LED

'Now just waste some time until button is released
'As long as B1 = 1 we will stay in this loop

do
while B1 = 1

endif
 goto main

97

DTMFout
DTMFOUT pin,{ontime,offtime,}[,tone...]
Generate dual-tone, multifrequency tones for DTMF (i.e., telephone "touch"
tones).

Pin is a variable/constant that specifies the I/O pin to use. This
pin will be set to an output during tone generation. After tone
generation is complete, the pin is left as an input.

Ontime is an optional entry; a variable or constant (0 to 65535)
specifying a duration of the tone in milliseconds. If ontime is not
specified, DTMFout defaults to 200 ms on.

Offtime is an optional entry; a variable or constant (0 to 65535)
specifying the length of silent pause after a tone (or between
tones, if multiple tones are specified). If offtime is not specified,
DTMFout defaults to 50 ms off.

Tone is a variable or constant specifying the DTMF tone to send.
Tones 0 through 11 correspond to the standard layout of the
telephone keypad, while 12 through 15 are the fourth-column
tones used by phone test equipment and in ham-radio
applications.

0 to 9 Digits 0 - 9
10 = *
11 = #
12—15 Fourth column tones A through D

Explanation
DTMF tones are used to dial the phone or to remotely control certain radio
equipment. The PICmicro is a digital controller. DTMF tones are analog
waveforms, consisting of two sine waves at different frequencies. The
DTMFout command creates and mixes two sine waves mathematically,
then using the resulting stream of numbers to control the duty cycle of a
pulse-width modulation (PWM) routine. Presence of high-frequency noise on
the input. The output generated by the DTMFout command will need to be
filtered as shown in the schematic. This filter circuit is only a starting point.
Different conditions will require different types of filters.

98

Schematic

Example
DTMFOUT B0,[1,7,3,4,4,2,5,1,7,4,4]

;Using default delays
or

DTMFOUT B0,500,200,[1,7,3,4,4,2,5,1,7,4,4]
;Using custom delays

The above code with an RC filter as shown above will generate tones
directly, to dial a number through a phone from an attached speaker.

SEE ALSO

FREQOUT
DTMFOUT2
SOUND
SOUND2

99

DTMFout2
DTMFOUT2 pin1 \ pin2,{ontime,offtime,}[,Tone...]
Uses two pins to generate dual-tone, producing a cleaner signal (i.e.,
telephone "touch" tones).

Pin1 / Pin2 is a variable/constant that specifies the I/O pins to
use. These pins will be set as outputs, during tone generation.
After tone generation is complete, the pins are set to inputs.

Ontime is an optional entry; a variable or constant (0 to 65535)
specifying a duration of the tone in milliseconds. If ontime is not
specified, DTMFout defaults to 200 ms on.

Offtime is an optional entry; a variable or constant (0 to 65535)
specifying the length of silent pause after a tone (or between
tones, if multiple tones are specified). If offtime is not specified,
DTMFout defaults to 50 ms off.

Tone is a variable or constant specifying the DTMF tone to send.
Tones 0 through 11 correspond to the standard layout of the
telephone keypad, while 12 through 15 are the fourth-column
tones used by phone test equipment and in ham-radio
applications.

0 to 9 Digits 0 - 9
10 = *
11 = #
12—15 Fourth column tones A through D

Explanation
The DTMFOUT2 command follows the same basic format as DTMFOUT
(refer to DTMFOUT), except it generates the multifrequency tones on two
pins. These two pins can be tied together using a 390 ohms resistor. The
tones generated by DTMFOUT2 are cleaner and of a higher quality. The
DTMFOUT2 command is ideal in a noisy environment or where higher
quality tones are desired.

Schematic

100

Example
DTMFOUT2 B0\B1,[1,7,3,4,4,2,5,1,7,4,4]

;Using default delays
or

DTMFOUT2 B0\B1,500,200,[1,7,3,4,4,2,5,1,7,4,4]
;Using custom delays

The above code with an RC filter (Schematic) will generate tones directly, to
dial a number through a phone from an attached speaker.

SEE ALSO

FREQOUT
DTMFOUT
SOUND
SOUND2
SOUND8

101

End
END
Ends the program.

Explanation
END will stop the program after execution and enter low power mode
indefinitely. All I/O lines will remain at their last know state.

102

For...Next
FOR variable = startVal to endVal {STEP stepVal} ... NEXT

Create a repeating loop that executes the program lines between FOR
and NEXT, increment or decrement the variable according to stepVal, until
the value of the variable passes the endVal.

Variable is a bit, nibble, byte, word or long variable used as a
counter.

StartVal is a variable or constant that specifies the initial value
of the variable.

EndVal is a variable or constant that specifies the end value of
the variable. When the value of the variable passes endVal
execution stops and the program goes to the instruction after
Next.

StepVal is an optional variable or constant by which the
variable increases or decreases with each trip through the FOR/
NEXT loop. Negative values for StepVal will decrement and
Positive values will increment.

For counter = 20 to 1 step -1 ; this will decrement -1
For counter = 20 to 1 ; this will over flow to 0 and count to 1

For counter = 1 to 20 step 1 ; this will increment +1
For counter = 1 to 20 ; this will increment +1 (assumed)

Explanation
The FOR...NEXT loop will allow your program to execute a series of
instructions for a specific number of repetitions. By default, the counter
variable is incremented by 1 each time through the loop. It will continue to
loop until the result of the counter is outside of the range set by StartValue
and EndValue.

Example
The following program counts down from 1 to 20 incrementing the variable
counter by one, each time the program loops :

counter VAR byte

FOR counter = 1 to 20
Debug [DEC counter, 13]

NEXT
END

103

The example program will execute a tight loop until the variable counter is
equal to 20.

The following program is another For...Next loop demonstration. In the
following program we set the Step value. The Step value allows you to
specify which direction and what value to increment by every time through
the loop. If a Step value of -2 is used the For..Next loop will count down by
a value of two each time. So if the start value is 10 and the end value is 0
the loop will run 5 times.

'Just some work variables
x var byte
y var word

'It all starts here
main

'Count from 1 to 5
debug ["1 to 5 : Display 1 2 3 4 5",13]
for x = 1 to 5
debug [dec x," "]

next
debug [13,13]

'Count down from 5 to 0
debug ["5 to 0 step -1 : Display 5 4 3 2 1 0",13]
for x = 5 to 0 step -1
debug [dec x," "]

next
debug [13,13]

'Count from 10 to 50 by tens
debug ["10 to 50 step 10 : Display 10 20 30 40 50",13]
for y = 10 to 50 step 10
debug [dec y," "]

next
debug [13,13]

'Count from 100 to 500 by hundreds
debug ["100 to 500 step 100 : Display 100 200 300 400 500 ",13]

for y = 100 to 500 step 100
debug [dec y," "]

 next
debug [13,13]

'Count down from 5000 to 1000 by thousands
 debug ["5000 to 1000 step -1000 : Display 5000 4000 3000 2000 1000 ",13]

104

for y = 5000 to 1000 step -1000
debug [dec y," "]

next

debug [13,13]

'Some exceptions
'Nothing in this loop will be executed

for x = 1 to 0
debug [dec y," "]

next

debug [13,13]

'Wait 5 seconds then go back and do it all again
pause 5000

goto main
end

Important Notes
A problem can occur when EndValue is set higher than what the counter
variable can hold. The example below uses a byte-sized variable (Times),
but the EndValue is set to a number greater than what can fit into a byte
variable:

Times VAR byte ;Counter variable
FOR Times = 0 TO 500 ;Each loop will add 1
DEBUG [DEC Times] ;Show Times in debug window
NEXT

Times is a byte variable. A byte sized variable can only hold a range from 0
to 255. The EndValue has been set to 500, which is greater than 255. This
code will loop indefinitely. This is because when Times is 255 and the
FOR…NEXT loop adds 1, Times becomes 0 (bytes will rollover after 255).
The result of Times is 0, which is then compared against the range of 0 to
255 which is within the range, so the FOR…NEXT loop continues.

105

Freqout
FREQOUT pin, duration, freq1{,freq2}
Generates one or two tones for a specified duration.

Pin is a variable/constant that specifies the I/O pin to use. This
pin will be put into output mode during generation of tones and
left in that state after the instruction is completed.

Duration is a variable/constant specifying the length in
milliseconds (1 to 65535) of the tone(s).

Freq1 is a variable/constant specifying frequency in hertz (Hz, 0
to 32767) of the first tone.

Freq2 is a variable/constant specifying frequency
(0 to 32767 Hz) of the optional second tone

Explanation
FREQOUT generates one or two sine waves using a pulse-width
modulation algorithm. The FREQOUT command can be used to play tones
through a speaker or audio amplifier. FREQOUT can also be used to play
simple songs. (See LOOKUP command)

Example
FREQOUT B2,1000,2500

This instruction generates a 2500-Hz tone for 1 second (1000 ms) through
pin 2. To play two frequencies:

FREQOUT B2,1000,2500,3000

The frequencies mix together to form a chord. To generate a silent pause,
specify frequency value(s) of 0.

Below is a simple filter schematic for use with the FREQOUT command.
The filter is set from 0 to 20Khz this should be good for most songs.

Schematic

106

Gosub...Return
GOSUB Label
Store the label after GOSUB, then go to the point in the program specified
by Label.

Label specifies the section of the program to jump to.

Explanation
GOSUB is a close relative of the GOTO command. The GOSUB com-
mand tells the program to go execute code at the beginning of the specified
label. Unlike GOTO, GOSUB stores the location of the next line of code
immediately following itself, when the program encounters a RETURN
instruction in the subroutine, it then tells the program to return to the stored
location.

When GOSUBs are used, a RETURN statement is necessary (at the end
of the subroutine) to take the program back to the instruction after the most
recent GOSUB.

Example
Main
GOSUB Fish ;Executes subroutine named fish
Goto Main

cat: ;gosub will skip this section
HIGH B1
PAUSE 10
LOW B1

Fish:
HIGH B0
PAUSE 10
LOW B0

RETURN
END

Important Notes
The only limit is available RAM, to how many GOSUBs are allowed per
program, or how many deep. In other words, a subroutine that is the
destination of the first GOSUB can contain a GOSUB to another subroutine
and so on. This is limited to four deep on the Basic Stamp. Since the stack
size is adjustable this is not the case with the MBasic.

107

Goto
GOTO Label
Go to the point in the program specified by Label. (Label is a label that
specifies where to go.)

Label specifies the section of the program to jump to.

Explanation
The GOTO command makes a program jump to a specific label and
execute the code that starts at that location. BASIC programs are read from
left to right / top to bottom, just like in the English language. The GOTO
command forces the program to jump to another section of code. One use
for GOTO statements is to create endless loops.

Example
Main

High B0
Pause 200
Low B0
Pause 200
Goto Main ;goto the label main and start execution

The above program will loop indefinitely toggling B0 from low (0 Volts) to
high (5 Volts). With the below circuit connected to B0, the previous code
would indefinitely blink the LED.

Schematic

108

High
HIGH pin
Makes the specified pin an output and sets it to high
(+5 volts is High)

Pin is a variable/constant that specifies the I/O pin to use.

Explanation
The HIGH command is used to set the designated pin to an output and to
+5 volts. This allows your program to easily turn on an LED or other such
devices.

Example
HIGH B0 ;Makes pin 0 high

You can also assign a variable to a pin as shown below. This can help
make writing a program much easier when trying to remember what pins
are connected to what.

led con B0

HIGH led ;Makes pin 0 high

The schematic below illustrates how to connect an LED for use with the
HIGH command.

Schematic

109

I2Cin
I2CIN DataPin, ClockPin,{ErrLabel,}Control,{Address,} [{mods}Var,...VarN]
Receives data from an I2C device (EEPROM, External A/D Converter)

DataPin is a variable or constant that specifies the I/O pin to
use for SDA.

ClockPin is a variable or constant that specifies the pin that the
MASTER I2C device will use to clock the bus signal. (SCL)

ErrLabel is a label that the program will jump to if the I2CIN com
mand fails (i.e.: device is not connected).

Control is a variable or constant that specifies the I2C device’s
control byte. The control byte consist of two parts The first four bits
are the device type (EEproms use %1010). The next three bits are
the device ID. If the address lines of the serial EEPROM (i.e. : A0,
A1, A2) are grounded then the next three bits of the control byte
must be zero.(ie: %1010000). The last bit is a flag used to deter
mine the addressing format, 1 =16bit addressing, 0 = 8bit
addressing.

Address is an optional variable or constant that specifies the
starting address to read from.

Mods are command modifiers which can be used to modify the
variable directly.

Var is a variable or constant that specifies the data being sent
from the current bus master.

VarN is a list of variables and/or constants that specifies the
data being sent from the current bus master.

What is I2C ?
I2C protocol is a form of synchronous serial communication. It only requires
two I/O pins which can be shared between multiple I2C devices. I2C can
communicate with peripheral chips such as EEPROM, A/D, D/A and RTC.
Two lines may be used, a data clocking line and a data. Data and clocking
(SCL) lines may be bussed, and appropriate chip can be selected.

Explanation
The I2CIN command allows your program to receive data from an I2C
device. An example of the I2CIN command:

Read from current address:

110

I2CIN B1,B0,%10100001,[temp]
;stores the value of the last known address into temp

Read from a specific address:
I2CIN B1,B0,%10100001,0,[temp]

;stores the value of address 0 into temp

Read a sequence of bytes:
I2CIN B1,B0,%10100001,0,[temp,temp2]

;load temp with address 0 load temp2 with address 1

The I2CIN command will first transmit data and then receive data. This is
done to first establish some information such as an ID, read or write and
then an address in order to tell the I2C device what information it wants to
receive. The schematic shows the proper wiring for the example to work.

The examples illustrates how to read from a I2C serial EEPROM. Pin B1 is
the SDA pin and pin B0 is the clock pin (SCL). The next part of the I2C
command is the control byte. The first part of the control byte for I2C serial
EEPROMs is %1010, this is the start byte. The next part is 0001 because
the address lines of the I2C are grounded (A0,A1,A2). The last part of the
control byte sets the addressing mode, WORD size or not. Refer to the
device data sheet for what addressing mode is required.

So the last bit in the control byte needs to be 1, for word addressing. The
data sheet for the I2C devices will list if the device uses WORD size
addressing or not. The above explanations refer to the 24C04 I2C serial
EEPROM from Microchip. (Refer to I2COUT)

Schematic

111

Example Program
The following program will write and read a value to an I2C serial
EEPROM. Note the last bit of the control byte is 1, this is because the I2C
EEPROM is a 24C01 which does not use WORD size addressing. If an
24C64 were used the last bit would be a 0 for WORD size addressing.
The SCL/SDA lines are pin B0/B1

CAT VAR BYTE
DOG VAR BYTE

CAT = 2 ;sets CAT = 2
DOG = 0 ;clears DOG = 0

Main:
I2COUT B1,B0,%10100001,0,[CAT]

;writes value of 2 to address 0 of the serial eeprom

PAUSE 1000
I2CIN B1,B0,%10100001,0,[DOG]

;read value of address 0 and stores it in DOG

PAUSE 1000
IF DOG = 2 THEN LOOP

;make sure value was read correctly

Goto Main

Loop: ;if the LED blinks the write/read was successful
Debug [“I2C Write Was Successful”]

End

112

I2Cout
I2COUT DataPin, ClockPin,{ErrLabel,}Control,{Address,} [{mods}
Var,...VarN]
Sends data to an I2C device (EEPROM, External A/D Converter)

DataPin is a variable or constant that specifies the I/O pin to
use. (SDA)

ClockPin is a variable or constant that specifies the pin that the
MASTER I2C device will use to clock the bus signals. (SCL)

ErrLabel is a label that the program will jump to if the I2CIN com
mand fails, timeout occurs or a device is not connected.

Control is a variable or constant that specifies the I2C device’s
control byte. The control byte consist of two parts The first four bits
are the device type (EEproms use %1010). The next three bits are
the device ID. If the address lines of the serial EEPROM (i.e. : A0,
A1, A2) are grounded then the next three bits of the control byte
must be zero.(ie: %1010000). Thelast bit is a flag used to determine
the addressing format, 1 =16bit addressing, 0 = 8bit addressing.

Address is an optional variable or constant that specifies the
starting address to write the data to.

Mods are command modifiers which can be used to modify the
variable directly.

Var is a variable or constant that specifies the data being sent
from the current bus master.

VarN is a list of variables and/or constants that specifies the
data being sent from the current bus master. This allows for
multiple variables to be written to the I2C device by
automatically incrementing the last given address.

What is I2C ?
I2C protocol is a form of synchronous serial communication. It only requires
two I/O pins which can be shared between multiple I2C devices. I2C can
communicate with peripheral chips such as EEPROM, A/D, D/A and RTC.
Two lines may be used, a data clocking line and a data line. Data and
clocking (SCL) lines may be bussed, and appropriate chip can be se-
lected.

113

Explanation
The I2COUT command allows your program to write data to an I2C device.
To write a byte to a 24C64 I2C serial EEPROM with Pin B1 of the
PICmicro connected to SDA of the I2C device and Pin B0 connected to
SCL use the following code snippet:

I2COUT B1,B0,%10100001,0,[$ff]
;last bit of the control byte is 1 for 16bit addressing

In order to use an I2C serial EEPROM that does NOT use 16bit address-
ing (24C01) you must set the last bit of the Control byte to 0.

I2COUT B1,B0,%10100000,0,[$ff]
;last bit is set to 0 for 8bit addressing

The I2COUT command is used in the same fashion as the I2CIN com-
mand. Everything that applies to I2CIN will be the same for I2COUT.

Example Program
Word addressing is required with the schematic below since the 24C04 is
word addressing.

I2COUT B1,B0,%10100001,0,[“H”]
;last bit of the control byte is 1 for WORD addressing

Schematic

114

This next I2c EEPROM program demonstrates the I2Cin and I2cout
commands. This program will record the state of pin A0 over a period of time
and play it back on pin A1. It was designed for use with the 512 byte
EEPROM 24C04

This program makes use of the serial port to display program status. Use
one of the IDE terminal windows to display the results.

input A0 'Sensor or button to monitor
output A1 'Led for sensor play back

address var word
logdata var byte
cbit var byte 'control bit
cbit =%10100000 'Set control bits starting state

Low A1 'turn led off

'--
' Record section
'--

Debug ["Now recording Pin A0",10,13,10,13]

for address = 0 to 50

logdata = porta.bit0
porta.bit1 = porta.bit0
Debug ["Write to address ",dec address, |

"
value=",dec logdata,10,13]

'Write the state of pinA0 to address
cbit.bit1 = address.bit8
cbit.bit2 = address.bit9

'Build the control bit for address
I2cout B1,B0, outerror,cbit,address, [logdata]
pause 5

next

'--
' Playback section
'--

playback:
Debug ["Now playing back Pin 1",10,13,10,13]

for address = 0 to 50

115

'Read the recorded state of pinA0 from address

cbit.bit1 = address.bit8:cbit.bit2=address.bit9
'Build the control bit for address

I2cin B1,B0, inerror,cbit,address, [logdata]

Debug ["Read from address ",dec address, |
" value=",dec logdata,10,13]

porta.bit1 = logdata
pause 15
'A bit of a delay because we can read faster than we can write

next

goto playback 'keep displaying play back until shutdown

'---
' Error section
'---

'If we get any errors then just shut down
outerror:

Debug ["We had a write error",10,13,10,13]
end

inerror:
Debug ["We had a read error",10,13,10,13]

end

SEE ALSO

I2CIN

116

If...Then...Elseif...Else...Endif
IF Compare THEN {Gosub} Label
Compare, if true(not 0) jump to label or:

IF Compare THEN (If condition is true then jump to label)

Statements... (If not true goto elseif)

ELSEIF Compare (If true execute statements)

Statements... (If not true goto else)

Else (If nothing is true then execute statements)

Statements...

Endif (terminate after else statements ran)

The IF...THEN...ELSEIF...ELSE...ENDIF evaluates one or more conditions
and, if true, jumps to a label. If false then skip next function

Condition is a statement, such as "x = 7" that can be evaluated
as true or false.

Gosub is optional. Choosing GOSUB allows you to return to
the next line of your program after running a subroutine. The
default is to jump to a label.

Label is a label that specifies where to go in the event that the
condition is true.

Explanation
The If...Then command a decision maker of sorts. There are two ways in
which If...Then can be used. The first, test a condition and, if that condition is
true, goto or gosub to a point in the program specified by an address label.
The condition that IF...THEN tests is written as a mixture of comparison and
logic operators. The comparison operators are:

= equal < less than
<> not equal>= greater than or equal to
> greater than <= less than or equal to

IF...THEN is essentially a true or false goto. If the statement is true then the
program will goto the given label. If the condition is false the program will
continue onto the next line.

117

The second use of the If...Then can conditionally execute a group of state-
ments following the THEN. The statements must be followed by Elseif or
Else with an Endif.

Example
This example illustrates how to use IF...THEN the first way described.
Multiple IF...THEN statements can be used together as such:

IF Cat < 10 THEN Dog
;If the variable Cat is less than 10 jump to the label Dog

You can use the IF...THEN statement to execute a group of conditions:

IF lip = 0 AND Cat < 10 THEN Dog
;Both conditions must be true in order to jump to Dog

You can use the GOSUB option to simplify your program:

hat = 1
IF hat = 1 THEN GOSUB Tip ;this program will loop forever
STOP

Tip:
RETURN ;send program back to the next line after the gosub

The second use of the IF...THEN statement is multiple conditionally executed
statements. This method allows several statements to be executed based
on TRUE conditions, with a closing statement execute if all is FALSE.

Hat var Byte

Hat = 1

IF hat=0 THEN ;condition is false since Hat equals 1
High B1 ;skipped since condition was false

ELSEIF Hat=0 ;condition is false since Hat equals 1
High B2 ;skipped since condition was false

Else ;conditionally executes if all conditions were false
High B3 ;executes and pin 0 is set high
Endif ;closes the IF...THEN statement

Multiple conditions can be compared as shown below:

Hat var Byte
Hat = 1
IF hat=0 THEN ;condition is false since Hat equals 1

High B1 ;skipped since condition was false

118

ELSEIF Hat=0 ;condition is false since Hat equals 1
High B2 ;skipped since condition was false

ELSEIF Porta.bit0=0 ;is pin A0 true (low) ?
High B3 ;skip if false

ELSEIF Porta.bit1=0 ;is pin A1 true (low) ?
High B4 ;skip if false

ELSEIF Porta.bit2=0 ;is pin A2 true (low) ?
High B5 ;skip if false

ELSEIF Porta.bit3=0 ;is pin A3 true (low) ?
High B6 ;skip if false

Else ;conditionally executes if all conditions were false
High B7 ;executes and pin 10 is set high
Endif ;closes the IF...THEN statement

The above program will only work if pin A0, A1, A2, A3 are set to inputs first.
The program will check to see if pins A0 through A3 are set low (VSS). If all
pins are not set low then execute ELSE and set pin B7 high, if any pins are
set low, then execute next statement, finish comparisons, skip ELSE since
one condition was true and exit. The ELSE is always used if you want your
program to do something if all comparisons are false. If you want the program
to just exit if all conditions are false then omit ELSE once the group of com-
mands are finished running the program will exit on the ENDIF and continue
on to the next line of code. The ELSEIF is unlimited, you can use as many
needed. The only limit to this is code size.

Important Notes
A few conditions must be considered when using the IF...THEN statement.
Constants can not be used with the IF...THEN statement. This is because
constants only have one condition and the statement will always be TRUE or
FALSE. This also applies to PIN names since these are constants to. The
below line will always return a FALSE state:

IF B0 = 1 THEN Main

The above statement has no way of knowing that you mean the value of pin
0. It assumes this is a constant. The correct way to check the condition of a
PIN in the IF...THEN statement would be to access the pin and port directly as
shown below:

IF portb.bit0 = 1 THEN Main

The above statement will now look directly at the condition of pin B0. This
statement will now change based on the condition of pin B0 (High or Low).

