
* * * NOTICE * * *

* * * WARRANTY * * *

This software program(s) is warranted to perform as documented when used on
the specified hardware operating under the specified disk operating system as
shown on the accompanying documentation. If within 90 days of the date of pur-
chase the program is found to be defective due to a bug in the code, the pub-
lisher will, upon request, provide a patch to correct the bug or will update
the program diskette with a corrected copy within a reasonable time period
after return of the program diskette to the publisher. If within 90 days of
the date of purchase the documentation proves defective due to missing pages,
the publisher will provide substitutes for the missing pages upon request.

The publisher shall have no liability or responsibility to the purchaser or
any other person, company, or entity with respect to any liability, loss, or
damage caused or alleged to have been caused by this product, including but
not limited to any interruption of service, loss of business and anticipatory
profits, or consequential damages resulting from the operation or use of this
program.

 * * * ATTENTION * * *

This program package is copyrighted with all rights reserved. The distribution
and sale of this program is intended for the personal use of the original pur-
chaser only and for use only on the computer system noted herein. Furthermore,
copying, duplicating, selling, or otherwise distributing this product is
expressly forbidden. In accepting this product, the purchaser recognizes and
accepts this agreement. The purchaser is entitled to make as many working
copies of this disk as is needed for his or her personal use.

MISOSYS,Inc.
P.O. Box 239

Sterling, Virginia 22170-0239

703-450-4181

MC C-Language Compiler

Reference Manual
Copyright (C) 1985 by MISOSYS, Inc., All rights reserved

Reproduction in any manner, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without written permission, is prohibited.

Published by:

MISOSYS, Inc.
P. O. Box 239

Sterling, Virginia 22170-0239
703-450-4181

* * * A T T E N T I O N * * *

The MC compiler can be used to generate any software product, commercial or
otherwise, without payment of any royalties to MISOSYS, with the exception of
the following: when MC is used to generate another compiler product, no part
of the MC-supplied libraries may be included in the run-time support of the
generated compiler.

MC compiler:
Copyright 1985 R. N. Deglin, All rights reserved.

MC Libraries (LIBA/REL, CLIB/REL, MATH/REL, IN/REL):
Copyright 1985 R. N. Deglin and MISOSYS, Inc., All rights reserved.

MC is a trademark of MISOSYS, Inc.
LDOS is a trademark of Logical Systems, Inc.
TRS-80 and TRSDOS are trademarks of Tandy Corporation.
UNIX is a trademark of Bell Telephone Laboratories.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Introduction
Congratulations! You have purchased the finest C compiler package available
for your machine environment. MC will prove itself to be a valuable investment
of your software dollars. Thus, before diving into MC, we suggest that you
follow the guidance expressed in the following paragraphs.

Read the entire introduction to get an idea of what MC is all about. This will
provide an immeasurable insight into the C programming power available to you
with the MC compiler. It may also help you understand the content of the re-
maining chapters.

MC requires the use of a macro-assembler that generates Microsoft compatible
relocatable object module files. An assembler is not included with the
compiler package. You may have purchased the MISOSYS "Relocating Macro
Assembler Advanced Development System" (MRAS) or Microsoft's M-80 assembler.

If you have neither, you will not be able to use the compiler package until
you obtain a copy of either MRAS or M-80. C source code is prepared using the
editor which is included with your assembler package.

Make backup copies of the MC distribution diskette to use as a working master.
The compiler package is released on a 40-track double density DOS data disk-
ette. This diskette contains all of the files associated with the compiler. We
suggest that you make one set of archival backups and store them away in a
secure area (safe from dust, dirt, magnetic fields, etc.). Then make a working
backup of the distribution diskette. The procedures for making backup copies
can be located in the UTILITY section of your DOS user manual under "BACKUP".
If you are going to use MC with MRAS, delete "MC/MAC" and "MCMACS/MAC" from
the working disk. Conversely, if you are going to use MC with M-80, delete
"MC/ASM" and "MCMACS/ASM" from the working disk.

If you are using MC on a two drive floppy system, you will have to create a
DOS system diskette with a maximum of free space. Using the DOS PURGE utility
on a fresh backup of DOS can create this “working system diskette”. You may
remove all files except SYS0-SYS4, SYS6, SYS8 (SYS8 can be removed from TRSDOS
6.x), SYS10-SYS12.

A 40-track double density minimal system diskette per the above has about 144K
free. Copy your assembler, linker, and editor from your assembler disk. Then
copy the MC/JCL file and the compiler command files from the working backup to
this system diskette. If there is still space left on your system disk, copy
some of the other files from the work disk. You will not be able to copy all
of the files; in fact, most will still be on the working disk. If your machine
has 128K and you are using a RAMdisk, you will find it beneficial to copy the
library /REL files to your RAMdisk. Once this is done, remove the files from
the working data disk that were copied to the system disk. This should leave
working space on the data diskette in your second drive for C source files and
the files generated during the programming session.

Notice that MC requires a two-drive system. In fact, you may find it prudent
to use MC on a three-drive system - or one using two-sided drives - or even a
hard disk environment. If you have gotten this far, continue to read this
chapter and discover everything that MC provides you.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

MC Provided Files
MC is a complete C compiler. It adheres to the "standards" expressed by Brian
Kernighan and Dennis Ritchie in their book, "The C Programming Language". MC
includes an extensive UNIX System V compatible function library. All you need
to generate executable CMD programs is a macro assembler that generates
Microsoft compatible relocatable object modules. There are many files on your
distribution diskette. In fact, in order to make room for all of the files,
the header files have been merged together into a single-source archive file.
The following C program (which may be on the disk, space permitting) will
separate the archive into the individual header files:

/* unarc.ccc - 11/29/85 */
char aline[81];
main()
{

while (gets(aline))
{

if(!strncmp(aline,"/*%",3) && gets(aline))
{

if (!freopen(strcat(aline,":3"),"w",stdout))
exit(-1);

else
{

fputs("\nGenerating: ",stderr);
fputs(aline,stderr);

}
}
else puts(aline);

}
}

Once you have established your working compilation and assembly system, the
unarc program should be typed into a file named "unarc/ccc". You may change
the ":3" which appears in the sixth line of unarc to specify which output
drive the header files should be written to. Then compile unarc with the DO
command: "DO MC (N=UNARC)". After the command program has been successfully
created, invoke unarc with the command:

UNARC <HEADERS.H

Here is a description of all of the files provided with the MC C compiler sys-
tem. The description for the files provides their uses:

ERRNO/H

This header file supplies the constants associated with the UNIX error num-
bers. It also defines the exception structure used in the high-level math
function error trapping.

FCNTL/H

This header file supplies the definition of the constants required for using
the open() or fcntl() functions.

HEADERS/H

This is the actual file where all of the header files are stored on the re-
lease diskette. The header files are separated into distinct files by the
"unarc/ccc" utility.

IN/REL

The installation function library is contained in this relocatable object mod-
ule library. These functions supply graphics plotting, BASIC type string ma-
nipulation, a DOS call facility, and other hardware specific features.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

LIBA/REL

 This relocatable object module library contains all of the low-level routines
needed to service mathematical operations and perform other maintenance func-
tions. None of these routines are directly available to the C programmer at
the function level. Any that are needed by your program are automatically
added to the resulting executable command file during the linking process.

LIBC/REL

This relocatable object module library contains the standard function library.
It is an implementation of the portable library available under most installa-
tions of C compilers. These functions allow programs to be written which will
be directly usable under other C language systems that have the standard
library available. The standard functions perform such tasks as character and
block file input/output, dynamic memory allocation, system control, formatted
input and output, and string handling. The standard library was designed to be
compatible with the standard library documented in AT&T's "System V Interface
Definition" for the UNIX operating system.

MATH/H

This header file defines the error constants used in low level math errors as
well as declares all of the math functions as externs with the proper type. It
also specifies the "#option MATHLIB" needed to direct an automatic search of
the MATH/REL library during the linking process.

MATH/REL

This relocatable object module library contains the high level floating point
function library. It includes the trigonometric library (sin, cos, tan, asin,
acos, atan, sinh, cosh, tanh), functions for logarithm and exponential, square
root and power, and other high level mathematical operations. Also included is
the support for exception error handling as well as floating point formatted
print and scan.

MC/ASM or MC/MAC

This file is the primary assembler source file assembled by MRAS or M-80. It
accesses your "main" program and establishes the necessary interfacing between
your program and the runtime modules needed to make a "complete" executable
CMD program.

MC/CMD

This is the root segment of the MC language compiler. MC accepts, as input, C
source code files, and outputs an assembly source file. In order to organize
files in a structured manner, MC source code files have a file extension of
"/CCC"; output assembler files have a file extension of "/ASM" or "/MAC" de-
pending on a compiler option.

MC/JCL

This is a Job Control Language DO file which is used to turn the multi-step
process of generating an executable program into a single command line invoca-
tion.

MC/OV1

This is the compiler overlay which performs the preprocessor phase of the com-
pilation process. It will generate an intermediate file which contains a
tokenized transformation of your C source file.

MC/OV2

This is the compiler overlay which reads the tokenized preprocessor output and
performs major parsing of the C source. The intermediate file is then deleted.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

MC/OV3

This is the compiler overlay that generates the assembler output file based on
the intermediate processing of MC/OV2.

MCMACS/ASM or MCMACS/MAC

This file contains the "#option" defaults and assembly language macros re-
ferred to by the compiler and used by the assembler. The assembler always
automatically accesses this file when assembling the MC/ASM or MC/MAC file.

README/TXT

This file contains last minute documentation not contained in the manuals. It
should be listed via the DOS's LIST command for reference.

SETJMP/H

This header file defines the environment buffer associated with the setjmp()
and longjmp() functions.

SGTTY/H

This header file defines the structure associated with the use of the ioctl(),
stty(), and gtty() functions.

STAT/H

This header file defines the structure and symbolic constants associated with
the fstat() function.

STDIO/H

The standard I/O header file supplies constants and definitions which are
needed to use the standard I/O library.

TIME/H

This header file defines the data structure associated with the asctime() and
localtime() functions.

Z80REGS/H

This header file defines an easy to use structure for passing data to or from
the machine's registers for use with the call() function.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

MC Environment
MC was designed to be compatible with C programs written and intended to run
under UNIX. Thus many features of UNIX were incorporated into the design.
These features include standard I/O devices, standard I/O redirection, device
independence, command line arguments, wild-card file specifications, dynamic
memory allocation, and a consistent system interface.

To make C a portable language, the interface within a program to the external
world is isolated in a standard library. A program written in C using only the
standard functions to perform input, output, and memory allocation can be
transported in source code form to another system, recompiled, and run with
minimal changes. The MC system includes a standard library that is compatible
with programs developed under UNIX System V. Thus, programs developed under
your DOS with MC will be compilable under UNIX as well. The reverse is also
true, except in cases where features not implemented in MC are used in the
program developed under UNIX.

The MC file system supports two methods of UNIX-type access. The first is con-
ceptually called buffered I/O and concerns itself with file streams. The iden-
tification of a file stream is via a FILE POINTER. Streams are accessed with
functions such as: fopen(), getc(), putc(), fprintf(), etc. The second type is
conceptually called unbuffered low-level I/O and is generally a direct access
to the DOS. We will term this type "block file" I/O. The identification of
block file I/O is via a FILE DESCRIPTOR and the I/O is accessed via functions
such as: lseek(), read(), write(), open(), etc. The DOS in this implementation
generally buffers either type.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Standard Input/Output
Any program generated by MC will normally have three files automatically
opened when the program begins execution. These files are standard input,
"stdin" (normally the console keyboard); standard output, "stdout" (normally
the console display); and standard error, "stderr" (normally the console dis-
play). The program can access these files without opening them by using stan-
dard library functions since the C standard library automatically opens these
standard files. They are also automatically closed when the program is exited
as well. Thus, the program which uses the standard I/O files exclusively can
deal with input and output and leave the opening and closing to the C standard
library.

File specifications usually have a filename field, an extension field, and a
drive field. They may also carry a password. Since some operating systems use
the slash "/" character to denote the beginning of the file extension while
others use a dot ".", the MC file system accepts either. In this way, your
programs may include file specifications such as

#include "stdio.h"

which makes your source more transparent to UNIX. If you wish, you may also
enter a file specification using the slash separator. This acceptance of the
dot is true everywhere a file specification can be entered throughout MC. The
limitation is that a file specification must contain an extension field if it
contains a password field. Thus, "YOURFILE.PASSWORD" is an invalid file speci-
fication whereas "YOURFILE.DAT.PASSWORD" is valid.

MC compiled programs can also make use of the wildcard file specification ex-
pander. The incorporation of the wildcard expander is specified at compile
time by a compiler #option. With this option installed, a filespec command
line entry can use the wildcard characters "*" to indicate an automatic match
of the remaining portion of the field and "?" to indicate an automatic match
for all characters in this character position.

Wildcards allow you to perform an operation on a group of "matched" files on a
single disk drive or on all disk drives. The wildcard expander searches a des-
ignated drive or drives and expands the command line argument list (argc,
argv) to include all file specifications that match your wildcard specifica-
tion. This facility is detailed under compiler options.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Standard I/O Redirection
The UNIX system characterizes three standard files: standard input, standard
output, and standard error output. The standard I/O files normally operate to
and from the user's console. Under your DOS, these are usually defined as the
"*KI" (keyboard) and "*DO" (video screen) devices. However, a facility is in-
herent within the MC standard library to permit you to redirect the standard
I/O devices - thus the term "I/O redirection". The user can give a device or
file specification that will be used in place of the normal specification when
a standard file is opened. This is done on the DOS command line when the user
invokes the program.

When the left angle bracket symbol, "<", appears on the command line, followed
by a file specification, that file specification is used when the standard in-
put file is opened. Similarly, the right angle bracket symbol, ">", causes
substitution of the standard output file specification, the ">>" causes stan-
dard output to be appended to the redirected file/device, and the number sign
symbol, "#", causes substitution of the standard error file specification.
Spaces are permitted between the redirection character and the file specifica-
tion.

It may not be immediately obvious how this feature can be used. Here is an ex-
ample C program that illustrates the straightforward use of standard I/O redi-
rection. The following program can be used to copy any file to any other file
(remember that "file" can be any device or DOS disk file).

/* CLONE - copy standard input to standard output */
#include stdio.h
int c;
main ()
{

while ((c = getchar()) != EOF)
putchar(c);

}

The example program simply copies the standard input to the standard output
until end of file is reached. Once this program is compiled, assembled, and
linked, it can be used to copy any file to any other. For example:

CLONE <CLONE/CCC

will display the file "clone/ccc" on the system console. The command:

CLONE >*PR

lets the user type to the system printer. If disk file copying is needed, the
command:

CLONE <INFILE/ASM:1 >OUTFILE/BAK:2

will copy the file "INFILE/ASM:1" to the file "OUTFILE/BAK:2". If the user
wishes to have a printed log of any error messages that a program puts out,
use something like :

MC TESTLIB #*PR

Any messages that MC outputs to the standard error file will be redirected to
the printer device in lieu of the console display.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Command Line Arguments
When a C program is invoked, the command line is parsed into a list of argu-
ments. A single argument is represented by a continuous string of nonwhite
space characters surrounded by white space. At a minimum, a command invocation
will have one argument - the program name itself. The list of arguments is
passed to the executing program through the "argc" and "argv" arguments of
main().

"Argc" is an integer that contains the number of arguments while "argv" is an
array of elements, each element of which is a pointer to a character string.
These arguments will usually be declared as:

main(argc,argv)
int argc; char *argv[];

providing your program with a method of recovering various data entered on the
command line by the invoker. Command line arguments to a C program may be en-
closed in single or double quotes. This allows the inclusion of special char-
acters and whitespace in an argument. The quotes are stripped before the
argument is passed to main(). To include a quote in an argument, precede it
with a backslash "\". To include a backslash, use a double backslash "\\".

For example, in a command line such as:

PROCESS INPUT/DAT:3 TEMPY/TXT:5 +O=:7 -L "+C=This is a message"

six arguments will be passed to main() and "argc" will be equal to 6. If
main() was the program:

main(argc,argv)
{

while (argc--)
puts(*++argv);

}

it would output the strings, "PROCESS", "INPUT/DAT:3", "TEMPY/TXT:5", "+O=:7",
"-L", and "+C=This is a message". Note that the latter argument is a text
string having imbedded blanks; this is permitted when the command line argu-
ment is enclosed within quotes. Any redirection specifications will be proc-
essed before the command line arguments and will not appear in the argument
list.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Standard Header Files
Standard header files are files that contain definitions peculiar to a system.
They usually take the form of "#define" statements and "extern" statements
within the header file. In order to use certain libraries, a corresponding
header file should be included (using the "#include" statement). The file
extension of "/H" is used for MC header files to be consistent across versions
of UNIX and other systems sporting C compilers.

A program to be compiled and linked with MC should usually have the file
"STDIO/H" included to compile properly. STDIO/H also defines various system
dependent parameters, such as end of file (EOF) and end of line (EOL). The
FILE POINTERS <stdout>, <stdin>, and <stderr> are addresses in the standard
library which do not need to be defined before use; however, the FILE DESCRIP-
TORS <STDIN>, <STDOUT>, and <STDERR> are defined in the header file.

MC includes many header files that are standard under UNIX. These files con-
tain symbolic definitions of constants used in various functions in the stan-
dard library. It is essential that you use the symbols defined in the header
files when noted in the documentation for the functions. Do NOT extract the
symbolic constant's value and use the number in your program. Numbers are not
necessarily portable across C installations; however, the symbolic NAMES are a
part of the AT&T definition and are portable! Thus, by using the symbolic
names defined in the appropriate header files, you will minimize any conflict
in portability, not to mention compatibility with future releases of this
compiler package. Any header file required by a function is documented with
the function needing it.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Function Libraries
Commonly used functions are collected into FUNCTION LIBRARIES. The functions
in a library can be used by the programmer without the need to rewrite, recom-
pile, or reassemble the functions needed. Once a C program has been compiled
and assembled, it can then be combined during the link phase with the func-
tions it requires. Only those functions necessary for the execution of the
program are linked to the compiled program.

Certain functions required by many programs are included in a special library
called the STANDARD LIBRARY. The standard library is the common denominator
among all C language installations. Programs written using functions in the
standard library are easily transported to any other computer supporting a C
language system with the standard library implemented. The most important as-
pect of the standard library is that it allows the details of each system's
peculiar operating environment to be hidden from the programmer's view. The
standard library provides the functions for input/output, memory allocation,
and character set manipulations.

What is typical in UNIX installations is to have the standard functions
"callable" from C in a library named "LIBC". In addition, a collection of sub-
routines used by the compiled C program to perform basic operations but not
directly callable from C is contained in a library named "LIBA". MC follows
these standards. MC also incorporates the high-level math functions into a
"MATH" library as is also found under UNIX systems.

Users can also create their own collections of often-used functions that can
be used in the same manner as the standard library. These USER LIBRARIES re-
duce the programming time, compilation time, assembly time, and program com-
plexity necessary in creating new programs. Functions, once defined, written,
and tested, can be added to the user library and need only be referred to by
name in later programs. The linking process brings the functions into subse-
quent programs without the need to recompile and reassemble.

Relocatable object module libraries are created and maintained using the MLIB
librarian. This facility is included with the MRAS assembler package or is
available separately for M-80 users. You can even build a user library with
the APPEND command in the DOS by using the (STRIP) parameter. More on library
building is included in Chapter 5, "Advanced Topics".

Special purpose libraries may also be created for use in particular types of
applications. For instance, the functions that are specific to the hardware
provided with your C package are in the special purpose library, IN/REL. This
is an example of how the C language avoids the trap of non-standard extensions
being included within the language.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Runtime Error Control
MC provides certain facilities for the detection and control of four types of
runtime errors. These errors may be classified as DOS I/O errors, C environ-
ment errors, low-level floating point errors, and high-level floating point
mathematical errors. This section will describe the function and purpose of
the control the programmer has over these errors; however, the mechanics of
implementing the control will be discussed in Chapter 5, "Advanced Topics".

To begin with, the standards of UNIX System V dictate a protocol for most
functions to return a value indicating that an error occurred. Chapter 4,
"Function Libraries", documents the error return conditions for each function
which supports an error return code. It is up to the programmer to provide ap-
propriate code to detect and act on that error return code.