119

The next example of the If...Then...Else command is a little more useful
when testing logic and conditional executing code. To get a real good idea of
how the If...Then...Else works run this program with the ICD and use the
step or animate option to follow the code.

y var word

y = 1

debug [10,13]
main:

debug [dec y," "] 'Display the current count

'Test for 5
if y=5 then gosub five

'Test for 21
if y = 21 then
debug [10,13,"Have 21",10,13]

endif

'Here we will test to see how close we are to being done.
if y = 50 then

debug [10,13,"All Done",10,13]
debug ["However we will do it all again",10,13,10,13]
y=1 'We are done reset the counter
goto main

elseif y = 45
debug [10,13,"5 more to go",10,13]
y=y+1 'At this point lets increment the counter
goto main

else
y=y+1 'At this point lets increment the counter
goto main

endif

'A little subroutine test
five:

debug [10,13,"Have 5",10,13]
return

120

Input
INPUT pin
Makes the specified pin an input

Pin is a variable or constant that specifies the I/O pin to use.

Explanation
There are several ways to make a pin an input. When a program begins,
all of the pins should be inputs. Input instructions PULSIN, SERIN will
automatically change the specified pin to input and
leave it in that state.

Example
INPUT B0 ;Make pin B0 an input
INPUT B1 ;Make pin B1 an input

You can also assign a variable to a pin as shown below for the INPUT
command:

myswitch VAR portb.bit0
;myswitch is now an alias of pin B0

MAIN:
IF myswitch = 0 THEN MAIN

;check if pin B0 is low

IF myswitch = 1 THEN RUNIT
;check if switch is on if so goto label RUNIT

GOTO MAIN
;will continue to loop until pin 0 is high

RUNIT:
HIGH B1 ;pin B1 is set high turn on a LED
PAUSE 500 ;a delay so we can see the LED on
LOW B1 ;Turns the LED off

GOTO MAIN ;goes back to main loop and starts over again
END

121

Lcdread
LCDREAD RegSel\Clk\RdWrPin, Nib, Address, [{mods} Var]
Reads the RAM on a LCD module using the Hitachi 44780 controller or
equivalent.

RegSel can be a constant or variable specifying the pin for the R/S
line of the LCD.

Clk can be a constant or variable specifying the pin for the E
(Enable) line of the LCD.

RdWrPin can be a constant or variable specifying the pin for the R/
W (Read / Write) line of the LCD.

Nib can be a constant or variable specifying the pins (Total of Four)
for the data lines of the LCD. The LCD data port is arranged in 8
bits. Only 4 bits are required 4 to 7 of the LCD. So if Portb.nib0 is
selected then LCD bit 4 is connected to pin B0 on the PICmicro and
LCD bit 5 is connected to pin B1 on the PICmicro and so on.

Address can be a constant or variable that specifies the address
location of RAM you are trying to read. Address from 0 to 127
return the current character in the display memory. Address 128
and above return Character RAM values.

Mods are command modifiers which can be used to modify the
variable directly.

Var is the variable where the value returned will be stored.

Explanation
Accessing the on board RAM of a LCD module is very straight forward. If
the LCDWRITE command is used as shown in the example below. The
character in address 0 will be “H’, address 1 will be ‘e’ and so on.

Example
pause 500 ;Allows the LCD to initialize

LCDWRITE B4\B5\B6, portb.nib0, [INITLCD1, INITLCD2, TWOLINE,
CLEAR, HOME, SCR,”Hello”] ;prints the word ‘Hello’ to the screen

If the above code example is executed, the on-board LCD RAM will have
the word ‘Hello’ loaded into it. To read what was printed on the LCD screen,
use the LCDREAD command as shown:

character VAR byte

122

LCDREAD B4\B5\B6, portb.nib0, 0, [character] ;Character = “H”
LCDREAD B4\B5\B6, portb.nib0, 1, [character] ;Character = “e”
LCDREAD B4\B5\B6, portb.nib0, 2, [character] ;Character = “l”
LCDREAD B4\B5\B6, portb.nib0, 3, [character] ;Character = “l”
LCDREAD B4\B5\B6, portb.nib0, 4, [character] ;Character = “o”

Schematic

Important Notes
When using the LCDREAD command the R/W pin must be connected to a
pin. The R/W pin is not necessary when the LCDWRITE command is used
wihtout the LCDREAD command.

SEE ALSO

LCDWRITE

123

Lcdwrite
LCDWRITE RegSel \ Clk {\RdWrPin}, Nib, [{mods} Exp]
Sends Text to an LCD module using an Hitachi 44780 controller or equiva-
lent.

RegSel is optional for LCDWRITE and can be a constant or vari
able specifying the pin for the R/S line of the LCD.

Clk can be a constant or variable specifying the pin for the E
(Enable) line of the LCD.

RdWrPin can be a constant or variable specifying the pin for the R/
W (Read / Write) line of the LCD.

Nib can be a constant or variable specifying the pins (Total of Four)
for the data lines of the LCD. The LCD data port is arranged in 8
bits. Only 4 bits are required 4 to 7 of the LCD. So if Portb.nib0 is
selected then LCD bit 4 is connected to pin B0 on the PICmicro and
LCD bit 5 is connected to pin B1 on the PICmicro and so on.

Mods are command modifiers which can be used to modify the
variable directly.

Exp can be a constant or variable that is the data to be written.

Explanation
When using the LCDWRITE command you will need to first initialize the
LCD screen. This can be done by adding the below line to your program:

pause 500 ;Allows the LCD to initialize

LCDWRITE B4\B5\B6, portb.nib0, [INITLCD1, INITLCD2, TWOLINE,
CLEAR, HOME, SCR]

;after the first initialization no more inits. will need to be sent.

The first line of code is the PAUSE statement. This is used to give the LCD
enough time to power up internally. A value of 500 is often used. This
pause is not necessary on all LCD displays.

Example
The code below will print the character string “Hello” then “World” to the LCD
display.

Temp Var Byte

Pause 500 ;Allows the LCD to initialize

124

LCDWRITE B4\B5\B6, portb.nib0, [INITLCD1, INITLCD2, TWOLINE,
CLEAR, HOME, SCR]

;after the first initialization no more inits. will need to be sent.

Main
Temp = 30
LCDWRITE B4\B5\B6, portb.nib0, [“Hello”]
Pause 200
LCDWRITE B4\B5\B6, portb.nib0, [CLEAR, HOME, “World”]
Pause 200
LCDWRITE B4\B5\B6, portb.nib0, [DEC TEMP]

;prints the decimal numbers 30
Pause 200
LCDWRITE B4\B5\B6, portb.nib0, [iHEX TEMP]

;prints the Hex value of 30 with indicator ($1E)
Goto Main

There are several control commands that can be used with LCDWRITE such
as CLEAR and HOME. Each additional control command used with
LCDWRITE must be separated with a “,” (comma) inside of the brackets
“[...]”. Below is a chart of all the available control commands for use with
LCDWRITE.

LcdWrite Comand Table
Command Name Description
$133 INITLCD1 Initialize LCD display
$132 INITLCD2 Initialize LCD display
$101 CLEAR Clear Display
$102 HOME Return Home
$104 INCCUR Auto Increment Cursor(default)
$105 INCSCR Auto Increment Display
$106 DECCUR Auto Decrement Cursor
$107 DECSCR Auto Decrement Display
$108 OFF Display,Cursor, and Blink off
$10C SCR Display on,†Cursor and Blink off
$10D SCRBLK Display and Blink on, Cursor off
$10E SCRCUR Display and Cursor on, Blink off
$10F SCRCURBLK Display, Cursor, and Blink on
$110 CURLEFT Move Cursor left
$114 CURRIGHT Move cursor right
$118 SCRLEFT Move Display left
$11C SCRRIGHT Move Display right
$120 ONELINE Set display for 1 line LCDs
$128 TWOLINE Set display for 2 line LCDs
$140 CGRAM | address Set CGRAM address for R/W
$180 SCRRAM | address Set Display ram address for R/W

125

Cursor Position and Screen Ram
Screen ram is where the characters are stored before being printed to the
screen. To print a given character to the screen the internal cursor must be
positioned at the given location. This is normally handled automatically. If
you want to print to other places on the screen instead of a left to right
fashion you must first position the internal cursor at the correct screen ram
location. If you wanted to print to the second line, first character of a 16x2
LCD then you would use the following:

LCDWRITE B4\B5\B6, portb.nib0, [scrram+$40]

The above command tells the LCD to point the cursor at location 40h,
which is the location of line two, first character. The “+” symbol is require
since your adding 40h to the current location of the screen ram. You can
use the SCRRAM control command to move the cursor anywhere on or off
the LCD screen. Since all HD44780 type controllers have the same amount
of ram regardless of the LCD size the internal ram is mapped out as
shown below:

All values shown above are in HEX. The main controller (HD447800) is
setup up for a maximum of 128 bytes of screen ram. A 2x16 display would
only use 32 bytes so the remainder would be off screen ram. Which can
be accessed by shifting the display left after writing to an off screen ram
location.

Off screen ram would be as follows; 10h to 3fh would be off screen for the
first line, then 40h for the first location of the second line on screen. Then 50h
to 7fh for off screen on the second line for a two line LCD. To print in off
screen ram, move the pointer to location 10h. Then send the characters to
be printed. If you send the message “Hello” to location 10h to 15h this will
be in off screen ram. To move this message on to the screen do the
following:

LCDWRITE B4\B5\B6, portb.nib0, [SCRLEFT]

This will shift the display once to the left. So the first letter of the message
will appear “H”. To move the remainder of the message onto the screen
you must shift it left 4 more times by sending the above 4 times.

0 1 2 3 4 5 6 7 8 9 a b c d e f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f

126

Below is a schematic of a LCD with an Hitachi 44780 type controller for
use with LCDWRITE and using the default system settings:

Schematic

127

Let
LET Var = expression
Assign a value to a variable

Var is the labeled variable

Value can be a constant or another variable or the result of an
expression.

Expression can be any (legal) combination of math operators.

Explanation
LET is an optional command; as an example Temp=2 is the same as LET
Temp=2. The LET command is often used to make programming code more
human readable.

Example
The statement [LET] will assign values to variables using operators as
shown below:

LET Cat = 1 * Dog + Fish

OUTPUT B0 ;sets pin B0 to an output
LET B0 = 0 ;makes pin B0 low

Important Note
The LET command can also use modifiers.

128

Low
LOW pin
Make the specified pin output low

Pin is a variable or constant that specifies the I/O pin to use.

Explanation
The LOW command will make the specified pin Low (0 Volts), which will
also make the specified pin an output. Pin can be a constant (0, A0, 2, A2)
or a variable that contains a pointer that directly corresponds to an avail-
able pin on any given port.

Example
HIGH A0 ;Makes pin A0 high

You can also assign a variable to a pin as shown below. This can help
make writing a program much easier when trying to remember what pins
are connected to what.

led VAR byte

led = PortB.bit0 ; makes the variable led point to pin B0.
LOW led ;Makes pin 0 Low (0 Volts)

129

Lookdown
LOOKDOWN value,{comparisonOp,}[value0,
value1,...valueN],resultVariable

Compare a value to a list of values according to the relationship specified by
the comparison operator. Store the index number of the first value that makes
the comparison true into resultVariable. If no value in the list makes the com-
parison true, resultVariable is unaffected.

Value is a variable or constant to be compared to the values in
the list.

ComparisonOp is optional and maybe one of the following:

= equal < less than
<> not equal>= greater than or equal to
> greater than <= less than or equal to

If no comparison operator is specified, Then MBasic defaults to
equal (=).

Value0, value1... make up a list of values (constants or
variables) up to 16 bits in size.

ResultVariable is a variable in which the index number will be
stored if a true comparison is found.

Explanation
LOOKDOWN works very much like the index of a book. You can search for
specific topic and return the page number. LOOKDOWN searches values in a
list, and stores the item number of the first match in a variable. In other words,
Lookdown compares the user value to a values in a list, the first comparison that
is true, will return the value of the index position the match was found. The index
list starts at 0 not 1. This is because 0 is always treated as the true first number
when dealing with computers and microcontrollers.

Example
value VAR byte
result VAR nib
value = 2
LOOKDOWN value,[10,150,180,2001000,25,2],result

In the above code example we have specified a value of 2 without a
comparison operator. So the default comparison will be equals. Lookdown
will search through the list searching for the first true comparison. The first
true comparison is 2 which is in the 6th position, so the value returned, in
result will be 6.

130

Lookdown can also index constant strings as shown below. Any spaces are
also counted as positions.

value var byte
result var byte

Main
value = "R"
lookdown value,["See Spot Run"],result
Debug [dec result]

Goto main

The result would be 9. This is because R is in the 9th position.

131

Lookup
LOOKUP index, [value0, value1,...valueN], resultVariable

Look up the value specified by the index and store it in a variable. If the index
exceeds the highest index value of the items in the list, variable is unaffected.
A maximum of 256 values can be included in the list.

Index is the item number (constant or variable) of the value to
be retrieved from the list of values.

Value0, value1... make up a list of values (constants or
variables) up to 16 bits in size.

ResultVariable is a variable in which the retrieved value will
be stored.

Explanation
Lookup could be considered the opposite of Lookdown. Lookup retrieves an
item from a list based on the item's position (index) in the list.

Example
index VAR nib
result VAR byte
index = 3
result = 255

LOOKUP index,[26,177,13,1,0,17,99],result

The above example will go to position 3 in the list, starting from left to right.
The list starts at 0 not 1. So the returned value stored in result would be 1.

The following program uses the LOOKUP command to play “Mary had a
little lamb” using the FREQOUT command.

AH con 440*2 ;assigns a value for the note and octave
AS con 466*2 ;the note is 466*2 = A sharp second octave
BH con 494*2
CH con 523*2
CS con 554*2
DH con 587*2
DS con 622*2
EH con 659*2
FH con 698*2
FS con 740*2
GH con 784*2
GS con 831*2

132

;above we assign our notes as constants with values for the FEQOUT
command

temp var byte
temp2 var word

main
for temp = 0 to 33

lookup temp,[CS,BH,AH,BH,CS,0,CS,0,CS,BH,0,BH,0,BH,0,CS,|
EH, 0,EH,CS,BH,AH,BH,CS,0,CS,0,CS,BH,0,BH,CS,BH,AH],temp2

; the above statement must be formatted to work correctly
; the “|” or symbol is used to indicate a line break, when
‘ a command is too long to fit on one line.

 if temp2 = 0 then finish
 freqout B0,500,temp2
finish:
next
pause 5000

goto main

133

Nap
NAP period
Enter sleep mode for a short period. Power consumption is reduced to
about 50 µA assuming no loads are being driven. All pins are output low.

Period is a variable or constant that determines the duration of
the reduced power nap. The duration is (2^period) * 18 ms.
(Read as "2 raised to the power of ‘period’, times 18 ms.") Period
can range from 0 to 7, resulting in the following nap lengths:

Period 2 period Length of Nap
0 - 1 18ms
1 - 2 36ms
2 - 4 72ms
3 - 8 144ms
4 - 16 288ms
5 - 32 576ms
6 - 64 1152ms (1.152 seconds)
7 - 128 2304ms (2.304 seconds)

Explanation
Nap uses the same shutdown and start-up mechanism as Sleep, with
one difference. During Sleep, variations are automatically compensated
for. As a result, longer Sleep intervals are accurate to approximately ±1
percent. Nap intervals are directly controlled by the watchdog timer without
compensation. Variations in temperature, supply voltage, and manufactur-
ing tolerance of the PICmicro you are using can cause the actual timing to
vary.

One use for NAP is in a battery-powered application where some small
amounts of time are spent doing nothing. This would apply to a program
that loops endlessly, performing some task, and pausing for approximately
300 ms each time through the loop. You could replace the PAUSE 300 with
NAP 4, as long as the timing of the pause was not critical. The NAP 4
would pause your program for about 288ms, plus put the microcontroller in
low-power mode, which would extend battery life. During wake up the I/O
pins would be interrupted briefly. One method around this would be to use
weak pullup / pulldown resistors such as 10K or 100K.

Example
High B0 ;turns an LED on connected to pin B0
NAP 4 ;Low power mode for about 288ms
Low B0 ;Turns LED off

134

Output
OUTPUT pin
Makes the specified pin an output

Pin is a variable or constant that specifies the I/O pin to use.

Explanation
There are several ways to make a pin an output. Commands that rely on
output pins (SEROUT) automatically change the specified pin to output.
The OUTPUT command allows your program to directly affect the state of
the specified pin.

Example
OUTPUT B0 ;Pin B0 is now an output (+5 volts)

Using a variable to set the pins state:

time VAR byte
time = PortB.bit0

OUTPUT time ;Pin B0 is now an output

135

OWIN
OWIN Pin,Mode,{NCLabel,} [{Mods} Var]
Protocol used to communicate to 1-wire devices.

Pin is a variable or constant that specifies the I/O pin to use for the
One wire command.

Mode is a variable/constant/expression indicating the mode of data
transfer. Mode controls placement of reset pulses, detection of
presence pulses, byte / bit input and normal / high speed. The
proper value for Mode will depend on the 1-wire device used.
Consult the device data sheet to determine the correct Mode.
See chart below:

Mode Setting
 0 No Reset, Byte mode, Low speed
 1 Reset before data, Byte mode, Low speed
 2 Reset after data, Byte mode, Low speed
 3 Reset before and after data, Byte mode, Low speed
 4 No Reset, Bit mode, Low speed
 5 Reset before data, Bit mode, Low speed

NCLabel is a label the program can jump to if a connection failure
occurs with the OWIN command (ie. No chip present).

Pin is a variable or constant that specifies the I/O pin to use for the
One wire command.

Mods are command modifiers which can be used to modify the
variable directly.

Var is the variable or variable array where the value(s) returned will
be stored.

Explanation
1-wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It requires only one I/O pin. This one
pin can be shared between multiple 1-wire devices. The OWIN command
allows the PICmicro to receive data from 1-wire devices.

The 1-Wire protocol synchronizes the slave devices to the master. The
master initiates and controls all activities on the 1-Wire bus. 1-Wire uses
CMOS/TTL logic levels. A resistor connects the data line of the 1-Wire bus
to the 5V supply of the bus master.

136

Hardware Configuration
The 1-Wire bus has only a single line I/O. It is important that each device
on the bus be able to drive this single I/O line at the appropriate time. Each
device attached to the 1-Wire bus must have an open drain connection or
3-state outputs. The DS2401 is an open drain part. The bus master
requires a pullup resistor at the master end of the bus, with the bus master
circuit equivalent to the one shown in for the schematic.
The value of the pullup resistor should be 4.7K for short line lengths. A
multi 1-wire bus consists of a 1-Wire bus with multiple slaves attached.

Important Note
Wiring of the Dallas part is important. It may seem simple but allot of issues
arise from incorrect wiring. Use the code example below to check your
wiring. The code below is a part ID check. You can also use this code to
identify any devices you may have on the bus.

Temp VAR Byte
Counter VAR Byte

Main
OWout B0,1,main,[$cc]

For Counter = 0 to 7
OWin B0,0,[temp]
Debug [hex temp,” “]

Next
Debug [13]

Goto Main

The above code will print the part ID in the Debug window. To run the
program use the ICD. Also you will notice a NCLabel is used “main”. This
label will keep the program in a loop until something is received from the part
connected.

Example
Temp Var Byte
Counter Var Byte

Main
Owout B0,1,main,[$33]
;Sense Presence and call 1-Wire RomCheck routine

For Counter = 0 to 7 ;Read 8 byte Code from DS2401
Owin B0,0,[temp]
Debug [hex temp," "] ;If code does not match recheck

137

Next
Debug [13]

Goto Main

The example works with the DS2401 which is a device that guarantees a
unique id per device. These parts are ideal for security applications. The first
part of the example Owout B0,1,main,[$33] is a rom check routine (See
Rom Functions). Every 1-wire device has a rom id. By using the rom check
routine you can ensure there is a 1-wire device attached. This will only work
with one device attached. The next part of the code a loop to get all 8
unique ID bytes from the DS2401. This key will be different for every
DS2401 part.

Rom Functions
Read ROM $33 or $0F
Only works if a single 1-wire device is on the line.

Skip ROM $CC
Address a 1-wire device without its 64-bit ID. Only works if a single 1-wire
device is on the line.

Search ROM $F0
Read the 64-bit IDs of all 1-wire devices on the line. A process of elimination
can be used to distinguish each unique device.

Match ROM $55
Match Rom, followed by a 64-bit ID, will allow addressing of a unique
device on a multiple device line.

Schematic

138

OWOUT
OWOUT Pin,Mode,{NCLabel,} [{Mods} Exp]
Protocol used to communicate to 1-wire devices.

Pin is a variable or constant that specifies the I/O pin used for the
One wire command.

Mode is a variable/constant/expression indicating the mode of data
transfer. Mode controls placement of reset pulses, detection of
presence pulses, byte / bit input and normal / high speed. The
proper value for Mode will depend on the 1-wire device used.
Consult the device data sheet to determine the correct Mode.
See chart below:

Mode Setting
 0 No Reset, Byte mode, Low speed
 1 Reset before data, Byte mode, Low speed
 2 Reset after data, Byte mode, Low speed
 3 Reset before and after data, Byte mode, Low speed
 4 No Reset, Bit mode, Low speed
 5 Reset before data, Bit mode, Low speed

NCLabel is a label the program can jump to if a connection failure
occurs with the OWOUT command (ie. No chip present).

Mods are command modifiers which can be used to modify the
variable directly.

Exp is a variable, variable array, constant or expression containing
the data to be sent.

Explanation
1-wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It requires only one I/O pin. This one
pin can be shared between multiple 1-wire devices. The OWOUT com-
mand allows the PICmicro to send data to 1-wire devices. The OWout and
OWin are tightly integrated. In most cases you will need both to talk to any
one wire part.

139

The 1-wire protocol has a very specific format. Every transaction will
consists of four parts:

1. Initialization.
2. The ROM Function Command.
3. Memory Function Command.
4. Data

The ROM Function and Memory Function will always be 1 byte. This byte
is sent LSB first. The Initialization will consists of a reset pulse which is
generated by the master device. Which is followed by a presence pulse
generated by any attached slave devices. The next operation is the reset
pulse which is controlled by the lowest two bits of the mode (Refer to
Modes).

Following this Initialization is the ROM Function. The ROM Function is used
to address a specific 1-wire device. When more than one device is attached
each will need to be address individually using the Match ROM command.

Example
The following example will read the temperature from a DS1820 one wire
device. The result is displayed in Celsius with the decimal point intact. This
is accomplished by using a long variable and the float command.

temp var word
temp1 var word
Convert var long
counter var byte

main
Owout B0,1,main,[$cc,$44]

Wait
owin B0,0,[temp]
if temp = 0 then wait

Owout B0,1,main,[$cc,$be]
owin B0,0,[temp.byte0,temp.byte1]
Convert = float temp fdiv 2.0

Debug ["Temperature = ",real convert," C",13]
goto main

140

Schematic

141

Pause
PAUSE milliseconds
Pause the program (do nothing) for the specified number of milliseconds.

Milliseconds is a variable or constant specifying the length of
the pause in ms. Pauses may be up to a 32 bit number

Explanation
The PAUSE command delays the execution of the program for the specified
number of milliseconds.

Example

flash:
lOW B0
PAUSE 100
HIGH B0
PAUSE 100

GOTO flash

This code causes pin B0 to go low for 100 ms, then high for 100 ms. The
delays produced by PAUSE are as accurate as the ceramic resonator
time base, ±1 percent. So a statement of PAUSE 1000 would be 1 sec-
ond

142

Pauseclk
PAUSECLK cycles
Pause the program (do nothing) for the specified number clock cycles
divided by 4.

Cycles is a variable or constant specifying the length of
the pause. Pauses may be up to a 32 Bit number.

Explanation
The PAUSECLK command delays the execution of the program for the
specified number of clock cycles divided by 4. Since each oscillator has a
variances of 0.05% you will need to determine your own timings. This is only
necessary if precision timing is required.

Example
Flash:

Low B0
PAUSECLK 100
High B0
PAUSECLK 100

Goto Flash

The above code will delay or pause for 100 internal clock cycles divided by
4.

143

Pauseus
PAUSEUS microseconds
Pause the program (do nothing) for the specified number of micro seconds.

Microseconds is a variable or constant specifying the length of
the pause in µs. Pauses may be up to 65535 µs.

Explanation
The PAUSE command delays the execution of the program for the specified
number of microseconds.

Example
Flash:

Low B0
PAUSEUS 100
High B0
PAUSEUS 100

Goto Flash

The above code causes pin 0 to go low for 100 µs, then high for 100 µs.

Important Notes
The delays produced by PAUSEUS may vary depending on how it is
used. If the value for Pauseus is a constant its accuracy will be greater,
opposed to using a variable. This is due to the time it takes to load the
value and execute the Pauseus command. The minium time for Pauseus is
1µs.

144

PEEK...POKE
PEEK address, variable
POKE address, expression

Read/Write specified RAM location

Address is a variable or constant which denotes a memory
location.

Variable is a variable name and is where the results will be
stored.

Expression is any combination of variables, constants and math
operations.

Explanation
PEEK and POKE are considered advance commands and should only be
used by experienced users. The explanation of these commands are kept
short intentionally. Use of the PEEK command allows a specific address to
be read and store its value in the assigned variable . The PEEK and
POKE commands allow direct access to all of the registers, including all of
the PORT states and their data direction registers (TRIS).

Example
store VAR byte

PEEK B0,store
:get current register status of B0 and store it in the variable store

POKE B0,store
;write the value of store (PIN B0)

145

Pulsin
PULSIN pin, state, {TimeoutLabel,TimeoutMultiple,} Var
Measure the width of a pulse.

Pin is a variable or constant that specifies the I/O pin to use.
This pin will be placed into input mode during pulse
measurement and left in that state after the instruction finishes.

State is a variable or constant (0 or 1) that specifies whether the
pulse to be measured begins with a 0-to-1 transition (1) or a
1-to-0 transition (0).

TimeoutLabel is an optional label that specifies where to go if a
time out occurs. The default time out value is 65,535 microseconds.

TimeoutMultiple is a variable or constant that specifies the amount
of time to wait before timing out. The time out value is multiplied by
65,535 microseconds which is the default value. If a value of 10 is
used the command would wait 655,350 microseconds.

Var is a variable in which the pulse duration will be stored.

Explanation
PULSIN will measure the pulse width on a specified pin. If the state is zero,
the width of a low pulse is measured. If the state is one, the width of a high
pulse is measured. The measured width is then placed in Var. If the pulse
edge never happens or the width pulse is too great to measure Var will
default to 0. The pulse is measured in 16 bits, if a one byte Var is used
only the lower 16 bits are used. Pulsin will timeout after 65,535 microsec-
onds if the optional timeout label is not used.

PULSIN will return the pulse width in µs.

Pin State Zero,
Low pulse is measured

Intial Pin State
Pin State One, High pulse is
measured after first low state

146

Example
PULSIN B0,0,Cat

;Measure low pulse on P0 store it in the variable Cat

The following program uses Pulsin to measure the time a button is pressed
as shown in the schematic. The value returned is in Pulsin units. A 10K
pullup resistor is used to keep the line high. Pulsin will wait until the line
changes state. Since the state setting is 0 Pulsin will wait until the line state
is low (0). Then begin the measurement of time while the pin state remains
low. Once the line is released and set high again Pulsin will stop counting
and return a value to Var. The command will reset every 655,350 micro
seconds since we used the timeout label.

temp var word

Main: 'this program will loop forever
PULSIN B0,0,main,10,temp

'Measure negative pulse will time out at 655,350us.
IF temp = 0 then Main 'If 0, try again.
serout B1, i9600, [dec temp] 'display result.

goto Main 'repeat
end

Schematic

147

Pulsout
PULSOUT pin, time
Output a pulse.

Pin is a variable or constant that specifies the I/O pin to use.
This pin will be placed into output mode immediately before the
pulse and left in that state after the instruction finishes.

Time is a variable or constant (0-65535) that specifies the
duration of the pulse in µs.

Explanation
PULSOUT will generate a pulse on the specified pin for the given period.
The pulse is generated by toggling the pin state twice. The initial state of
the pin will determine the polarity of the pulse. The pin specified to generate
the pulse is automatically made an output.

PULSOUT will generate a pulse with a period in 1 µs increments. The
minimum pulse width is 4 µs. You can not go below this value.

Example
PULSOUT B0,1000

;Generate a pulse for 1 millisecond long to B0

The small program below illustrates one use of the PULSOUT command:

Low B4 ;Preset Pin to LOW

main ;this program will loop forever
pulsout B4,25000 ;Pulse pin High for 25 of a millisecond
pause 1000 ;Wait 1 second until repeating

goto main
end

This program will simply generate a infinite pulse on pin B4. The PULSOUT
command has many uses. One of which can be to blink a LED for a
certain duration.

Pulsout Starts

Intial Pin State
Pin Left High for
specified state

148

Pwm
PWM pin, duty, cycles
Convert a digital value to analog output via pulse-width modulation.

Pin is a variable or constant that specifies the I/O pin to use.
This pin will be placed into output mode during pulse generation
then switched to input mode when the instruction finishes.

Duty is a variable or constant (0-255) that specifies the analog
output level (0 to +5V).

Cycles is a variable or constant (0-65535) specifying an
approximate number of milliseconds of PWM output.

Explanation
Pulse-width modulation (PWM) allows a digital device to generate an
analog voltage. To do this a pin is set to Output high (5 Volts) or Output
low (close to 0 Volts). If you switch the pin rapidly between high and low at
a given interval so that it was high half the time and low the other half. The
average voltage over time will be halfway between 0 and 5V which would
be 2.5V. This is the idea of PWM; to produce an analog voltage by
outputting a stream of digital 1‘s and 0‘s in a particular proportion. The
proportion of 1‘s to 0‘s in PWM is called the duty cycle. The duty cycle
controls the analog voltage in a very direct way; the higher the duty cycle
the higher the voltage.

The duty cycle can range from 0 (0%) to 255 (100%). Duty is literally the
proportion of 1s to 0s output by the PWM instruction. In order to convert
PWM into an analog voltage we have to filter out the pulses and store the
average voltage. A resistor and capacitor combination is typically used to
do this shown in Figure 1-1.

Schematic

Figure 1-1

The capacitor will hold the voltage set by PWM after the instruction has
completed. How long it holds the voltage will depend on how much current
is drawn, by external circuitry, and internal leakage of the capacitor. In order
to hold the voltage the program must periodically repeat the PWM instruc-
tion to give the capacitor a refresh charge. The PWM command lets you set
the charging time in terms of PWM cycles.

149

After outputting PWM pulses, the pin is left in input mode. When a pin is set
to input mode, the pin’s driver is effectively disconnected. If it was not, the
steady output state of the pin would change the voltage on the capacitor
and undo the analog voltage.

Example
The PWM function is dependent on the oscillator used. The PICmicro can
generate a clock about 1ms in length. The specified pin will be made an
output prior to the pulse generation and will revert to an input once the pulse
stops.

PWM B0,127,1000
; 50% duty cycle PWM signal on B0 for 1 second

The above code snippet would give and output voltage of about 2.5 volts
for about 1 second. You can put the PWM in a subroutine and call it when
ever it is needed.

Important Notes
The term PWM or Pulse Width Modulation is loosely applied to the action of
the PWM command. PWM is mostly done by splitting a fixed period of time
into an on time (1) and an off time (0). Predictability you can calculate the
exact frequency of the pulses and their widths are then controlled by the
duty cycle. The PWM command does not work in this way. It outputs a
rapid sequence of on (1) / off (0) pulses in which the overall proportion over
the course of a full PWM cycle of approximately a millisecond is equal to the
duty cycle. The advantage here is to quickly zero in on the desired output
voltage. In doing so it can not produce the clean, orderly pulses that might
be expected. This method is also used to generate pseudo-sine wave
tones with the DTMFOUT and FREQOUT commands.

150

Random
Variable = RANDOM expression (Seed Value)
Generate a pseudo random number. Random is a Math function.

Variable is a variable that will store the results of the random
command. This can be a Byte or Word sized variable depending
on the expected results.

Expression is any combination of variables, constants, math
and logic operators.

Explanation
RANDOM generates pseudorandom numbers ranging from 0 to 65535. The
term pseudorandom is used because the RANDOM function will generate
numbers that appear random, but are actually generated by a logic opera-
tion that uses the initial seed value to “tap” into a sequence of 65535
numbers. If the same “seed” value is used repeatedly, then the same
sequence of numbers is generated.

Example
Temp var word

Main
Temp = Random 25 ;25 is the seed value
Debug [DEC Temp] ;displays the results of temp
pause 200 ;delay to see the values displayed
Goto Main ;repeat loop forever

The above program will generate pseudorandom numbers. Since the same
seed value is always used the numbers will have a repeating pattern. To
generate better pseudorandom numbers you would want to change the
“seed” value on the fly:

Temp var word
Temp = 25 ;start value

Main
Temp = Random Temp ;seed value is now based on results
Debug [DEC Temp,13] ;displays the results of temp
pause 200 ;delay to see the values displayed
Goto Main ;repeat loop forever

The “seed” value is now changing each time through the loop. This will
eventually produce repeating numbers if left running long enough. The
method shown will produce the best random numbers possible.

151

RCtime
RCTIME pin, state, {TimeoutLabel,TimeoutMultiple,}, resultVariable
Count time while pin remains in state—usually to measure the charge or
discharge time of a resistor and capacitor circuit. (RC)

Pin is a variable or constant that specifies the I/O pin to use.
This pin will be placed into input mode and left in that state
when the instruction finishes.

State is a variable or constant (1 or 0) that will end the RCTIME
period.

TimeoutLabel is an optional label that specifies where to go if a
time out occurs. The default time out value is 65,535 microseconds.

TimeoutMultiple is a variable or constant that specifies the amount
of time to wait before timing out. The time out value is multiplied by
65,535 microseconds which is the default value. If a value of 10 is
used the command would wait 655,350 microseconds.

ResultVariable is a variable in which the time measurement
(0 to 65535 in µs units) will be stored.

Explanation
RCTIME can be used to measure the charge / discharge time of a resistor
and capacitor circuit (RC). RCTIME can also be used as a fast stopwatch
for recording events of very short duration. This allows measuring resistance
or capacitance using R or C sensors (i.e. thermistors or capacitive humidity
sensors); or respond to user input through a potentiometer. (Typically 5k to 50k
pot.) The resolution of RCTIME is in 2µs increments.

How it works
When RCTIME starts to execute, it will start a counter. It stops this counter
as soon as the specified pin is no longer in the start State (0 or 1). If pin
remains in a certain state longer than 65535 timing cycles, RCTIME returns
0.

In the example below if the pin never changes State a value of 0 is
returned:

LOW B0 ;Start discharge cap
PAUSE 10 ;Discharge for 10ms
RCTIME B0, 1,Cat ;Read potentiometer on B0

Figure 1-1 shows a suitable RC circuit for use with the RCTIME command.

152

The circuit shown as State 1 is preferred. This is because the logic threshold
is approximately 1.5 volts. Which means that the voltage seen by a pin will
start at 5V then fall to 1.5V before RCTIME stops. With the circuit shown for
State 0, the voltage will start at 0V and rise to 1.5V, before RCTIME stops.
There is more of a voltage variation in the circuit shown for STATE 1 there-
fore giving a better resolution for the same basic circuit configuration.

Before RCTIME begins to execute, the capacitor will need to be put into the
state specified in the RCTIME command. A capacitor is charged when there
is a voltage difference between its two plates. When both plates are at
+5Volts, the cap is considered to be discharged. This makes the input high.

Example
The following program shows the standard use of the RCTIME command
measuring an RC charge / discharge time. Use the circuit shown for
RCTIME State 1. The appropriate values should be R3 = 10 k pot. and C1
= 0.1 µf. Connect the circuit to Port B Pin 0 and run the program. Follow the
instruction for using DEBUG. Adjust the pot and watch the value shown in
the Watch Window change.

Temp var Word ;Temp will hold the result

Main
High B0 ;Discharging the cap
Pause 1 ;1 ms pause
RCTIME B0, 1, Temp ;Measuring RC charge time
DEBUG [DEC Temp,13] ;Display value

Goto Main

Schematic
Figure 1-1

 For use with state 1 For use with state 0

153

Read
READ location, variable
Read EEPROM location and store value in variable.

Location is a variable or constant that specifies the EEPROM
address to read from.

Variable holds the byte value read from the EEPROM.

Explanation
The READ statement will allow a program to read the on-chip EEPROM at
the specified address and store the result in the given variable.

READ 0,Cat
;Read the value at EEPROM location 0 and store it in variable Cat

Example
The following method shows how the DATA command can be used to write
data to the internal EEPROM and the READ command to read it back.

DOG var byte
CAT var byte

DATA "Hello","World"
;Set the initial value stored in eeprom at programming time

Main
FOR CAT = 0 to 10 STEP 1 ;increments address 0 to 10
READ CAT,DOG ;reads current address, stores result in DOG
Debug [HEX dog," ",dog,13] ;Display results

NEXT

The above program will write the ASCII values of Hello World to the internal
EEPROM starting at address 0. Since “Hello World” will take 10 address
locations, a “for...next“ loop can be used to easily retrieve the data from the
internal EEPROM. The READ command is then used to load the values into
the variable DOG. As each value is loaded into DOG it is then sent out using
the DEBUG command.

SEE ALSO

WRITE
DATA

154

ReadDM
readdm address,[{mod}var,...,{mod}varN]
Read EEPROM location and store value in variable or variables.

Address is a value pointing to a location in the eeprom from which
to start.

Mod is any appropriate input or output modifier

Var is any variable type

Explanation
The ReadDM is similar to the Read command. The ReadDM statement is
setup for sequential reads at a starting point from the internal eeprom. These
reads will start at a specified address and store the result in a given variable
or variables, such as an array.

ReadDM 0,[str string\11]

The above example will begin reading at address 0 from the internal
eeprom. Since we specified the STR modifier and 11 bytes, the ReadDM
command will continue to read from address 0 to 10 and store the results in
each location of the array.

Example
The following program illustrates the usefulness of the ReadDM and
WriteDM command. We begin with an Array to store our returned data.

string var byte(12)
temp var byte

main
writedm 0,["Hello world"]
readdm 0,[str string\11]

mainlp
for temp = 0 to 11
Debug [string(temp),13]
Next

goto mainlp

The above program will write the entire string “Hello World” to the internal
eeprom. Since the string “Hello World” consist of 11 bytes the first 11 bytes
of the eeprom will be written to. Then the ReadDM command is used to
read the 11 bytes back. By using the STR modifier we tell the ReadDM
command we want to read 11 bytes from the internal eeprom and store
them in our 12 byte variable array. Next we use the SEROUT command to
display the results to a terminal window.

155

Important Notes
There are only 256 internal eeprom locations on a PIC16F876. If the
ReadDM or WriteDM command begins in a valid location and continues
outside of the 256 locations it will wrap around to the beginning location.

SEE ALSO

WRITEDM
STR Modifier

156

ReadPM
Readpm address,[{mod}var,...,{mod}varN]
Read Flash Program memory location and store value in variable or
variables. Requires 16F87x part.

Address is a value pointing to a location in the flash program memory
from which to start. Requires 16F87x part.

Mod is any appropriate input or output modifier

Var is any variable type

Explanation
The ReadPM command is similar to the ReadDM command except it reads
from the internal program memory of a 16F87x PICmicro. The ReadPM state-
ment is setup for sequential reads at a starting point from the internal program
memory. These reads will start at a specified address and store the result in a
given variable or variables, such as an array.

ReadPM 0x400,[str string\11]

The above example will begin reading at address 400h from the internal
program memory. Since we specified the STR modifier and 11 bytes, the
ReadPM command will continue to read from address 400h to 410h and
store the results in each location of the array.

Example
The following program will write “Hello World” using the WritePM command
starting at address 400h. Then the ReadPM command is used to read the
written values to program memory and print the result to the debug window.

We begin with an Array to store our returned data.

string var byte(12)
temp var byte

main
writepm 0x400,["Hello world"]
readpm 0x400,[str string\11]

mainlp
for temp = 0 to 11
Debug [string(temp)]
Next
Debug [13]

goto mainlp

157

The example program will write the entire string “Hello World” to the internal
program memory. Since the string “Hello World” consist of 11 characters, 11
bytes will be written to the internal program memory starting at location
400h. If you run the program once and read back the programmed hex file
from the PICmicro at location 400h will be the values for “Hello World”.

By using the STR modifier we tell the ReadPM command we want to read
11 bytes from the internal eeprom and store them in our 12 byte variable
array. Next we use the Debug command to display the results to the debug
window.

Important Notes
The READPM and WRITEPM commands will only work with 16F87x
parts. You can not write or read actual program space used for the running
program. You can write and read from address locations that do not contain
program data. If the ReadPM command is used to read locations of actual
running program space, erratic results will occur.

SEE ALSO

WRITEPM
STR Modifier

158

Repeat...Until
REPEAT......UNTIL expression

Expression is any combination of variables, constants, math
and logic operators

Explanation
Repeat a group of commands until some expression is true. True being
any other value than 0.

Example
In the following example, the instructions between the REPEAT...UNTIL
commands will execute until the variable Temp is equal to 100. With each
run through the loop UNTIL will check the status of Temp.

Temp var byte
clear

Main
REPEAT ; repeat the following commands.

temp = temp + 1
Debug [Dec Temp,13]

UNTIL temp = 25 ; repeating until temp is equal to 25
End

Since we are looking for something to be TRUE at the UNTIL statement we
will need to use an expression. The next example shows how to check the
status of a pin:

Temp var Byte
Clear

Input B0 ;sets B0 to an input
Main
REPEAT ; repeat the following commands.

Debug [“False”]
UNTIL PortB.bit0 = 1 ; repeating until B0 is High (+5Volts)
Debug [“True”]

End

159

Reverse
REVERSE pin
Reverse the data direction of the specified pin.

Pin is a variable or constant that specifies the I/O pin to use.
This pin will be placed into the opposite of its current input/
output (I/O) mode.

Explanation
Reverse is a convenient way to switch the I/O direction of a pin. If a pin is
set as an input, the REVERSE command, will change it to an output;
REVERSE is an easy way to use Bi-State devices like Bi-Color LEDs or
two create a Bi-State.

Example
OUTPUT B0 ; Makes P0 an output
REVERSE B0 ;Changes P0 to an input

A good use for REVERSE would be to quickly change a pin state to an
input to effectively “remove it from the circuit”.

The term “input” really has two meanings: (1) Setting a pin to input making
it possible to detect the state of that pin. (2) Setting a pin to input also
disconnects the output driver, which would have little effect on external
circuitry.

The following program with the circuit shown in figure 1-1 illustrates this
second effect. The LED will have two levels of brightness:

Low B0 ;P0 is low, sets output driver.

Main
Pause 300 ;300ms pause
REVERSE B0 ;Reverse B0 I/O direction to input

Goto Main ;Do forever

The above program sets B0 as an output by telling the program that B0 is
set to Low (0 Volts). This will cause the circuit shown in figure 1-1 to
illuminate brightly. By executing the REVERSE command, B0 is now an
input and will effect the circuit causing the LED to illuminate dimly. This is
because the total resistance 220 + 220 = 440 ohms when B0 is an input.
When B0 is set as an output and low, this bypasses the second resistor
to ground and the ground is now coming from B0, so the total resistance is
now 220 ohms.

160

Schematic
Figure 1-1

161

Serdetect
Serdetect pin,mode,var
Detect incoming baud rate. Used for auto detecting baud rates.

Pin is a variable or constant that specifies the I/O pin that will be
used to receive the sync character.

Mode is the settings for Bits 13,14 and 15. Bit 13 ($2000 hex) is a
flag that controls the number of data bits and parity (0=8 bits and no
parity, 1=7 bits and even parity). Bit 14 ($4000 hex) controls polarity
(0=noninverted, 1=inverted). Bit 15 ($8000 hex) is not used by
SERIN. Constants from the below table can be used for the Mode:

IMODE = Inverted
NMODE = Non Inverted
IEMODE = Inverted, Even Parity
NEMODE = Non Inverted, Even Parity
IOMODE = Inverted, Open Drain
NOMODE = Non Inverted, Open Drain
IEOMODE = Inverted, Even Parity, Open Drain
NEOMODE = Non Inverted, Even Parity, Open Drain

Var is a word sized variable that will hold the calculated baudmode
value which can be used by serin and serout.

Explanation
Serdect is used to auto detect an incoming baud rate. This is ideal for
applications or products that can be used at multiple baud rates and be
software switched. Serdetect can take the place of hard wired jumpers or
switches for changing baud rates.

In order for serdetect to calculate the bitrate a character must be received.
For inverted mode the binary value of the character to send for calculating
bitrate would be %01XXXXXX. This is because Serdetect calculates one bit
width. For inverted modes Seretect would calculate the first bit which as the
start bit, thus the need for %01XXXXXX. For non inverted modes the first
character bit would be used for calculation %101XXXXX. The values in Hex
for inverted mode would be $55 and a value for non inverted would be
$AA.

The serdetect command counts the period between the first 1's bit and the
next 1's bit. The time is than converted to the bit rate and IOR'd with the
mode. In the case of inverted mode, the first 1's bit is the start bit of the
character and the second 1's bit is the second LSB of the character. In the
case of non inverted mode the first 1's bit is the LSB of the Character and
the second 1's bit is the 3rd LSB of the character.

162

Example

SerBaud Var Word ;Word sized variable for Serdetect results

Main
SerDetect B0, IMODE, SerBaud

;waits until a character is received $55

Serout B1, SerBaud, [“Locked in”]
;Transmit using the results from Serdetect

Goto Main

The program above will wait until it receives a sync byte. Once serdetect
has received the sync byte with the results it will send back out “Locked In”
using the baud mode and rate calculated by serdetect.

The next program demonstrates the Serdetect, Serin, and Serout com-
mands. Once the program is loaded to the PICmicro and connected to your
PC. Use one of the IDE terminal windows and set the baud to 2400 or
9600. Any baud up to 57600 can be used. To start the progam send a
upper case “AA” or “55”

Then program will then build a menu which will allow you select options.

bval var word 'Used to hold the auto detect baud rate.
name var byte(30)
cmd var byte

clear

dodetect:
serdetect B0,IMODE,bval 'Lets wait for sync byte
serout B1,bval, ["We have your baud rate. ",10,13]

'---
'Display the menu
'---

domenu:
'Menu system start here.
serout B1,bval,[10,13]
serout B1,bval,["1: Put PICmicro to Sleep",10,13]
serout B1,bval,["2: Detect Baud Rate",10,13]
serout B1,bval,["3: Enter Name",10,13]
serout B1,bval,["4: Display Name",10,13]

serout B1,bval,["5: Shut the PICmicro down",10,13]
serout B1,bval,[10,13]
serout B1,bval,["Option "]

163

'Get the menu item here
serin B0,bval,[dec1 cmd]

branch cmd,[bad,dosleep,dodetect,getname,dispname,doend]
'Falls through or jumps here on 0

bad:
serout B1,bval,[10,13,"Invalid Command",10,13]

goto domenu

dosleep:
serout B1,bval,[10,13,"Night Night..",10,13]
sleep 10 'Put the PICmicro to sleep for 10 seconds.

goto domenu

doend:
serout B1,bval,[10,13,"Night Night..",10,13]

end 'Shut the PICmicro down (sleep forever)

'---
'Get the users name
'---

getname:
'Ask for name
serout B1,bval,["What is your name? "]

'Read in users name here. Maximum of 30 characters or CR
serin B0,bval,[str name\30\13]

'Display name until 30 characteres or end of data
serout B1,bval,["Hello ",str name \30\0]
serout B1,bval,[10,13]

goto domenu

'---
'Display the users name
'---

dispname:
'Display name
serout B1,bval,["Hello ",str name \30\0]
serout B1,bval,[10,13]

goto domenu

164

Serin
SERIN rpin{\fpin},baudmode,{plabel,}{timeout,tlabel,}[inputData]
Receive asynchronous (e.g., RS-232) data.