The DOS I/O errors are characterized by problems in accessing files, reading
from files, or writing to files. When such an error is detected in the MC I/O
package, the DOS I/O error is stored in the File Control Area assigned to the
file stream, provided the file has been successfully opened. This error number
may be obtained through the ferror() function. Next, the error is passed to a
routine in the I/O package which will optionally display the runtime error.
The option() function provided in the standard library can be used to control
the behavior of this I/O error display - or suppress it entirely. Next, the
DOS I/O error will be translated to an appropriate UNIX error number and
stored in the global error variable, "errno". Finally, the error indication
will be reported back through the highest library function invoked to return
an indication of error to your program.

There are other types of errors which could be experienced. A memory alloca-
tion request could be unsatisfied because insufficient free memory was avail-
able. A request to obtain status on a file stream could be unsatisfied because
the request was associated with a "character special device" (i.e. *DO) rather
than a file. These types of errors have an appropriate UNIX error number as-
signed. Thus, any of these errors will store the designated UNIX error number
in the global error variable, "errno". The error indication will be reported
back through the highest library function invoked to return an indication of
error to your program.

On larger computers, floating point errors such as overflow and underflow are
usually trapped by hardware. When detected, they generate a hardware interrupt
so software routines can be notified to take whatever action is desired. Since
all of the floating point routines provided in MC are implemented in software,
your computer cannot generate a hardware interrupt when a floating point error
occurs. When MC does recognize a low-level floating point error, it stores an
error code in "errno", the global error variable. In addition, MC provides a
floating point vector, "_fltvec", which is called whenever such an error has
been detected. This vector can be altered by your program to point to your
function which takes whatever action you decide to implement. In its normal
state, "_fltvec" does nothing but return.

The fourth facility for trapping errors is provided by "matherr()". High-level
floating point errors are characterized by such things as trying to take the
square root of a negative number, trying to take the log of a negative or zero
number, or trying to take the Arc sine of a value which is not in the range
extending from minus one through plus one. UNIX System V documents a floating
point exception handler, called matherr(), which is called when such high-
level mathematical errors are encountered. An exception structure contains in-
formation pertinent to the detected error at the time that matherr() is in-
voked. The global error variable, "errno", is also loaded with the appropriate
error number. In addition, a uniform error message is optionally written to
standard error. Your program may provide its own matherr() function to handle
the detected error as you see fit. Illustrations of this facility appear in
the documentation of those functions that support this high-level floating
point exception handling.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

It should have been evident from the discussion that all error types make use
of the global error variable, "errno". This variable is a UNIX System V fea-
ture. All of the error numbers are represented by symbolic values and appear
in the "errno" header file. The "math" header file defines the exception
structure and the symbolic definitions of math errors. These header files
should be "#include'd" with your source program as appropriate in order to
make use of the symbolic definitions.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Closing Comments
C encourages the use of structured programming methods. Unless one uses the
"goto" statement heavily, C practically demands a structured approach to pro-
gram construction. This is not to say that writing programs in C will auto-
matically make you a good, structured programmer. This is a skill that is de-
veloped by learning and applying the basics.

Some understanding of structured design concepts is necessary in order to ef-
fectively use C. Probably the first frustrating thing that novice C program-
mers will encounter, especially if their experience is limited to BASIC and
assembly language, is the discouragement of the use of "goto". Kernighan and
Ritchie, in THE C PROGRAMMING LANGUAGE, state that the "goto" is never neces-
sary, and in practice it is almost always easy to write code without it. The
concept to understand is that the "goto's" are hidden within the program
statements. C provides, in a coherent, understandable form, the program con-
structs that you have been building out of "goto's".

Many texts are available that can be part of your library. The following list
is not to be considered all-inclusive but lists those texts (alphabetically)
that we have had at our disposal.

THE BIG RED BOOK OF C by Kevin Sullivan (published by Sigma Press)

THE C PRIMER by Les Hancock and Morris Krieger (published by BYTE Books).

C PRIMER PLUS by Michael Waite, Stephen Prata, and Donald Martin (published by
Howard W. Sams & Co., Inc.)

C PROGRAMMER'S LIBRARY by Dr. Jack Purdum, Timothy C. Leslie, and Alan L.
Stegemoller (published by Que Corp.).

C PROGRAMMING GUIDE by Dr. Jack Purdum (published by Que Corp.).

THE C PROGRAMMING LANGUAGE by Brian W. Kernighan and Dennis M. Ritchie
(published by Prentice-Hall). We will refer to this book throughout
this manual by the abbreviation, "K&R", for Kernighan and Ritchie.

THE C PUZZLE BOOK by Alan R. Feuer (published by Prentice-Hall).

INTRODUCTION TO C by Paul M. Chirlian (published by MATRIX)

LEARNING TO PROGRAM IN C by Thomas Plum (published by PLUM HALL).

SYSTEM V INTERFACE DEFINITION (published by AT&T)

THE UNIX PROGRAMMER'S MANUAL Volume I and Volume II by Bell Telephone
Laboratories, Inc. (published by Holt, Rinehart and Winston).

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Language Definition

Program Environment - Functions
The C language is, in a word, functional. The basic unit of program construc-
tion when using C is the function. Every C program is a collection of func-
tions. Each function is a collection of statements that work together to
achieve (hopefully) a useful, well-defined, purpose.

Each function can have information passed to it when it is invoked ("called").
The elements of information passed to the called function are denoted as argu-
ments. In C, arguments are copied onto the stack. The function can then access
and use the "local" (known only to the called function) arguments, leaving the
original copy of the arguments unchanged. Each argument is defined at the
start of the function. Functions also return values to the functions that call
them. In C this value can be an integer number, a long integer, a float, a
double, or a pointer. The value returned can be compared to, placed in a vari-
able, etc. Functions can appear in an arithmetic expression anywhere that a
constant can.

Here is an example of a function:

square(num)
int num;
{

return num * num;
}

The function, square(), returns the square of a number; in other words, the
argument, "num", is multiplied by itself and the result is returned. Arguments
are listed in parentheses after the name of the function, separated by commas.
These arguments must be passed by the calling function in the same order as
they appear in this list.

The BODY of the function is the group of executable statements that are within
the braces "{" and "}". Actually, the grouping of statements in between braces
denotes a special kind of statement called the COMPOUND statement. The
compound statement is fully explained in the section on C language statements.

Every C program has a special function called "main" which is always the entry
point to the program. When referencing a function within this narrative, we
will put "()" after the name to identify it as a function. This is close to
the way it looks in a C program. The function, main(), calls other functions,
which in turn call other functions, etc... Thus, each program is a hierarchi-
cal structure of functions, with main() at the top of the hierarchy.

The DOS command line which invokes the C program is passed to the function
main() using two parameters, "argc" and "argv". One C program can invoke an-
other program by using the system() function. When the called program fin-
ishes, a special function, exit(), is used to return a value to the calling
program. Programs can call other programs, passing any information using
"argc" and "argv" command line arguments as explained in Chapter 1,
"Introduction". In a way, each program appears as a function to other C pro-
grams and to the DOS.

Please scrutinize the illustration of functions in the following example:

main()
{

/* The "main" function ...
execution begins here!

*/
say_hello();
do_work();
say_goodbye();
exit(0); /* a normal exit, no error code */

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

}

/* sorry, we can't "goto" any of the functions below. */
say_hello()
{

puts("Hiya!!!");
}

say_goodbye()
{

puts("Bye y'all!!!");
}

do_work()
{

while (not_quitting_time)
{

attach(nut,bolt);
pass_on(widget);

}
}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Statements - Simple and Compound
To create a C function, you have to state the action to be taken using C lan-
guage STATEMENTS in the desired combination. Certain special statements are
built into the language to provide the necessary programming constructs
(sequence, iteration, and selection). You may be surprised, at first, by the
limited number of statements built into the C language. The authors of the
language wished to maintain the generality of the programming statements,
forcing any special features to be outside of the programming language itself.
Other languages often have extensions in the form of statements to provide
specialized features, leading to incompatible versions of the same language.
BASIC is a well-known example of a language extended in far too many different
ways. The C language avoids this situation by only providing those statements
necessary for structuring the program's logical flow and by placing all
special features into function LIBRARIES. Function libraries are nothing more
than collections of commonly used functions.

Simple C statements always end with a semicolon ";", the STATEMENT TERMINATOR.
The C compiler depends on the semicolon to tell when a simple statement ends.
Any number of simple statements may be entered, one after the other, to form a
SEQUENCE of statements that are executed one at a time, first to last.

The brace characters, "{" and "}", are used to enclose a sequence of state-
ments to form a COMPOUND statement. A compound statement can be used anywhere
a simple statement can be used. Thus, the body of a function (that portion en-
closed in braces) is just a special form of compound statement.

For example:

nl = 0;

is a simple statement. However, the statement:

{
h = h / 2; x0 = x0 + h / 2; y0 = y0 + h / 2;
x = x0 + i * 32; y = y0 + 10; u = x; v = y;
++i; p(1, i);

}

is a compound statement.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Data Representation - Constants
Numbers and characters must be entered in your C program in certain ways in
order for the compiler to understand them properly. A fixed value to be used
in a C expression is called a CONSTANT.

Where an integer number is required, you enter it just as you would write it.
A leading zero indicates that the constant is in a base other than decimal. A
leading zero followed by a string of digits indicates an OCTAL CONSTANT. A
leading zero followed by 'X' or 'x' indicates that a hexadecimal constant fol-
lows. Thus, the decimal number, 255, can be represented as 0377 or 0xFF, as
desired. A long integer constant should be terminated with the uppercase let-
ter "L" or the lowercase letter "l" as in 1234567L or 0x2a009105L; however, an
integer value greater than 65535 will be considered a long. Floating point
constants have the syntax of an optional sign, followed by a string of decimal
digits possibly containing a decimal point, an optional exponent field con-
taining an 'e' or 'E' followed by an optionally signed decimal integer.

If the variable to be assigned the constant is not big enough to contain the
constant, only the least significant bits (LSB) of the number are stored.
This, in effect, is storing the remainder of dividing the constant by 256,
65536 or 4,294,967,296 depending on the variable size. No warning is given
when this happens (except in the case of floating point overflow errors which
can be trapped by the program), so the programmer must be sure that the
variable can hold the number.

CHARACTER CONSTANTS supply a way to specify the code for a character that does
not depend on any particular character set. A character constant is a list of
characters within single quotes (apostrophes). For instance, the character
constant 'A' is stored in the computer as the number 65 (in decimal). Again,
it is up to the programmer to assure that the number of characters between
apostrophes can fit into the variable being assigned. If more characters are
specified than can fit, only the last one or two (as needed) are used.

When a sequence of characters is needed, a STRING can be specified by enclos-
ing the characters between quotes (sometimes called "double" quotes - i.e.
"This is a string"). C does not place all of these characters into a variable
but rather uses the ADDRESS of the first character of the string. Thus, when
the string, "testing, 1 2 3", is used in a C program, the characters between
quotes are stored in memory, and the address of the first 't' is used in the
expression where the string was specified. You can say that the number gener-
ated by C to represent the string really POINTS to the string. The subject of
POINTER variables, which are handy for manipulating strings, will be discussed
later.

There are certain control characters that are needed frequently in programs,
but which differ from machine to machine. These can be represented in C pro-
grams using ESCAPE SEQUENCES, to provide a machine-independent constant. The
backslash character, "\", is called the ESCAPE CHARACTER and denotes the be-
ginning of an escape sequence. A letter following the escape character indi-
cates which control code is being specified. Also, certain characters that
would otherwise be difficult to represent in strings and character constants
are generated by following the backslash with the character. These escape
sequences are shown in the following table:

Escape
Sequence

Control Code ASCII code used by C

\n,\N NEWLINE character x'0D' CR
\t,\T Horizontal tab x'09' HT
\b,\B Backspace x'08' BS
\r,\R Carriage return x'0D' CR
\f,\F Form feed x'0C' FF
\\ Backslash x'5C' backslash
\' Single quote x'27' apostrophe
\0 Null x'00' null byte
\" Double quote x'22' double quote

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

For example, the character 'A' can be represented as '\x41' using a
hexadecimal escape sequence, or as '\101' in an octal constant. Similarly, to
place a carriage return at the end of a line, the following three methods
could be used; however, the first is preferred:

"An example of a normal escape: \n"
"An example of a hexadecimal escape: \x0D"
"An example of an octal escape: \015"

When a character escape sequence is used within a string, the actual value of
the escape sequence is stored in a string (i.e., only one byte of data per
escape). Thus, the string:

"\n\x0d\015"

is only three bytes long in memory once the program is compiled and assembled.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Variable Names (Identifiers)
The names given to identify variables, functions, macros, and labels are
called "identifiers" and all follow the same rules as to their format. C iden-
tifiers may be of any length (be practical) and must start with an alphabetic
character ['A' through 'Z', 'a' through 'z'] or the underline ['_'], with the
rest of the characters in the name consisting of upper-case or lower-case al-
phabetic characters ['A' through 'Z', 'a' through 'z'], numeric characters [0
through 9], or the underline character ['_'].

MC keeps all the characters of your identifier as significant; however, if the
identifier is to be used as an extern, only the first seven (7) characters of
an "extern" identifier will be used by the assembler and linker, so these
first seven must be unique. Also, the assembler you use may limit the length
of symbol names.

C is case-sensitive, i.e., recognizes the difference between lower-case and
upper-case in identifiers. Thus, "EOF", "eof", and "Eof" are all different
identifiers to C. However, identifiers which must be written out in assembler
source code are converted to upper-case, since assemblers, in general, do not
allow lower case assembly language code. A good, simple rule to follow is to
use UPPER-case for macro constants only, and lower-case for all other identi-
fiers. Since macro identifiers are not written to the assembly output file,
they will not conflict with any other identifiers, which are the same, except
for case differences.

The C language reserves certain "words" which it uses as keywords. These key
words can not be used as identifiers. The list of reserved words is:

auto Break case char continue default
do Double else entry enum extern
float For goto if int long
register Return short sizeof static struct
switch Typedef union unsigned void while

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Data Declarations
C variables must always be declared before use. The standard procedure is to
declare variables at the beginning of the program (globals) and at the
beginning of each function (locals). Locals must be declared before any
executable statements. MC supports the following variable types and
adjectives:

char - an 8-bit unsigned character
int - a 16-bit signed integer
float - a 32-bit floating point
double - a 64-bit floating point
struct - the specifier of a structure
union - the specifier of a union
typedef - the operand of a typedef
short - usually applied to ints but ignored by MC
long - used to specify 32-bit integers
unsigned - applied to ints or long ints

Type char

Character variables are stored in eight bits, or a byte. MC always treats a
char as unsigned. The declaration:

char c, string[81];

establishes a character variable named "c" and a singly dimensioned character
array named "string" which can hold a string of maximum length equal to 80
characters. Arrays of one or more dimensions are allowed.

Type int [and short int]

Integer variables as well as short integer variables are stored in sixteen
bits. The short declaration is provided in the interest of portability. Make
no assumptions about the storage size of pointers. Although a pointer may be
stored in either 16 bits or 32 bits, a pointer is not an int! The declara-
tions:

int a;
short b;
short int b2;

are all acceptable declarations, and all result in the same size integer
field. This is acceptable, since the C language does not guarantee that a
"short" will be shorter than integers. Integers declared in this manner are
signed, i.e., their most significant bit is regarded as a sign bit. Their val-
ues can range from -32,768 to 32,767 (decimal). Unsigned fields do not have a
sign bit. They range from 0 to 65,535 (decimal) and are declared like this:

unsigned u;
unsigned int u2;

Type long int

Long integer variables are stored in thirty-two (32) bits. The declarations:

long int number;
long datasize;

are both acceptable declarations, and each result in a 32-bit integer field.
Long integers declared in this manner are signed, i.e., their most significant
bit is regarded as a sign bit. The values can range from -2,147,483,648 to
2,147,483,647 (decimal). Unsigned fields do not have a sign bit. They range
from 0 to 4,294,967,296 (decimal) and are declared like this:

unsigned long lu;

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

unsigned long int lu2;

Type float and type double

Float and double floating point variables are stored in thirty-two (32) and
sixty-four (64) bits respectively. The declarations:

float fvalue;
double dvar;

are acceptable declarations; the first results in a 32-bit floating point
field and the second results in a 64-bit double precision floating point
field. Floating point variables are always signed. Their value varies from ap-
proximately -1.7e+38 through +1.7e+38. Floats maintain about 6-7 digits of
precision while doubles maintain about 15-16 digits of precision. The only
direct operations which may be performed on float and double variables are
addition, subtraction, multiplication, division, comparison, logical not,
negation, increment, decrement, and address_of. All others are illegal.

It is important to note that per the specifications in K&R pertaining to argu-
ments of a function, "C converts all float actual parameters to double, so
formal parameters declared float have their declaration adjusted to read dou-
ble."

Type struct structure_tag

A structure is a method of collecting one or more variables into one grouping
using a single name. Where more than one variable is grouped together, they
may be of the same or of different types. The grouping is commonly conceptual-
ized as a "record". A structure template is declared with the syntax:

struct structure_tag {
type_1 member_1;
type_2 member_2;
type_n member_n;

};

The structure_tag is optional and is generally used when many structures will
be using that structure template.

The closing brace of the structure template may be followed by a variable or
list of variables, just like you can do for any of the types noted above
(char, int, long, float, double). When no variable follows the closing brace,
the structure template remains just a template and no space is reserved for
the members. When a variable list does follow the closing brace, adequate
storage for all of the structure's members is reserved for each element in
that variable list. For example, the following declaration is a structure tem-
plate, which has two members, one of which is an array:

struct keyword {
char *name;
int index[2];

};

The member "name" is declared as a pointer_to_char in this structure declara-
tion while the member "index" is an integer array of length two. Since this is
only a template, no storage is reserved.

The above structure template may be assigned to a structure by another struc-
ture declaration such as:

struct keyword primary;

which declares "primary" to be a type "struct keyword". Where a structure
definition is only needed in a single module, it may be declared directly
without the structure tag. For example:

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

struct {
int hours, minutes, seconds;

} clock;

declares a structure named "clock" which contains three ints.

Each element of the structure is termed a member. A member can only be ac-
cessed as part of the structure. For instance, in the "primary" structure de-
fined above, the syntax "primary.name" refers to the member, "name". Likewise,
the second element of the index array member is referenced by the syntax,
"primary.index[1]".

A variable may be typed as an array of structures (not to be confused with an
array member of a structure). Using the struct keyword template illustrated
above, we can declare an array of type struct keyword with:

struct keyword speech[10];

This declares "speech" to be an array of type struct keyword. The syntax for
referencing an element of the structure is to bind the structure subscript to
the name of the structure. For example, the "name" and "index[0] members of
the fifth structure of "speech" would be referenced with:

speech[4].name
speech[4].index[0]

A variable may be declared as a pointer_to_struct. Again following our exam-
ple, if "ps" is declared via "struct keyword *ps;", then the above members
would be referenced via the syntax:

(*ps).name
(*ps).index[1]

Since the structure dot operator has a higher precedence than the indirection
operator, the parentheses are needed. This somewhat kludgy syntax can be re-
placed with the structure indirection shorthand using the "->" operator. The
structure indirection operator is composed of a minus sign followed by a right
angle bracket. The above two references would now be written as:

ps->name
ps->index[1]

A pointer_to_structure can be passed as an argument to a function; a structure
cannot! Likewise, a function can return a pointer_to_structure but cannot
return a structure. Another limitation of structures is that a member of a
structure cannot be a structure of the same type (think about that); however,
it can be a pointer to its type. This does not restrict members from being
other structure types.

Type union union_tag

A union provides a technique for accessing elements of a record in different
ways at different times. A union is declared similarly to a structure. Also,
you can only access a member or take the address of a union. The members of a
union all have a zero offset from the union's origin. The actual amount of
memory space assigned is the space required by its largest member. The union
declaration is somewhat similar to the EQUIVALENCE statement of FORTRAN.

An interesting example of a union is found in the Z80REGS header file. In this
union named "REGS", two members are declared - each a structure. One member is
the structure named "wordregs" and the other is a structure named "byteregs".
The storage space for "byteregs" completely overlaps the storage for
"wordregs" thereby providing you with a convenient method of accessing the
low-order or high-order register of a 16-bit register pair. This example has a
union with two structure members. Alternatively, a union could be a member of
a structure.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Type void

The "void" type is used to declare a function that has no return value. It is
beneficial to type "void" such functions because an attempt to use the value
returned by a void function will be flagged as an error.

Arrays

Arrays of one or more dimensions are allowed for short, int, long, unsigned,
float, double, or pointer types, as well as for structures and unions. An ar-
ray is denoted by appending the dimension enclosed in square brackets to the
identifier. For example, arrays of one, two, and three dimensions could be
declared like this:

char buffer[81];
double grid[25][25];
char bit_plane[8][24][80];

The first defines a character buffer of 81 elements. The second defines a two-
dimension array of doubles having 625 elements. The third defines bit_plane to
be a three-dimensional character array - 8 planes of 24 rows by 80 columns.