Rpin is a variable or constant that specifies the I/O pin through
which the serial data will be received.

Fpin is an optional variable or constant that specifies the I/O
pin to be used for flow control. This pin will switch to output
mode and remain in that state after the end of the instruction.
(Caution Fpin requires the 'slash')

Baud mode is a 16-bit variable or constant that specifies serial
timing and configuration. The lower 13 bits are interpreted as
the bit period. Bit 13 ($2000 hex) is a flag that controls the
number of data bits and parity (0=8 bits and no parity, 1=7 bits
and even parity). Bit 14 ($4000 hex) controls polarity
(0=noninverted, 1=inverted). Bit 15 ($8000 hex) is not used by
SERIN.

Plabel is an optional label indicating where the program should
go in the event of a parity error. This argument may only be
provided if baud mode indicates 7 bits, and even parity,
otherwise the label is ignored.

Timeout is an optional variable/constant (0–65535) that tells
SERIN how long, in milliseconds, to wait for incoming data. If
data does not arrive in time, the program will jump to the
address specified by Tlabel.

Tlabel is an optional label which must be provided along with
Timeout, indicating where the program should go in the event
that data does not arrive within the period specified by Timeout.

InputData is a list of variables and modifiers that tells SERIN
what to do with incoming data. SERIN can store data in a
variable or array; interpret numeric text (decimal, binary, or
hex), and store the corresponding value in a variable; wait for a
fixed or variable sequence of bytes; or ignore a specified number
of bytes. These actions can be combined in any order in the
inputData list.

165

Inverted? Parity? Baud Rate Constant
No No 300 N300
Yes No 300 I300
No Yes 300 NE300
Yes Yes 300 IE300
No No 1200 N1200
Yes No 1200 I1200
No Yes 1200 NE1200
Yes Yes 1200 IE1200
No No ... *N...
Yes No ... *I...
No Yes ... *NE...
Yes Yes ... *IE...
No No 57600 N57600
Yes No 57600 I57600
No Yes 57600 NE57600
Yes Yes 57600 IE57600

SERIN Modes

* 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600

Improtant Note
There are several modifiers for use with the SERIN / SEROUT commands.
Refer to Command Modifier section of this manual.

166

Explanation
One of the most used forms of communication between electronic
devices is serial communication. The two most used types of serial
communication are asynchronous and synchronous. The SERIN and
SEROUT commands use an asynchronous method to receive and send
serial data. The term asynchronous means “no clock.” Data is transmitted
and received without the use of a separate “clock” wire. The PC’s serial
ports (COM ports, RS-232) use asynchronous serial communication.

Important Notes
Normal logic, 5 volts is a logic 1 and 0 volts is logic 0, RS-232
uses -12 volts for logic 1 and +12 volts for logic 0. This allows communica-
tion over long wire lengths without amplification. Most circuits for RS-232
use a line driver / receiver (MAX232). The MAX232, (1) converts the ±12
volt swing of RS-232 to TTL-compatible logic levels (0 to +5 Volts). It then
inverts the logic, so 5 volts = logic 1 and 0 volts = logic 0.

Making the Connection
There are a few ways to connect a PICmicro to a serial port of a computer
or any other RS-232 port. (1) Using a MAX 232 as shown in figure 1-1. (2)
Using a 22k current limiting resistor as shown in figure 1-2, which would be
non-inverted (N9600). The best method would be using the MAX232. Using
the 22K resistor method only protects the PICmicro. Some PC’s / RS-232
ports will not correctly receive data and require a ±12 volt swing (Refer to
SEROUT). When receiving data through a MAX232 circuit you will need to
invert the data using the “i” modifiers with the baudrate:

SERIN B0, i9600, [temp] ;receive byte inverted

Schematic
Figure 1-1

167

Figure 1-2

Function: DB-9 Pin Number:

Data Carrier Detect (DCD) 1
Receive Data (RD) 2
Transmit Data (TD) 3
Data Terminal Ready (DTR) 4
Signal Ground (SG) 5
Data Set Ready (DSR) 6
Request to Send (RTS) 7
Clear to Send (CTS) 8

Some extra connections that may need to be made are DTR-DSR-DCD
tied together and RTS-CTS tied together. This is only necessary if you are
using software or hardware that expects hardware handshaking.

Important Notes
Asynchronous serial communication is based on precise timing. Sender and
receiver must be set for identical timing, expressed in bits per second (bps),
referred to as the baud rate. The SERIN command requires a few values
(Pin, Mode and Baud) that tell it the speed of the incoming serial data, the
bit period, number of data and parity bits, and polarity. SERIN is able to
listen to data from 300 to 115k. The maximum recommend for 100% reliable
transmission is 57600 Baud.

Example
hello VAR byte
string VAR byte(10)
goodbye VAR byte

SERIN B0,N9600,[hello]
;one byte at 9600 baud and store in variable hello

SERIN B0\B1,N4800,[Sbin hello]
;one Signed byte from serial at 4800 baud

SERIN B0,E14400,parityerror,[hello,STR string\9,IShex goodbye]
;receive one byte from serial at 14400 with parity.

168

;Receive one string of 9 characters
;long and receive one Signed indicated (i.e.: $)
;hexadecimal value and store in goodbye

parityerror:
;if parity error occurs in the serin command jump to this label

Debug [“error”]
Goto parityerror

The previous program shows different ways the SERIN command can be
used.

Serin Modifiers
The SERIN command has several modifiers for formatting incoming data
and adding functionality to the SERIN command (Refer to Command
Modifiers). One of the SERIN modifiers can be configured to wait for speci-
fied data before it retrieves any additional data. For example, a device
attached to the PICMicro is known to send many different sequences of
data, but the only data you require appears right after some unique charac-
ters such as “A12”. You can modify the SERIN command to “Wait” for these
characters to be received before loading any values into a variable as
shown:

Temp var Byte

SERIN B0, i9600, [WAIT(“A12”), temp]

The above program will wait until “A”, “1”, “2” is received in the order shown,
then load the next value received value into the variable “Temp”. The data
received by SERIN is case sensitive. If “a” was received first it would have
been ignored. Also SERIN is looking at the ASCII values of “A”, “1”, “2”.

Once SERIN is executed the program halts until the data expected is
received. If no serial data is received the program will halt indefinitely. In order
to limit the amount of time SERIN waits, you can use the Timeout option as
shown:

SERIN B0, i9600, 1000, Timeerror, [WAIT(“A12”), temp]

Timeerror:
Debug [“Error”] ;display message in watch window

Goto Timeerror ;loop forever

The above program will only wait 1000ms to receive the expected incoming
data until it will time out and jump to the specified label “Timeerror”.

169

Important Notes
Some limitations of SERIN are sending or receiving data, the program can’t
execute other instructions. When executing other instructions, the program
can’t send or receive data.

There is no serial buffer as on a PC. So watching data follow is important.
One way to address this is to use flow control. This will set an additional
pin on the Atom for flow control. Using the circuit in figure 1-1 ties this addi-
tional pin to Clear to Send (CTS), which is pin 8 on the DB-9 Male connec-
tor. This will prevent the PC from sending data until SERIN is ready.

Low B1
SERIN B0\B1, i9600,[WAIT(“A12”), temp]

Done:
Debug [“Got it”]

Goto Done

The above program will set the pin B1, when the SERIN command is
executed. This tells the PC “OK I’m ready”.

SEE ALSO

SEROUT

170

Serout
SEROUT tpin,baudmode,{pace,}[outputData]
SEROUT tpin\fpin,baudmode,{timeout,tlabel,}[outputData]
Transmit asynchronous (e.g., RS-232) data.

Tpin is a variable or constant that specifies the I/O pin
through which the serial data will be sent.

Baudmode is a 16-bit variable or constant that specifies serial
timing and configuration. The lower 13 bits are interpreted as
the bit period. Bit 13 ($2000 hex) is a flag that controls the
number of data bits and parity (0=8 bits and no parity, 1=7 bits
and even parity). Bit 14 ($4000 hex) controls the bit polarity
(0=noninverted, 1=inverted). Bit 15 ($8000 hex) determines
whether the pin is driven to both states (0/1) or to one state and
open in the other (0=both driven, 1=open).

Pace is an optional variable or constant (0–65535) that tells
SEROUT how long in milliseconds it should pause between
transmitting bytes.

OutputData is a list of variables, constants and modifiers that
tells SEROUT how to format outgoing data. SEROUT can
transmit individual or repeating bytes; convert values into
decimal, hex or binary text representations; or transmit strings
of bytes from variable arrays.

Fpin is an optional variable or constant that specifies the I/O
pin to be used for flow control (byte-by-byte handshaking). This
pin will switch to input mode and remain in that state after the
instruction is completed. (Caution Fpin requires the 'slash')

Timeout is an optional variable/constant (0–65535) used in
conjunction with fpin flow control. Timeout tells Serout how long
in milliseconds to wait for fpin permission to send. If permission
does not arrive in time, the program will continue at tlabel.

Tlabel is an optional label used with Fpin flow control and
timeout. Tlabel indicates where the program should go in the
event that permission to transmit data is not granted within the
period specified by the Timeout command.

171

SEROUT Modes
Driven? Inverted? Parity? Baud Rate Constant
Yes No No 300 N300
Yes Yes No 300 I300
Yes No Yes 300 NE300
Yes Yes Yes 300 IE300
No No No 300 NO300
No Yes No 300 IO300
No No Yes 300 NEO300
No Yes Yes 300 IEO300
Yes No No ... N...
Yes Yes No ... I...
Yes No Yes ... NE...
Yes Yes Yes ... IE...
No No No ... NO...
No Yes No ... IO...
No No Yes ... NEO...
No Yes Yes ... IEO...

* 1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 38400, 57600

Improtant Note
There are several modifiers for use with the SERIN / SEROUT commands.
Refer to Command Modifier section of this manual.

172

Table 2-2 lists the predefined Baudmode constants available in MBasic. As
you can see from the table there are several different baudmodes for each
actual baud rate. The following describes each baudmode modifier:

N Normal (not inverted) signal
I Inverted signal
E Even Parity(otherwise no parity)
O Open drain(otherwise both high and low are driven)

Table 2-3 lists the command modifiers for the Output data

Explanation
One of the most used forms of communication between electronic
devices is serial communication. The two types of serial communication are
asynchronous and synchronous. The SERIN and SEROUT commands use
an asynchronous method to receive and send serial data. The term asyn-
chronous means “no clock.” Data is transmitted and received without the
use of a separate “clock” wire. The PC’s serial ports (COM ports, RS-232)
use asynchronous serial communication.

Important Notes
Normal logic, 5 volts is a logic 1 and 0 volts is logic 0, RS-232
uses -12 volts for logic 1 and +12 volts for logic 0. This allows communica-
tion over long wire lengths without amplification. Most circuits for RS-232
use a line driver / receiver (MAX232). The MAX232, (1) converts the ±12
volt swing of RS-232 to TTL-compatible logic levels (0 to +5 Volts). It then
inverts the logic, so 5 volts = logic 1 and 0 volts = logic 0.

Making the Connection
There are a few ways to connect a PICMicro to a serial port of a computer
or any other RS-232 port. (1) Using a MAX 232 as shown in figure 1-1. (2)
Using a direct connection as shown in figure 1-2 which is non-inverted
(N9600).The best method would be using the MAX232. Some PC’s require
a ±12 volt swing, so the direct connection may not work (Refer to SERIN).
When transmitting data through a MAX232 circuit you will need to invert the
data using the “i” modifiers with the baudrate:

SEROUT B0, i9600, [“Test”] ;transmit “Test” inverted

173

Schematic
Figure 1-1

Figure 1-2

Function: DB-9 Pin Number:

Data Carrier Detect (DCD) 1
Receive Data (RD) 2
Transmit Data (TD) 3
Data Terminal Ready (DTR) 4
Signal Ground (SG) 5
Data Set Ready (DSR) 6
Request to Send (RTS) 7
Clear to Send (CTS) 8

Some extra connections that may need to be made are DTR-DSR-DCD
tied together and RTS-CTS tied together. This is only necessary if you are
using software or hardware that expects hardware handshaking.

174

Important Notes
Asynchronous serial communication is based on precise timing. Sender and
receiver must be set for identical timing, expressed in bits per second (bps),
referred to as the baudrate. The SEROUT command requires a few values
(Pin, Mode and Baud) that tell it the speed to transmit the serial data, the bit
period, number of data and parity bits, and polarity. SEROUT is able to send
data from 300 to 115k. The maximum recommend for 100% reliable transmis-
sion is 57600 Baud.

Example
hello VAR byte
string VAR byte(10)
goodbye VAR byte

SEROUT B0,i9600,[“Hello”]
;send “hello”, through the serial port at 9600 baud inverted
;for use with a MAX232 or SIN / SOUT

SEROUT B0,N4800,[Sbin hello]
;send one Signed byte from hello, through serial at 4800baud
;non-inverted, for use with a direct connection

SEROUT B0,IE14400,100,[hello,STR string\9,IShex goodbye]
;send one byte from serial at 14400 with parity.
;Send string of bytes 9 characters
;long and one Signed indicated (i.e.: $)
;hexadecimal value from goodbye
;Pace the bytes 100ms apart
;inverted, for use with a MAX232

The above code snippets illustrates different ways SEROUT can be
modified using modifiers.

Serout Modifiers
The SEROUT command can use several formatting modifiers (Refer to
Command Modifiers). An example would be the decimal modifier (DEC),
which will translate the value of “8” and “2” into the ASCII codes for the
characters “8” and “2” and then transmit them:

SEROUT B0, i9600, [DEC 82]

The SEROUT command will send quoted text exactly as it appears in
quotes:

SEROUT B0, i9600, [“Result = “, DEC 10]

This will display “Result = 10”.

175

SEROUT can be configured to pause between transmitted bytes, called
pacing:

SEROUT B0, i9600, 500, [“Slow”]

SEROUT will transmit the word “Slow” with a 500ms delay between each
character. The Pace feature is used to support devices that require more
than one stop bit. SEROUT would normally send data as fast as it can! A
stop bit is simply a resting state in the driven line. Using the Pace option will
add multiple stop bits. Since some devices may require 2 or more stop bits.
The Pace modifier can also be used for devices that can only process one
byte at a time, using the Pace modifier would give such a device time to
process the byte then return to wait for another byte.

The string (STR) modifier can be useful for transmitting a string of characters
from a byte array variable. A string of characters is a set of characters that
are arranged in a certain order. The characters “1234” could be stored in a
string with the “1”, “2” then “3” and “4”. A byte array is similar to a string in
that it contains data that is arranged in a certain order. Each of the elements
in an array is the same size. See the “Defining Arrays” section in this
manual for more information on arrays. An example that transmits 4 bytes
from a byte array is shown below:

TempString var byte(4) ;create a 4-byte array
TempString(0) = “T” ;set the piece 1 of the array
TempString(1) = “E” ;set the piece 2 of the array
TempString(2) = “S” ;set the piece 3 of the array
TempString(3) = “T” ;set the piece 4 of the array

SEROUT B0, i9600, [STR TempString\4]
;send 4-byte string

The use of the optional \n argument is to specify how many characters are
to be sent. Otherwise it would continue until it found a byte equal to 0. Since
the last byte of 0 in the array is not 0 it would go on forever. Another useful
modifier is Repeat (Rep\n):

SEROUT B0, i9600, [Rep Temp\10]
;send temp ten times

The repeat modifier will repeatedly send a byte value \n times. The number
of times its repeated is specified by \n.

SEE ALSO

SERIN

176

Servo
SERVO pin, rotation{, repeat}

Pin is the pin controlling the servo

Rotation is a variable / constant that specifies the position you
want the servo to rotate. A value from -1200 to + 1200 is used with
0 being center. The value -1200 being a rotation to the farthest
position in a direction and +1200 being the farthest rotation in the
opposite direction. The maximum +1200 and minimum -1200 will
vary based on the servo being used. Take caution not to exceed
these values.

Repeat (optional)Specifies the number of internal cycles the
command runs(defaults to 30).

Explanation
Various servo manufacturers use different color coding for their servos.
Below is a color cross reference chart for some popular servos.

Manufacturer +5 Volts GND (Vss) I / O

Airtronics Red Black Brown
Futaba J Red Black White
KO Propo Red Black Blue
Kyosho/Pulsar Red Black Yellow
Japan Radio(JR) Red Brown Orange

The SERVO command works by simply pulsing the I/0 pin used very
similar to PWM. By adjusting the width and duration you can control the
SERVO clockwise, counter clockwise and speed. The SERVO command
automatically handles the calculations for you.

Example
Main

Servo B0, -1200 ;rotate servo negative
Pause 200 ;give servo time to complete rotation
Servo B0, 1200 ;rotate servo positive

Goto Main ;repeat forever.

In the example the Servo will rotate all the way to one direction then all the
way to the opposite direction. There is no exact scale for what value will
move the servo to what position. This is due to the fact that servo motors
may vary. Use the program below with your servo connected to determine
which value corresponds to what position:

177

Temp var Word
Temp = 0

Main
temp = temp +10
Servo B0, temp ;rotate servo positive
Debug [DEC Temp, 13]
Pause 200 ;time to complete motion

Next
Goto Main ;repeat forever.

The above example will print the value of Temp to the debug watch
window. To work out the opposite direction change the values of temp to
negative numbers.

178

Shiftin
SHIFTIN Dpin,Cpin,Mode,[result{\bits}{,result{\bits}...}]
Shift data in from a synchronous-serial device.

Dpin is a variable or constant that specifies the I/O pin that will
be connected to the synchronous-serial device’s data output. This
pin‘s I/O direction will be changed to input and will remain in
that state after the instruction is completed.

Cpin is a variable or constant that specifies the I/O pin that will
be connected to the synchronous-serial device’s clock input. This
pin’s I/O direction will be changed to output.

Mode is a value (0—3) or 4 predefined symbols that tells
SHIFTIN the order in which data bits are to be arranged and the
relationship of clock pulses to valid data. Here are the symbols,
values, and their meanings:

MSBPRE 0 Data msb-first; sample bits before clock pulse
LSBPRE 1 Data lsb-first; sample bits before clock pulse
MSBPOST 2 Data msb-first; sample bits after clock pulse
LSBPOST 3 Data lsb-first; sample bits after clock pulse

(Msb is most-significant bit; the highest or left most bit of a nibble, byte, or
word. Lsb is the least-significant bit; the lowest or right most bit of a nibble,
byte, or word.)

Result is a bit, nibble, byte, or word variable in which incoming
data bits will be stored.

Bits is an optional entry specifying how many bits (1—16) are to
be input by SHIFTIN. If no bits entry is given, SHIFTIN
defaults to 16 bits.

Explanation
SHIFTIN provides an easy method of receiving data from synchronous-
serial devices. Synchronous serial differs from asynchronous serial (i.e.
SERIN and SEROUT) in that the timing of data bits is specified in relation-
ship to pulses on a clock line. Data bits may be valid after the rising or
falling edge of the clock line. This kind of serial protocol is commonly used by
controller peripherals like ADCs, DACs, clocks, memory devices, etc. Trade
names for synchronous-serial protocols include SPI and Microwire.

The SHIFTIN command will first set the clock pin to output and low. The
data pin is then switched to input mode. SHIFTIN will now either generate a
clock pulse then read the data pin (POSTmode) or read the data pin and
generate a clock pulse (PRE mode). SHIFTIN will continue to generate clock

179

pulses and read the data pin for as many data bits required. Using SHIFTIN
with a particular device is nothing more than matching the mode and
number of bits to the device’s protocol. Manufacturers will generally provide
a timing diagram to illustrate the clock and data.

The bit argument on SHIFTIN defaults to 16 unlike the BS2. If no bit argu-
ment is used 16 bits will be acquired. For example:

SHIFTIN B0, B1, LSBPRE,[dog \8]

Using the example above if %10001111 was received the first bit would
become the least significant bit. MSB and LSB work like reading English.
From left to right. When looking at a value MSB starts from the left to LSB
ending on the right. So above %1000 is the MSB of our 8 bit value. Once
the entire 8 bits have been received in our variable DOG it would read as
follows %11110001.

Example
This next example show how to setup and read the time and data from a
Dallas 1302.

RTCCmd VAR BYTE
Clk CON B0
Dta CON B1
Reset CON B2
Temp VAR BYTE
Temp1 VAR BYTE
timedata var byte(6)
oldseconds var byte
Seconds VAR timedata(0)
Minutes VAR timedata(1)
Hours VAR timedata(2)
Date VAR timedata(3)
Month VAR timedata(4)
Year VAR timedata(5)

;Define registers of the DS1302

SecReg CON %00000
MinReg CON %00001
HrsReg CON %00010
DateReg CON %00011
MonReg CON %00100
YrReg CON %00110
CtrlReg CON %00111
BrstReg CON %11111

180

Preset bytetable $00,$00,$12,$20,$03,$02

; Clear Write Protect bit in control register

Temp = $10
RTCCmd = CtrlReg

GOSUB PreSetData

;Preset time registers using a byte table preset

for temp1 = 0 to 5
Temp = Preset(temp1)
RTCCmd = temp1
GOSUB PreSetData

NEXT

Temp = $80
RTCCmd = CtrlReg

GOSUB PreSetData

; read loop. Only writes to the screen if the seconds have changed
; The “|” is used at the end of a line that is to long to fit on the screen
; the location of the “|” may change depending where the breaks are
; in the command on your screen

Loop:
GOSUB ReadData
if oldseconds <> seconds then

serout B7,i38400,[0,"Time: ",dec2 (BCD2BIN Hours)|
\2,":",DEC2 (BCD2BIN Minutes)\2,":",DEC2 (BCD2BIN |
Seconds)\2,13,"Date: ",DEC2 (BCD2BIN Month)\2,"/",DEC2 |
(BCD2BIN Date)\2,"/",DEC2 (BCD2BIN Year)\2]

endif
GOTO Loop

; The PreSetData loop is used to preset the values from the Preset
; bytetable so the data and time can be set. Change the values in the
; table to be current

PreSetData:
'Write to DS1302 RTC
HIGH Reset
SHIFTOUT Dta, Clk, LSBFIRST, [%0\1,RTCCmd\5,%10\2,Temp\8]
LOW Reset

RETURN

ReadData:
HIGH Reset

181

SHIFTOUT DTA, Clk, LSBFIRST, [%111111\6,%10\2]
oldseconds = seconds
SHIFTIN DTA, Clk, LSBPRE,

[Seconds\8,Minutes\8,Hours\8,Date\8,Month\8,Year\8,Year\8]
LOW Reset

RETURN

The above program will read out the time and date, displaying the results in
a terminal window. This program can be customized. The Preset bytetable
contains all the data the sets the values the DS1302 will start from. Change
these values to start with the current data and time. The starts from the left
and read Seconds, Minutes, Hours, Date, Month, and Year.

Schematic

SEE ALSO

SHIFTOUT

182

Shiftout
SHIFTOUT Dpin,Cpin,Mode,[data{\bits}{,data{\bits}...}]
Shift data out to a synchronous-serial device.

Dpin is a variable or constant that specifies the I/O pin that
will be connected to the synchronous-serial device’s data input.
This pin’s I/O direction will be changed to output and will
remain in that state after the instruction is completed.

Cpin is a variable or constant that specifies the I/O pin that
will be connected to the synchronous-serial device’s clock input.
This pin’s I/O direction will be changed to output and will
remain in that state after the instruction is completed.

Mode is a value (0 or 1) or a predefined symbol that tells
SHIFTOUT the order in which data bits are to be arranged.
Here are the symbols, values, and their meanings:

Symbol Value Meaning:

MSBPRE 0 Data msb-first; sample bits before clock pulse
LSBPRE 1 Data lsb-first; sample bits before clock pulse
MSBPOST 2 Data msb-first; sample bits after clock pulse
LSBPOST 3 Data lsb-first; sample bits after clock pulse

Backwards Compatibility:

LSBFIRST 1 Data shifted out lsb-first.
MSBFIRST0 Data shifted out msb-first.

(Msb is most-significant bit; the highest or left most bit of a nibble, byte, or
word. Lsb is the least-significant bit; the lowest or right most bit of a nibble,
byte, or word.)

Data is a variable or constant containing the data to be sent.

Bits is an optional entry specifying how many bits (1—16) are to
be output. If no bits entry is given, SHIFTOUT defaults to 16 bits.

Explanation
SHIFTOUT provides an easy method of transferring data to synchronous-
serial devices. Synchronous serial differs from asynchronous serial (like
SERIN and SEROUT) in that the timing of data bits is specified in relation-
ship to pulses on a clock line. Data bits may be valid after the rising or
falling edge of the clock line. This kind of serial protocol is commonly used by
controller peripherals like ADCs, DACs, clocks, memory devices, etc. Trade
names for synchronous-serial protocols include SPI and Microwire.

183

Example
The below example program will send out the values 0 through 255 to the
74HC595 which is a serial to parallel register. Use the schematic below to
make the proper connections.

SI CON B0 ; serial output
SCK CON B1 ; shift clock
RCK CON B2 ; output latch
Delay CON 100
Counter VAR Byte

main
for counter=0 to 255

gosub Out595
pause 100 ;Change to in/decrease speed

next
goto main

Out595:
Shiftout SI,SCK,MSBPRE,[counter\8]

; send pattern to 74x595
Pulsout RCK,8 ; latch outputs(min 8us)

Return

Schematic

SEE ALSO

SHIFTIN

184

Example of SPI communications
SPI communication is accomplished via the SHIFTIN and SHIFTOUT
commands. Following below is a brief tutorial on using SPI devices.

SPI is a serial communication protocol. CS, SCK, SI and SO need to be
connected to I/O pins on the PICmicro. In this example we will refer to the
Microchip 25C040 shown below.

PIN DESCRIPTION:
CS - Chip Select Input
SO - Serial Data Output
WP - Write Protect Pin
VSS - Ground
SI - Serial Data Input
SCK - Serial Clock Input
HOLD - Hold Input
VCC - Supply Voltage

I m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t e
In some uses of SHIFTIN / SHIFTOUT may not work correctly with
Debug.This is a timing related issue and will be addressed in a later
release.

E x a m p l eE x a m p l eE x a m p l eE x a m p l eE x a m p l e
The following example will detail writing and reading data to a 25c040 SPI
eeprom.

temp var byte
cntr var word
cntr = 0
SCK con B1
SO con B3
SI con B2
CS con B0

low SCK ;sets chip in a known state
high CS

main
low CS
shiftout SI,SCK,MSBPRE,[0x06\8] ; sets 25c040 for a write
high CS
low CS
shiftout SI,SCK,MSBPRE,[0x02\8]
shiftout SI,SCK,MSBPRE,[cntr\8] ; sends address location for write

185

shiftout SI,SCK,MSBPRE,[cntr\8]
 ; using the value of address as the value to be writen

high CS
pause 5
low CS
shiftout SI,SCK,MSBPRE,[0x03\8,cntr\8] ; sets 25c040 for a read
shiftin SO,SCK,MSBPOST,[temp\8] ; reads and stores results in temp
high CS
serout c0,i9600,["Hello",dec temp,13]

 ; prints value stored in temp to terminal window
cntr = cntr + 1
goto main

186

Sleep
SLEEP seconds
Put the PICmicro into low-power sleep mode for a specified number of
seconds.

Seconds is a variable or constant (1-65535) that specifies the
duration of sleep in seconds.

Explanation
SLEEP will place the PICmicro into a low power mode for the specified
period of seconds. Period is 16 bits, so delays of up to 65,535 seconds (a
little over 18 hours) would be the limit. SLEEP uses the Watchdog Timer so
it is independent of the oscillator frequency. Since SLEEP relies on the
watchdog timer there is a short wake up period every 1.5 seconds. The I/O
pins remain in there last known state.

The SLEEP command will not affect the internal registers, allowing a
program to continue executing upon waking up from the SLEEP period.

To achieve the lowest possible current draw during sleep you should set all
pins to outputs and low.

Example
In the example below we can easily create a long pause when blinking an
LED. Commonly the SLEEP command is used to reserve battery power.

Again
HIGH B0 ; LED on.
PAUSE 1000 ; Wait 1 second.
LOW B0 ; LED off.
SLEEP 60 ; Sleep for 1 minute.

Goto Again

The above example will blink an LED then put the PICmicro into a one
minute sleep cycle.

187

Sound
Sound pin,[duration1\note1,...durationN\noteN]
Generate specific note from one pin.

Pin is a variable/constant that specifies the I/O pin to use. This
pin will be set to an output during tone generation and left in
that state after the instruction is completed.

Duration is a variable/constant specifying the length in
milliseconds (1 to 65535) of the tone(s).

Note is a variable/constant specifying frequency in hertz (Hz, 0
to 32767) of the first tone.

Explanation
The sound command generates a pulse at the specified frequency. The
sound command can be used to play tones through a speaker or audio
amplifier. Sound can also be used to play simple songs.

Example
SOUND B1,[1000 \ 2500]

This instruction generates a 2500-Hz tone for 1 second (1000 ms) through
B1. To play two notes:

SOUND B1,[1000 \ 2500, 2000 \ 2500]

The above code will play two notes first one being 2500Hz for 1 second
and the second 2500Hz for 2 seconds.

The notes generated are clean without filtering. Refer to the schematic

The next program demonstrates the Sound command and should give you
a better idea of what values to ue to generate certain tones.

'Variables used to hold the frequency and duration of the sound command

freq var word
dur var word

main:
Freq = 2500
Dur = 1000

;Now play it
sound B0,[dur\freq]

goto main

188

Schematic

189

Sound2
Sound2 pin1\pin2,[duration1\note1\note2_1,...durationN\noteN\note2_N]
Generate specific notes one on each of the two defined pins.

Pin1 \ Pin2 is a variable/constant that specifies the I/O pins to
use. This pin will be set to an output during tone generation and
left in that state after the instruction is completed. The two
specified pins can be tied together as shown in the schematic

Duration is a variable/constant specifying the length in
milliseconds (1 to 65535) of the tone(s).

Note is a variable/constant specifying frequency in hertz (Hz, 0
to 16000) of the tones.

Explanation
Sound2 generates two pulses at the specified frequency one on each pin
specified. The sound2 command can be used to play tones through a
speaker or audio amplifier. Sound2 can also be used to play more compli-
cated songs. By generating two frequencies on separate pins, a more
defined sound can be produced.

Example
SOUND2 B1 \ B2,[1000 \ 2500 \ 3500]

The above code generates a 2500Hz tone and a 3500Hz tone for 1 second
(1000 ms). The first note specified is played from the first pin specified and
the second note from the second pin specified. To play multiple notes:

SOUND2 B1 \ B2,[1000 \ 2500 \ 3500, 2000 \ 2500 \ 3500]

The above code will play two sets of notes 2500Hz and 3500Hz for 1
second and the second two notes, 2500Hz and 3500Hz for 2 seconds.

The notes generated are clean without filtering. The pins should be summed
together to produce multiple melody songs. With the sound2 command more
complex music can be played by the PICmicro. Refer to the schematic.

Schematic

190

Spmotor
SPMOTOR pin, delay, step

Pin can be a variable or constant. Pin specifies the first pin out
of 4 control pins required. If B0 was used, the control pins
would then be B0, B1, B2, B3.

Delay can be a variable or constant and is a value from 0 to
65365 in milliseconds. Delay controls the speed at which the
stepper motor will rotate. The delay will also vary from stepper
motor to stepper motor.

Step can be a variable or constant and is the number of steps
and the direction. The direction is determined by the value of
Step. Positive values being clockwise and negative numbers being
counter clockwise. The step value can be a range from -32682
to +32682

Explanation
Stepper motors are precision motors which have an absolute amount of travel
per step. This is ideal in situation where precise positioning is necessary. Stepper
motors are commonly found in XY positioning tables. Steppers motors can be
purchased from several sources. Chances are you may have a few laying
around. They are commonly salvaged from old disk drives and laser printers.

There are two types of stepper motors. Unipolar and Bipolar. Unipolar means
one pole. This is usually a common ground between 4 coils. Unipolar stepper
motors are easier controlled with minimal circuitry. Bipolar motors indicate two poles.
Bipolar motors require additional circuity in order to drive them. The SPMOTOR
command does not support Bipolar motors. In most cases you can easily distin-
guish between then two types. Unipolar stepper motors have 5 wires. Bipolar
motors usually have 4.

The use of the SPMOTOR command requires a simple circuit using a darlington
array (ULN2803A) to sink the load from the stepper motor. Some small low
power stepper motors can be driven from the microcontroller directly. However this
is not recommended. Other circuits can be used to sink the load from the stepper
motor. The ULN2803A is the most commonly used.

191

Example
The following program will rotate a stepper motor 1000 steps clockwise and
counter clockwise.

Main
SPMOTOR B0, 10, 1000
SPMOTOR B0, 10, -1000
Goto Main

The SPMOTOR command can be used to drive more than one motor. To do
this you would use the SPMOTOR command more than once with new
pins defined.

I m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t e
The SPMOTOR command will not work correctly when used with Debug.
This is due to the serial data the PICmicro must send to keep in sync with
the IDE.

Schematic

192

Stop
STOP
Stops program execution.

Explanation
STOP prevents the program from executing any further instructions until it is
reset. The STOP command is similar to END but it does not put the Atom into
low-power mode. The Atom draws just as much current as if it were actively
running program instructions. The only way to start the program again is to
reset the chip.

STOP ;Stops program

Example
Stop can be used to quickly exit a loop based on a certain condition as
shown in the example below:

myswitch var portb.bit0 ;myswitch is now an alias of B0

MAIN:
IF myswitch = 0 THEN MAIN

;check if PORTB PIN 0 is low if so it loops

IF myswitch = 1 THEN STOPIT
;check if switch is on if so goto label RUNIT

GOTO MAIN
;will continue to loop until P0 is high

STOPIT:
STOP

;stops program execution

The above code example is a software ON/OFF switch, when power to the
rest of the circuit needs to remain on but the PICmicro must be stopped.

193

Swap
SWAP variable,variable

Variable is the value to be swapped

Explanation
Swap any two variable’s values with each other. If Dog = 10 and Temp = 0
then by using the swap command Dog will now equal 0 and Temp will equal
10.

Example
The below program will run once. The If..Then does a comparison, since
temp = 0 it continues. Then the Swap command swaps the values in dog
with temp. The If..Then will now be true since temp is now equal to 10.

Dog Var Byte
Temp Var Byte

Dog = 10 ;Dog equals 2
Temp = 0 ;Temp equals 0

Main
if temp = 10 then ExitLoop
Swap Dog, Temp ;Temp now equals 10

Goto Main

ExitLoop
end

194

Toggle
TOGGLE pin
Invert the state of a pin.

Pin is a variable or constant that specifies the I/O pin to use.

Explanation
TOGGLE inverts the state of an I/O pin, changing 0 to 1 and 1 to 0. The
pin is automatically made an output.

Example
The following example will blink an LED connected to the specified I/O pin.

Low B0 ;set initial pin state

Main
Toggle B0 ;switch pin state
Pause 200

Goto Main

The above program will toggle B0 each loop. The first run will toggle the pin
from low to high. The second time through the loop will then toggle the pin
from high to low.

Schematic

195

While...Wend
While expression is true do the following

Expression is any combination of variables, constants, math
and logic operators

Explanation
Repeat a group of commands while some expression is true. True being any
other value than 0. Each time the group of commands are executed the WEND
checks to see if the expression is still true.

Example
In the following example, the instructions between the WHILE...WEND com-
mands will execute until the variable Temp is less than 20. With each run
through the loop WEND will check the status of Temp.

Temp var Byte
Check var PortB.bit0

Clear

While temp < 20 ; repeat the following commands.
if check = 1 then JumpOut
Temp = Temp +1

Wend ; repeating until temp is greater than 20

JumpOut
End

The next program demonstrates the While Wend command by blinking an
LED attached to pin B2 of the PICmicro. The LED will blink a total of 100
times with a 500ms pause between each blink.

output B2 'Place an led on pin 2

counter var byte
counter = 0

while counter < 100
Toggle B2 'Change the state of pin B2
counter = counter +1
pause 500

wend

196

Write
WRITE address,byte
Write a byte of data to the EEPROM.

Address is a variable or constant specifying the EEPROM
address to write to.

Byte is a data byte to be written into EEPROM.

E x p l a n a t i o nE x p l a n a t i o nE x p l a n a t i o nE x p l a n a t i o nE x p l a n a t i o n
EEPROM differs from RAM, the memory in which variables are stored, in
several respects:

1- Writing to EEPROM takes more time than storing a value in a
 variable.

2- The EEPROM can accept a finite number of write cycles per
byte before it wears out, which is usually around 10 million
write cycles and an unlimited number of Reads. If a program
frequently writes to the same EEPROM location, it makes
sense to estimate how long it might take to exceed 10 million
writes. For example, at one write per second (86,400 writes/
day) it would take nearly 116 days of continuous operation to
exceed 10 million.

WRITE is used to set values of on-chip EEPROM during run time. To set
values during programming use the DATA commands.

Each write will take about 10ms to execute. Keep this in mind when using
the WRITE command.

WRITE 6,F ;Sends the byte F to location 6 on the EEPROM

E x a m p l eE x a m p l eE x a m p l eE x a m p l eE x a m p l e
The below program writes the ASCII value of H to address 0 of the internal
EEPROM on the PICmicro, then reads address 0 and if the value equals H
turns on a LED connected to B4.

DOG var byte
write 0,”H” ;writes the ASCII value of H to address 0
read 0,dog ;reads address 0 stores the value in ledon
if dog = “H” then ledon

;if ledon = the ASCII value H
;turn the LED on

stop
ledon: High B4 ;turns the LED on connected to B4
end

197

The following program will demonstrates the Data, Read, and Write com-
mands

'Day 1-4
Data @0, 12,26,3,32

'Day 5-8
Data @4,22,12,31,45

'Define some variable to use for loading the eeprom data
day1 var byte
day2 var byte
day3 var byte
day4 var byte
day5 var byte
day6 var byte
day7 var byte
day8 var byte

clear 'Make sure we clear the variables

'---
' Step 1
' Lets load the eeprom data
'---

read 0,day1
read 1,day2
read 2,day3
read 3,day4
read 4,day5
read 5,day6
read 6,day7
read 7,day8

'Display the default data
debug ["Day1 default=",dec day1,10,13]
debug ["Day2 default=",dec day2,10,13]
debug ["Day3 default=",dec day3,10,13]
debug ["Day4 default=",dec day4,10,13]
debug ["Day5 default=",dec day5,10,13]
debug ["Day6 default=",dec day6,10,13]
debug ["Day7 default=",dec day7,10,13]
debug ["Day8 default=",dec day8,10,13]
debug [10,13]

198

'--
' Step 2
' Ok now lets overwrite day3 and day8 defaults.
' Remember the address is 0 based
'--

write 2,day3+1 'Add one
write 7,day8+2 'Add two

'--
' Step 3
' Lets load the eeprom data again
'--

read 0,day1
read 1,day2
read 2,day3
read 3,day4
read 4,day5
read 5,day6
read 6,day7
read 7,day8

'And display it one more time
debug ["Day1 default=",dec day1,10,13]
debug ["Day2 default=",dec day2,10,13]
debug ["Day3 default=",dec day3,10,13]
debug ["Day4 default=",dec day4,10,13]
debug ["Day5 default=",dec day5,10,13]
debug ["Day6 default=",dec day6,10,13]
debug ["Day7 default=",dec day7,10,13]
debug ["Day8 default=",dec day8,10,13]

'--
' All done. Put the PICmicro to sleep. Note the values and
' restart the chip.

end

199

WriteDM
writedm address,[{mod}expression,...,{mod}expressionN]
Write EEPROM locations and store value in variable.

Address is a value pointing to a location in the eeprom from which
to start.

Mod is any appropriate input or output modifier

Var is any variable type

Expression is any legitimate math expression

Explanation
The WriteDM is similar to the Write command. The WriteDM statement is setup
for sequential writes at a starting address in the internal eeprom. These writes
will start at a specified address and will sequentially continue until the end of
the data or eeprom range is reached.

WriteDM 0,[“Hello world”]

The above example will begin writing at address 0 to the internal eeprom.
The string “Hello World” contains 11 bytes (Space included) since the
starting address is 0 the last written address will be 10.

Example
The following program illustrates the usefulness of the ReadDM and
WriteDM command. We begin with an Array to store our returned data.

string var byte(12)

main
writedm 0,[“Hello world”]
readdm 0,[str string\11]

mainlp
serout B0,i9600,[str string\11,13]

goto mainlp

The above program will write the entire string “Hello World” to the internal
eeprom. Since the string “Hello World” consist of 11 bytes the first 11 bytes
of the eeprom will be written to. Then the ReadDM command is used to
read the 11 bytes back. By using the STR modifier we tell the ReadDM
command we want to read 11 bytes from the internal eeprom and store
them in our 12 byte variable array. Next we use the SEROUT command to
display the results to a terminal window.

200

Important Notes
There are only 256 internal eeprom locations on a 16F876. If the ReadDM
or WriteDM command begin in a valid location and continue outside of the
256 locations they will wrap around to the beginning location.

SEE ALSO

ReadDM
STR Modifier

201

WritePM
Writepm address,[{mod}var,...,{mod}varN]
Write Flash Program memory location. Requires 16F87x part.

Address is a value pointing to a location in the flash program memory
from which to start. Requires 16F87x part.

Mod is any appropriate input or output modifier

Var is any variable type

Explanation
The WritePM command is similar to the WriteDM command except it writes to
the internal program memory of a 16F87x PICmicro. The WritePM statement is
setup for sequential writes to the internal program memory. These writes will
start at a specified address.

writepm 0x400,["Hello world"]

The above example will beginwritting at address 400h to the internal
program memory.

Example
The following program will write “Hello World” using the WritePM command
starting at address 400h. Then the ReadPM command is used to read the
written values to program memory and print the result to the debug window.

We begin with an Array to store our returned data.

string var byte(12)
temp var byte

main
writepm 0x400,["Hello world"]
readpm 0x400,[str string\11]

mainlp
for temp = 0 to 11
Debug [string(temp)]
Next
Debug [13]

goto mainlp

The example program will write the entire string “Hello World” to the internal
program memory. Since the string “Hello World” consist of 11 characters, 11
bytes will be written to the internal program memory starting at location
400h. If you run the program once and read back the programmed hex file

202

from the PICmicro at location 400h will be the values for “Hello World”.

By using the STR modifier we tell the ReadPM command we want to read
11 bytes from the internal eeprom and store them in our 12 byte variable
array. Next we use the Debug command to display the results to the debug
window.

Important Notes
The READPM and WRITEPM commands will only work with 16F87x
parts. You can not write or read actual program space used for the running
program. You can write and read from address locations that do not contain
program data. If the ReadPM command is used to read locations of actual
running program space, erratic results will occur.

SEE ALSO

WRITEPM
STR Modifier

203

Xin
XIN DataPin\ZeroPin,House,{TimeoutLabel,TimeoutCount,}[{Modifier}Var]
Receive X-10 data and store keycode in a variable.

DataPin is a variable/constant that specifies the I/O pin to use. This
pin will be set to an input. The DataPin should be pulled high with a
4.7K resistor.

ZeroPin is a variable/constant that specifies the I/O pin to use. This
pin will be set to an input. The ZeroPin should be pulled high with a
4.7K resistor. The ZeroPin is used to detect the zero crossing
timings from the X-10 device.

House is a variable/constant used to filter out data with multiple
house settings. House is a comparison value to match if the incom
ing data matches a particular house code other wise the XIN
command will continue waiting. The constant labels for each house
code are as follows:

X_A X_I
X_B X_J
X_C X_K
X_D X_L
X_E X_M
X_F X_N
X_G X_O
X_H X_P

TimeoutLabel is an optional label used to specify a place to jump to
if a time out occurs.

TimeoutCount is an optional value used in conjunction with the
TimeoutLabel to specify the amount of time that occurs before
jumping to the TimeoutLabel. Timeouts are based on commands
from the X-10 module. The value placed for TimeoutCount will wait
N amount of commands received from the X-10 module before a
time out will occur.

Var is a variable/constant used to store the results (KeyCode) of the
XIN statement. The incoming data is the keycode which is 5 bits so
a byte size variable is needed.

Explanation
XIN allows you receive signals sent through household AC wiring to X-10
modules. XIN requires the use of a special module (TW523) that interfaces
to the AC wiring. Other interface modules are available but the TW523 has
an input and output connection that allows you to receive and send X-10
data.

204

The X-10 format is made up of digital codes imposed on a 120 kHz carrier
that is transmitted during zero crossings of the AC line. Receiving X-10
commands require the controller to be synchronize to the AC line. To connect
to the X-10 interface a four-conductor phone cable is required.

Example

XIN B0\B1, X_A, XError, 100, [Temp]

The above code will wait approximately 100 command cycles to find the
data corresponding to house code A until it will exit and jump to the label
XError. TimoutLabel and TimeoutCount are optional.

XIN B0\B1, X_A, [Temp]

The above code will wait indefinitely for data corresponding to house code A.
Once the data is received it will be placed in the variable (Temp).

Temp Var Byte

Main
XIN B0\B1, X_A, [Temp]
DEBUG [BIN TEMP, 13]

Goto Main

The above code will continue to loop and receive all data for house code A and
display it to the debug window.

TW523
The TW523 module is available from many places on the internet. One
source is http://www.x10.com Once on the web site do a quick search for
TW523. The TW523 is used to remove much of the burden in decoding the
X10 data from the AC wiring. The pin outs for the TW523 module are shown
below:

Wire No Connection
1 Zero Crossing
2 Common
3 X-10 Receive data from TW523
4 X-10 Transmit to TW523

205

Schematic

Important Notes
If the data received is a unit number you can use these constant labels to
do a comparison:

Unit Constant
X_1 % 00110
X_2 % 00111
X_3 % 00100
X_4 % 00101
X_5 % 01000
X_6 % 01001
X_7 % 01010
X_8 % 01011
X_9 % 01110
X_10 % 01111
X_11 % 01100
X_12 % 01101
X_13 % 00000
X_14 % 00001
X_15 % 00010
X_16 % 00011

X 1 0 I s s u e sX 1 0 I s s u e sX 1 0 I s s u e sX 1 0 I s s u e sX 1 0 I s s u e s
Interface modules such as the TW523 and PL513 have limitations to how
well they may work in your area. During testing of the XIN and XOUT
commands we found the modules would not address some units in the
same building. This may be due to noise in the lines, or faulty electrical
wiring. The interface units did not work well with filtering power strips either.

When setting up your X10 units, test them close together. The transmitter
and receiver should be on the same plug if possible. This will save many

206

hair pulling hours. Once the units demonstrate they work, move the receiver
unit to its target location. If it does not work in another locations it is NOT
your circuit, provided the receiver worked under the previous mentioned test
conditions.

207

Xout
XOUT DataPin\ZeroPin, House, [{Unit}, {Modifiers} Keycode]
Transmit X-10 House code and Keycode.

DataPin is a variable/constant that specifies the I/O pin to use. This
pin will be set to an input. The DataPin should be pulled high with a
4.7K resistor.