Pointers

Pointers may be declared for any data type. Pointer variables are different
from the types described so far, in that they normally contain the ADDRESS of
a data item. For example,

char *cp;

declares a pointer_to_char variable named "cp". The asterisk denotes INDIREC-
TION, i.e. that the data item is referred to indirectly through the pointer
variable "cp". The address of the data item must be stored in the variable,
"cp", before it is used as a pointer to access a data item. To refer to the
data itself, an asterisk is placed before the name, e.g., *cp denotes the data
item. An example of practical use follows:

getit(cp)
char *cp;

{ int c;
while ((c=getchar()) != EOL && c != EOF)

*cp++ = c;
*cp=NULL;
return c;

}

The function, getit(), inputs characters continually from the standard input
until end-of-file or end-of-line characters are encountered. When getit() is
called, the pointer argument, cp, contains the address of a buffer area. One
by one the characters are placed in the buffer, (*cp++ = c), and the buffer
pointer is incremented by the post increment operator (++).

A simple peek() and poke() set of functions can easily be written using point-
ers. Witness the following two functions:

int peek(s) char *s;
{ return *s; }
void poke(s,c) char *s; int c;
{ *s = c; }

When the actual argument to a function is an array, the formal argument decla-
ration in the function may be made in two ways. It may be declared as a
pointer or an array without the size in the array declaration. For example,

funk(arg1,arg2)
int arg1; char arg2[];

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

declares a character array, "arg2", of an unknown number of elements. This
could also have been declared as:

funk(arg1,arg2)
int arg1; char *arg2;

to define arg2 as a pointer to a char. Pointers may be INDEXED to get to the
"nth" item in an array. Using the example above, arg2 would contain the ad-
dress of the beginning of an array of characters. "arg2[0]" denotes the first
element in the array, and "arg2[22]" denotes the 23rd element.

No matter how a pointer is declared, either method of using the pointer may be
employed as the programmer sees fit. Thus, "*arg2" and "arg2[0]" refer to the
same data item and may be used interchangeably in the same program. Using
"*arg2" is a little more efficient, however.

The array declaration without the number of elements within the brackets is
allowed only in external declarations and in argument declarations. Statics,
globals, and locals declared this way are illegal.

Pointers may point to other pointers. This bombshell of a statement is proba-
bly too much for you, after the last few paragraphs. It must be said, however.
C allows pointers to have more than one LEVEL OF INDIRECTION. This can be de-
clared several ways:

shine()
{ char *names[];

char *(*words);
.

Both of these declarations result in the same effect: a pointer that points to
a pointer which points to a character field.

Pointer variables may have up to 255 levels of indirection. However, the prac-
tical limit is the ability of the programmer to keep track of all this. In
general, two levels of indirection are all most folks can take.

The operations that may be performed on pointers are severely restricted. The
allowed operations are:

(a) Pointer + offset or offset + pointer, offset is scaled.
(b) Pointer - offset, offset is scaled.
(c) Pointer - pointer, result is scaled.
(d) Pointer = expression.
(e) ++, --, logical not, ||, &&, and comparisons.

Initialization of Variables

C allows you to initialize variables within the declaration statement. For in-
stance, the declarative,

int var = 100;

declares "var" to be of type "int" with an initial value of 100. A pointer to
a string may be declared and initialized with the format,

char *pstring = "This is an initialized string pointer";

You may declare a series of variables of the same type as well as their ini-
tializations with the format,

float f1=1.0, f2=10.0, f3=100.0, f4=1000.0, f5=10000.0;

An array can be initialized by placing the initialization values within
braces. For example,

int table[5] = {1, 10, 100, 1000, 10000};

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

declares table to be an integer array of dimension 5. Table[0] is initialized
to the value 1, table[1] to 10, table[2] to 100, table[3] to 1000, and
table[4] to 10000.

Structures may also be initialized. For instance, the format,

struct { char *name; } dow[5] = {"Mon","Tue","Wed","Thu","Fri"};

defines the array of structures, "dow", consisting of one element, "*name".
The array is of dimension 5, with each array element constituting the struc-
ture. Each structure element is initialized as a pointer to the corresponding
3-character day name. Thus, "puts(dow[0].name);" would print, "Mon".

Note that automatic structures and automatic arrays (these are considered
"aggregates" by K&R) may not be initialized. You also cannot initialize a
union.

Scope of Variables and Functions
Variables or functions that are declared outside of any function, i.e., which
are not parameters to functions or declared within braces are called
"external". They are external to all functions. External variables and func-
tions can be accessed only from any of the functions subsequently defined
within the module being compiled. They are usually used to create static
variables that are to be accessed only by a function or group of functions.
However, by using the "extern" statement in a separately compiled module, say
module_B, an external variable or function of module_A may be accessed from
that separately compiled module_B. Please do not confuse "extern" and
external. External variables and functions are declared without the "extern"
statement strictly by their position exterior to any function or compound
statement.

Variables declared within a function are called "local". Functions may not be
defined within another function, as is the case with the Pascal language.
However, a function may be DECLARED "extern" so that it may be accessed within
the currently defined function. Local variables may not be accessed from any
other functions. They only exist for the function in which they are declared.
Even within the function, a local variable can only be accessed in the block
in which it is declared. Remember that a block is a section of code contained
within a matching pair of braces.

Local variables can have the same name as external variables, or local
variables declared in different blocks. If a local variable has the same name
as an external variable then the local variable is the one accessed when used
within the local block. In the following example:

int same; /* this is an external variable */
funk(same)
{ return same; } /* return local copy */

hunk()
{

if (block_1)
{ int same;

/* some code could go here */
}
else
{ char same;

/* some other code here */
}

}

every declaration of "same" was a unique variable. Although legal, the
declaration of local variables with the same name within the same function is
not recommended. This type of trickery, as shown in hunk(), needlessly causes
confusion and is easily avoided.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Storage Classes
Variables and functions may be declared as being in certain classes. These
classes specify where variables are to be stored. The classes available in C
are: auto, static, extern, register, and typedef. The storage class of an
object is specified by placing the class name in front of the normal
declaration:

auto char c;
static int ai[20][80];

Storage Class - auto

Variables that are declared “auto” are stored on the stack. This is the
default for variables declared within a function, so the "auto" keyword may
therefore be omitted. Local variables that are “auto” are created afresh each
time the function in which they are declared is called. This allows functions
to be reentrant and recursive. Functions may not be declared with class "auto"
since a function must be declared outside of any other function. As K&R say,
the C compiler is incapable of compiling code onto the stack!

The scope of an auto variable is the block (within braces) in which it is
declared. All other portions of the code being compiled are oblivious to the
existence of the auto variable, and in fact, there may exist other variables
with the same name.

The auto class is illegal for functions and other external definitions (any
variables declared outside of a function). In terms of speed of access, auto
variables are accessed the slowest; thus, if timing is important and your
program does not require recursion, use register or static variables.

Storage Class - Register

Variables declared in the register class are treated similarly to auto
variables by MC. The number of register variables permitted depends on the
number of extra machine registers available for use. MC makes use of the two
index registers of the Z-80 (IX and IY) which can be used for ints and
pointers. Register variables are usually accessed faster than autos but not as
fast as statics. Any register variables declared in excess of two are stored
on the stack in the same manner as an auto and are also illegal outside of a
function; however, each function is permitted up to two register variables.

The scope of register variables is the same as that for auto variables. The
formal arguments of a function may also be declared register. Note that the
"address_of" operator may not be applied to register variables.

Storage Class - Extern

The "extern" storage class allows an external variable declared in one module
to be accessed from another module. A "module" is what is processed by one
invocation of MC, i.e., one set of C source input. Let's say that the
following declaration:

int choice;

exists in module 1. If module 2 functions need to access this same variable,
the declaration:

extern int choice;

would allow the access needed. C will not reserve any storage for "choice" in
module 2, since the storage class, "extern", tells C that storage has been
reserved in another module.

The programmer MUST ensure that the declarations are compatible between
modules. In other words, all "extern" declarations must match the external

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

declaration (declaration without "extern") by having the same type, size, and
amount of indirection. Otherwise, C may access the variable in incorrect ways.

The extern statement may also be used to declare the return value of a
function before it is defined in the program. This "forward" declaration
allows a function that returns something other than a signed integer to be
defined before it is used. If the forward declaration is not given and a
function is as-yet-undefined, the compiler assumes that the function returns a
signed integer, which may be incorrect for many functions.

Storage Class - Static

Static objects are stored in declared, fixed memory space. Their behavior is
the same as that of external variables; their scope is more limited, however.
Static variables declared outside of a function can only be accessed by
functions within the module being compiled. Other (separately compiled)
modules cannot get to them by declaring them "extern". Static variables
declared outside of all functions are accessible to all functions subsequently
defined within the module. Static variables declared within a function are
similar in scope to auto and register variables. They can only be accessed in
the block in which they are declared. Thus, two static variables with the same
name may be declared in different functions.

Functions may also be defined as "static", making them only accessible from
within the current module. However, since MC is a one-pass compiler, the
definition of a static function must precede any reference to the static
function. This is because the compiler assumes that an as-yet-undefined
function is an external function. Alternatively, you may use a forward
declaration.

Storage Class - typedef

Typedef is provided in the C language not as a unique storage class, but as a
means for creating new data type names. Note that typedef does not create new
data types, but rather provides a method for giving special names to existing
data types. This facility is useful to create customized names that bear some
association to the class of objects being typed. For instance, the typedef
statement:

typedef char *POINTER;

declares "POINTER" to be a synonym for the type pointer_to_character. Thus, a
statement such as the following can be used to clearly denote the meaning of
the declarations:

POINTER first, last;
POINTER table[SIZE];

A typedef is somewhat similar to the preprocessor #define. It performs some
textual substitution. It is a little more flexible, though, since the actual
substitution can be more complex. It has a great use in enhancing the
portability across compilers by introducing a single point definition of a
variable type rather than having the actual definition scattered throughout
many source modules. Thus, where a declaration type must be changed, it only
need be changed in one place (usually in a header file).

Storage Class - Defaults

When a variable is declared by only stating the storage class:

auto x1; register x2;
extern x3; static x3;

the variable type is assumed to be "int". This is a perfectly acceptable
shorthand way to make integer declarations.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

When the declaration of a local (declared within a function) variable or
argument has no storage class, C assumes that the variable is an auto
variable. A function that is declared within another function body is assumed
to have a storage class of external. The compiler regards the declaration as
if an "extern" statement preceded it.

External declarations which do not have a storage class declared are special
entities. They belong to the implicit class, "external", and may be referenced
from other (separately compiled) modules that declare the variable "extern".

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Expressions
One of the most powerful features of the C language is its expression
capabilities. The amount of work that can be done by one expression is
sometimes overwhelming. A quick example:

(end_of_file = (c=getc(file))==EOF)) ? fclose(file) : ++count ;

This convoluted statement will get a character from a file and place it in the
variable, "c". The character is compared to the value "EOF" which indicates
end of file; the result, true or false, is placed in the variable,
"end_of_file". Finally, if it was the end of the file, the file is closed.
Otherwise, a counter variable, "count", is incremented to provide a count of
the characters read.

The example was a bit exaggerated, and expressions this complex can be quite
hard to understand. Two statements must be made about the complexity of
expressions in the C language.

The programmer who does not fully know and use C's expression
capabilities is seriously handicapped, unable to use the full power
of the C language.

On the other hand, a quotation from THE ELEMENTS OF PROGRAMMING STYLE by
Kernighan and Plaugher is appropriate:

"Everyone knows that debugging is twice as hard as writing a program
in the first place. So if you're as clever as you can be when you
write it, how will you ever debug it?"

The word "maintain" could be substituted for "debug" in the quote above, and
it would still be valid. You must be able to understand later what you wrote
into your program. If others are going to have to maintain your program, the
principle of KISS (Keep It Simple, Stupid) should prevail. This is not
intended to discourage the use of complex expressions. Just keep in mind that
the more operators involved in an expression, the more difficult it is to
properly place parentheses and keep the precedence of operators straight.

There are two kinds of expressions in many computer languages: logical
expressions and arithmetic expressions. Logical expressions are usually for
comparing things and for making choices. The result of a logical expression is
either true or false. Arithmetic expressions result in a number. Usually an
assignment to a variable is made to save the result of the arithmetic
expression, or it is passed as an argument. In many language implementations,
only one type of expression may be used in certain contexts. For instance, the
BASIC program statement:

1000 A = (C <= B)

attempts to assign to A the result of the comparison C to B. This is not
allowed in many implementations because they are expecting an arithmetic
assignment. Even if some BASIC's allow it, it is best not to do this type of
assignment, in order to keep programs relatively portable.

Another situation is shown in PASCAL:

IF A := (B < C) THEN BEGIN

where the PASCAL compiler expects a boolean expression between IF and THEN.
Even if A is a boolean variable this assignment is not allowed in most PASCAL
compilers. This is not intended to denigrate PASCAL. There are good reasons
why the authors of PASCAL did things this way. However, the C language does
not draw distinctions between types of expressions within the context of the
program. The distinctions are made in the types of operators instead.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Primary Expressions

The elements that are manipulated by operators in an expression are called
primary expressions. The basic elements that make up a primary expression are
identifiers, constants, and strings. Identifiers are the names of variables
and functions. Function and array identifiers effectively resolve to the
address of the function or array, while all other variable identifiers resolve
to the contents of the variable. Constants are character or numeric (decimal,
hex, octal) values. Strings resolve to a character pointer, which points to
the first character of the string.

The operators that C provides for stating primary expressions group left to
right. This means that the left-most operator is interpreted first. The five
primary operators supplied by C are: isolating parentheses, subscripting,
function invocation, structure/union ARROW, and structure/union DOT.

(expression) isolating parentheses
p_ex [expression] subscripting
p_ex (expression_list) function invocation
. DOT obtains member of structure/union
-> ARROW obtains member indirectly through

 structure/union pointer

Note: "p_ex" stands for "primary_expression"

Isolating Parentheses

When the order in which an expression is to be evaluated conflicts with the
precedence of operators, the isolating parentheses provide a way around the
conflict. The expression within parentheses is evaluated first, before the
result of the enclosed expression is used in any expression outside the
parentheses. For example, when predicting the percentage of up time for any
equipment, the following formula is used:

MTBF
availability = -------------

MTBF + MTTR

 MTBF = mean time between failures
 MTTR = mean time to repair

When writing this formula into a C expression a conflict occurs because the
division operator takes precedence over the addition operator. If the
expression is written like this:

up_time = mtbf / mtbf + mttr

the result will always be mttr plus one. This is because the division is done
before the addition. To avoid this, the expression can be stated as follows:

up_time = mtbf / (mtbf + mttr)

to achieve the correct result.

Parentheses can be used on either side of an assignment operator. At the risk
of confusing the reader with as-yet-undefined operators, we nevertheless
provide an example using pointers. In certain cases during the use of pointer
arrays, indirection must be performed before subscripting into the data item.
Since subscripting takes precedence over indirection, this kind of expression
must be written as follows:

example(arg)
char *arg[]; /* pointer to a char pointer array */
{

/* wrong way - accesses third pointer */
/* instead of third character. */

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

*arg[3] = 0 ;

/* right way - zero's the third character of */
/* first string */

(*arg)[3] = 0 ;
}

Subscripting

Subscripting is denoted by a subscript in brackets following a primary
expression:

primary_expression [subscript]
primary_expression [subscript_1][subscript_2]

If the primary expression is an array name, or a pointer to an array, the
subscripted expression returns the element denoted by the value of the
subscript. C arrays are subscripted from zero, i.e., the first element in an
array is numbered zero. If more than one dimension is specified, the storage
of array elements is such that the rightmost subscript varies fastest as
elements are accessed in storage order.

Function identifiers may not be subscripted. A primary expression denoting an
array of pointers to functions may be subscripted. The primary expression must
indicate the size of the object being subscripted (char, int, pointer) or the
subscript will produce an error message. For example:

x = 25[3];

is invalid.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Function Invocation
A primary expression followed by parentheses will cause the function denoted
by the primary expression to be called. Arguments may be passed to the invoked
function by placing them in the parentheses, separated by comma's.

Any number of arguments can be passed to the called function. Care must be
taken that the number of arguments passed is the number that the function
expects. Otherwise, unpredictable behavior may result (certainly not correct
behavior). If a variable number of parameters must be passed, then a control
indicator must be passed to tell the called function how many arguments there
are (for example, the fprintf() and printf() functions in the standard
library). Arguments can be any valid C expression, including other function
calls. The arguments are evaluated from right to left, i.e., the right-most
expression is evaluated first. The programmer should not rely on this order of
evaluation since some other implementations of the C language evaluate them
left to right. Statements like this one:

funk(arg++, arg2[arg]);

will cause different elements of arg2 to be passed to funk() when different C
compilers are used. Stay away from this sort of trickery if you can.

. DOT [designate member of structure/union]

The structure/union dot operator is used to specify a member of a structure or
union. Thus, if there exists for example, a structure of the name "time" which
has members named "hour", "minutes", and "seconds", then the constructs
"time.hour", "time.minutes", and "time.seconds" refer to the member objects
when used in an expression. Other details concerning structures and unions are
provided in the section on data declarations.

-> ARROW [designate member through structure/union pointer]

This structure/union operator is used when you have a pointer to a structure
or union and you wish to reference one of its members. For example, if the
identifier "pt" has been declared a pointer to the time structure noted above,
then the constructs, "pt->hour", "pt->minutes", and "pt->seconds" reference
the objects within the structure. The construct of "structure or union pointer
-> membername" is equivalent to "(* structure or union pointer).membername"
and is essentially a shorthand method of using the indirection operator.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Unary Operators
Unary operators operate on one object (hence the name). If more than one unary
operator operates on the same object, the operators are evaluated right to
left. The unary operators supplied by C are:

OPERATOR OBJECT DESCRIPTION
* expression indirection; means "object at..."
& lvalue pointer; means "address of..."
- expression negates the expression; "minus expression"
! expression logical complement; "not expression"
~ expression one's complement of expression
++ lvalue increment and save in lvalue
-- lvalue decrement and save in lvalue
(typename) expression cast the result to "typename"
sizeof expression obtain the size of the result of expression in

"bytes"
sizeof (typename) obtain the size of "typename" in bytes

All unary operators must appear before (prefix) the object, except the
increment and decrement operators, which may appear after (postfix) the
object. The term "lvalue" means an expression that evaluates to the address of
a data element or pointer field. Constants, function identifiers, and array
names are not lvalues. The term derives from the observation that "lvalues"
are the only expressions allowed on the left side of an assignment expression.

'*' [asterisk - object at]

The indirection operator can only operate on a pointer expression. Its meaning
is effectively "object at..." The address contained in the pointer is the
address of the object referred to by this type of expression. For example,

see_pointer (pointer)
char *pointer; /* a character pointer */
{

/* first print the address passed in pointer */
printf("address is: %u ",pointer);

/* now print the data at that address */
printf("data is: %u ", *pointer);

}

will print both the address (contents of the pointer variable) and the data at
that address (result of the indirect expression).

'&' [ampersand - address of]

This unary operator effectively means "address of..." or "pointer to...". It
evaluates to the address of the lvalue it precedes.

'-' [minus sign - negation]

When the unary negation operator precedes an expression, the result is the
two's complement negative of the value of the expression. When the '-'
precedes an unsigned or pointer expression, the one's complement of the value
is taken.

'!' [exclamation point - logical NOT]]

The unary logical complement operator, or "not" operator, evaluates to FALSE
if the expression is true and to TRUE if the expression is false. FALSE is
defined as 0 and any non-zero value is considered to be TRUE. However, all C
operators which result in TRUE or FALSE produce one (1) as the value for TRUE.
Thus, the least significant bit of the result indicates TRUE or FALSE.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

'~' [tilde - bitwise complement]

The one's complement operator inverts every bit in the expression. No regard
is given to the type of the expression.

'++', '--' [increment, decrement]

The increment and decrement operators may be used either before (prefix) the
operand or after (postfix) the operand. The operand must be an lvalue or
lvalue expression. In either case the contents of the lvalue is incremented or
decremented and stored back into the lvalue. The difference between prefix and
postfix is how the result of the expression is produced. Prefix means that the
value after the increment or decrement is the result of the expression.
Postfix means that the value returned by the expression is the value before
the increment or decrement.