ZeroPin is a variable/constant that specifies the I/O pin to use. This
pin will be set to an input. The ZeroPin should be pulled high with a
4.7K resistor. The ZeroPin is used to detect the zero crossing
timings from the X-10 device.

House is a variable/constant that corresponds to the House Code
set on the X-10 module A through P. The constant labels for each
house code are as follows:

X_A X_I
X_B X_J
X_C X_K
X_D X_L
X_E X_M
X_F X_N
X_G X_O
X_H X_P

Unit is an optional variable/constant that specifies the address of
the unit, 1 to 16. Unit codes are also considered KeyCodes.

Unit Constant
X_1 % 00110
X_2 % 00111
X_3 % 00100
X_4 % 00101
X_5 % 01000
X_6 % 01001
X_7 % 01010
X_8 % 01011
X_9 % 01110
X_10 % 01111
X_11 % 01100
X_12 % 01101
X_13 % 00000
X_14 % 00001
X_15 % 00010
X_16 % 00011

208

KeyCode is a variable/constant that specifies the unit code or function.
Multiple KeyCodes can be used in the XOUT command. Only certain
commands will work in combination such as DIM codes.

Unit Constant
X_Units_On % 10000
X_Lights_On % 11000
X_On % 10100
X_Off % 11100
X_Dim % 10010
X_Bright % 11010
X_Lights_Off % 10110
X_Hail % 10001
X_Status_On % 11011
X_Status_Off % 10111
X_Status_Request % 11111

Explanation
XOUT is used to control X-10 modules over AC house wiring. XOUT
requires the X-10 modules TW523 or PL513.

The XOUT command must first transmit the specified house code and unit
code in order to communicate to another X-10 device. The X-10 module with
the corresponding code will listen for its house code followed by a KeyCode
(ie. dim, on or off)

The X-10 format is made up of digital codes imposed on a 120 kHz carrier
that is transmitted during zero crossings of the AC line. Sending X-10
commands requires that the controller is synchronize to the AC line. The X-10
format requires a strict 50 ms timing to transmit an 11-bit code representing
the command. XOUT is interfaced to the AC power-line through a device
such as a TW523 or PL513. To connect to the X-10 interface a four-
conductor phone cable is required.

Example
The following code example will blink two X-10 lamp units on and off. The units
are set to house code X_A and unit codes X_1, X_2 :

Dpin Con B2 ;Datapin is B2
Zpin Con B1 ;Zeropin is B1

Main
XOUT Dpin \ Zpin, X_A, [X_1, X_On, X_2, X_On] ;turn unit 1 & 2on
Pause 10000
XOUT Dpin \ Zpin, X_A, [X_1, X_Off, X_2, X_Off] ;turn unit 1 & 2on
Pause 10000

Goto Main ;repeat

209

The next code example will demonstrate the use of the modifier REP
(Repeat) to dim a module n times (Refer to command modifiers for more
information). To achieve a certain brightness level the dim command may
need to be sent more than once as shown below:

Dpin Con B2 ;Datapin is B2
Zpin Con B1 ;Zeropin is B1

Main
XOUT Dpin \ Zpin, X_A, [X_1, REP X_Dim \5]

;will send the dim command 5 consecutive times
End

Schematic

TW523
The TW523 module is available from many places on the internet. One
source is http://www.x10.com Once on the web site do a quick search for
TW523. The TW523 is used to remove much of the burden in decoding the
X10 data from the AC wiring. The pin outs for the TW523 module are shown
below:

Wire No Connection
1 Zero Crossing
2 Common
3 X-10 Receive data from TW523
4 X-10 Transmit to TW523

210

211

H
ardw

are Co
m

m
ands

H
ardw

are Co
m

m
ands

H
ardw

are Co
m

m
ands

H
ardw

are Co
m

m
ands

H
ardw

are Co
m

m
ands

Hardware Commands

212

Hardware Commands
PICmicros have many hardware features built in. This section explains all
the available commands and ways to use the built in hardware features.
Some of these commands are considered advanced and should only be
used once you have obtained a clear understanding of the MBasic.

I m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t eI m p o r t a n t N o t e
Not all PICmicros have the same built in hardware. The following com-
mands only work with PICmicros that have such hardware. To determine
wether the PICmicro you are using has such hardware refer to its data
sheet available from Microchip.com.

The 16F876 and 16F877 have all the built in hardware to use any one of
the following commands.

213

HSERIN..HSEROUT
SETHSERIAL mode
HSERIN {label,timeout,}[InputData]
HSEROUT [InputData]

Receive and Send Asynchronous RS-232 data.

label,Timeout(optional) is a label that will be jumped to if the hserin
buffer has no data available in the buffer and the timeout period has
expired. If a timeout is not defined the hserin command will wait
indefinitely while the uart receive buffer is empty.

InputData can be a list of variables and or modifiers that tell
HSERIN / HSEROUT what to do when sending or receiving data.
All the modifiers supported by SERIN and SEROUT are supported
by HSERIN and HSEROUT.

Explanation
The 16F876 has a built-in UART. The UART buffer can store a maximum of
94 bytes, 47 bytes input and 47 bytes output. The HSERIN UART is hard
wired to pin C7 and HSEROUT is hard wired to C6. The 16F876’s UART
allows data to be received or sent while the 16F876 is executing another
part of your program. Once the UART is setup in software it will run
independently. The only consideration to this is the buffer size. If you receive
or transmit to much data without accessing it, the buffer will wrap around
and begin to overwrite the first location. All data sent or received is inverted.
There are no options to change this so a max232 circuit is required when
using the 16F876 hardware serial port.

There are several available PICmicros with hardware UARTs. The
HSERIN / HSEROUT commands will work with all of them. To determine
which PICmicros have UARTs download the respective data sheets.

Example
The 16F876 hardware serial port is straight forward and only requires a one
time setup command. Once this command is issued the 16F876s UART is
on and will receive data without any further user code.

sethserial H9600

temp var byte

main
hserin [temp]
hserout [temp]

goto main

214

The previous code snippet will simply transmit what ever was received con-
tinuously.

Another example would be to setup the UART and let it run then occasionally
check to see if a byte is received as shown below.

sethserial H9600

temp var byte
main

high b0
pause 200
low b0
pause 200
HSERIN 1000,main,[temp]
if temp = “A” then loop1

goto main

loop1
serout B1, i9600,[“Recevied the correct byte”]

goto main

The above program can receive a byte at any time regardless of the com-
mand that is being executed. Since the incoming data has been buffered. All
we need to do is to check this byte and some point.

SetHSerial
The sethserial command is used to setup and turn on the 16F876’s UART.
This command is only required to be set once in your program. The following
is a list of all the possible bit rates HSERIN / HSEROUT will transmit or
receive at:

Baud Modes High Speed Baud Modes

H1200 H24000 H250000
H2400 H26400 H312500
H4800 H28800 H625000
H7200 H31200 H1250000
H9600 H33600
H12000 H36000
H14400 H38400
H16800 H57600
H19200 H115200
H21600

215

HPWM
Hpwm CCPx, Period, Duty
Generate pulse-width modulation use internal hardware PWM.

CCPx is a variable or constant of 0 or 1 that specifies the PWM
hardware to use. The 16F876 has two PWM’s available. The first is
on pin C2 which is selected by setting a value of 1. The second is on
pin C1 and is selected by using a value of 0 for CCPx.

Period is a variable or constant from 0 to 16383 that specifies the
period of the pulse width in CLK cycles.

Duty is a variable or constant from 0 to 16383 that specifies the
duty cycle of the pulse width.

Explanation
The 16F876 has two built in Pulse Width Modulators. The actual hardware
PWM differs from the software PWM in that it can produce more accurate
pulse widths. The PWM hardware can be left running while your program
is performing other task. Both PWM’s can be ran at the same time. When
both are running they will both have the same period but different duties if
specified (The Period is the inverse of the frequency). The frequency is how
many times from high to low. The period is the total time of one high to low
transition. The duty is how long the pulse stays high.

Example
If PWM is used to generate an analog voltage. We can use this to control
the brightness of an LED. If you wanted about 50% brightness, we would
then need to set PWM to about 2.5 Volts. In order to achieve this we would
use the following:

PWM 0,16383, 8191
; 50% duty cycle PWM signal using pin 10 (module 0)

The above code snippet would give and output voltage of about 2.5 volts
using the shown schematic. Once the above command is ran in your pro-
gram, PWM will continue to output until the 16F876 is shut down or your
program stops the PWM hardware.

216

This next example demonstrates the Hpwm and Count commands. This
program can be used to give you a better understanding of what values to
use for HWPM. You will need to Make sure you tie pin C2 (Hpwm output)
to pin B0 (count input)

counter var long 'Used for the count command

hpwm 1,9920,4960 'Set up a 2KHz signal (approx) on pin 9
'hpwm 1,8,4 'Set up a 83KHz signal (approx)

Loop:
count B0,1000,counter

'Set up our counter on pin B0 for 1 second

'Display the results
serout B1,i9600,[dec counter," Hz",10,13]

goto loop

Schematic

Important Notes
The Duty is a maximum of 10 bits. If period is set to less than 1024 (10bits)
then duties accuracy will be reduced. An example would be if period is 256
duty's accuracy will be 8 bits.

If Period is set higher than 1024 then Period will actually be a multiple of 4
(i.e.: 1024,1028,1032 etc...)

If Period is set higher than 4096 then Period will actually be a multiple of 16
(i.e.: 4096,4102,4118 etc...)

217

SETPULLUPS
SETPULLUPS mode
Enables or disables internal 10k pullups on pins B0 to B7

Mode is PU_OFF to disable pullups or PU_ON to enable pullups

Explanation
Most PICmicros have internal weak pullup resistor. The internal pullups will
only apply to an input state on the pin. The pullups are tied to VDD.

218

219

O
n Reset Co

m
m

ands
O

n Reset Co
m

m
ands

O
n Reset Co

m
m

ands
O

n Reset Co
m

m
ands

O
n Reset Co

m
m

ands
On Reset Commands

220

On Reset Commands
Reset commands are commands that perform an action in your program
based on how the PICmicro was reset. On Reset commands are ideal in
situations where power is falling below minimum operating ranges. These
can be used for a proper shutdown if external circuitry is attached. The
PICmicro can also detect if a reset occurred by the ATN / RES pin.

ONPOR = Power on reset, jump to label
ONBOR = Brown out reset, jump to label
ONMOR = ATN / RES reset, jump to label

The syntax of the on reset commands are:

Command Label

Command being one of the three on reset commands.

Label being the label to jump to if the condition occurs.

There are three commands that allow your program to perform some action
based on resets of the PICmicro. There are three different resets with the
PICmicro. The first is the power on reset (ONPOR) which happens when
the PICmicro is first powered up or the power was removed and restored.
The second is brown out reset (ONBOR) this reset occurs when the VDD
level of the PICmicro falls below +4.1 volts this may vary depending on
operating conditions. The ONBOR is ideal for battery applications. The third
reset that can occur is ATN / RES reset (ONMOR) this reset condition
happens by resetting the PICmicro using the MCLR without interrupting
VDD.

Example
This example illustrates how to use the ON Reset command to do some-
thing in your program when a reset occurs:

'Demonstrates the onreset commands

Counter var word

ONPOR startup
ONBOR brownout
ONMOR reset

main:
counter=counter + 1

221

serout B5,i9600,[".. Program Running :",dec counter,10,13]
pause 1000

goto main

startup:
clear
;When program is powered up we need to reset all variables

serout B5,i9600,["Program started from powerdown",10,13]
goto main

reset:
serout B5,i9600,["Program started from reset",10,13]

goto main

brownout:
serout B5,i9600,["Program started after brownout",10,13]

goto main

The above program will run normally by executing the main loop. Once a
reset occurs and power is restored, the PICmicro will then determined the
reset condition and jump to the specified label.

222

223

Inte
rrupt Co

m
m

ands
Inte

rrupt Co
m

m
ands

Inte
rrupt Co

m
m

ands
Inte

rrupt Co
m

m
ands

Inte
rrupt Co

m
m

ands
Interrupt Commands

224

Interrupts
The PICmicro has several interrupt sources. These interrupts can occur from
internal or external sources. The interrupts are consider an advanced feature
of MBasic. This next section explains each command used for interrupts.

Enable {Interrupt Source}

Enable interrupt is used to turn on the interrupt system. If no interrupt is given
all interrupts setup using ONINTERRUPT are enabled. Enable interrupt can
be used to turn on specific interrupts. (Refer to Interrupt Sources)

Disable {Interrupt Source}

Disable interrupt can be used to turn off specific interrupts or all interrupts at
once. If no interrupt is given all interrupts are disabled. (Refer to Interrupt
Sources)

ONINTERRUPT interrupt source, label

OnInterrupt is an operator used to tell your program where to go if a speci-
fied interrupt occurs. Interrupt specifies what type of interrupt to act on. Label
is used to specify the place to jump to in a program if the interrupt occurs.
When an interrupt occurs the label jump is performed as a gosub. The
program will only return to its last known place by using the Resume
command. An example of the syntax would be as follows:

OnInterrupt ExtInt ProgInt
enable ExtInt
Main

Serout B2, i9600, [“Running”]
Goto Main

disable ;disable all interrupts from here down
ProgInt

Serout B2, i9600, [“Interrupt Occured”]
Resume

The above program would continuously send out “Running”. When an
interrupt occurred it would then jump to the label ProgInt. The program would
then execute the code. Once the Resume command was encountered it
would return to normal program operation and jump back to the next
command before the interrupt occurred, in this case Main. (The Resume
command works like the Return command in a Gosub routine.). Note that
the “disable” command is used in a position that never gets executed.
When using disable(or enable) without arguments you can place it on any
line(even lines that will not be executed) in order to disable(enable) inter-
rupts from that position down.

225

Interrupt Sources
EXTINT

External interrupt on B0. There are several option on how the interrupt can
be triggered with ExtInt which are list in the SetExtInt section.

RBINT
On change interrupt can occur on B4,B5,B6 or B7. This interrupt will trigger if
a pin state changes from low to high (or high to low).

TMR0INT
Tmr0Int interrupt occurs whenever Timer0 overflows (See SetTmr0 com-
mand)

ADINT
ADInt interrupt occurs when A/D conversion finishes. Used in conjunction
with the ADin command.

RCINT
RCInt interrupt occurs when a byte is received by the Hardware USART
(this interrupt is disabled if using HSERIN/HSEROUT).

TXINT
TXInt interrupt occurs when a byte finishes transmitting from the Hardware
USART (this interrupt is disabled if using HSERIN/HSEROUT).

SSPINT
(See Synchronous Serial port(coming soon))

CCP1INT
CCPInt interrupt occurs on Capture/Compare/Period match

CCP2INT
CCP2Int interrupt occurs on Capture/Compare/Period match

TMR1INT
Tmr1int interrupt occurs whenever Timer1 overflows (See SetTmr1 com-
mand)

TMR2INT
Tmr2Int interrupt occurs whenever Timer2 overflows(See SetTmr2 command)

EEINT
EEInt interrupt occurs when a byte is finished writing to the on board
EEprom.

BCLINT
(See Synchronous Serial port (coming soon))

226

Set Interrupt Source
Several of the interrupt commands have multiple sources that will trigger the
interrupt. This next section explains how to set these different interrupt
sources.

SETEXTINT
SetExtInt mode

SetExtInt sets the external interrupt pin to input and sets the state
that will cause an interrupt (EXTINT must be enabled)

Mode is the setting that will trigger the actual interrupt. There are
two choices available:

EXT_H2L = Will activate when pin B0 is pulled low (from high)
EXT_L2H = Will activate when pin B0 is pulled high (from low)

SETTMR0
SETTMR0 mode

SETTMR0 sets Timer0 mode. Timer0 is an internal 8 bit timer
module built into the 16F876.

Mode is the setting that will trigger the actual interrupt. There
are several options available:

TMR0INT1 Internal timer with 1:1 timing
TMR0INT2 Internal timer with 1:2 timing
TMR0INT4 Internal timer with 1:4 timing
TMR0INT8 Internal timer with 1:8 timing
TMR0INT16 Internal timer with 1:16 timing
TMR0INT32 Internal timer with 1:32 timing
TMR0INT64 Internal timer with 1:64 timing
TMR0INT128 Internal timer with 1:128 timing
TMR0INT256 Internal timer with 1:256 timing
TMR0EXTL1 External counter(Low to High transition on AX3

pin)with 1:1 timing

TMR0EXTL2 External counter(Low to High transition on AX3
pin) with 1:2 timing

TMR0EXTL4 External counter(Low to High transition on AX3
pin) with 1:4 timing

TMR0EXTL8 External counter(Low to High transition on AX3
pin) with 1:8 timing

TMR0EXTL16 External counter(Low to High transition on AX3

227

pin) with 1:16 timing

TMR0EXTL32 External counter(Low to High transition on AX3
pin) with 1:32 timing

TMR0EXTL64 External counter(Low to High transition on AX3
pin) with 1:64 timing

TMR0EXTL128 External counter(Low to High transition on AX3
pin) with 1:128 timing

TMR0EXTL256 External counter(Low to High transition on AX3
pin) with 1:256 timing

TMR0EXTH1 External counter(High to Low transition on AX3
pin) with 1:1 timing

TMR0EXTH2 External counter(High to Low transition on AX3
pin) with 1:2 timing

TMR0EXTH4 External counter(High to Low transition on AX3
pin) with 1:4 timing

TMR0EXTH8 External counter(High to Low transition on AX3
pin) with 1:8 timing

TMR0EXTH16 External counter(High to Low transition on AX3
pin) with 1:16 timing

TMR0EXTH32 External counter(High to Low transition on AX3
pin) with 1:32 timing

TMR0EXTH64 External counter(High to Low transition on AX3
pin) with 1:64 timing

TMR0EXTH128 External counter(High to Low transition on AX3
pin) with 1:128 timing

TMR0EXTH256 External counter(High to Low transition on AX3
pin) with 1:256 timing

SETTMR1
SETTMR1 mode

SetTmr1 sets Timer1 mode. Timer1 is an internal 16 bit timer
module built into the 16F876.

228

Mode is the setting that will trigger the actual interrupt. There
are several options available:

TMR1OFF Disables Timer1(saves power/default on
powerup)

TMR1INT1 Internal timer with 1:1 timings
TMR1INT2 Internal timer with 1:2 timings
TMR1INT4 Internal timer with 1:4 timings
TMR1INT8 Internal timer with 1:8 timings
TMR1EXT1 External osc with 1:1 timings
TMR1EXT2 External osc with 1:2 timings
TMR1EXT4 External osc with 1:4 timings
TMR1EXT8 External osc with 1:8 timings
TMR1ASYNC1 External Asynchronous counter with 1:1 timings
TMR1ASYNC2 External Asynchronous counter with 1:2 timings
TMR1ASYNC4 External Asynchronous counter with 1:4 timings
TMR1ASYNC8 External Asynchronous counter with 1:8 timings

Example
This program demonstrates TMR1 by counting using timer interrupt.

counter var word

clear 'Clear all variables

SETTMR1 TMR1INT1 ' Set timer1 mode
ONINTERRUPT TMR1INT,mytimer

'Where do we want to go on the timer interrupt
Enable TMR1INT 'Turn on the interrupt

'main loop just to display the data
main

debug ["counter=",dec counter,10,13]
pause 100

goto main

'This is where we go on and interrupt.
mytimer:

counter = counter +1
resume ' this is how we exit an interrupt

229

SETTMR2
SETTMR2 mode, period

SetTmr2 sets Timer2 mode and reset period. Timer2 is an internal 8
bit timer with an 8 bit period module built into the 16F876.

Mode is the setting that will trigger the actual interrupt. There
are several options available.

Period is a reset point. Period will cause the timer reset when timer
equals period. Period is a value of 0 to 255

Modes are:

TMR2OFF Disables Timer2 default on powerup
TMR2PRE1POST1 1:1 prescaler and 1:1 postscaler
TMR2PRE1POST2 1:1 prescaler and 1:2 postscaler
TMR2PRE1POST3 1:1 prescaler and 1:3 postscaler
TMR2PRE1POST4 1:1 prescaler and 1:4 postscaler
TMR2PRE1POST5 1:1 prescaler and 1:5 postscaler
TMR2PRE1POST6 1:1 prescaler and 1:6 postscaler
TMR2PRE1POST7 1:1 prescaler and 1:7 postscaler
TMR2PRE1POST8 1:1 prescaler and 1:8 postscaler
TMR2PRE1POST9 1:1 prescaler and 1:9 postscaler
TMR2PRE1POST10 1:1 prescaler and 1:10 postscaler
TMR2PRE1POST11 1:1 prescaler and 1:11 postscaler
TMR2PRE1POST12 1:1 prescaler and 1:12 postscaler
TMR2PRE1POST13 1:1 prescaler and 1:13 postscaler
TMR2PRE1POST14 1:1 prescaler and 1:14 postscaler
TMR2PRE1POST15 1:1 prescaler and 1:15 postscaler
TMR2PRE1POST16 1:1 prescaler and 1:16 postscaler
TMR2PRE4POST1 1:4 prescaler and 1:1 postscaler
TMR2PRE4POST2 1:4 prescaler and 1:2 postscaler
TMR2PRE4POST3 1:4 prescaler and 1:3 postscaler
TMR2PRE4POST4 1:4 prescaler and 1:4 postscaler
TMR2PRE4POST5 1:4 prescaler and 1:5 postscaler
TMR2PRE4POST6 1:4 prescaler and 1:6 postscaler
TMR2PRE4POST7 1:4 prescaler and 1:7 postscaler
TMR2PRE4POST8 1:4 prescaler and 1:8 postscaler
TMR2PRE4POST9 1:4 prescaler and 1:9 postscaler
TMR2PRE4POST10 1:4 prescaler and 1:10 postscaler
TMR2PRE4POST11 1:4 prescaler and 1:11 postscaler
TMR2PRE4POST12 1:4 prescaler and 1:12 postscaler
TMR2PRE4POST13 1:4 prescaler and 1:13 postscaler
TMR2PRE4POST14 1:4 prescaler and 1:14 postscaler
TMR2PRE4POST15 1:4 prescaler and 1:15 postscaler
TMR2PRE4POST16 1:4 prescaler and 1:16 postscaler
TMR2PRE16POST1 1:16 prescaler and 1:1 postscaler

230

TMR2PRE16POST2 1:16 prescaler and 1:2 postscaler
TMR2PRE16POST3 1:16 prescaler and 1:3 postscaler
TMR2PRE16POST4 1:16 prescaler and 1:4 postscaler
TMR2PRE16POST5 1:16 prescaler and 1:5 postscaler
TMR2PRE16POST6 1:16 prescaler and 1:6 postscaler
TMR2PRE16POST7 1:16 prescaler and 1:7 postscaler
TMR2PRE16POST8 1:16 prescaler and 1:8 postscaler
TMR2PRE16POST9 1:16 prescaler and 1:9 postscaler
TMR2PRE16POST10 1:16 prescaler and 1:10 postscaler
TMR2PRE16POST11 1:16 prescaler and 1:11 postscaler
TMR2PRE16POST12 1:16 prescaler and 1:12 postscaler
TMR2PRE16POST13 1:16 prescaler and 1:13 postscaler
TMR2PRE16POST14 1:16 prescaler and 1:14 postscaler
TMR2PRE16POST15 1:16 prescaler and 1:15 postscaler
TMR2PRE16POST16 1:16 prescaler and 1:16 postscaler

SETCAPTURE
SETCAPTURE ccppin,mode

Ccppin specifies which module to use 0 for CCP1 on pin C2 or 1 for
CCP2 on pin C1.

Mode is the setting that will trigger the actual interrupt. There
are several options available.

CAPTUREOFF Disables Capture default on powerup
CAPTURE1H2L Captures Timer1 value on High to Low transition
CAPTURE1L2H Captures Timer1 value on Low to High transition
CAPTURE4L2H Captures Timer1 value on 4th Low to High

transition

CAPTURE16L2H Captures Timer1 value on 16th Low to High
transition

GETCAPTURE
GETCAPTURE ccppin,var

Ccppin specifies which module to use 0 for CCP1 on pin C2 or 1 for
CCP2 on pin C1.