(typename) [type casts]

The "(typename) expression" is used to explicitly force the result of
"expression" to be converted to the type specified by the cast. Casts are used
when the variable or expression result type does not agree with what may be
needed for continued evaluation. For instance, to take the log of an integer
number, it is necessary to convert it to a double. Thus, the statement:

dvalue = log((double) number);

converts the value of the integer "number" to a double before placing it on
the stack as the argument to the log function. Note that "number" is not it-
self changed, but rather the value is typed to conform to the cast. A cast is
similar to the verbs: CDBL, CSNG, CINT commonly found in the BASIC language.

sizeof [obtain size of operand in bytes]

It is sometimes useful to be able to use the size of an object in an
evaluation without actually knowing the physical size of the storage provided
for the object. For instance, since the actual size in storage units of an int
may vary from machine to machine, the programmer may need to compute a figure
irrespective of the storage element size. The "sizeof" operator provides this
facility. Since all sizes are known to the compiler at compile time, "sizeof
object" may be used in the same way as a constant. For instance, the state-
ments:

int array[100];
bytes = sizeof array;

assigns to "bytes", the actual quantity of storage elements occupied by
"array". "Sizeof" may also be used in the format, "sizeof(typename)". Thus,
sizeof(int) and sizeof(long) are valid operations.

There is significant use of the sizeof operator in calculating the size of a
structure. Given the structure,

struct functions
{ char *name;

double (*func)();
} builtins[] =
{

"sin", sin,
"cos", cos,
"tan", tan,
"asin", asin,
"acos", acos,
"atan", atan,
"exp", exp,
"log", log,
0, 0

};

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

the number of structure entries is simply sizeof builtins / sizeof (struct
functions)

Binary Operators

Binary operators act upon two expressions together. The type of the result
depends on the type of the two expressions. If both types are not identical,
the lower type will be promoted to the higher type. The order from lower to
higher is: char, int, unsigned int, long, unsigned long, float, double. When
the operator is addition or subtraction, if only one expression is a pointer,
the result of the expression is a pointer of the same type; if both
expressions are pointers, the result is unsigned. These "usual arithmetic
conversions" are documented in K&R page 184 (section 6.6) and are reproduced
here for convenience:

"First, any operands of type char or short are converted to int,
and any of type float are converted to double. Then, if either
operand is double, the other is converted to double and that is
the type of the result. Otherwise, if either operator is long,
the other operand is converted to long and that is the type of
the result. Otherwise, if either operator is unsigned, the other
operand is converted to unsigned and that is the type of the
result. Else, both operands must be int, and that is the type of
the result."

When several binary expressions are concatenated together (without isolating
parentheses) the order in which the binary expressions are evaluated depends
on the precedence of the operators in the expression. In the expression,

a + b * c

the evaluation of "b * c" precedes the evaluation of the addition, since
multiplication has a higher precedence than addition. The expression is
evaluated like this:

a + (b * c)

As previously described, isolating parentheses can be used to change the order
of evaluation. To have the addition performed first, the expression can be
written:

(a + b) * c

Each class of operands is described below in order from the highest precedence
to the lowest. When all the operators in a complex expression have the same
level of precedence, they are evaluated in a certain order; right to left or
left to right. It can be said that a class of operators "group" left to right,
or right to left. If the order of evaluation between like operators does not
matter, the operator is said to be associative. Here is an example of how the
order of evaluation affects an expression:

a / b / c / d

The division operator is said to group "left to right"; thus, this expression
is evaluated a follows:

(((a / b) / c) / d)

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

The precedence of binary operators is given in the following table:

 PRECEDENCE OF BINARY OPERATORS
 (Highest to lowest)

 MULTIPLICATIVE OPERATORS - group left to right
 expression * expression multiplication
 expression / expression division
 expression % expression modulus (remainder)

 ADDITIVE OPERATORS - group left to right
 expression + expression addition
 expression - expression subtraction

 SHIFT OPERATORS - group left to right
 expression << expression shift left
 expression >> expression shift right

 RELATIONAL OPERATORS - group left to right
 expression < expression less than
 expression > expression greater than
 expression <= expression less than or equal to
 expression >= expression greater than or equal to

 EQUALITY OPERATORS - group left to right
 expression == expression equal to
 expression != expression not equal to

 BITWISE AND OPERATOR - associative
 expression & expression bitwise and

 BITWISE EXCLUSIVE OR OPERATOR - associative
 expression ^ expression bitwise exclusive or

 BITWISE INCLUSIVE OR OPERATOR - associative
 expression | expression bitwise inclusive or

 LOGICAL AND OPERATOR - groups left to right
 expression && expression logical and

 LOGICAL OR OPERATOR - groups left to right
 expression || expression logical or

 CONDITIONAL OPERATOR - groups right to left
 expression ? expression : expression

 ASSIGNMENT OPERATORS - group right to left
 lvalue = expression simple assignment
 lvalue <op>= expression compound assignment
 (<op> is any binary operator except logical,
 relational, or conditional operators)

 COMMA OPERATOR - groups left to right
 expression , expression pair of expressions

'*', '/', '%' [multiplication, division, modulus]

The multiplicative operators take precedence over all other binary operators
and group left to right. When the result of integer multiplication overflows
an int, or when the result of long integer multiplication overflows a long,
the left-most (high-order) bits are truncated. Since integer division is used,
the fractional portion of the result is lost. The result of division is always
truncated toward zero. The modulus operator returns the value of the remainder

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

in the integer division of the two expressions. Overflow and underflow
floating point errors may be trapped in software by the use of a _fltvec()
error trap. This is documented in Chapter 5, "Advanced Topics".

'+', '-' [addition, subtraction]

The additive operators result in the addition or subtraction of the two
expressions. In subtraction, unsigned subtraction only takes place when both
expressions are unsigned. If one of the expressions is a pointer and the other
is not, the other value is adjusted to reflect the size of the object pointed
to. Thus, if "p" is a pointer, "p + 3" returns the address of the fourth
object pointed to by "p". If p points to integers, then C automatically
doubles the offset to account for the two-byte elements. Likewise, if p points
to long integers or to doubles, the offset is appropriately adjusted to
account for the size of the object.

'<<', '>>' [shift_left, shift_right]

The shift operators shift the left-hand expression by the number of bits
indicated in the right-hand expression. Zeroes are shifted in to replace the
bits shifted out. The right-hand expression is always considered unsigned;
thus a negative integer will be interpreted as a large unsigned integer. If
the right hand expression has a zero value, no shifting takes place. If the
right-hand expression contains a value that is larger than the size of the
left hand object, the result is always zero.

The shift operator is a logical shift, not an arithmetic shift as in some
other C implementations. Thus shifting a signed value will not preserve the
sign if the shifted value is negative.

'<', '>', '<=', '>=' [less, greater, less_or_equal, greater_or_equal]

Relational operators result in a TRUE (1) or FALSE (0) value, depending on the
indicated condition.

'==', '!=' [equal_to, not_equal_to]

The equality operators, "equal" and "not equal", respectively also return TRUE
(1) or FALSE (0) depending on the two expressions' equality.

'&' [bitwise AND]

The bitwise AND operator does a bitwise AND with the two expressions. Each bit
position in the result will be set to be one if and only if both corresponding
bits in the expressions are equal to one. This is useful for isolating
individual bits within a word by using a "mask" as one of the expressions. Any
bit in the mask which is set to zero will cause that bit in the result to be
zero. Any bit set to one will cause the bit in the other expression to remain
the same.

'^' [bitwise XOR]

The bitwise exclusive OR operator. Each bit in the result of an exclusive OR
is set only if the corresponding bits in the expressions are opposite, i.e., 1
and 0, or 0 and 1. If they are the same, that bit in the result will be zero.
This can be used to complement bits, using a "mask" expression. Any bit which
is 1 in the mask will cause the corresponding bit of the other expression to
be complemented in the result. Any mask bit which is 0 will pass the
corresponding bit unchanged into the result.

'|' [bitwise OR]

The bitwise inclusive OR operator. Each bit in the result will be set to 1 if
either of the corresponding bits in the expressions are equal to 1. This can
be used to set any particular bit in an expression to one by using a "mask"
expression. If a bit in the mask is equal to 1, then the corresponding bit in

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

the result will be set to 1. If a bit in the mask is equal to 0, then that bit
in the result will be the same as in the expression being manipulated.

'&&' [logical AND]

The logical AND operator results in a TRUE (one) or FALSE (zero) condition,
depending on the relationship of the two expressions. The result is TRUE only
if both expressions are true (non-zero). Moreover, if the first expression is
FALSE, the second is never evaluated.

'||' [logical OR]

The logical OR operator returns a TRUE (1) result if either of the expressions
is true (non-zero). If the first expression is true, the second expression is
not evaluated.

'? :' [conditional]

The conditional operator gives the C expression repertoire the equivalent of
an if-then-else construct. It can technically be classified as a binary
operator since only one of the last two expressions is evaluated. The first
expression is evaluated as true (non-zero) or false (zero). Then, if the first
expression was true (non-zero), the second expression is evaluated as the
result of the expression. Otherwise, if the first expression was false (zero),
the third expression is evaluated for the result. The conditional operator
groups right to left:

a ? b : c ? d ? e : f : g

is evaluated in the following manner:

a ? b : (c ? (d ? e : f) : g)

Either or both of the second and third expressions can contain conditional
expressions.

'=' [assignment]

The simple assignment, '=', places the result of the right-hand expression
unchanged into the object denoted by the left-hand expression.

'+=', '-=', '*=', '/=', '%=', '<<=', '>>=', '&=', '^=', '|=' [assignment]

The compound assignment operators place the result of the right-hand
expression into the object denoted by the left-hand expression, after
performing the indicated operation with the contents of the lvalue when an
assignment operator other than '=' is used. The result is the value stored
into the left hand object. The compound assignment operators have the form:

expression_1 <op>= expression_2

and is evaluated like this expression:

expression_1 = expression_1 <op> expression_2

The first form is more efficient since expression_1 only needs to be evaluated
once.

, [comma]

The comma operator sets off a pair of expressions which are evaluated left to
right. Both the type and value of the result are the type and value of the
rightmost operand; thus, the values of the left operands are discarded. The
comma operator usually finds use in a "for" statement to initialize more than
one quantity.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Statements
C statements are used to specify the action to be taken by the program. The
statements given in the program are normally executed one after the other.
Certain statements (conditional and looping statements) will direct the order
of and conditions for execution of other statements. Some definitions of
statements in the following text require that a substatement be included in
the statement. Any place where a substatement is required, there may be one
simple statement, or more than one statement combined in a compound statement.

Simple Statements

Simple statements are of three types: expression, declarative, and control.
The declarative statements are described fully in the previous sections on
functions and variables. The type, size and scope of functions and variables
are declared in declarative statements.

A simple statement always ends with a semicolon. The semicolon is the
STATEMENT TERMINATOR. It is not a statement separator as in the PASCAL
language. It is always required at the end of a simple statement.

Compound Statements

The left and right brace characters, "{"and "}", are used to indicate the
beginning and end (respectively) of a compound statement. A compound
statement, also called a block, can be used anywhere that a simple statement
may be used. Thus, wherever C's syntax requires a statement, more than one
statement may be given by enclosing them in braces. Within the compound
statement there may be any combination of simple and compound statements.

The compound statement has the format:

{ <declarations> <statements> }

No declarations or statements are required, although an empty block could be
used as a null statement. The declarations must appear before any executable
statements. Any of the statements may also be other compound statements. No
semicolon is required after the compound statement.

The only place where a compound statement is required instead of a simple
statement is in the body of the switch-case statement. The body of a function
is one compound statement. Here are some examples of compound statements:

func()
{

/* the body compound statement */
a=b; /* simple statement */
if (a>c)
{

/* another compound statement */
c=a;
b=a;

} /* end of compound statement */
return a+b+c;

} /* end of function body compound statement */

Null Statement

A null statement is sort of a placeholder. C requires that a statement be
given in certain places. If no action is needed in the place required then the
null statement can be used. No action is taken by the null statement.

The null statement is simply a statement terminator (semicolon) by itself,
with no preceding statement.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

null()
{

/* do-nothing function */
; /* a null statement */

}

Expression Statement

A C expression followed by a semicolon is called an expression statement. The
expression is performed when it is encountered. C will allow an expression
that has no assignment in an expression statement, even if it does nothing.
Expression statements are used to assign values to or modify values of
variables, or to invoke functions. Some sample uses of expression statements:

retcode = call_function() ; /* call a function */
a = b = c = 0 ; /* make a, b, c equal to 0 */
++counter ; /* increment a counter */

If Statement

| |
| if (expression) statement |
| |
| if (expression) statement |
| else statement |
|___|

The "if" statement gives the programmer the capability to decide whether a
statement will be executed. The criterion for the decision is the result of
evaluating the expression. The expression may be any valid C expression. If
the expression evaluates to TRUE (non-zero), then the statement is executed.
If the expression evaluates to FALSE (zero), then the statement following the
"else" (if any) is executed.

"If" statements may be nested, i.e., the statement within an "if" statement
may be another "if" statement. Too much nesting of "if" statements can be hard
to follow, so moderation is advised.

Unless clearly established otherwise by the use of braces, an "else" will bind
to the closest previous "if".

Some examples of "if" statements:

if (x < 0) x = -x ; /* absolute value of x */

if (i<=0) { i=x; b=a; } /* compound statement */
else --i; /* and an else clause */

if (past_twelve) /* nested if statements */
if (before_six)

say("good afternoon");
else

say("good evening");
else say("good morning");

Switch-Case Statement

| |
| switch (expression) { <switch_statement> ... } |
| |
| switch_statement = statement |
| case constant_expression : |
| default : |
|___|

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

The switch-case statement allows program execution within the <switch_
statement> to be determined by the "case" and "default" prefixes. The
expression in the switch statement is evaluated first and converted to a short
integer. Then, if any statements precede the first prefix, they are executed.
Finally, if any of the constant_expressions match the result of the switch
expression, execution continues immediately past that "case" prefix. If none
of the cases match the result and there is a "default" prefix, then execution
continues at the "default" prefix. Execution will continue from then on until
either the end of the switch-case statement is reached or until a "break"
statement is encountered. Otherwise, when no matching case is found, no
further statements in the switch_statement are executed.

The switch-case statement MUST have a compound statement as its substatement.
This is the only case where this is true. The "default" and "case" statements
may occur in any order within the body of the switch-case. Local declarations
are acceptable preceding the first prefix or statement. The "break" statement
is used to exit the switch_case statement.

switch (month) {
case january: case october: case december: case july:
case august: case march: case may:

days = 31; break;
case september: case april: case june: case november:

days = 30; break;
case february:

days = leap_year ? 29 : 28; break;
default: days = 0; error = true;

}

While Statement

| |
| while (expression) statement; |
|___|

The most basic form of looping is provided in C by the "while" statement.
Simply stated, while the expression results in a TRUE (non-zero) value,
"statement" (also called substatement) is executed. The expression is reeval-
uated before each time the substatement is executed. Therefore, the sub-
statement may be executed from zero to any number of times depending on the
expression's current value.

If more than one simple statement must be placed in the loop substatement,
then the substatement must be a compound statement. The "break" statement can
be used to exit the loop from within the statement. The "continue" statement
can be used to continue directly on to reevaluate the test expression,
skipping the rest of the substatement, from anywhere within the statement.

while (driving) watch(the_road);

while (jogging)
{

take(a_step);
breathe();
if (too_tired) break;

}

Do Statement

| |
| do statement while (expression) ; |
|___|

"Do" differs in only one way from the "while" statement - the expression is
reevaluated after the statement is executed. Therefore, the substatement will

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

always be executed at least once. The substatement will be repeatedly executed
until the expression evaluates to FALSE.

do anything();
while (there_is_still_time) ;

/* shuffle routine */
do
{

cut_the_cards();
shuffle();

}
while (! ready_to_deal) ;

For Statement

| |
| for (expr_1;expr_2;expr_3) statement |
|___|

The "for" statement is a looping statement which provides a convenient place
for initializing, testing, and incrementing loop control variables. The format
shown above can be rewritten using the while statement:

expr_1 ;
while (expr_2)
{

statement
expr_3 ;

}

Expr_1 is evaluated once before the loop is entered. The test expression,
expr_2, is reevaluated before each execution of the substatement. If it
results in a FALSE (zero) value, the loop is not executed and execution
continues to the next statement. Expr_3 is reevaluated after each time the
substatement is executed.

Both expr_1 and expr_3 can be more than one expression, separated by commas.
Expr_2 can only be one expression and should result in a logical TRUE or FALSE
value. Note that all three expressions may be omitted. If expr_2 is omitted,
the test is always TRUE.

for (c = 'A' ; c <= 'Z' ; ++c)
putchar(c); /* print the letter */

/* "Now I've said my ABC's ..." */

Break Statement

| |
| break; |
|___|

"Break" is used to exit any "while", "do", or "for" loop and to exit the body
of a switch-case statement. Whenever a "break" statement is encountered,
execution immediately goes to the next statement past the loop or switch-case
statement. "Break" is ignored outside of any loop or switch-case compound
substatement. For an example of the use of "break" in a switch statement, see
the section on switch-case above.

strscan(c,s)
char c,*s;

{
/* find character c in string s */
while (*s != c)
{

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

if (*s == NULL) break ; /* end of string */
++s ; /* next character */

}
return s ;

}

Continue Statement

| |
| continue; |
|___|

The "continue" statement is used to skip the remaining statements in a
compound loop substatement. In a "while" or "do" statement, execution
continues at the test expression reevaluation. In a "for" statement, execution
continues at the reinitializing expression (the third expression). The
"continue" statement is ignored outside of any loop statement.

/* convert to lower case */
while ((c = getchar()) != EOF)
{

if (c < 'A' || c > 'Z') /* not an uppercase character */
continue ; /* doesn't apply */

c = tolower(c) ;
putchar(c) ;

}

Return Statement

| |
| return; |
| return expression; |
|___|

The "return" statement causes the currently executing function to end. If an
expression is provided, then the result of the expression is returned as the
value of the function. The returned value is undefined if no expression is
provided in the "return" statement. The "return" statement is not required in
order to effect a return from a function. When no statements are left (the
bottom of the function body is reached), the function automatically returns as
if a "return" statement with no expression were encountered. A "return"
statement is needed when a value must be returned or when the return must take
place before the end of the function. The result is automatically converted to
the function type, if necessary.

square (num)
/* square a number */
{

return num * num ;
}

getline(buf)
char buf[] ; /* line input buffer */

{
/* check for a valid file pointer */
if (file_pointer == NULL)
{

buf[0] = '\0' ; /* put a null string in buf */
return ; /* back to caller */

}
fgets(buf, bufsize, file_pointer);

}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Goto Statement

| |
| goto label; |
|___|

The "goto" statement causes an unconditional branch to the statement
identified by label. The labeled statement must be contained in the current
function. It is illegal to attempt a "goto" to a statement in some other
function. An attempt to do so will probably result in an error during the
assembly phase. The following example illustrates the use of "goto" (note: it
is strongly recommended that you avoid the use of the "goto" statement):

rest(time)
int time;

{
if (time > 2300) goto sleep;
else return;

sleep: for (; ;)
;

}

Labeled Statement

| |
| label: statement; |
|___|

Any executable statement can be prefixed with a label. This construction is
usually used to target the argument of a "goto" statement. The format of a
label is a valid identifier followed by a colon. The following are labeled
statements:

calculate: i += 10;
bigblock: i = j = k = l = m = n = o = p = 0;

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

MC Preprocessor
Part of the MC compiler is a preprocessor, which provides for macro
substitution, conditional compilation, inclusion of additional files, and line
number control. The features provided in the preprocessor extend the power of
the C language by (1) controlling the flow of C source through the compilation
process; (2) permitting powerful macro substitution of textual strings; and
(3) offering string replacement making your program not only more readable,
but easier to maintain, as well.

Some of the work performed by the preprocessor has to do with massaging the
source text. In this capacity, the preprocessor provides you with the
following features:

Input lines may be terminated with a backslash "\" for continuation;
this is most useful for complex expressions, function calls, and
macro definitions which may take more than one line of input for
their declaration.

Constructions of the form "string_1"<whitespace>"string_2" are
replaced with "string_1string_2". This allows substitution of macros
within strings, if the macro itself is defined as a string.
Restriction: the whitespace separating the strings may include an
escaped (backslashed) newline but not a bare newline.

Unneeded whitespace (spaces, tabs, new-lines, comments) is
automatically removed; thus you have complete freedom in inserting
whitespace throughout your source code for the purpose of
readability.

A source text communicates to the preprocessor via directives that control
various aspects of the compiler during the compilation process. One of these
directives, "#include filespec", you will quickly become familiar with. All
preprocessor directives begin with a number-sign character, "#". The
directives supported by the MC preprocessor are:

| |
| #define identifier text |
| #define identifier(parmlist) text |
| #undef identifier |
| #if constant_expression |
| #ifdef identifier |
| #ifndef identifier |
| #else |
| #endif |
| #include filespec |
|___|

In addition to the preprocessor directives, others are used in the compilation
and assembly processes. The following directives are passed through the
preprocessor to downstream processes:

| |
| #option identifier value |
| #asm |
| #endasm |
| #line linenumber filespec |
|___|

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Simple Symbolic Substitution [#define]

The "#define" directive is a macro definition. It's syntax is:

| |
| #define macname text |
| |
| macname - is the symbolic name to be assigned to the |
| text replacement string. |
| |
| text - is the text to replace "macname" throughout |
| the C source file. |
|___|

Description

The "#define" directive is a macro definition. It creates a macro identifier
called "macname", which is defined to be the string of characters following
the "macname" (the "text"). Macro identifiers may have any length (1 - n char-
acters), and any number of macros may be defined, subject to memory avail-
ability. Macro text replacement may be nested to a depth of 20 which means
that a macro definition may itself invoke a macro, etc. Macros may also be
redefined at will.

Macros may be defined in any order, even if they depend on each other; this is
because preprocessor command lines are not themselves preprocessed. However,
note that circular definitions will cause a fatal error.

The preprocessor will substitute the "text" string wherever "macname" is found
in the C source stream except where "macname" appears within single or double
quotes. For example, given a definition of the form

#define DRAW 1

there would not be a substitution in the statement, 'puts("DRAW ME A BATH");'
but there would be in the statement, 'box(DRAW,x1,y1,x2,y2);'. It is
recommended that macro "macnames" be defined in upper-case characters so that
they become distinct when looking at your source code.

The "macname" must be a valid C identifier following all the rules of naming
identifiers, whereas the "text" is anything and everything up to end of the
logical input line. The "text" is substituted until "macname" is redefined via
another "#define" or undefined via the "#undef" directive.

The macro "dos" is predefined. One of the macros dos5 or dos6 will be
predefined based on the DOS under which MC is running. These macros have no
replacement text.

The macro "__DATE__", when invoked, is replaced with a QUOTED STRING of the
asctime() format "Tue Oct 22 10:03:10 1985\n\0", the date and time being
retrieved from the system when MC is invoked.

The macro "__FILE__", when invoked, is replaced with a QUOTED STRING contain-
ing the name of the input file currently being read.

The macro "__LINE__", when invoked, is replaced with the number of the source
line currently being processed, in decimal. It is NOT a quoted string.

Example

#include stdio.h
#define PRINTX printf("%d\n",x)

main()
{

int x;

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

x = -3 + 4 * 5 - 6; PRINTX;
x = 3 + 4 % 5 - 6; PRINTX;

}

Parameterized Macro Substitution [#define]

This powerful directive provides textual substitution with the capability of
specifying substitution parameters in a parameter list that may be different
for each macro invocation.

| |
| #define macname(parmlist) text |
| |
| macname - is the symbolic name to be assigned to the |
| text replacement string. |
| |
| parmlist - is zero or more parameters of the macro. |
| |
| text - is the text to replace "macname" throughout |
| the C source file. |
|___|

Description

Macro definitions may also be written to include dummy parameters, which will
be substituted with actual parameters when the macro is expanded. This type of
definition requires that there not be any white space between the "macname"
and the opening parenthesis "(". The actual parameters are designated when the
macro is expanded. The preprocessor will substitute the "text" string and the
actual parameters passed in the macro call wherever "macname" is found in the
C source stream except where it appears within parentheses.

For instance, a macro definition of the library function putchar() may be
written as

#define putchar(byte) putc(byte,stdout)

Thereafter, any C statement of "putchar(c)" will be replaced with the state-
ment, "putc(c,stdout)". Notice that the actual argument, "c", replaces the
dummy parameter, "byte", in the macro definition when the macro is expanded.
It is also not necessary for the macro dummy parameter name to be unique
across different macros, although it is recommended that it be distinct for
the purpose of clarity.

A parameterized macro may have up to 128 parameters - more than you would ever
have need for. Macro text replacement may be nested to a depth of 20 which
means that a macro definition may itself invoke a macro, etc. Macro
identifiers may have any length (1 - n characters), and any number of macros
may be defined, subject to memory availability. Macros may also be redefined
at will. In a macro call, commas are used to separate actual parameters, but
are ignored within set(s) of balanced parentheses; a backslash may be used to
escape an imbedded comma or unbalanced parenthesis within an actual parameter.

Macros may be defined in any order, even if they depend on each other; this is
because preprocessor command lines are not themselves preprocessed. However,
note that circular definitions will cause a fatal error.

Parameters in the definition portion of a parameterized macro are always
replaced, even if they occur within a double-quoted string. Note that this can
get tricky. For example, in the following series of parameterized macro
definitions, when the string, "PR(cos(d))" is detected, the "x" parameter is
the string, "cos(d)" resulting in the substituted statement,

printf("cos(d) = %g\t",cos(d))

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

When a parameterized macro is called with one or more actual arguments
missing, the missing arguments will be interpreted as if they were null
strings. Note that you must still provide any comma(s) needed to specify all
of the parameter positions. For instance, the macro "#define test(a,b) a b"
called with the various arguments produces the following results:

test(123,456) 123 456
test(abc,) abc
test(,xyz) xyz
test() Fatal preprocessor error - missing parameters

Examples

#define PR(x) printf("x = %g\t",x)
#define NL putchar('\n')
#define PRINT1(x1) PR(x1); NL
#define PRINT2(x1,x2) PR(x1); PRINT1(x2)

Forgetting a Macro Name [#undef]

This directive will cause the preprocessor to forget the operand name.

| |
| #undef macname |
| |
| macname - is the symbolic name to be "forgotten". |
|___|

Description

The "#undef" directive is used to cause the preprocessor to forget the
definition of "macname". Thus, after a macro name has been forgotten, no text
substitution will be performed if that "macname" is encountered in the C
source code. Also, the result of an "#ifdef macname" referencing that macname
identifier will be a FALSE state.

Example

#ifdef DEBUG
#undef BRIEF
#endif

Conditional IF Evaluation [#if]

The conditional "#if expression" is used for conditional compilation based on
the result of an expression.

| |
| #if constant_expression |
| |
| expression - is a simple or complex expression of the |
| form permitted in the C language which will |
| evaluate to a constant. |
|___|

Description

The preprocessor will evaluate the "expression", which must evaluate to a
constant, and consider the result FALSE if it is a zero value or TRUE if it is
a non-zero value. If the expression is TRUE, the C source code up to the
corresponding "#endif" or "#else" will be processed; otherwise it will be
ignored. Conditionals may be nested 256 deep.

A constant_expression in the preprocessor can involve only integer constants
and character constants. The binary operators permitted are: "+", "-", "*",

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

"/", "%", "&", "|", "^", "<<", ">>", "==", "!=", "<", ">", "<=", ">=", and
"?:". The only unary operators permitted are: "-" and "~".

Example

#if MAXLEN > 80 /* ensure external definition does */
#define MAXLEN 80 /* not exceed our maximum limit */
#endif

Conditional test of an Identifier [#ifdef, #ifndef]

These directives will test whether a macro name has been defined or undefined.
The result will be TRUE or FALSE respectively.

| |
| #ifdef macname |
| #ifndef macname |
| |
| macname - is the symbolic name to be tested for its |
| state - defined or undefined. |
|___|

Description

If the identifier noted as "macname" has been previously defined via a
"#define macname" and not forgotten via an "#undef macname", the result of the
"#ifdef" test will be TRUE and the result of the "#ifndef" test will be FALSE.
Otherwise, the result of the "#ifdef" test will be FALSE and the result of the
"#ifndef" test will be TRUE. If the test result is TRUE, the C source code up
to the corresponding "#endif" or "#else" will be processed; otherwise it will
be ignored.

Example

#ifdef DOS6
#define MAXLEN 80
#else
#define MAXLEN 64
#endif

#ifdef DBUG
static void dsply();
#endif

Alternate Conditional Block [#else]

The "#else" directive is used to establish an alternate block of C source code
which is to be processed depending on the result of a previous conditional
analysis.

| |
| #else |
|___|

Description

The block of source between the "#else" and the "#endif" will be processed and
passed to the output stream only when the test state of the preceding "#if",
"#ifdef", or "#ifndef" was FALSE. This provides a construct similar to the "if
(expression) statement_1; else statement_2;" in the C source language.
However, in the case of the pre-processor, you can utilize this construct to
conditionally insert alternative groups of C-source code into your program
based on a single test. Multiple #else's are not accepted for a given #if;
thus, there can be only one "#else" per "#if".

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Example

#ifdef DOS6
#define MAXLEN 80
#else
#define MAXLEN 64
#endif

Conditional Block Termination [#endif]

The "#endif" directive is used to define the terminating boundary of a "#if",
"#ifdef", or "#ifndef" conditional block.

| |
| #endif |
|___|

Description

The "#endif" must be used to "close" any of the "#if" directives so the
preprocessor knows the extent of the conditional block.

Including Additional Files [#include]

This directive permits additional files to be included into the C source
stream.

| |
| #include <filespec> |
| #include "filespec" |
| #include filespec |
| |
| filespec - is the name of the C source or header file |
| to be inserted into the source stream. |
|___|

Description

This directive tells the C preprocessor to insert the file designated by
"filespec" into the source stream being compiled. The "filespec" will default
to an extension of "/H" if no extension is given. Includes may be nested 8
files deep. The "#include" is used quite frequently to merge the STDIO
standard header file and other header files into your compilation. Note that
the preprocessor will accept all three forms of the "#include"; all forms are
treated alike.

Since the preprocessor makes use of the MC standard I/O package, it will
accept filespecs of the form: "filename.ext" or "filename/ext".

Example

/* sample program to illustrate #include */
#include "stdio.h"
main()
{

int x;
x = -3 + 4 * 5 - 6; printf("%d\n",x)

}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Forcing Assembler Options [#option]

This directive is passed through to the compiler, which turns it into an
assembler instruction.

| |
| #option optname value |
| |
| optname - is the symbol name to be assigned. |
| |
| value - is the optional value to be assigned to |
| "optname" by an assembler DEFL instruction. |
|___|

Description

The "#option" directive is used to pass symbol definitions from the C source
code to the assembly phase. The "optname" must be a valid C identifier. The
optional "value" must be an integer or character constant expression. Escape
sequences may be used in the constant. The compiler translates the "#option"
directive to the form:

@_OPTNAME DEFL value

If the "value" is omitted, the DEFL statement will default to a value of
negative one (-1). This indicates TRUE to the assembler.

The #option directive is used in MC to generate a "request library search"
assembler directive. This results in an automatic search of a specified
library during the linking phase. If your application will be using functions
in either the installation library, IN/REL, or the high-level math library,
MATH/REL, you will need to add the statement(s):

#option INLIB and/or #option MATHLIB

for the installation and high-level math libraries respectively.

MC has reserved additional option names for use with the #option directive.
These are:

ARGS specifies the generation of argc and argv for use by main();

FIXBUFS specifies buffer pre-allocation for standard I/O;

MAXFILES specifies the maximum number of simultaneously open files;

REDIRECT specifies the acceptance of standard I/O redirection;

WILDCARD specifies wildcard filespec expansion;

The use of these options and "#option" in general is documented in chapter 3,
"Running the Compiler"

Including Assembler Source [#asm, #endasm]

This pair of directives permits assembler source code to be placed directly
in-line.

| |
| #asm |
| transparent assembly language code |
| #endasm |
|___|

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Description

The directive pair, "#asm" - "#endasm", can be used to insert assembly
language source code directly within the C source file. It should be used ONLY
when it is ABSOLUTELY necessary to write a routine in assembly language.
Remember that any C source code file that has imbedded assembly language code
is generally NOT portable. The more assembly language code you imbed, the less
portable your programs become and the more you have to recode when trans-
porting your program to another machine.

All input past the "#asm" directive is passed unchanged into the output file
except for preprocessor commands. Of course, since the output file is an
assembly language source file, the statements following the "#asm" should be
valid assembly source statements. The block of assembly statements is ended
with the "#endasm" directive. Please note that the "#endasm" directive must be
in column 1; otherwise the "#endasm" will not be recognized and any C source
code following the "#endasm" will be passed uncompiled to the output file.

Preprocessor commands within an "#asm"-"#endasm" construct are valid. This
leads to some beneficial side effects. For example, a pure ASM source file may
be #include'd, or "#if/#else/#endif" may be used to conditionally pass
assembler source to the compiler. Be aware that all other text between a
"#asm" - "#endasm" pair is passed unchanged to the output; no macro text re-
placements are done. "#asm" - "#endasm" may not be nested.

This escape to assembly language is provided as a convenient kludge mechanism
only. It is not intended to be the normal way of interfacing assembly language
functions to a C program. The proper way to interface to assembly language is
to place the assembly function in a separate module, perhaps even in a user
library if it is to be used frequently. This makes the program easier to
transport to other systems, as the machine-dependent code is separated from
the program source. See the Advanced Topics chapter for more information on
assembly language programming in the MC environment.

Line Number Control [#line]

The preprocessor provides the "#line" directive to be able to pass source line
number and filespec identification to the compiler.

| |
| #line linenumber {filespec} |
| |
| linenumber - is the number to be passed to the output. |
| |
| filespec - can be used to specify an optional filename. |
|___|

Description

For purposes of diagnostic error messages, it is useful to be able to report
on the physical line number of the specific source file where an error was
detected. Since the use of "#include" provides a continuous stream of
processed source to the compiler, it inserts appropriate "#line" statements
which reveal when a source file switchover has occurred. The compiler expects
"linenumber" to be the physical line number of the next source line. Where
"filespec" is passed, that line is assumed to be originating from the iden-
tified file. If "filespec" is omitted, the filespec is assumed to be the last
file identified.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Program Example - SORTSYM
The following C-source program makes use of many different C statements and
variable types - including structures and unions. The purpose of the program
is to obtain a page listing of the symbol table produced by MLINK, the linker
provided with the MRAS assembler development system. A report sorted
alphabetically by symbol name and numerically by symbol address is produced. A
preponderance of comments has been added to explain the rationale behind the
program.

/*
 * SORTSYM - sort MLINK-generated symbol table by symbol and by address
 * Version 0.1 - Last update - 09/21/85
 * Written by Richard N. Deglin
 *
 * Invoke via the syntax: sortsym <infile >outfile
 */

#include <stdio.h> /* for standard definitions */
#include <stat.h> /* to define the stat structure */

#define RECORD union record
#define RECLEN sizeof(RECORD)
#define NAMELEN 15
#define ADDRLEN 4

struct stat fdat; /* file's stat data structure */

unsigned short nrecs, /* number of symbol entries */
 fsize, /* SYM file size bytes to read */
 i; /* loop variable */

char tempname[NAMELEN], /* workspace for swapping members */
 tempaddr[ADDRLEN];

/*
 * The symbol table records generated by MLINK consist of
 * a name field (15 characters), followed by a space,
 * followed by a 4-byte hexadecimal address, terminated
 * by a new-line. Since we want to produce a listing
 * ordered by symbol name and by address, we declare a
 * union of two structures. The first structure (byname)
 * establishes the fields in the order read from the file.
 * The second structure shows the re-arrangement of fields
 * that we will create by moving the data. The union only
 * requires storage space for the largest member; thus, only
 * space for one record is actually required for the union.
 */

union record
{ struct
 { char name[NAMELEN]; /* symbol's name */
 char space; /* interstitial space */
 char addr[ADDRLEN]; /* symbol's address value */
 char newline; /* terminating new-line */
 } byname; /* first member of union record */
 struct
 { char addr[ADDRLEN]; /* symbol's address value */
 char space; /* interstitial space */
 char name[NAMELEN]; /* symbol's name */
 char newline; /* terminating new-line */
 } byaddr; /* second member of union record */
} *record, /* A pointer to type "union record". We really */
 /* need an array of records and would be able to */
 /* use something like var[COUNT]; however, since */

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

 /* we don't know how many records we need to */
 /* obtain storage for, we use a pointer and */
 /* allocate storage later with alloc() */

 base, / A pointer to the base of the symbol records */

 **prec, /* A pointer to the "array" of record pointers. */
 /* This is similar to the specification, *var[]; */
 /* however, since we don't know how big to make */
 /* the array, we use a pointer to a pointer and */
 /* dynamically allocate the array space. */

 **recp; /* an extra one for work use */

/*
 * declare the following functions as type void so that the
 * compiler will flag an error if we try to use their
 * non-existant return value.
 */

void abend(), puterr(), tabify();

/*
 * the compare() function is needed by qsort(); even though
 * MC will assume a function to return an int if not explicitly
 * stated as such, declaring all such functions is a good habit
 * to get into
 */

int compare();

/*
 * declare as externs, all of the library functions used by
 * sortsym so that the compiler knows what kind of value,
 * if any, they return.
 */

extern int fstat(), qsort(), strncmp(), fputs();
extern char *alloc(), *move();
extern unsigned short read(), write();

/*
 * this is the main function
 */
main()
/*
 * Since standard output will be used to write the processed
 * output, it will be necessary to write informative messages
 * to standard error. That's the purpose of puterr().
 */

{ puterr("\nReading...");

/*
 * fstat() will get the statistics of standard input since
 * it is referencing the file descriptor, STDIN. Note that
 * the second argument to fstat() needs to be a pointer to
 * a structure of type struct stat. Since fdat has been
 * defined to be of type struct stat, we use the "address of"
 * operator to denote a pointer_to.
 */

 if (fstat(STDIN,&fdat) == EOF) /* stat the input file (stdin) */
 exit(1); /* a return of EOF means an error */

/*
 * we use the st_size member which is the file size in bytes

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

 * to calculate the number of records to read. In that way,
 * we can read the entire file in one gulp. We also store the
 * file's size in "fsize". Note that st_size is cast to an
 * unsigned short (16-bit integer) since st_size is declared to
 * be a long in the stat header file. By the way, we subtract 1
 * from the SYM file's size because MLINK adds a new-line as the
 * last byte of the file; that's ignored by sortsym.
 */

 nrecs = (fsize = (unsigned short) fdat.st_size - 1) / RECLEN;

/*
 * Now we get a little complicated. We want to make sure that:
 * (1) since we cast the size to a short, that it really can
 * fit into a short; the first test takes care of that; (2) that
 * we can allocate enough space for the input read buffer; the
 * second test takes care of that; and (3) that we can allocate
 * enough space for the pointers to each record; that's the
 * third test. Note also that since alloc() returns a pointer to
 * type char, it is cast to a "pointer to type RECORD" for the
 * read buffer allocation, and a pointer to a pointer of type
 * RECORD for the "array of pointers to the records".
 */

 if (fdat.st_size > 0xffffL ||
 ! (base = (RECORD *) alloc(fsize)) ||
 ! (prec = (RECORD **) alloc(nrecs * sizeof(RECORD *))))
 abend("SYM file too large\n");

/*
 * The file is now read. The read() function returns the number
 * of characters actually read. If this is not fsize, then an
 * error occurred.
 */

 if (read(STDIN, (char *) base, fsize) != fsize) /* read SYM file */
 exit(1);

/*
 * We now generate the array of pointers to each record
 */

 for (i=0, record=base, recp=prec; i<nrecs; ++i)
 *recp++ = record++;

/*
 * Some status to let you know where we are
 */

 puterr("\nSorting by name...");

/*
 * Use the library function, qsort(), to sort alphabetically
 * by symbol name. Qsort() uses our comparison function, compare()
 */

 if (qsort((char *) prec, nrecs, sizeof(RECORD *), compare) == EOF)
 abend("Can't sort\n");

/*
 * Since MLINK produces a 1-across symbol table when directed to
 * a disk file, we use tabify() to convert every two out of three
 * newlines to a tab character. This produces a 3-across table
 */

 tabify();
 puterr("\nWriting by name..."); /* more status to inform you */

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

/*
 * We now start writing to the output file using stream output.
 * fputs() returns NULL if the output was successful, else EOF
 */

 if (fputs("Alphabetic sort:\n\n", stdout))
 exit(1);