Var is a word sized variable that the results of the 16 bit capture
value will be returned to.

231

SETCOMPARE
SETCOMPARE ccppin,mode,compare valuCompare Value is the
value that the comparison must match before the mode's action will
occur.

Modes are:

COMPAREOFF Disables Compare default on powerup
COMPARESETHIGH Compare sets CCPx pin high on Timer1

comparison match

COMPARESETLOW Compare sets CCPx pin low on Timer1
comparison match

COMPAREINT Compare sets Interrupt(CCPxINT) and
clears Timer1 on Timer1 comparison
match

COMPARESPECIAL Compare runs Special(Reset
Timer1(CCP1) or Reset Timer1 and
Activate(if A/D is enabled) A/D
conversion(CCP2) on Timer1
comparison match

232

Example
The following code example demonstrates one way to use the interrupts to
generate a real time clock.

second var byte
minute var byte
hour var byte
tick var byte
ftick var long

second = 0
minute = 36
hour = 11
tick = 0
ftick = 0
tickcnt con float 1.0038677

oninterrupt tmr1int,clock

settmr1 tmr1int4

lcdwrite B4\B5,portb.nib0, [INITLCD1,INITLCD2,CLEAR,HOME,SCR]

enable tmr1int
main

goto main

Disable
clock

ftick = ftick fadd tickcnt
if (int ftick) > 19 then

ftick = ftick fsub float 19
second = second + 1
if second > 59 then

second = 0
minute = minute + 1
if minute > 59 then

minute = 0
hour = hour + 1
if hour > 23 then

hour = 0
endif

endif
endif
lcdwrite B4\B5,portb.nib0,[SCRRAM]
if hour < 10 then

lcdwrite B4\B5,portb.nib0,[" "]

233

endif
lcdwrite B4\B5,portb.nib0,[dec hour,":"]
if minute < 10 then

lcdwrite B4\B5,portb.nib0,["0"]
endif
lcdwrite B4\B5,portb.nib0,[dec minute,":"]
if second < 10 then

lcdwrite B4\B5,portb.nib0,["0"]
endif
lcdwrite B4\B5,portb.nib0,[dec second]

endif
resume

Example 2
The following code example demonstrates the correct way to enable and
disable interrupts. If interrupts are not disabled correctly, the interrupt routines
could get call again..and again...etc. This will cause the stack to overflow,
causing a reset.

w_cnt var word 'create variable
w_ctover var word 'create variable

w_cnt = 0 'initialize variable
w_ctover = 0 'initialize variable

ONINTERRUPT TMR1INT, mytimer1 'Where to go on interrupt
SETTMR1 TMR1INT8 '1:8 internal timer interrupt

ENABLE TMR1INT 'Turn On the Interrupt

Mainloop:
debug ["Count/OverFlow = ", dec w_cnt," / ",dec w_ctover , 13]

; show main counter

if w_cnt >= 65000 then
; check to see if count is near overflow

w_ctover = w_ctover + 1 ; increment count overflow
w_cnt = 0 ; Reset counter to zero

endif
goto mainloop

disable ; This will disable ALL interrupts from here down.

234

; This must always be used before interrupts.
; If you have other code below the interrupt routine you
; must re-enable interrupts.

mytimer1:
w_cnt = w_cnt + 1 ; increment counter at interrupt

RESUME ; return to location before interrupt

Important Note
No arguments are used in the example 2 program. Without arguments this
command becomes a compile time directive that disables interrupt process-
ing until another enable command is used. This is why it can be on a line
that the program will never actually access. The same is true for enable
without arguments.

235

BS2 Co
m

patibility
BS2 Compatibility

236

Differences
Mbasic is a near 99% BS2 compatible. There are however several small
difference which are due to some command additions and syntax changes to
Mbasic. The Mbasic instruction set is a super set, all BS2 commands are
implemented as they would be with PBasic. Included are several other useful
commands that make programming much simpler.

Program Storage
Mbasic does not use “Slots” to store programs. The PICmicro uses a flat
memory model. All program memory can be filled with one program. There is
no need for storing or swapping variables. Any program code in your BS2
program that deals with swapping to the next 2K program slot can be
removed. In several cases it may be easier to rewrite the program from
scratch since allot of program code on the BS2 is required to deal with the
bank swapping.

DATA and EEPROM
The BS2 allows nonvolatile data storage to space that has not been used for
program storage. When using a PICmicro only data will be read from and
written to the internal EEPROM.

Gosub...Return
The Gosub...Return commands are used for subroutines. The Basic Stamp is
limited to the amount of Gosubs it can use. There is no limit to the amount of
Gosub commands that can be used with Mbasic. The default stack size for
Mbasic is 20. To use more GOSUB commands in your program you will need
to increase the stack size. This can be done by adding the following line to
your program:

Stack = n

N being the stack size such as 20 or 30 and so on. Increasing the stack size
will increase the amount of system ram Mbasic will need. Thus reducing the
amount of user ram.

Converting Basic Stamp II Program
There are usually only minor revisions you must make to your BS2 program
although this may not always be the case. Some issues such as the DIRS
values being reversed with Mbasic will need to be addressed when porting
programs over. When converting your BS2 program any references to the
DEBUG command will need to be removed and replaced with Mbasic Debug
command format. Before attempting to convert a program from the BS2 make
sure to read the entire manual and become familiar with Mbasic syntax first.
Try some simple programs first, before porting any programs over.

237

DIRS
On the BS2 DIRS = %0000000000000000 sets all the pins to outputs and
DIRS = %1111111111111111 sets all the pins to inputs. Mbasic the DIRS is
reversed. On the PICmicro DIRS = %1111111111111111 would set all the pins
to outputs.

SERIN / SEROUT Timings
The BS2sx and BS2p have a bitrate that is calculated based on a .4us clock.
The BS2/2e and Mbasic have a bitrate calculated based on a 1us clock. This
means that bitrates calculated for the 2sx will not be correct for the 2/2e or
Mbasic. All values should be recalculated using the methods for the BS2 and
BS2e. There are several predefined labels for the bit rate such as i9600 and
n9600. These predefined handle all the calculations for you.

LCD Commands
The LCD commands between Mbasic and BS2p are completely different.
This is because the Mbasic LCD commands were written before the BS2p
was available. The Mbasic LCD command allows multiple LCD’s to be
connected to the PICmicro.

238

239

Tro
u

b
le

 Sh
o

o
tin

g
Tro

u
b

le
 Sh

o
o

tin
g

Tro
u

b
le

 Sh
o

o
tin

g
Tro

u
b

le
 Sh

o
o

tin
g

Tro
u

b
le

 Sh
o

o
tin

g
Trouble Shooting

240

My Program Won’t Run ?
Often problems occur when the correct syntax is used but the wrong configu-
ration values have been used. Make sure you have selected the correct
PICmicro, Mhz setting and config value. LVP should always be off. High
Speed Osc should be selected.

During the compiling process the compiler only checks for syntax errors and
improper command usage. The compiler has no way to check your actual
coding and determine if it will run or not. So check your code for any problems.
Sometimes it is a good idea to comment out areas of your program and run
little pieces of it. As each piece is checked, see if it works correctly, then move
onto the next piece. Keep doing this until you come across any part of your
code that does not work as expected.

You can also use the ICD to help debug your code. The ICD is actually the
best method when debugging code.

My Program Still Won’t Run ?
Other common problems that may cause your program not to run are parts in
backwards or not installed on the correct pins specified in your basic program.
Make sure to check all your connections and part orientation if your program
does not run.

Error trying to Program the PICmicro ?
If you receive an error when attempting to program the PICmicro go over the
following check list:

1. Does the ISP-PRO have power ?
2. Is the PICmicro orientation correct in the circuit ?
3. Is the serial cable a straight through used for programming ?
4. Is the computer your using capable of 115K Baud ?
5. If your not using a development board is your circuit correct ?

241

Reserved Words
Re

se
rve

d
 W

o
rd

s
Re

se
rve

d
 W

o
rd

s
Re

se
rve

d
 W

o
rd

s
Re

se
rve

d
 W

o
rd

s
Re

se
rve

d
 W

o
rd

s

242

Reserved Words
There are many reserved words which can not be used as labels, con-
stants or variables. All command names are reserved words. The table
below lists all the reserved types and words.

It is not a good idea to use one character for a variable, label or constant.
Using one character in the long run will make your code difficult to under-
stand. There is no difference in code size when using one character or two.
Numbers are not reserved words, but no variable, label or constant can
start with a number otherwise a compiler error will result since the compiler is
expecting an expression.

ACKDT
ACKEN
ACKSTAT
ADCON0
ADCON1
ADCS0
ADCS1
ADDCF
ADDDCF
ADDEN
ADDLW
ADDWF
ADFM
ADIN
ADON
ADRESH
ADRESL
AD_LNEG
AD_LON
AD_LPOS
AD_RNEG
AD_RON
AD_RPOS
ANDLW
ANDWF
AX0
AX1
AX2
AX3
B
BANKISEL
BANKSEL
BC
BCF
BDC
BF

BIT
BNC
BNDC
BNZ
BRGH
BSF
BTFSC
BTFSS
BUTTON
BYTE
BYTETABLE
BZ
C
CALL
CAPTURE16L2H",0x07);
CAPTURE1H2L",0x04);
CAPTURE1L2H",0x05);
CAPTURE4L2H",0x06);
CAPTUREOFF",0x00);
CBLOCK
CCP1CON
CCP1M0
CCP1M1
CCP1M2
CCP1M3
CCP1X
CCP1Y
CCP2CON
CCP2M0
CCP2M1
CCP2M2
CCP2M3
CCP2X
CCP2Y
CCPR1H
CCPR1L

243

CCPR2H
CCPR2L
CGRAM
CHS0
CHS1
CHS2
CKE
CKP
CLEAR
CLEAR
CLRC
CLRDC
CLRF
CLRW
CLRWDT
CLRZ
CODE
COMF
COMPAREINT",0x0A);
COMPAREOFF",0x00);
COMPARESETHIGH",0x08);
COMPARESETLOW",0x09);
COMPARESPECIAL",0x0B);
CONSTANT
COUNT
CREN
CSRC
CURLEFT
CURRIGHT
D
DA
DATA_ADDRESS
DB
DC
DE
DEBUG
DEBUGIN
DECCUR
DECF
DECFSZ
DECSCR
DIR0
DIR1
DIR10
DIR11
DIR12
DIR13
DIR14

DIR15
DIR16
DIR17
DIR18
DIR19
DIR2
DIR20
DIR21
DIR22
DIR23
DIR24
DIR25
DIR26
DIR27
DIR28
DIR29
DIR3
DIR30
DIR31
DIR4
DIR5
DIR6
DIR7
DIR8
DIR9
DIRA
DIRB
DIRC
DIRD
DIRE
DIRF
DIRH
DIRL
DIRM
DIRS
DISABLE
DO
DT
DTMFOUT
DTMFOUT2
DW
D_A
EEADR
EECON1
EECON2
EEDATA
ELSE
ELSEIF

244

ENABLE
END
ENDC
ENDIF
ENDM
EQU
ERROR
ERRORLEVEL
EXITM
EXPAND
EXTERN
EXT_H2L",0x00);
EXT_L2H",0x40);
FASTLSBPOST", 0x7);
FASTLSBPRE", 0x5);
FASTMSBPOST", 0x6);
FASTMSBPRE", 0x4);
FERR
FILL
FLOATTABLE
FOR
FREQOUT
GCEN
GETCAPTURE
GETWATCHDOG
GLOBAL
GO
GOSUB
GOTO
GOTO
GO_DONE
H115200
H1200
H12000
H1250000
H14400
H16800
H19200
H21600
H2400
H24000
H250000
H26400
H28800
H300
H31200
H312500

H33600
H36000
H38400
H4800
H57600
H600
H625000
H7200
H9600
HIGH
HOME
HPWM
HSERIN
HSEROUT
I115200
I1200
I12000
I14400
I16800
I19200
I21600
I2400
I24000
I26400
I28800
I2CIN
I2COUT
I2C_DATA
I2C_READ
I2C_START
I2C_STOP
I300
I31200
I33600
I36000
I38400
I4800
I57600
I600
I7200
I9600
IBF
IBOV
IDATA
IE115200
IE1200
IE12000

245

IE14400;
IE16800
IE19200
IE21600
IE2400
IE24000
IE26400
IE28800
IE300
IE31200
IE33600
IE36000
IE38400
IE4800
IE57600
IE600
IE7200
IE9600
IEMODE
IEO115200
IEO1200
IEO120000
IEO14400
IEO16800
IEO19200
IEO21600
IEO2400
IEO24000
IEO26400
IEO28800
IEO300
IEO31200
IEO33600
IEO36000
IEO38400
IEO4800
IEO57600
IEO600
IEO7200
IEO9600
IEOMODE
IF
IFDEF
IFNDEF
IMODE
IN0
IN1

IN10
IN11
IN12
IN13
IN14
IN15
IN16
IN17
IN18
IN19
IN2
IN20
IN21
IN22
IN23
IN24
IN25
IN26
IN27
IN28
IN29
IN3
IN30
IN31
IN4
IN5
IN6
IN7
IN8
IN9
INA
INB
INC
INCCUR
INCF
INCFSZ
INCSCR
IND
INE
INF
INH
INITLCD1
INITLCD2
INL
INM
INPUT
INS

246

INTEDG
IO115200
IO1200
IO12000
IO14400
IO16800
IO19200
IO21600
IO2400
IO24000
IO26400
IO28800
IO300
IO31200
IO33600
IO36000
IO38400
IO4800
IO57600
IO600
IO7200
IO9600
IOMODE
IORLW
IORWF
IRP
LCALL
LCDREAD
LCDWRITE
LGOTO
LIST
LOCAL
LONG
LONGTABLE
LOOKDOWN
LOOKUP
LOW
LSBFIRST", 0x1);
LSBPOST", 0x3);
LSBPRE", 0x1);
MACRO
MESSG
MOVF
MOVFW
MOVLW
MOVWF
MSBFIRST", 0x0);

MSBPOST", 0x2);
MSBPRE", 0x0);
N115200
N1200
N12000
N14400
N16800
N19200
N21600
N2400
N24000
N26400
N28800
N300
N31200
N33600
N36000
N38400
N4800
N57600
N600
N7200
N9600
NAP
NE115200
NE1200
NE12000
NE14400;
NE16800
NE19200
NE21600
NE2400
NE24000
NE26400
NE28800
NE300
NE31200
NE33600
NE36000
NE38400
NE4800
NE57600
NE600
NE7200
NE9600
NEGF
NEMODE

247

NEO115200
NEO1200
NEO120000
NEO14400
NEO16800
NEO19200
NEO21600
NEO2400
NEO24000
NEO26400
NEO28800
NEO300
NEO31200
NEO33600
NEO36000
NEO38400
NEO4800
NEO57600
NEO600
NEO7200
NEO9600
NEOMODE
NEXT
NIB
NMODE
NO115200
NO1200
NO12000
NO14400;
NO16800
NO19200
NO21600
NO2400
NO24000
NO26400
NO28800
NO300
NO31200
NO33600
NO36000
NO38400
NO4800
NO57600
NO600
NO7200
NO9600
NOEXPAND
NOLIST

NOMODE
NOP
NOT_A
NOT_ADDRESS
NOT_BO
NOT_BOR
NOT_DONE
NOT_PD
NOT_POR
NOT_RBPU
NOT_RC8
NOT_T1SYNC
NOT_TO
NOT_TX8
NOT_W
NOT_WRITE
OBF
OERR
OFF
ONBOR
ONELINE
ONELINE5X11
ONINTERRUPT
ONMOR
ONPOR
OPTION
OPTION_REG
ORG
OUT0
OUT1
OUT10
OUT11
OUT12
OUT13
OUT14
OUT15
OUT16
OUT17
OUT18
OUT19
OUT2
OUT20
OUT21
OUT22
OUT23
OUT24
OUT25

248

OUT26
OUT27
OUT28
OUT29
OUT3
OUT30
OUT31
OUT4
OUT5
OUT6
OUT7
OUT8
OUT9
OUTA
OUTB
OUTC
OUTD
OUTE
OUTF
OUTH
OUTL
OUTM
OUTPUT
OUTS
OWIN
OWOUT
P
P0
P1
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P2
P20
P21
P22
P23
P24
P25
P26

P27
P28
P29
P3
P30
P31
P4
P5
P6
P7
P8
P9
PAGE
PAGESEL
PAUSE
PAUSECLK
PAUSEUS
PCFG0
PCFG1
PCFG2
PCFG3
PCL
PCON
PEEK
PEN
POKE
PORTA
PORTB
PORTC
PORTD
PORTE
PR2
PROCESSOR
PS0
PS1
PS2
PSA
PSPMODE
PULSIN
PULSOUT
PU_OFF",0x80);
PU_ON",0x00);
PWM
R
RADIX
RC8_9
RC9

249

RCD8
RCEN
RCREG
RCSTA
RCTIME
RD
READ
READDM
READPM
READ_WRITE
REPEAT
RES
RESETTMR1
RESUME
RETFIE
RETLW
RETURN
RETURN
REVERSE
RLF
RP0
RP1
RRF
RSEN
RX9
RX9D
R_W
S
SBYTE
SCR
SCRBLK
SCRCUR
SCRCURBLK
SCRLEFT
SCRRAM
SCRRIGHT
SEN
SERDETECT
SERIN
SEROUT
SERVO
SET
SETC
SETCAPTURE
SETCOMPARE
SETDC
SETEXTINT

SETHSERIAL
SETPULLUPS
SETTMR0
SETTMR1
SETTMR2
SETZ
SHIFTIN
SHIFTOUT
SKPDC
SKPNC
SKPNDC
SKPNZ
SKPZ
SLEEP
SLEEP
SMP
SOUND
SOUND2
SPACE
SPBRG
SPEN
SPMOTOR
SREN
SSPADD
SSPBUF
SSPCON
SSPCON2
SSPEN
SSPM0
SSPM1
SSPM2
SSPM3
SSPOV
SSPSTAT
STATUS
STEP
STOP
SUBCF
SUBDCF
SUBLW
SUBTITLE
SUBWF
SWAP
SWAPF
SWORD
SYNC
S_IN

250

S_OUT
T0CS
T0SE
T1CKPS0
T1CKPS1
T1CON
T1INSYNC
T1OSCEN
T1SYNC
T2CKPS0
T2CKPS1
T2CON
THEN
TIMEWATCHDOG
TITLE
TMR0
TMR0EXTH1",0x38);
TMR0EXTH128",0x36);
TMR0EXTH16",0x33);
TMR0EXTH2",0x30);
TMR0EXTH256",0x37);
TMR0EXTH32",0x34);
TMR0EXTH4",0x31);
TMR0EXTH64",0x35);
TMR0EXTH8",0x32);
TMR0EXTL1",0x28);
TMR0EXTL128",0x26);
TMR0EXTL16",0x23);
TMR0EXTL2",0x20);
TMR0EXTL256",0x27);
TMR0EXTL32",0x24);
TMR0EXTL4",0x21);
TMR0EXTL64",0x25);
TMR0EXTL8",0x22);
TMR0INT1",0x08);
TMR0INT128",0x06);
TMR0INT16",0x03);
TMR0INT2",0x00);
TMR0INT256",0x07);
TMR0INT32",0x04);
TMR0INT4",0x01);
TMR0INT64",0x05);
TMR0INT8",0x02);
TMR1ASYNC1",0x0B);
TMR1ASYNC2",0x1B);
TMR1ASYNC4",0x2B);
TMR1ASYNC8",0x3B);

TMR1CS
TMR1EXT1",0x07);
TMR1EXT2",0x17);
TMR1EXT4",0x27);
TMR1EXT8",0x37);
TMR1H
TMR1INT1",0x01);
TMR1INT2",0x81);
TMR1INT4",0x21);
TMR1INT8",0x31);
TMR1L
TMR1OFF",0x00);
TMR1ON
TMR2
TMR2OFF",0x00);
TMR2ON
TMR2PRE16POST1",0x07);
TMR2PRE16POST10",0x97);
TMR2PRE16POST11",0xa7);
TMR2PRE16POST12",0xb7);
TMR2PRE16POST13",0xc7);
TMR2PRE16POST14",0xd7);
TMR2PRE16POST15",0xe7);
TMR2PRE16POST16",0xf7);
TMR2PRE16POST2",0x17);
TMR2PRE16POST3",0x27);
TMR2PRE16POST4",0x37);
TMR2PRE16POST5",0x47);
TMR2PRE16POST6",0x57);
TMR2PRE16POST7",0x67);
TMR2PRE16POST8",0x77);
TMR2PRE16POST9",0x87);
TMR2PRE1POST1",0x04);
TMR2PRE1POST10",0x94);
TMR2PRE1POST11",0xa4);
TMR2PRE1POST12",0xb4);
TMR2PRE1POST13",0xc4);
TMR2PRE1POST14",0xd4);
TMR2PRE1POST15",0xe4);
TMR2PRE1POST16",0xf4);
TMR2PRE1POST2",0x14);
TMR2PRE1POST3",0x24);
TMR2PRE1POST4",0x34);
TMR2PRE1POST5",0x44);
TMR2PRE1POST6",0x54);
TMR2PRE1POST7",0x64);
TMR2PRE1POST8",0x74);

251

TMR2PRE1POST9",0x84);
TMR2PRE4POST1",0x05);
TMR2PRE4POST10",0x95);
TMR2PRE4POST11",0xa5);
TMR2PRE4POST12",0xb5);
TMR2PRE4POST13",0xc5);
TMR2PRE4POST14",0xd5);
TMR2PRE4POST15",0xe5);
TMR2PRE4POST16",0xf5);
TMR2PRE4POST2",0x15);
TMR2PRE4POST3",0x25);
TMR2PRE4POST4",0x35);
TMR2PRE4POST5",0x45);
TMR2PRE4POST6",0x55);
TMR2PRE4POST7",0x65);
TMR2PRE4POST8",0x75);
TMR2PRE4POST9",0x85);
TOGGLE
TOUTPS0
TOUTPS1
TOUTPS2
TOUTPS3
TRIS
TRISA
TRISB
TRISC
TRISD
TRISE
TRISE0
TRISE1
TRISE2
TRMT
TSTF
TWOLINE
TX8_9
TX9
TX9D
TXD8
TXEN
TXREG
TXSTA
UA
UDATA
UDATA_ACS
UDATA_OVR
UDATA_SHR
UNTIL

UPPER
VARIABLE
WCOL
WDTPS1",0x08);
WDTPS128",0x0F);
WDTPS16",0x0C);
WDTPS2",0x09);
WDTPS32",0x0D);
WDTPS4",0x0A);
WDTPS64",0x0E);
WDTPS8",0x0B);
WEND
WHILE
WORD
WORDTABLE
WR
WREN
WRERR
WRITE
WRITEDM
WRITEPM
XIN
XORLW
XORWF
XOUT
X_1",0x0C);
X_10",0x1E);
X_11",0x06);
X_12",0x16);
X_13",0x00);
X_14",0x10);
X_15",0x08);
X_16",0x18);
X_2",0x1C);
X_3",0x04);
X_4",0x14);
X_5",0x02);
X_6",0x12);
X_7",0x0A);
X_8",0x1A);
X_9",0x0E);
X_A",0x6);
X_B",0xE);
X_Bright
X_C",0x2);
X_D",0xA);
X_Dim

252

X_E",0x1);
X_F",0x9);
X_G",0x5);
X_H",0xD);
X_Hail
X_I",0x7);
X_J",0xF);
X_K",0x3);
X_L",0xB);
X_Lights_Off
X_Lights_On
X_M",0x0);
X_N",0x8);
X_O",0x4);
X_Off
X_On
X_P",0xC);
X_Status_Off
X_Status_On
X_Status_Request
X_Units_On
Z