/*
 * Each record is now written using block file writes.
 * Similar to read(), we compare the function's return value
 * which is the number of bytes actually written to how many
 * bytes we told it to write to detect error conditions
 */

 for (i = 0, recp = prec; i < nrecs; ++i)
 if (write(STDOUT, (char *) *recp++, RECLEN) != RECLEN)
 exit(1);

/*
 * We now swap names and addresses so that sortsym can
 * produce a table sorted by address. Pay close attention
 * to the syntax of specifying each element of the union.
 * Since "record" is a pointer to type union, we use the
 * "->" object_of operator to connect the union's name to
 * its members. Also, since its members are structures, we
 * need the dot operator to connect the structure name
 * with its member [record->byname.name]
 */

 puterr("\nReformatting...");
 for (i = 0, record = base; i < nrecs; ++i, ++record)
 { (void) move(record->byname.name, tempname, NAMELEN);
 (void) move(record->byname.addr, tempaddr, ADDRLEN);
 (void) move(tempname, record->byaddr.name, NAMELEN);
 (void) move(tempaddr, record->byaddr.addr, ADDRLEN);
 record->byaddr.space = ' ';
 }

/*
 * Some more status to inform you of where we are. We then
 * sort the array of records again with qsort() so that it
 * is ordered by address rather than alphabetically by name
 */

 puterr("\nSorting by address...");
 if (qsort((char *) prec, nrecs, sizeof(RECORD *), compare) == EOF)
 abend("Can't sort\n");

/*
 * A new order requires a new construction of the tabs to
 * construct a 3-across report format
 */

 tabify();

/*
 * We now continue writing to the output file using stream output.
 * fputs() returns NULL if the output was successful, else EOF
 */

 puterr("\nWriting by address...");
 if (fputs("\nAddress sort:\n\n", stdout))
 exit(1);

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

/*
 * Each record is again written using block file writes.
 * As before, we compare the function's return value
 * which is the number of bytes actually written to how many
 * bytes we told it to write to detect error conditions
 */

 for (i = 0, recp = prec; i < nrecs; ++i)
 if (write(STDOUT, (char *) *recp++, RECLEN) != RECLEN)
 exit(1);

/*
 * This is the informative message we were looking for! We
 * are also leaving it up to exit() to close the output file
 * since we did not open it - it was standard output!
 */

 puterr("\nDone\n");
}

/*
 * This function is used to abort the program execution due
 * to some error. It uses puterr() to write the error message.
 */

void abend(s)
 char *s;
{ puterr(s);
 exit(1);
}

/*
 * The library qsort() function requires us to provide a comparison
 * function which compares two arguments. It needs to return <0, 0,
 * or >0 based on the comparison. We use strncmp() to compare at
 * most "RECLEN" characters. We could also have used memcmp().
 */

int compare(a, b)
 char **a, **b;
{ return strncmp(*a, *b, RECLEN);
}

/*
 * This function is used to conveniently write a message to
 * standard error output since standard output is being used
 * to write the processed output
 */

void puterr(s)
 char *s;
{ (void) fputs(s, stderr);
}

/*
 * This function changes every two out of three "newlines" to
 * a tab in order to produce a three-across listing
 */

void tabify()
{ for (i = 0, recp = prec; i < nrecs; ++i, ++recp)
 (*recp)->byname.newline = (i + 1) % 3 ? '\t' : '\n';
 (*--recp)->byname.newline = '\n'; /* last one always has newline */
}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Program Example - DCAL
The next program can be used in a TRS-80 Model 4 enironment to calculate the
rotational speed of a floppy disk drive. It is based on the knowledge of the
actual processor clock speed to calculate the time it takes the floppy disk
drive to rotate from index pulse to index pulse. The program demonstrates one
form of the use of inline assembler code via the "#asm" - "#endasm" pre-
processor directives.

/*
 * DCAL - Used to calibrate the speed of a floppy disk drive
 * Version 0.1 - Last update - 11/20/85
 * Written by Roy Soltoff - derived from DCAL/BAS by Tim Mann
 *
 * Invoke via the syntax: dcal drive# or dcal
 */

#include stdio.h /* to obtain standard constants */
#include math.h /* to request a search of MATH/REL */
#option INLIB /* to request a search of IN/REL */

#define CLOCK 2.02752e6 /* documented clock speed of a
 Model 4 in slow speed */

#define SELECT 0xf4 /* FDC port for drive select */
#define COMMAND 0xf0 /* FDC port for commands */
#define STATUS COMMAND /* FDC port for status - Note the
 macro is defined with a macro */
#define RESTORE 3 /* Controller command to restore a
 disk drive to track 0 */
#define BUSY 1 /* FDC status bit for busy */
#define VAR_TSTATE 46.0 /* This is the number of t-states
 taken up by the assembler code
 in the tight timing loop */
#define FIX_TSTATE 23.0 /* This is the number of t-states
 taken up by the assembler code
 executed outside of the tight
 timing loop but in the timing */

int ds[4] = {1,2,4,8}; /* drive select conversion table */

unsigned drive, ckpulse(); /* these will be unsigned ints */

double sbar = 0.0, /* smoothed speed, init to 0 */
 rpm, /* speed at each iteration */
 lo_rpm = 400.0, /* the lowest speed detected */
 hi_rpm = 200.0; /* the hughest speed detected */

char buffer[81]; /* a general purpose input buffer */

/*
 * this is the main function - it makes use of command line
 * arguments; thus, it specifies the two arguments of main(),
 * argc [the count of arguments in argv] and argv [the array
 * of argument pointers].
 */

main(argc, argv)
 int argc; /* declare argc an int */
 char *argv[]; /* argv is a pointer to an
 array of character strings */
{
/*
 * We first test to see if dcal was invoked with the drive
 * specification on the command line. If so, then argc would
 * be equal to 2; if not, then argc would be equal to 1
 */

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

 if (argc==2)
 drive = atoi(*++argv);
 else

/*
 * otherwise, we request the user to enter the physical floppy
 * number [this is not necessarily the logical drive number if
 * the system also contains a hard drive(s). We make use of the
 * labeled statement to provide a "branch" point for the "goto".
 * You see, there is at least one place we can make use of "goto".
 * Use fputs() for output since we do not want a newline.
 * Use gets() for input as it strips the newline.
 */

 {
input: fputs("Enter floppy physical drive number <0-3> : ",stdout);
 if (!gets(buffer))
 exit(0); /* we do not want to show an error */
 drive = atoi(buffer); /* convert string entry to an int */
 }

/*
 * Test the input for validity. If not in the range 0-3, then
 * issue the request again (the "goto" will branch to "input"
 */

 if (drive > 3)
 goto input;

/*
 * The timing test needs a floppy diskette in the drive
 */

 printf("Insert a disk in floppy %d and depress return",drive);

/*
 * Index the drive select code based on the drive slot number
 * then use getchar() to accept the go ahead entry
 */
 drive = ds[drive];
 getchar();

/*
 * Tell how to "escape" from the continuous timing test.
 * This time we use puts() to add the newline character.
 */

 puts("\nDepress any key to exit timing loop");

/*
 * Model 4's vary in effective CPU speed at the high speed because
 * some have more wait states than others; thus, use the system()
 * function to issue a DOS "system (slow)" command to force the
 * use of the 2 MHz clock speed. We do not have to bother to use
 * the portable execl() or execv() functions as this program is
 * very machine dependent and certainly not portable!
 */

 system("system (slow)"); /* clock accurate at 2Megs only */

/*
 * Use outport() to issue the drive select command to the FDC
 * then restore the drive to track 0; the FDC needs a type II
 * command to be able to check index pulse status
 */

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

 outport(SELECT,drive);
 outport(COMMAND,RESTORE);

/*
 * Continue to select the drive until the BUSY flag is reset.
 * That's when we know the drive has been positioned to track 0
 */

 while (inport(STATUS) & BUSY)
 {
 outport(SELECT,drive);
 if (inkey()) /* we can poll the keyboard as a */
 exit(0); /* means of escaping if desired */
 }

/*
 * This while loop continues to check the index pulse timing
 * until such time as a keyboard character is detected
 */

 while (!inkey()) /* i.e. while no key is sensed */
 {

/*
 * The rotational speed is calculated from the equation:
 *
 * 60 seconds per minute times CPU speed in seconds
 * ---
 * (loop t-states times pulses per loop) plus fixed t-states
 */

 rpm = 60.0*CLOCK/((double)ckpulse(drive)*VAR_TSTATE+FIX_TSTATE);

/*
 * If speed this check is lower than the lowest already recorded,
 * then update the lowest stored; else if speed is greater than
 * the highest already recorded, then update the highest stored.
 */

 if (rpm < lo_rpm) lo_rpm = rpm;
 if (rpm > hi_rpm) hi_rpm = rpm;

/*
 * Calculate a "smoothed" speed by using 90 percent of our
 * previously calculated smoothed speed plus ten percent of
 * the speed detected on this check. Note that if the smoothed
 * speed has not already been established, sbar would be equal
 * to zero - its initialized value - and the smoothed speed is
 * just set equal to the speed this check.
 */

 if (!sbar)
 sbar = rpm;
 sbar = sbar * 0.9 + rpm * 0.1;

/*
 * Print out the driver's speed and the other statistics gathered.
 * The escape constant, "\x1d", is used to position the cursor
 * to the beginning of the line; thus, the printed data constantly
 * overprints itself rather than constantly scroll up the screen.
 * Note the use of the backslash, "\", to tell the MC preprocessor
 * to continue the C source line.
 */

 printf("\x1dSpeed = %3.1f-%3.1f-%3.1f -- Smoothed speed = %4.1f",\
 lo_rpm,rpm,hi_rpm,sbar);
 } /* this is the end of the while loop */

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

/*
 * Since we slowed up the normally "fast" CPU at the beginning
 * of the program, we now direct it to the "fast" mode.
 */

 system("system (fast)");

/*
 * No explicit exit() is needed as the closing brace of main()
 * always "falls through" to exit().
 */

}

/*
 * This function contains the assembler routine which performs
 * the actual timing test of the disk drive. It is inserted
 * into the source stream via the "#asm" - "endasm" preprocessor
 * directive. Note that although the identifier "STATUS" is reused
 * here, the preprocessor does not replace it with the substitution
 * string "0xf0" as it is within a "#asm" - "#endasm" block.
 * We use a C function declaration to establish the function
 * environment; we could just as well have omitted it and
 * declared a "PUBLIC CKPULSE" and a "CKPULSE:" entry label.
 */

unsigned ckpulse(drive) int drive;
{
#asm
STATUS EQU 0F0H ;FDC status port
SELECT EQU 0F4H ;Floppy drive select port
 $GA DE ;Get drive number into register_DE
 DI ;Can't interrupt timing loop
 LD BC,2.SHL.8+SELECT
L1 LD HL,0 ;Init or re-init counter to zero
L2 OUT (C),E ;Select the drive
 INC HL ;Bump counter
 IN A,(STATUS) ;Get the status
 AND 2 ;Mask the index bit
 JP Z,L2 ;Loop until it's reset
L3 OUT (C),E ;Select the drive
 INC HL ;Bump counter
 IN A,(STATUS) ;Get the status
 AND 2 ;Mask the index bit
 JP NZ,L3 ;Loop until it's set
 DJNZ L1 ;Do twice to check index to index
 EI ;Restore interrupts
#endasm

/*
 * The closing brace will provide the needed RET statement.
 * Since thus is an "unsigned" function, the returned value will
 * be in the HL register pair.
 */

}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Running the Compiler

Keyboard Refresher
Before you begin, remember that the DOS keyboard driver has a few extra
keyboard combinations to generate some of the characters needed for C. It's
probably a good idea to refresh your memory as to the key combinations.

 character key combination
 -------- ---------------
 [CLEAR-COMMA
 \ CLEAR-SLASH
] CLEAR-PERIOD
 ^ CLEAR-SEMICOLON
 _ CLEAR-ENTER
 { CLEAR-SHIFT-COMMA
 | CLEAR-SHIFT-SLASH
 } CLEAR-SHIFT-PERIOD
 ~ CLEAR-SHIFT-SEMICOLON

Operation
The MCP preprocessor takes C source code as input and generates a preprocessed
output file for the MC compiler's input. MC takes that preprocessed file as
its input and generates an assembler source file as output. The assembler file
is customized for either MISOSYS' MRAS or Microsoft's M80 assembler by means
of a compiler option. The assembler of choice will produce a relocatable
object module; this module must be combined with various modules contained in
the supplied libraries in order to produce an executable program file. This
combining process is called "linking"; it is performed by the linker (MLINK or
L80) supplied with your assembler of choice. Thus the output of the compil-
ation process must be assembled and linked with any required run-time library
module before it can be executed.

The first stage of the C language process is, of course, to create a C source
file. The editor that is a part of your assembler package may be used for this
purpose or you may use any other text editor. Your assembler manual should be
consulted for all operations concerning the editor or assembler functions.

Note for M80/L80 Usage

If you are using Microsoft's M80/L80 assembler/linker,
you will have to add the preprocessor statement:

 #include m80

in any C-source program file which includes your "main()"
function. The "#include m80" must be inserted after all
"#option" statements and before any global declarations.
The identifier, "m80bgn", is reserved.

The second stage of the C language process is the compilation of the C source
using the MCP preprocessor and MC compiler. This produces an assembly source
file.

The third stage of the C language process is to convert that assembly language
file into a relocatable object module. Your assembler does this.

The fourth stage of the C language process is to link the relocatable module
with any other relocatable modules you have developed for that program and any

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

modules needed from the supplied libraries. Your linker will perform this
step.

Finally, your last stage is to test and debug your work. This generally
requires a cycling through the above stages until you are satisfied that your
program behaves as you intended.

The JCL procedure shown below can automate the stages from compilation through
linking. However, if you want to take direct control of each stage of the
operation, you can invoke MCP and MC directly (as well as your assembler and
linker).

Using Job Control Language
A Job Control Language (JCL) file, "MC/JCL", presents the preprocessing,
compilation, assembly, and linking as a job stream to the operating system.
The JCL procedure requires minimal entry of commands by the programmer to
create an executable CMD file. It provides eight options that are passed to
the procedure in the JCL invocation. The JCL is invoked via the command:

 DO MC (N=progname{,parm}{,parm}{,...})

 progname - Specifies the name of the C source file to
 be compiled and assembled into a CMD file.

 a - Specifies that the /ASM or /MAC file is to
 be assembled following a successful
 compilation.

 c - Specifies that the input C source file is
 to be preprocessed and compiled (default).

 cc - Specifies that the /ASM or /MAC file will
 have the C source imbedded as comments.

 d - Specifies the drive spec of the disk drive
 for all file I/O (defaults to d=1).

 k - Specifies that the intermediate files
 (/INT, /ASM or /MAC, and /REL) should be
 deleted after the /CMD file is generated.

 l - Specifies that the /REL module is to be
 linked with the needed libraries (default).

 list - Specifies that the assembly phase should
 produce a listing.

 o - Specifies that the /ASM or /MAC file is to
 be optimized prior to assembly.

The beginning user need only be concerned with the "N=progname" parameter as
this is the means to identify the name of your C source program. The optional
parameters are useful to the more knowledgable and experienced user.

If you want to compile a program called "myprog" which resides on logical
drive 1 and generate the finished CMD file with only one statement, then the
command:

DO MC (N=MYPROG)

lets you sit back and relax while the machine does all of the work. If the
/CCC file exists on another drive, use the "d" parameter.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Invoking the MCP Preprocessor
The preprocessor is invoked via the command:

 MCP filespec {switch} {switch...}

 filespec - A file specification for the input file.
 Only one filespec may be passed.

 switch - Represents an optional preprocessor switch.
 These switches are preceded with either a
 plus sign (+ = ON) or a minus sign
 (- = OFF). The usable switches follow.

 +dIDEN[=s] - Specifies the definition of a macro with
 an optional replacement text string

 +o[=spec] - Specifies the generation of output and the
 output file specification.

 -o - Specifies that no output file should be
 written.

 -p - Designates that the display should not stop
 when error messages are emitted.

 +t - Specifies the output of an untokenized text
 file purely for debugging macros.

 +uIDEN - Undefines the designated identifier.

The "filespec" may optionally include a file extension; however, if it is
omitted, "/CCC" will be assumed. The drivespec is optional. It is recommended
that you establish your C source files with the "CCC" file extension for
uniformity and standardization.

Switches:

"Switch" options are specified by a plus "+" or minus "-" sign followed by the
option letter and any additional information needed by the switch(es).

+dIDENTIFIER[=TEXT]

The plus "dee" switch will define a macro with optional replacement text from
the command line. If text is not given, the macro is defined as "1". The minus
"dee" syntax, "-d" is an alternative form. A parameterized macro definition is
acceptable.

+o[=][FILE-OR-PARTSPEC]

This plus "oh" switch instructs MCP to write output to the named file. If a
partspec is given, the output filespec is constructed from the name of the
main input file plus the partspec. The output file's extension will be forced
to "/TOK".

-o

The minus "oh" switch specifies that no output file is to be written.

-p

When this switch is ON (+p), the preprocessor will stop when any errors are
found and displayed. Any key except BREAK will continue compilation. BREAK
will abort the execution of the preprocessor at any time if this switch is on.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

If MCP was invoked from JCL, the JCL will also be aborted. This switch
defaults to ON. If you wish to turn OFF the pause facility, enter "-p".

+t

The plus "tee" switch specifies that the output file generated by the
preprocessor will be a pure text file. The normal type of file generated for
input to the compiler phase is a tokenized file. Thus, the text output may be
useful only for checking your macro expansions for correctness.

+uIDENTIFIER

The plus "you" switch instructs MCP to ignore the first "#define" for this
macro identifier encountered in the input stream. The minus "you" syntax, "-u"
is an alternative form.

Invoking the MC Compiler
MC is invoked to compile a preprocessed C source intermediate file. The
command syntax is as follows:

 MC filespec {switch} {switch...}

 filespec - A file specification for the input file.
 Only one filespec may be passed.

 switch - Represents an optional compiler switch(es)
 These switches are preceded with either a
 plus sign (+ = on) or a minus sign
 (- = off). The usable switches follow.

 +c - Specifies that the C source code will be
 written to the output file as comments.

 +f - Specifies the FLOAT option for using the
 single precision floating point functions.

 +m - Designates that the output should be M80
 compatible.

 +o=spec - Designates that output should be written to
 the file identified.

 -o - Designates that no output file should be
 written.

 -p - Designates that the display should not stop
when error messages are emitted.

The compiler is invoked by entering a command line such as:

MC CPROGRAM:2

which compiles the preprocessed C source file, "CPROGRAM/TOK:2", and generates
the output file, "CPROGRAM/ASM", on drive 2. The compiler will generate an
MRAS compatible output file.

The switches allow you to control certain features of the compiler. The
simplest compilation command would simply be "MC PROGNAME" which compiles the
file, "PROGNAME/TOK", and generates the output file, "PROGNAME/ASM".

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

File Specifications
There may be only one input file specification given on the command line. No
extension should be given for a source file; the default extension "/TOK" is
assumed.

The output file specification defaults to the same name as the input file
specified. MC will append the file extension "/ASM" (or "/MAC" when the +M
switch is specified) to this name. The drive specifier, if any, of the input
filespec is used as the drive specifier of the output file. The drive
specifier should be given if the output file must be written to the same drive
as the input file. The OUTPUT option may be used to specify a different file
name or change the destination drive number. Assembler source code output may
be suppressed by turning off the OUTPUT option. This can be helpful for
quickly checking syntax without generating an output file.

Compiler Switch Options
Compiler option switches are turned on or off by a '+' or '-', respectively,
followed by the name of the switch. The compiler regards any command line
argument not beginning with a plus or minus as the input file specification.
Only the first letter of the switch is examined, so partial spelling (or
misspelling) is accepted. Certain switches have operands which are specified
by following the option name with '=' and the operand. For instance,
"+o=myfile:3" will cause the output by the compiler to be written to
"MYFILE/ASM:3" instead of the filespec that would have been the default.

Comment

This switch controls whether the preprocessed C source code will be written to
the assembler output file as comments. The normal default is OFF. The C-source
appearing as comments may be instrumental in your understanding the compiler
output as it generates a minimally commented assembly source program. If you
do need these "comments", then specify "+c".

Float

A compiler option has been included which allows you to change the default
floating point mode of the compiler. Use of the "+f" command line option will
force the compiler to do float (32-bit) arithmetic in single precision mode,
rather than in double mode. Also, this forces floating point constants to be
interpreted in single precision. This results in faster operation with some
loss of accuracy. Note that this is an MC extension to the K&R standard, and
is not portable! The default mode of the compiler is "-f". Please consult
Chapter 5, "Advanced Topics" before you attempt to use this option as there is
a considerable difference in the way float arguments to functions are
automatically casted depending on "+f" vs "-f".

+M - Assembler Option Switch

This switch will cause the compiler to generate code suitable for the
Microsoft M80 relocatable assembler. The default file extension applied to the
output file will be "/MAC". Note that throughout the remainder of this
chapter, the output assembly file may be referred to as /ASM.

Output=spec

This switch controls the assembly file output of the compiler. If the switch
is OFF (-o), no output file is generated. However, if it is ON, but no SPEC is
given (+o), MC adds the file extension "/ASM" or "/MAC" to the name of the
input file in order to create the output file specification. When a file
specification is given for "spec", it becomes the name given to the output
file. A default extension of "/ASM" (or "/MAC") is inserted if no extension is
given. If only a drive specification (":D") is given, the output file is
written to that drive, with the same file name as the input file. This switch
defaults to ON with no "spec" (+o).

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Pause

When this switch is ON (+p), the compiler will stop when any errors are found
and displayed. Any key except BREAK will continue compilation. BREAK will
abort the execution of the compiler at any time if this switch is ON. If MC
was invoked from JCL, the JCL will also be aborted. This switch defaults to
ON. If you wish to turn OFF the pause facility, enter "-p".

Creating an Executable CMD File
Once the compiler has compiled your program into assembly language, you next
need to use the MRAS or M80 macro assembler to create the relocatable (REL)
object file. In order to provide control for certain MC library options, the
proper initialization in the CMD file, and ensure that all necessary runtime
routines are linked with your program, a special assembler file, MC/ASM (MC/H
for M80 use), has been provided.

The MC/ASM file that is provided with your compiler package is generic to the
environment of the operating system. The MC/ASM file is the file that is
assembled in concert with your source file which contains main(). MC/ASM also
includes special requests to direct the linker to search the libraries for
needed modules during the link session.

For a great deal of your programs, the only MC runtime routines needed will be
located in the LIBC library. Since all C programs need some of the routines in
LIBC/REL, that library is ALWAYS requested (as well as LIBA). The high-level
math library, MATH/REL, will be searched if your program requested it via an
"#option MATHLIB" or "#include math" compiler macro.

Some useful routines are stored in the installation library, IN/REL. This
library is not normally searched in order to save you linker search time when
you need not refer to the IN/REL modules. However, it is very easy to force an
automatic search of the installation library. All you need to do is specify an
"#option INLIB" compiler macro in your C source program (similar to "#option
MATHLIB"). For example,

#option INLIB
main()
{

int dot;
for (dot=0, dot < 128, dot++) set(dot, 0);

}

the #option INLIB statement will force a search of the installation library
during the link session to resolve linkage to the set() function.

If you are adding your own relocatable library, name it "USERLIB/REL". To
force an automatic search of it, add this statement to your C program:

#option USERLIB

Compile-Time Directives
Compile-time directives are used to convey information from your source file
to the various stages of the program generation. These directives are
initiated via the "#option" prefix. The syntax is as follows:

#option <optname> {value}

The "#option" directive is used to pass symbol definitions from the MC source
code to the assembly phase of main() and the subsequent link phase. The
<optname> must be a valid C identifier. Value must be a numeric or character
constant or constant expression. Escape sequences may be used in the constant.
The compiler translates the "#option" directive to the form:

@_OPTNAME DEFL value

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

The "value" is optional (as shown above by apearing within braces). If the
value is omitted, the DEFL statement will default to a value of negative one
(-1). This indicates TRUE to the assembler.

The "#option" directive is used in MC to invoke an automatic search of the
installation library, IN/REL, or the high-level floating point math library,
MATH/REL. The automatic search is specified by the generation of "request
library search" special link items in the resulting relocatable object module.
This special link item is used by the linker. If your application will be
using functions in either library, you will need to add the statement(s):

#option MATHLIB
#option INLIB

for the high-level floating point math and installation libraries
respectively.

MC has reserved additional option names for use with the #option directive.
These are: args, fixbufs, maxfiles, redirect, and wildcard. The following
paragraphs describe their use.

ARGS

This is used to specify that your program {will}/{will NOT} be using command
line arguments (argc, argv). MC will suppress the run-time code normally used
to process arguments thus reducing the size of your CMD program. ARGS defaults
to ON.

FIXBUFS

This is used to specify pre-allocation of buffers for standard I/O. If your
program does not need dynamic memory allocation, then by specifying this
option, you will inhibit the file I/O system provided in the standard library
from automatically using dynamic allocation. This will result in a smaller
executable program file. FIXBUFS defaults to OFF

MAXFILES

This is used to specify the maximum number of concurrently opened files
permitted. The file I/O system provided in MC defaults to a maximum of 13;
three additional are always provided which are needed for the standard files.
Each requires memory overhead for storage. This storage space will normally be
acquired dynamically (via alloc) and thus obtained only when files are opened;
however, if FIXBUFS is ON, the storage space is always reserved at program
execution regardless of whether files are opened or not. If your memory
resources are strained and you are using FIXBUFS, then you may want to pay
close attention to the maximum number of concurrently open files needed and
set MAXFILES appropriately. MAXFILES defaults to 13.

REDIRECT

This is used to specify that your program {will}/{will NOT} be using standard
I/O redirection (>, >>, <, #). MC will suppress the run-time code used to
process I/O redirection thus reducing the size of your program. REDIRECT
defaults to ON.

WILDCARD

This is used to specify that the resulting executable command program will be
using command line wildcard filespec expansion; thus, the library routines
needed to satisfy that request will be included during the link session. The
use of this option is detailed in Chapter 5, Advanced Topics. WILDCARD
defaults to OFF.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Assembly of the ASM file
The assembly file output by the compiler is converted to a relocatable object
module by means of your assembler. If the file was a standalone module (not to
be linked with other separately compiled modules) containing the main()
function and all other user-programmed funcitons needed for main(), then a
sample syntax for the invocation of MRAS or M80 would be:

MRAS MC +I=progname +o=progname -nl
M80 progname=progname

For MRAS use, this would assemble the file "MC/ASM" while it included
"progname/ASM" into the source stream. For M80 use, it would assemble the
source file "progname/MAC" while it included the file "MC/H" into the source
stream. Note that the MC/H header file was inserted into the C-source stream
by your explicit "#include m80" preprocessor statement. Using either
assembler, the assembly would generate the relocatable object file named
"progname/REL".

If you are developing an executable program which is composed of separately
compiled modules, the procedure for accomplishing the mechanics of the
compile, assemble, and link phases is covered in Chapter 5, Advanced Topics.

Linking the relocatable object module
The object module is linked with other modules supplied in the libraries by
means of the linker supplied with your assembler. Sample syntax for linking
the abovementioned module with your linker would be:

MLINK progname +n=progname -e
L80 progname-n,progname,-e:M80BGN

L80 users please note the "M80BGN" operand on the "-e:name" linker switch.
This is mandatory! It is used to specify the transfer address of the resulting
executable command file. L80 users also note that the "progname-n" output file
specification must be the first specification on the argument line.

If you are developing an executable program which is composed of separately
compiled modules, the procedure for accomplishing the mechanics of the
compile, assemble, and link phases is covered in Chapter 5, Advanced Topics.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Function Libraries

General Information
The libraries provided with the MC compiler are a collection of useful and
powerful functions, which allow the user to interface with the world external
to the program without having to know the specifics of the particular
environment that the program is running in. Wherever possible, each function
adheres to the standards of UNIX System V; the "SYSTEM V Interface Definition"
published by AT&T has served as the reference thereof.

MC provides collections of common functions in four separate libraries:
LIBA/REL, LIBC/REL, MATH/REL, and IN/REL; commonly called LIBA, LIBC, MATHLIB,
and INLIB respectively. The functions are stored as relocatable object
modules. Each file is thusly termed a relocatable object module library. The
specific relocation format used is that documented by Microsoft, Digital
Research, and MISOSYS in their respective assembler development systems.

LIBA contains very low-level functions invoked by the compiler to perform
basic operations such as add, subtract, multiply, divide; logic operations
(or, and, exclusive or), stack access operations, and others. The functions
included in LIBA are better termed routines. They are, in general, not
available to the C-language programmer but are incorporated by the compiler
into the compiled output as needed by the program being compiled.

LIBC contains most of the functions accessible to the C programmer. This
library constitutes the "standard Library" functions as noted by most texts on
the C language. You will find all of the functions associated with stream I/O
and block device I/O. You will find the bulk of the character test operations,
the character manipulation operations, the memory access operations, the
utility operations, as well as print formatting for all variable types except
floats.

The MATHLIB library includes all of the high-level floating point and double
precision functions such as trigonometric operations, logarithmic operations,
random number generation, and a complete print formatter for floats and
doubles. In order to access any of the functions in this library, your source
program must include the statement:

#option MATHLIB

In fact, if you are going to utilize any float or double, you need to specify
this preprocessor directive. Most of the functions contained in MATHLIB must
be declared prior to their use to inform the compiler of their "type. It's
very easy to insert a bug into a program by neglecting to advise the compiler
that a function returns a double such as with the declarative:

extern double exp();

The high-level math functions provide error diagnostics per System V
standards. These standards dictate specific error number symbolic names as
well as an exception structure for the data handling of error fixup. System V
documents a header file, "math.h", which includes all of the symbolic names
associated with error handling, the definition of the exception structure, and
a group of mathematical constants defined as symbolic names. The "math.h"
header file included with MC also adds the declarations of all functions
accessible to you in MATHLIB. By adding the preprocessor directive:

#include <math.h> or #include "math.h" or #include math

in all of your modules which need access to MATHLIB, you need not worry about
function declarations. You will also have the symbolic names available to you.
The "math" header file also adds the "#option MATHLIB" directive so you won't
have to bother with it.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

The final library included with MC is INLIB. This library contains nonstandard
C functions that are implementation specific. If you desire to make your
program portable to all System V compilers at the source level, then do not
utilize any of these functions. However, if you intend to produce a locally
used machine dependent program, then INLIB will provide you access to pixel
graphic functions for plotting, string manipulations similar to BASIC, and
special character device operations such as keyboard scanning and video cursor
manipulation. The functions included in INLIB are automatically accessible to
your program when you include the preprocessor directive:

#option INLIB

within your program's source.

The pages that follow in this chapter provide detailed information on each
function available to you. The chapter has been arranged purely in
alphabetical order so that it may serve as a useful reference tool. Almost
every function will appear on a separate page. The library where the function
is stored is listed within parentheses appended to the function's name.

To assist you in your search for a function that satisfies a particular need,
the following classifications may be of assistance.

Stream I/O functions:

addext checkc clearerr cleareof fclose
fdopen fdown feof ferror fflush
fgetc fgets fileno fopen fprintf
fpup fputc fputs fread freopen
fscanf fseek ftell fwrite genspec
getc getchar gets getw inkey
ioctl isatty printf putc putchar
puts putw rewind scanf ungetc
ungetch unlink

Block I/O functions:

addext close creat dup dup2
fcntl fdown fileno fpup fstat
genspec gtty ioctl isatty lseek
open read seek stty tell
ttyname write

Integer (int, long) math functions

abs atoi btoi itoa itob
itoo itou itox labs lpower
ltoa ltob ltoo ltou ltox
otoi otol rand srand xtoi
xtol

Single precision (float) math functions

fabsf fatn fcos fexp ffix
fint flog fraise frnd fseed
fsin fsgn fsqr ftan ftoa

Double precision (double) math functions

acos asin atan atan2 atod
ceil cos cosh _ddv2 _ddv230
dfix dint dsgn dtoa exp
fabs floor fmod frexp hypot
ldexp log log10 matherr modf
pow sin sinh sqrt tan
tanh

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Environment information functions

asctime ctime curpos cursor freemem
inkey inport isalnum isalpha isascii
isbdigit iscntrl isdigit islower isodigit
isprint ispunct isspace isupper isxdigit
localtime outport perror qsort sysdate
systime sys_errlist time tolower toupper
_xlate

Memory access functions:

alloc brk calloc fill free
freemem malloc memccpy memchr memcmp
memcpy memset move realloc sbrk
swab zero

Plotting functions:

box circle line pixel ploc
pmode point reset set

Program control operations

abort call cmdi execl execovl
execv exit _exit longjmp matherr
option setjmp system unlink

String handling functions:

atod atof atoi atol btoi
dtoa ftoa index itoa itob
itoo itou itox ltoa ltob
ltoo ltou ltox otoi otol
qsort rindex sprintf sscanf strcat
strchr strcpy strcspn strepl strept
strfind stright strleft strlen strmid
strncat strncmp strncpy strpbrk strrchr
strspn xtoi xtol

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

acos(MATH) acos(MATH)

This function can be used to abort the executing program and optionally
perform a "core dump".

void abort()

Description

Abort() will first attempt to close all open files, if possible. Abort()
then issues the message:

Program aborted via abort at X'xxxx'

where "xxxx" is the program counter address when abort() was called. If the
Operating System's Job Log device (*JL) is active, a formatted memory dump
will be written to the job log device. The dump will include all addresses
from the start of the executing program through the highest address used by
the program. This will be in the format:

zzzz: xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx aaaaaaaa aaaaaaaa

where "zzzz" designates the origin of a 16-byte region, "xxxx..." indicates
the contents of the region in hexadecimal, and "aaaa..." indicates the
contents of the region in ASCII; characters outside the range 0x20 through
0x7f will be converted to a period (0x2b).

Return Code

There is no return from abort().

Example

main()
{

/* notice that puts() adds a '\n' character */
puts("Catastropic failure in framus correctus");

/* notice that fputs() does not add a '\n' character */
fputs("\tDo you wish to abort <y,n> ? ",stdout);

if (tolower(getchar()) == 'y')
abort();

else
puts("You chose not to abort...");

}

Try the example after issuing the DOS command:

ROUTE *JL to *DO

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

abs(LIBC) abs(LIBC)

This function is used to obtain the absolute value of an integer.

int abs(ival);
int ival;

ival is the integer whose absolute value is to be determined.

Description:

The abs() function returns the absolute value of its integer argument (i.e.
abs(x) = x; abs(-x) = x;).

Example:

#include stdio.h
char inbuf[81];
main()
{
 puts("Enter your number: EOF to exit");
 while (TRUE)
 {
 if (!fgets(inbuf,80,stdin))
 break;
 printf("Absolute value of your number is %d\n",abs(atoi(inbuf)));
 }
}

See also: fabs(), fabsf(), labs()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

acos(MATH) acos(MATH)

This function is used to obtain the double precision Arc cosine.

#include <math.h>
double acos(xval);

double xval;

xval is the double whose Arc cos is desired.

Description

The Arc cos function obtains the double precision principal value of its
argument. The range of the result is 0 to PI. The Arc cos is calculated
from the relationship:

Arc cos(x) = PI/2 + Arc sin(-x)

Return Code

If the magnitude of the argument to acos() is greater than one, zero is
returned and errno is set to EDOM. In addition, a message indicating
DOMAIN error is printed on the standard error output. This error-handling
procedure may be changed with the function, matherr().

Example

#include stdio
#include math
int i; char inbuf[81]; double d1,d2;
main()
{ puts("Enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 errno=0;
 d1 = acos(d2=atod(inbuf));
 printf("d1 = %g; d2 = %g; errno = %d\n",d1,d2,errno);
 }
}
matherr(x) struct exception *x;
{ fprintf(stderr,"Type %d function error in %s...\n",x->type,x->name);
 fprintf(stderr," Args = %g,%g: ",x->arg1,x->arg2);
 return 0;
}

Enter your number: EOF to exit
0.9 |d1 = d2 0.9; = 0.451027; errno = 0
1.5 |Type 1 function error in acos...
 | Args = 1.5,0: argument domain error
 |d1 = d2 1.5; = 0; errno = 70

See also: asin(), atan(), atan2(), errno

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

addext(IN) addext(IN)

This function adds a default extension to a file specification.

char *addext(filespec, defextn);
char *filespec, *defextn;

filespec the file specification to which the default should be added.

defextn the extension to add if filespec does not contain an extension.

Description

Addext is used to add a default file extension to a file specification if
the file specification in question does not already contain an extension.
It is useful for automatically adding standard extensions to files (i.e.
CCC, CMD, TXT, ...) to minimize the input necessary in command lines.

Return Code

A pointer to the filespec is returned.

Warnings

The filespec argument must be a character array of at least dimension 15 to
avoid writing beyond the end of the string.

See also: genspec()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

alloc(LIBC) alloc(LIBC)

This function is used to allocate a memory block.

char *alloc (nbytes);
unsigned int nbytes;

nbytes unsigned number of bytes needed.

Description

Alloc() is used to dynamically allocate memory during program execution.
The complementary function, free(), is used to release memory allocated
through alloc(). Alloc() may be used to get table or buffer space when the
amount of memory space available is unknown, or when the program needs to
dynamically allocate space for an array.

Return Code

If a memory block has been allocated, the value returned is a pointer to
the memory block (pointer to char). If insufficient memory is available to
satisfy the allocation, alloc() will return NULL (0).

Warnings

The program must not access memory outside of the area allocated. File
access routines use alloc() and free() to establish and release File
Control Areas (FCA's). The programmer cannot assume that memory not
allocated is free for use, since later file opens may cause memory
overlays. It is advised that the programmer always use the supplied dynamic
allocation functions for memory accessing.

Example

symtbsz -= symtbsz % symsiz; /* make integral */

if ((symtab = alloc(symtbsz)) == NULL)
abend("not enough memory");

glbptr = startglb = symtab;

See also: brk(), calloc(), malloc(), realloc(), and sbrk()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

asctime (LIBC) asctime(LIBC)

This function is used to obtain the 26-character time string.

#include <time.h>
char *asctime(tm);

struct tm *tm

tm is a pointer to the structure which contains the broken down time.

Description

Asctime() takes the broken-down time data contained in the structure
pointed to by the argument and converts it to an ASCII string of the form:

Tue Oct 22 10:03:10 1985\n\0

Return Code

A pointer to the resulting string is returned.

Warning

Note that the string itself is a local static and may be valid only
immediately following the function call.

Example

#include "time.h"
char *ctime(clock) long *clock;
{

struct tm *localtime();
char *asctime();

return asctime(localtime(clock));
}

See also: ctime(), localtime(), time()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

asin (MATH) asin (MATH)

This function is used to obtain the double precision Arc sine.

#include <math.h>
double asin(xval);

double xval;

xval is the double whose Arc sine is desired.

Description

The Arc sin function obtains the double precision principal value of its
argument. The range of the result is -PI/2 to +PI/2. The Arc sin is
calculated from the relationship:

Arc sin(x) = atan2(x,(sqrt(-x*x+1.0)))

Return Code

If the magnitude of the argument to asin() is greater than one, zero is
returned and errno is set to EDOM. In addition, a message indicating DOMAIN
error is printed on the standard error output. This error-handling
procedure may be changed with the function, matherr().

Example

#include stdio.h
#include math.h
int i; char inbuf[81]; double d1,d2;
main()
{ puts("Enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 errno=0;
 d1 = asin(d2=atod(inbuf));
 printf("d1 = %g; d2 = %g; errno = %d\n",d1,d2,errno);
 }
}
matherr(x) struct exception *x;
{ fprintf(stderr,"Type %d function error in %s...\n",x->type,x->name);
 fprintf(stderr," Args = %g,%g: ",x->arg1,x->arg2);
 return 0;
}

Enter your number: EOF to exit
-.9 |d1 = -1.11977; d2 = -0.9; errno = 0
-1.5 |Type 1 function error in asin...
 | Args = -1.5,0: argument domain error
 |d1 = 0; d2 = -1.5; errno = 70

See also: acos(), atan(), atan2(), sin(), matherr()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

atan(MATH); atan2(MATH) atan(MATH); atan2(MATH)

These functions are used to obtain the double precision Arc tangent.

#include <math.h>
double atan(xval);

double xval;

#include <math.h>
double atan2(yval, xval);

double xval, yval;

xval, yval is the double whose arc tangent is to be determined.

Description

The Arc tan function obtains the double precision principal value of its
argument. The range of the result is -PI/2 to +PI/2. The Arc tan2 function
uses the signs of both its arguments to determine the quadrant of the
return value which will be in the range -PI to +PI. The atan() function is
derived according to the algorithm given in SOFTWARE MANUAL FOR THE
ELEMENTARY FUNCTIONS by William J. Cody, Jr. and William Waite.

Return Code

If both arguments of atan2() are zero, zero is returned and errno is set to
EDOM. In addition, a message indicating DOMAIN error is written to standard
error. This error-handling procedure may be changed with the function,
matherr().