All math functions
Any name starting with a "_"
Any name starting with a number

253

Appendix - A
A

ppendix - A
A

ppendix - A
A

ppendix - A
A

ppendix - A
A

ppendix - A

254

Information Sources

PICmicro Data Sheets
Microchip Technology Inc.
http://www.microchip.com

MBasic Support
Basic Micro Inc.
http://www.basicmicro.com

255

Appendix - C
A

ppendix - C
A

ppendix - C
A

ppendix - C
A

ppendix - C
A

ppendix - C

256

ASCII Chart 0 To 255

Dec Hex Oct Bin Typed Char
0 0x0 00 00000000 ^@ NUL
1 0x1 01 00000001 ^A SOH
2 0x2 02 00000010 ^B STX
3 0x3 03 00000011 ^C ETX
4 0x4 04 00000100 ^D EOT
5 0x5 05 00000101 ^E ENQ
6 0x6 06 00000110 ^F ACK
7 0x7 07 00000111 ^G BEL
8 0x8 010 00001000 ^H BS
9 0x9 011 00001001 ^I HT
10 0xA 012 00001010 ^J LF
11 0xB 013 00001011 ^K VT
12 0xC 014 00001100 ^L FF
13 0xD 015 00001101 ^M CR
14 0xE 016 00001110 ^N SO
15 0xF 017 00001111 ^O SI
16 0x10 020 00010000 ^P DLE
17 0x11 021 00010001 ^Q DC1
18 0x12 022 00010010 ^R DC2
19 0x13 023 00010011 ^S DC3
20 0x14 024 00010100 ^T DC4
21 0x15 025 00010101 ^U NAK
22 0x16 026 00010110 ^V SYN
23 0x17 027 00010111 ^W ETB
24 0x18 030 00011000 ^X CAN
25 0x19 031 00011001 ^Y EM
26 0x1A 032 00011010 ^Z SUB
27 0x1B 033 00011011 ^[ESC
28 0x1C 034 00011100 ^\ FS
29 0x1D 035 00011101 ^] GS
30 0x1E 036 00011110 ^^ RS
31 0x1F 037 00011111 ^_ US
32 0x20 040 00100000 Space SPC
33 0x21 041 00100001 ! !
34 0x22 042 00100010 " "
35 0x23 043 00100011 # #
36 0x24 044 00100100 $ $
37 0x25 045 00100101 % %
38 0x26 046 00100110 & &
39 0x27 047 00100111 ' '
40 0x28 050 00101000 ((
41 0x29 051 00101001))
42 0x2A 052 00101010 * *
43 0x2B 053 00101011 + +
44 0x2C 054 00101100 , ,

257

Dec Hex Oct Bin Typed Char
45 0x2D 055 00101101 - -
46 0x2E 056 00101110 . .
47 0x2F 057 00101111 / /
48 0x30 060 00110000 0 0
49 0x31 061 00110001 1 1
50 0x32 062 00110010 2 2
51 0x33 063 00110011 3 3
52 0x34 064 00110100 4 4
53 0x35 065 00110101 5 5
54 0x36 066 00110110 6 6
55 0x37 067 00110111 7 7
56 0x38 070 00111000 8 8
57 0x39 071 00111001 9 9
58 0x3A 072 00111010 : :
59 0x3B 073 00111011 ; ;
60 0x3C 074 00111100 < <
61 0x3D 075 00111101 = =
62 0x3E 076 00111110 > >
63 0x3F 077 00111111 ? ?
64 0x40 0100 01000000 @ @
65 0x41 0101 01000001 A A
66 0x42 0102 01000010 B B
67 0x43 0103 01000011 C C
68 0x44 0104 01000100 D D
69 0x45 0105 01000101 E E
70 0x46 0106 01000110 F F
71 0x47 0107 01000111 G G
72 0x48 0110 01001000 H H
73 0x49 0111 01001001 I I
74 0x4A 0112 01001010 J J
75 0x4B 0113 01001011 K K
76 0x4C 0114 01001100 L L
77 0x4D 0115 01001101 M M
78 0x4E 0116 01001110 N N
79 0x4F 0117 01001111 O O
80 0x50 0120 01010000 P P
81 0x51 0121 01010001 Q Q
82 0x52 0122 01010010 R R
83 0x53 0123 01010011 S S
84 0x54 0124 01010100 T T
85 0x55 0125 01010101 U U
86 0x56 0126 01010110 V V
87 0x57 0127 01010111 W W
88 0x58 0130 01011000 X X
89 0x59 0131 01011001 Y Y
90 0x5A 0132 01011010 Z Z

258

Dec Hex Oct Bin Typed Char
91 0x5B 0133 01011011 [[
92 0x5C 0134 01011100 \ \
93 0x5D 0135 01011101]]
94 0x5E 0136 01011110 ^ ^
95 0x5F 0137 01011111 _ _
96 0x60 0140 01100000 ` `
97 0x61 0141 01100001 a a
98 0x62 0142 01100010 b b
99 0x63 0143 01100011 c c
100 0x64 0144 01100100 d d
101 0x65 0145 01100101 e e
102 0x66 0146 01100110 f f
103 0x67 0147 01100111 g g
104 0x68 0150 01101000 h h
105 0x69 0151 01101001 i i
106 0x6A 0152 01101010 j j
107 0x6B 0153 01101011 k k
108 0x6C 0154 01101100 l l
109 0x6D 0155 01101101 m m
110 0x6E 0156 01101110 n n
111 0x6F 0157 01101111 o o
112 0x70 0160 01110000 p p
113 0x71 0161 01110001 q q
114 0x72 0162 01110010 r r
115 0x73 0163 01110011 s s
116 0x74 0164 01110100 t t
117 0x75 0165 01110101 u u
118 0x76 0166 01110110 v v
119 0x77 0167 01110111 w w
120 0x78 0170 01111000 x x
121 0x79 0171 01111001 y y
122 0x7A 0172 01111010 z z
123 0x7B 0173 01111011 { {
124 0x7C 0174 01111100 | |
125 0x7D 0175 01111101 } }
126 0x7E 0176 01111110 ~ ~
127 0x7F 0177 01111111 Del Del
128 0x80 0200 10000000 M-^@ M-^@
129 0x81 0201 10000001 M-^A M-^A
130 0x82 0202 10000010 M-^B M-^B
131 0x83 0203 10000011 M-^C M-^C
132 0x84 0204 10000100 M-^D M-^D
133 0x85 0205 10000101 M-^E M-^E
134 0x86 0206 10000110 M-^F M-^F
135 0x87 0207 10000111 M-^G M-^G
136 0x88 0210 10001000 M-^H M-^H
137 0x89 0211 10001001 M-^I M-^I

259

Dec Hex Oct Bin Typed Char
138 0x8A 0212 10001010 M-^J M-^J
139 0x8B 0213 10001011 M-^K M-^K
140 0x8C 0214 10001100 M-^L M-^L
141 0x8D 0215 10001101 M-^M M-^M
142 0x8E 0216 10001110 M-^N M-^N
143 0x8F 0217 10001111 M-^O M-^O
144 0x90 0220 10010000 M-^P M-^P
145 0x91 0221 10010001 M-^Q M-^Q
146 0x92 0222 10010010 M-^R M-^R
147 0x93 0223 10010011 M-^S M-^S
148 0x94 0224 10010100 M-^T M-^T
149 0x95 0225 10010101 M-^U M-^U
150 0x96 0226 10010110 M-^V M-^V
151 0x97 0227 10010111 M-^W M-^W
152 0x98 0230 10011000 M-^X M-^X
153 0x99 0231 10011001 M-^Y M-^Y
154 0x9A 0232 10011010 M-^Z M-^Z
155 0x9B 0233 10011011 M-^[M-^[
156 0x9C 0234 10011100 M-^\ M-^\
157 0x9D 0235 10011101 M-^] M-^]
158 0x9E 0236 10011110 M-^^ M-^^
159 0x9F 0237 10011111 M-^_ M-^_
160 0xA0 0240 10100000 M- M-
161 0xA1 0241 10100001 M-! M-!
162 0xA2 0242 10100010 M-" M-"
163 0xA3 0243 10100011 M-# M-#
164 0xA4 0244 10100100 M-$ M-$
165 0xA5 0245 10100101 M-% M-%
166 0xA6 0246 10100110 M-& M-&
167 0xA7 0247 10100111 M-' M-'
168 0xA8 0250 10101000 M-(M-(
169 0xA9 0251 10101001 M-) M-)
170 0xAA 0252 10101010 M-* M-*
171 0xAB 0253 10101011 M-+ M-+
172 0xAC 0254 10101100 M-, M-,
173 0xAD 0255 10101101 M-- M--
174 0xAE 0256 10101110 M-. M-.
175 0xAF 0257 10101111 M-/ M-/
176 0xB0 0260 10110000 M-0 M-0
177 0xB1 0261 10110001 M-1 M-1
178 0xB2 0262 10110010 M-2 M-2
179 0xB3 0263 10110011 M-3 M-3
180 0xB4 0264 10110100 M-4 M-4
181 0xB5 0265 10110101 M-5 M-5
182 0xB6 0266 10110110 M-6 M-6
183 0xB7 0267 10110111 M-7 M-7
184 0xB8 0270 10111000 M-8 M-8

260

Dec Hex Oct Bin Typed Char
185 0xB9 0271 10111001 M-9 M-9
186 0xBA 0272 10111010 M-: M-:
187 0xBB 0273 10111011 M-; M-;
188 0xBC 0274 10111100 M-< M-<
189 0xBD 0275 10111101 M-= M-=
190 0xBE 0276 10111110 M-> M->
191 0xBF 0277 10111111 M-? M-?
192 0xC0 0300 11000000 M-@ M-@
193 0xC1 0301 11000001 M-A M-A
194 0xC2 0302 11000010 M-B M-B
195 0xC3 0303 11000011 M-C M-C
196 0xC4 0304 11000100 M-D M-D
197 0xC5 0305 11000101 M-E M-E
198 0xC6 0306 11000110 M-F M-F
199 0xC7 0307 11000111 M-G M-G
200 0xC8 0310 11001000 M-H M-H
201 0xC9 0311 11001001 M-I M-I
202 0xCA 0312 11001010 M-J M-J
203 0xCB 0313 11001011 M-K M-K
204 0xCC 0314 11001100 M-L M-L
205 0xCD 0315 11001101 M-M M-M
206 0xCE 0316 11001110 M-N M-N
207 0xCF 0317 11001111 M-O M-O
208 0xD0 0320 11010000 M-P M-P
209 0xD1 0321 11010001 M-Q M-Q
210 0xD2 0322 11010010 M-R M-R
211 0xD3 0323 11010011 M-S M-S
212 0xD4 0324 11010100 M-T M-T
213 0xD5 0325 11010101 M-U M-U
214 0xD6 0326 11010110 M-V M-V
215 0xD7 0327 11010111 M-W M-W
216 0xD8 0330 11011000 M-X M-X
217 0xD9 0331 11011001 M-Y M-Y
218 0xDA 0332 11011010 M-Z M-Z
219 0xDB 0333 11011011 M-[M-[
220 0xDC 0334 11011100 M-\ M-\
221 0xDD 0335 11011101 M-] M-]
222 0xDE 0336 11011110 M-^ M-^
223 0xDF 0337 11011111 M-_ M-_
224 0xE0 0340 11100000 M-` M-`
225 0xE1 0341 11100001 M-a M-a
226 0xE2 0342 11100010 M-b M-b
227 0xE3 0343 11100011 M-c M-c
228 0xE4 0344 11100100 M-d M-d
229 0xE5 0345 11100101 M-e M-e
230 0xE6 0346 11100110 M-f M-f
231 0xE7 0347 11100111 M-g M-g

261

Dec Hex Oct Bin Typed Char
232 0xE8 0350 11101000 M-h M-h
233 0xE9 0351 11101001 M-i M-i
234 0xEA 0352 11101010 M-j M-j
235 0xEB 0353 11101011 M-k M-k
236 0xEC 0354 11101100 M-l M-l
237 0xED 0355 11101101 M-m M-m
238 0xEE 0356 11101110 M-n M-n
239 0xEF 0357 11101111 M-o M-o
240 0xF0 0360 11110000 M-p M-p
241 0xF1 0361 11110001 M-q M-q
242 0xF2 0362 11110010 M-r M-r
243 0xF3 0363 11110011 M-s M-s
244 0xF4 0364 11110100 M-t M-t
245 0xF5 0365 11110101 M-u M-u
246 0xF6 0366 11110110 M-v M-v
247 0xF7 0367 11110111 M-w M-w
248 0xF8 0370 11111000 M-x M-x
249 0xF9 0371 11111001 M-y M-y
250 0xFA 0372 11111010 M-z M-z
251 0xFB 0373 11111011 M-{ M-{
252 0xFC 0374 11111100 M-| M-|
253 0xFD 0375 11111101 M-} M-}
254 0xFE 0376 11111110 M-~ M-~
255 0xFF 0377 11111111 M-^? M-^?

262

Index
Symbols

[Let] 127

A

Adding and Subtracting 70
Aliases 49
Arrays 48
ASCII 43
ASCII Chart 256
ASM 82
Auto Update 35

B

bin 53
Bits 42
Bitwise Operators 73
Branch 83
Brownout 25
BS2 Compatibility 235

Converting Basic Stamp II Program 236
DATA and EEPROM 236
Differences 236
DIRS 236
Gosub...Return 236
LCD Commands 237
Program Storage 236
SERIN / SEROUT Timings 237

Build Window 20
Built-in Hardware 42
Button 85
Bytes 42

C

Chip Specific Options 25
Data Protect 25
Low Voltage Prg 25
MCLR 25
Powerup Timer 25
Watch Dog Timer 25
Write Timer 25

263

Clear 88
Code Protect 25
Com 22
Command Modifiers 53
Comparison Operators 74
Compile 22
CON 56
Configuring the ATOM software 18
Connect 22
Constants 56
control characters 21
Count 89

D

Data 90
Debug 92
Debugin 94
dec 53
DIRH 58
DIRL 58
DIRS 58
Division 72
Do...While 96
DTMFout 97
DTMFout2 99

E

Echo 22
EEPROM 42, 90
Explorer Window 20

F

First Program 26
Floating Point Example Program 75
Floating Point Format 75
Floating Point Math 75
Flow Control 22
For...Next 102
Freqout 105

G

General Math Functions 73
GETCAPTURE 230
Getting Familiar with the ICD Controls 33
Gosub...Return 106
Goto 107

264

H

Hardware Commands 212
hex 53
Hexadecimal 101 43
High 108
HPWM 215
HSERIN 213
HSEROUT 213

I

I2Cin 109
I2Cout 112
ibin 53
IDE 19
If...Then...Elseif...Else...Endif 116
ihex 53
In Circuit Debugger - ICD 31
INH 58
INL 58, 60
Input 120
INS 58, 60
Integer Math in general 72
Interrupt Sources 225
Interrupts 224
isbin 53
ishex 53

L

Lcdread 121
Lcdwrite 123
Line Labels 47
Logical Operators 74
Longs 42
Lookdown 129
Lookup 131
Low 128
LSB 42

M

Mhz 25
MSB 42
Multiplication 70

N

Nap 133

265

Numerical Types 70

O

On Reset Commands 220
Optimizing 46
Oscillator 24

eXTernal 24
HighSpeed 24
LowPower 24
RC 24

OUTH 58
OUTL 58
Output 134
OUTS 58
OWIN 135

Rom Functions 137
OWOUT 138

P

Parity 22
Pause 34, 141
Pauseclk 142
Pauseus 143
PEEK...POKE 144
Pins 57
Program Document 20
Program Memory 42
Programming Practices 44
Pulsin 145
Pulsout 147
Pwm 148

R

RAM 42
Random 150
RCtime 151
Read 153
ReadDM 154, 156
ReadPM 156
real 53
rep 53
Repeat...Until 158
Reserved Words 241
Reset 34

266

S

sbin 53
sdec 53
Serdetect 161
SERIN

SERIN Modes 165
Serin Modifiers 168

Serin 164
Serout 170

SEROUT Modes 170
Serout Modifiers 174

Servo 176
Set Interrupt Source 226
SETCAPTURE 230
SETCOMPARE 231
SETEXTINT 226
SETPULLUPS 217
SETTMR0 226
shex 53
Shiftin 178
Shiftout 182
skip 53
Sleep 186
Software Installation 18
Sound 187
Sound2 189
SPI communications 184
Spmotor 190
Standard Tool Bar 20
Step 34, 35
Stop 192
str 53
Swap 193

T

Toggle 194
Trouble Shooting 38, 239

U

User Tool Bar 20, 22
Using the ICD 35

V

Variable Modifiers 49
Variables 47

267

W

wait 53
waitstr 53
What is an ICD 33
While...Wend 195
Words 42
Write 196
WriteDM 199
WritePM 201

X

Xin 203
X10 Issues 205

Xout 207
X10 Issues 205

© 1999-2003 Basic Micro.com ® All Rights Reserved No portion of this
work may be reproduced without prior written consent from
Basic Micro Inc.

	Contents
	Introduction
	What is MBasic ?
	This Manual
	On-line Discussion Forums
	Updates
	Technical Support
	Basic PICmicro Setup
	Which PICmicro should I use ?
	Basic PICmicro Schematic
	What Next ?
	Getting Started
	Software Installation
	Configuring MBasic
	What is an IDE ?
	Getting Familiar with the IDE
	Terminal Window Selection
	Control Characters
	User Tool Bar
	Config Setup Menu
	First Program
	Error Reporting
	Conclusion
	In Circuit Debugger
	ICD Setup
	USB To Serial Adapter
	What is an ICD ?
	Getting Familiar with the ICD Controls
	Using the ICD
	Exercise
	Debug Mode
	Variable Watch Window
	Trouble Shooting
	The Basic's
	Bits, Bytes, Words, Longs
	MSBs and LSBs
	RAM, EEPROM and Program Memory
	Built-in Hardware
	Hexadecimal 101
	ASCII
	Programming Practices
	Optimizing
	Line Labels
	Variables
	Arrays
	Tables
	Aliases
	Variable Modifiers
	Command Modifiers
	Constants
	Pins
	Pin Variables
	MBasic Specific's
	Stack
	Oscillator Settings
	Internal RC Calibration
	Memory
	Compiling
	Reserved Symbols
	Device Specific Issues
	MBasic and Assembly
	What is Assembly ?
	Mixing Assembly and MBasic
	In-line Assembly
	Assembly and Variables
	Math
	Numerical Types
	Adding and Subtracting
	Multiplication
	Division
	Integer Math in general
	General Math Functions
	Bitwise Operators
	Comparison Operators
	Logical Operators
	Floating Point Math
	Floating Point Format
	Floating Point Example Program
	Syntax
	ADin
	ASM {...}
	Branch
	Button
	Clear
	Count
	Data (EEPROM)
	Debug
	Debugin
	Do...While
	DTMFout
	DTMFout2
	End
	For...Next
	Freqout
	Gosub...Return
	Goto
	High
	I2Cin
	I2Cout
	If...Then...Elseif...Else...Endif
	Input
	Lcdread
	Lcdwrite
	Let
	Low
	Lookdown
	Lookup
	Nap
	Output
	OWIN
	OWOUT
	Pause
	Pauseclk
	Pauseus
	PEEK...POKE
	Pulsin
	Pulsout
	Pwm
	Random
	RCtime
	Read
	ReadDM
	ReadPM
	Repeat...Until
	Reverse
	Serdetect
	Serin
	Serout
	Servo
	Shiftin
	Shiftout
	Sleep
	Sound
	Sound2
	Spmotor
	Stop
	Swap
	Toggle
	While...Wend
	Write
	WriteDM
	WritePM
	Xin
	Xout
	
	Hardware Commands
	HSERIN..HSEROUT
	SetHSerial
	HPWM
	SETPULLUPS
	
	On Reset Commands
	Interrupt Commands
	Interrupts
	Interrupt Sources
	Set Interrupt Source
	SETEXTINT
	SETTMR0
	SETTMR1
	SETTMR2
	SETCAPTURE
	GETCAPTURE
	SETCOMPARE
	
	Differences
	Program Storage
	DATA and EEPROM
	Gosub...Return
	Converting Basic Stamp II Program
	DIRS
	SERIN / SEROUT Timings
	LCD Commands
	Trouble Shooting
	My Program Won't Run ?
	My Program Still Won't Run ?
	Error trying to Program the PICmicro ?
	Reserved Words
	Appendix - A
	Appendix - C
	Index

	Index
	Symbols
	[Let]

	A
	Adding and Subtracting
	Aliases
	Arrays
	ASCII
	ASCII Chart
	ASM
	Auto Update

	B
	bin
	Bits
	Bitwise Operators
	Branch
	Brownout
	BS2 Compatibility
	Converting Basic Stamp II Program
	DATA and EEPROM
	Differences
	DIRS
	Gosub...Return
	LCD Commands
	Program Storage
	SERIN / SEROUT Timings

	Build Window
	Built-in Hardware
	Button
	Bytes

	C
	Chip Specific Options
	Data Protect
	Low Voltage Prg
	MCLR
	Powerup Timer
	Watch Dog Timer
	Write Timer

	Clear
	Code Protect
	Com
	Command Modifiers
	Comparison Operators
	Compile
	CON
	Configuring the ATOM software
	Connect
	Constants
	control characters
	Count

	D
	Data
	Debug
	Debugin
	dec
	DIRH
	DIRL
	DIRS
	Division
	Do...While
	DTMFout
	DTMFout2

	E
	Echo
	EEPROM
	Explorer Window

	F
	First Program
	Floating Point Example Program
	Floating Point Format
	Floating Point Math
	Flow Control
	For...Next
	Freqout

	G
	General Math Functions
	GETCAPTURE
	Getting Familiar with the ICD Controls
	Gosub...Return
	Goto

	H
	Hardware Commands
	hex
	Hexadecimal 101
	High
	HPWM
	HSERIN
	HSEROUT

	I
	I2Cin
	I2Cout
	ibin
	IDE
	If...Then...Elseif...Else...Endif
	ihex
	In Circuit Debugger - ICD
	INH
	INL
	Input
	INS
	Integer Math in general
	Interrupt Sources
	Interrupts
	isbin
	ishex

	L
	Lcdread
	Lcdwrite
	Line Labels
	Logical Operators
	Longs
	Lookdown
	Lookup
	Low
	LSB

	M
	Mhz
	MSB
	Multiplication

	N
	Nap
	Numerical Types

	O
	On Reset Commands
	Optimizing
	Oscillator
	eXTernal
	HighSpeed
	LowPower
	RC

	OUTH
	OUTL
	Output
	OUTS
	OWIN
	Rom Functions

	OWOUT

	P
	Parity
	Pause
	Pauseclk
	Pauseus
	PEEK...POKE
	Pins
	Program Document
	Program Memory
	Programming Practices
	Pulsin
	Pulsout
	Pwm

	R
	RAM
	Random
	RCtime
	Read
	ReadDM
	ReadPM
	real
	rep
	Repeat...Until
	Reserved Words
	Reset

	S
	sbin
	sdec
	Serdetect
	SERIN
	SERIN Modes
	Serin Modifiers

	Serin
	Serout
	SEROUT Modes
	Serout Modifiers

	Servo
	Set Interrupt Source
	SETCAPTURE
	SETCOMPARE
	SETEXTINT
	SETPULLUPS
	SETTMR0
	shex
	Shiftin
	Shiftout
	skip
	Sleep
	Software Installation
	Sound
	Sound2
	SPI communications
	Spmotor
	Standard Tool Bar
	Step
	Stop
	str
	Swap

	T
	Toggle
	Trouble Shooting

	U
	User Tool Bar
	Using the ICD

	V
	Variable Modifiers
	Variables

	W
	wait
	waitstr
	What is an ICD
	While...Wend
	Words
	Write
	WriteDM
	WritePM

	X
	Xin
	X10 Issues

	Xout
	X10 Issues