Example

#include stdio
#include math
int i; char inbuf[81]; double d1,d2;
main()
{ puts("Enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 errno=0;
 d1 = atan(d2=atod(inbuf));
 printf("d1 = %g; d2 = %g; errno = %d\n",d1,d2,errno);
 }
}
Enter your number: EOF to exit
1e15 |d1 = 1.5708; d2 = 1e+15; errno = 0
-2.5 |d1 = -1.19029; d2 = -2.5; errno = 0
0 |d1 = 0; d2 = 0; errno = 0

See also: acos(), asin(), tan(), errno, matherr()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

atod(MATH); atoi(LIBC); atof(MATH); atol(LIBC); ato?(MATH)

These functions are used to convert character strings of digits to their
numeric machine value.

#include <math.h>
double atod(string);
float atof(string);

char *string;

int atoi(string);
long atol(string);

char *string;

string is a string containing character digits valid for the number
type.

Description

These functions are used to convert ASCII strings to their numeric value.
Functions atoi() and atol() convert strings of decimal digits 0-9 to an int
or long int. The converted integers will be modulo 65536 or modulo
4294967296 respectively. Conversion stops as soon as a character is
detected which is not in the valid range. Functions atof() and atod()
convert a string consisting of an optional sign followed by an optional
sequence of decimal digits followed by an optional decimal point followed
by an optional sequence of decimal digits followed by an optional exponent
specifier ['e', 'E', 'd', or 'D'] followed by an optional exponent sign
followed by an optional string of decimal digits to a float or a double
respectively. The string cannot exceed 32 digits decimal digits!

Example

#include stdio
#include math
char inbuf[81], outbuf[81]; double dnum;
main()
{ puts("Enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 dnum=atod(inbuf);
 fputs("Your number is: ",stdout); puts(dtoa(dnum,outbuf));
 }
}

Enter your number: EOF to exit
1 |Your number is: 1.000000E+00
13.476 |Your number is: 1.347600E+01
-456.218e19 |Your number is: -4.562180E+21

See also: sscanf(), dtoa(), ftoa(), itoa(), ltoa()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

box(IN) box(IN)

This function is used to plot a rectangle.

int box(funcod, x1, y1, x2, y2);
int funcod; x1, y1, x2, y2;

funcod an operation code to set (1) or reset (0) the pixels involved in
the geometric plot.

x1,y1 the coordinate of the northwest corner of the rectangle.

x2,y2 the coordinate of the southeast corner of the rectangle

Description

The "box()" function will plot a rectangle around the diagonal specified by
the coordinate point pairs, (x1,y1) and (x2,y2). If the coordinates specify
either equal values of x (x1 = x2) or equal values of y (y1 = y2), then the
rectangle will diminish to a line. The rectangle will collapse to a point
if both x1=x2 and y1=y2.

Box() supports virtual points which means that your plot does NOT have to
limit itself to the CRT image area. For example, a "box(1,10,20,190,25);"
function describes a rectangle partially out of the CRT image. In this
example, only a portion of a rectangle will be plotted.

Return Code

A minus one (-1) indicates that the coordinate points (x1,y1), (x2,y2), or
a portion of any plot is out of range (i.e. virtual and does not appear in
the CRT image). A minus three (-3) will be returned if the function code
passed is invalid (not in the range <0-1>.

Example

#option INLIB
#define X 79 /* 80 x 24 screen size */
#define Y 35
#define DRAW 1
int x1, y1, x2, y2;

main()
{

for (x1=X,y1=Y,x2=X+1,y2=Y+1; x1 >= 0; x1--,y1--,x2++,y2++)
box(DRAW, x1, y1, x2, y2);

}

See also: circle(), line(), pixel(), ploc(), pmode(), point(), reset(),
set()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

brk(LIBC) brk(LIBC)

This function is used to set the program break address.

int brk(address);
char *address;

address is to be the lowest machine address not used by the program.

Description

The lowest memory address not used by the program (exclusive of the program
stack) is termed the "break". This function will set the program break to
"address". One greater than the highest address used by your program for
program code and static variable storage is defined as "$PROGEND". One
greater than the highest memory address allocated is defined as $LOMEM.
$LOMEM is initially equal to $PROGEND. MC maintains a pointer to this
location called $FREEP. The break argument, "address", may not be below
$FREEP nor greater than (STACK_POINTER less 1024 bytes).

Warning

NEVER use brk() with any dynamic allocation routine such as alloc(),
calloc(), free(), or malloc() or with the standard I/O package without
specifying "#option FIXBUFS".

Return Code

Zero is returned if the break could be set while a -1 is returned if the
break exceeded the bounds of the available memory and thus could not be
set.

Example

#include <stdio.h>
#option FIXBUFS
char *brk(), sbrk();
main()
{ char *membuf, *lomem;

lomem = sbrk(0); /* Get current value of $LOMEM */
printf("$LOMEM pointer = X'%04x'\n",lomem);
membuf=sbrk(1024); /* grab a 1K buffer */
printf("$LOMEM pointer = X'%04x'\n",sbrk(0));
if (!brk(lomem)) printf("$LOMEM pointer = X'%04x'\n",lomem);
else puts("Brk error");

}

$LOMEM pointer = X'54cf'
$LOMEM pointer = X'58cf'
$LOMEM pointer = X'54cf'

See also: alloc(), calloc(), free(), malloc(), sbrk()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

btoi (LIBC) btoi(LIBC)

This function is used to convert a character string of binary digits to its
integer value.

int btoi(string);
char *string;

string is a string containing binary digits <0-1>

Description

This C function obtains the machine value of a string of binary digits in
character form (i.e. composed of nothing but zeroes and ones). Left
truncation of the integer value takes place if an excess number of digits
is present (i.e. ival=btoi("10000000000000001"); would result in the
integer value of 1 decimal). Conversion stops as soon as the first
character not in the valid range is detected.

Example

#include stdio.h
char inbuf[81]; int ival;
main()
{

puts("Enter your binary number: EOF to exit");
while (TRUE)

 {
if (!gets(inbuf)) break;
ival=btoi(inbuf);
printf("Your number in decimal is: %d\n",ival);

}
}

Enter your binary number: EOF to exit

10110101 |Your number in decimal is: 181
11111111 |Your number in decimal is: 255
100000001 |Your number in decimal is: 257
10000000000000001 |Your number in decimal is: 1

See also: atoi(), atol(), otoi(), otol(), xtoi(), xtol()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

call (IN) call (IN)

This is a generalized machine specific assembly language and system SVC
interface routine.

#include <z80regs.h>
int call(address, reg);

char *address; union REGS *reg;

address is the machine address or SVC to call.

reg is a pointer to a structure containing the machine's register
contents.

Description

A generalized assembly language interface routine, call(), is available in
the installation library. "Reg" is either an integer array of dimension 6
which should contain the quantities you want placed into the register pairs
AF, BC, DE, HL, IX, and IY for regs[0]-regs[5] respectively, prior to
calling the routine at location "address", or "reg" is a pointer to a
structure which contains the quantities to be placed into the machine's
registers. The "reg" array or structure will be loaded with the register
contents that existed upon return from the called routine.

On SuperVisor Call accessible systems, an "address" value of less than 256
will be interpreted as an SVC reference in lieu of a CALL address. The
call() function will then use the "address" value as the SVC number.

A union which defines the word and byte structures for the Z-80 register
set is provided in the z80regs header file. Use of the union is demon-
strated extensively in the example below.

Return Code

The return code will be FALSE (0) if the machine's Z-flag is set upon
return from the called routine; otherwise, the return code is TRUE (1).

Example

A rather long example which illustrates the use of the REGS union in
various invocations of call() appears on the following page. Note that the
example is designed for an SVC-driven operating system.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

call (IN) call (IN)

#include <z80regs.h>
#define CKDRV 33
#define DATE 18
#define DODIR 34
#define DSPLY 10
#define TIME 19
#option INLIB

int rc,d;
char *ptr, buf[100];
union REGS reg;

main()
{

puts("Test of call()...");
for (d=0; d<8; ++d)
{

reg.C=d; /* Set C to the drive number */
rc=call(CKDRV,®);
printf("Drive %d %s%s\n",d,rc?"not ":"","ready");
if (reg.F&1) puts("Drive is write protected");

}
wait();
dt(DATE,"Date");
dt(TIME,"Time");
reg.HL="This is a message\n";
call(DSPLY,®);
wait();
reg.B=4; reg.C=0; /* DODIR; function=4, drive=0 */
reg.HL=buf;
call(DODIR,®);
strmid(buf+80,buf,0,8);
strmid(buf+90,buf,8,8);
printf("%s %s free: %dK\n\n",buf+80,buf+90,buf[18]+(buf[19]<<8));
reg.BC=0; /* DODIR; function=0, drive=0 */
call(DODIR,®);
wait();

}

wait()
{

puts("\nHit any key");
getchar();
clscrn();

}

dt(addr,str)
char *addr,*str;

{
reg.HL=buf;
call(addr,®);
*(ptr=reg.HL)=0;
printf("%s: %s\n",str,buf);

}

clscrn()
{

fputs("\x1c\x1f",stdout);
}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

calloc(LIBC) calloc(LIBC)

This function is used to allocate a zeroed memory block.

char *calloc (nelem, elsize);
unsigned int nelem, elsize;

nelem is the number of elements of "elsize" to be allocated.

elsize is the size of an element in bytes; use sizeof(elem) for
portability.

Description

Calloc() is used to dynamically allocate memory during program execution.
The complementary function, free(), is used to release memory allocated
through calloc(). Calloc may be used to get table or buffer space when the
amount of memory space available is unknown, or when the program needs to
dynamically allocate space for an array and the space must be filled with
binary zeroes.

Return Code

If a memory block has been allocated, the value returned is a pointer to
the memory block (pointer to char). If insufficient memory is available to
satisfy the allocation, calloc() will return NULL (0).

Warnings

The program must not access memory outside of the area allocated. File
access routines use alloc() and free() to establish and release File
Control Areas (FCA's). The programmer cannot assume that memory not
allocated is free for use, since later file opens may cause memory
overlays. It is advised that the programmer always use the supplied dynamic
allocation functions for memory accessing.

Example

if ((symtab = calloc(MAXSYMS,sizeof(SYMBOL))) == NULL)
abend("not enough memory");

glbptr = startglb = symtab;

See also: alloc(), brk(), malloc(), realloc(), and sbrk()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ceil(MATH) ceil(MATH)

This function obtains the ceiling of a double.

#include <math.h>
double ceil(argx);

double argx;

argx is the double whose ceiling is desired.

Description

The ceiling of x is the smallest integer value not less than x; it is
returned as a double.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d1,d2;
main()
{

puts("Ceil: enter your number: EOF to exit");
while (TRUE)
{

if (!gets(inbuf))
break;

errno=0;
d2 = ceil(d1=atod(inbuf));
printf("d1 = %g; d2 = %g; errno = %d\n",d1,d2,errno);

}
}

Ceil: enter your number: EOF to exit
-1.7 |d1 = -1.7; d2 = -1; errno = 0
1.7 |d1 = 1.7; d2 = 2; errno = 0

See also: fabs(); floor(), fmod()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

checkc(LIBC) checkc(LIBC)

This function is used to detect whether or not a character is available from
an input file stream.

int checkc(stream);
FILE *stream;

stream the file pointer of the stream as returned from a successful
fopen().

Description

For certain types of applications, it is useful to know if a character is
available for input prior to requesting the input via getc() [or other
character input function]. For instance, a terminal program usually needs
to toggle between scanning for standard input and input from a
communications line. Since getc() will wait until a character is available,
it can lock up such a program until a character is available from the
stream. With checkc(), you can refrain from invoking getc() until a
character is known to be available.

Return Code

There are three possible return codes. TRUE is returned if a character is
available, or an EOF is detected from the file stream. FALSE is returned if
a character is not available. EOF is returned if the file pointer
references a closed file or a prior EOF had been detected.

Warnings

The stream pointer passed as the argument of the function must be one
obtained from fopen() or must be the standard input device [stdin]. Also,
checkc() uses ungetc() to store any input character; therefore, you should
refrain from invoking ungetc() immediately following a checkc() invocation.

Example

while (TRUE)
{

if (checkc(stdin))
getterm();

else if (checkc(comm))
getcomm();

}

See also: putc(), putchar(), getc(), getchar(), ungetc(), ungetch()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

circle(IN) circle(IN)

This function is used to plot a circle (or close to it).

#option INLIB
int circle(funcod, x1, y1, r1);

int funcod, x1, y1, r1;

funcod an operation code to set (1) or reset (0) the pixels involved in
the geometric plot.

x1,y1 the coordinate of the circle's center.

r1 the radius of the circle in "y" units.

Description

The "circle()" function will plot a circle at coordinate center point
(x1,y1) of radius r1. The integer value, "r1", specifies the radius of the
circle. Since block graphics are generally taller than their width, it is
necessary to specify the radius in units of either "x" or "y". Within these
plotting functions, "r1" is a value representing the radius in "y" units.

Virtual Points

The concept of virtual points is an important one. What it means is that
your plotting routines do NOT have to limit themselves to the CRT image
area. For example, a circle(1,0,0,20); function describes a circle about
the origin. This means that a portion of the circle would be plotted off of
the CRT image. The plotting functions permit your arguments to describe
such "virtual" images; however, any portion of the geometric shape that
would be outside of the CRT image area is inhibited. Thus, in the above
example, only a portion of a circle (an arc) will be plotted.

Return Code

A return code of minus one (-1) indicates that the coordinate point (x1,y1)
or a portion of the plot is out of range (i.e. virtual and does not appear
in the CRT image). A minus three (-3) will be returned if the function code
passed is invalid (not in the range <0-1>).

Example

circles(sw) /* concentric circles */
{

int r;
for (r=1;r<36;r+=3)

circle(sw,79,35,r);
}

See also: box(), line(), pixel()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

cleareof(LIBC) cleareof(LIBC)

This function is used to clear the end-of-file condition detected on an input
stream.

int cleareof(stream);
FILE *stream;

stream the file pointer of the stream as obtained from fopen().

Description

When an end-of-file condition is detected on an input stream (say standard
input, for instance), a flag bit is set in the File Control Area flag to
indicate this condition. Subsequent requests to input a character from that
file stream will always return a constant EOF. The cleareof() function can
be used to reset that EOF condition flag. It is useful primarily to clear
the EOF condition established by the <BREAK> key for standard input.

Return Code

If the file pointer references a closed file stream or the end-of-file bit
is not set in the file control area, cleareof() will return EOF as defined
in the stdio header file. A return code of NULL (0) indicates successful
clearing of the flag.

Warnings

The file pointer passed as the argument of the function must be one
obtained from fopen() or one of the standard devices [stdin, stdout, or
stderr].

Example

if (getchar() == EOF)
{

cleareof(stdin);
break;

}

See also: clearerr(), errno(), ferror(), perror(), sys_errlist()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

clearerr(LIBC) clearerr(LIBC)

This function is used to clear any error condition detected on an input or
output stream.

int clearerr(stream);
FILE *stream;

stream the file pointer of the stream as obtained from fopen().

Description

When an error condition is detected on a stream or block device, a flag bit
is set in the file control area to indicate this error condition and the
DOS error number is stored in the File Control Area for access by ferror().
The UNIX error number associated with the error will also be stored in the
global error variable, errno. The EOF flag bit is also set. Subsequent
requests to input a character from that file stream will always return a
constant EOF. The clearerr() function can be used to reset the ERROR and
EOF condition flags.

Return Code

If the file pointer references a closed file, cleareof() will return EOF as
defined in the stdio header file. A return code of NULL (0) indicates
successful clearing of the flag.

Warnings

The stream pointer passed as the argument of the function must be one
obtained from fopen() or one of the standard devices [stdin, stdout, or
stderr].

Example

if (c!=putchar(c))
{

errnum = ferror(stdout);
clearerr(stdout);
break;

}

See also: cleareof(), errno, ferror(), perror(), sys_errlist()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

close(LIBC) close(LIBC)

This function is used to close a block device which has been obtained by a
call to either open(), creat(), dup(), dup2(), or fcntl().

int close(fildes);
int fildes;

fildes the file descriptor of the block device.

Description

Close() is used to close an open file and to free the File Control Area
(FCA) and I/O buffer for subsequent re-use. The file descriptor passed to
close must have been obtained from either open(), dup(), dup2(), fcntl(),
or creat(). In MC, exit() also closes files; however, the programmer should
use close() on opened files to ensure compatibility and portability.

Return Code

A return code of NULL (0) indicates successful closing of the file. If any
error is detected, EOF (-1) will be returned.

Example

creat_file(name) char *name;
{

int i,fd;
if ((fd=creat(name,0777))==EOF) open_error(name);
for (i=0;i<10000;i++)
{

if ((write(fd,itoa(i,record),10))!=10)
{

printf("Error in writing %s\n",name);
exit(-1);

}
cursor(10,3); /* position cursor */
printf("Writing record %5d\n",i);

 }
close(fd);

}

See also: creat(), dup(), fcntl(), fdown(), fstat(), lseek(), open(), read(),
seek(), tell(), write()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

cmdi(LIBC) cmdi(LIBC)

This function will exit the program and invoke a DOS command.

void cmdi(cmdstr);
char *cmdstr;

cmdstr a pointer to the string which contains the DOS command which is
to be executed.

Description

The cmdi() function will close all open files which have the "close on
exec" flag set and then schedule the DOS execution of the command either
pointed to by the argument or by the command contained in the string passed
as the argument to the function. This could be used, for instance, to chain
to another C program.

Warnings

For portability across C compilers, the UNIX functions execv() or execl()
should be used in lieu of cmdi().

Example

char buf[81]; /* string space for command string */
main()
{

puts("Test of cmdi()\n");
fputs("Enter command: ",stdout);
gets(buf); /* Get DOS command from user */
cmdi(buf); /* Exit this program and execute the command */
puts("This string will not be written");

}

See also: system(), execl(), execv()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

cos(MATH) cos(MATH)

This function is used to obtain the double precision cosine.

#include <math.h>
double cos(argx);

double argx;

argx is the double expressed in radians whose cosine is to be
determined.

Description

This function will obtain the double precision cosine of its argument; the
argument must be expressed in radian measure.

Example

#include stdio
#include math
char inbuf[81]; double d1,d2;
main()
{

puts("Cos: enter your number: EOF to exit");
while (TRUE)
{

if (!gets(inbuf)) break;
errno=0;
d2 = cos(d1=atod(inbuf));
printf("d1 = %g; d2 = %g; errno = %d\n",d1,d2,errno);

}
}

Cos: enter your number: EOF to exit
-1.75 |d1 = -1.75; d2 = -0.178246; errno = 0
1.75 |d1 = 1.75; d2 = -0.178246; errno = 0
.5 |d1 = 0.5; d2 = 0.877583; errno = 0

See also: acos(), asin(), atan(), cosh(), sin(), sinh(), tan(), tanh(), fcos()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

cosh(MATH) cosh(MATH)

This function is used to obtain the hyperbolic cosine of a double.

#include <math.h>
double cosh(argx);

double argx;

argx is the double expressed in radians whose hyperbolic cosine is to
be determined.

Description

This function will obtain the double precision hyperbolic cosine of its
argument. The hyperbolic cosine of x is defined as [[exp(x)-exp(-x)]/2].

Example

#include stdio
#include math
char inbuf[81]; double d1,d2;
main()
{ puts("Cosh: enter your number: EOF to exit");

while (TRUE)
{

if (!gets(inbuf)) break;
errno=0;
d2 = cosh(d1=atod(inbuf));
printf("d1 = %g; d2 = %g; errno = %d\n",d1,d2,errno);

}
}

Cosh: enter your number: EOF to exit
0 |d1 = 0; d2 = 1; errno = 0
.5 |d1 = 0.5; d2 = 1.12763; errno = 0
10 |d1 = 10; d2 = 11013.2; errno = 0
-10 |d1 = -10; d2 = 11013.2; errno = 0

See also: acos(), cos(), exp(), sinh(), tanh()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

creat(LIBC) creat(LIBC)

This function is provided to create new files or to rewrite old files.

int creat(path, pmode);
int pmode;
char *path;

path a pointer to the string containing the file specification.

pmode the file's assigned protection mode.

Description

If the specified file must be created, it will be created with the
protection mode specified by the "pmode" argument. If the file is existing,
creat() will truncate it to a length of zero. In either case, the access
"OFLAG" will be established as O_WRONLY. To maintain portability with the
UNIX file system, pmode is interpreted as a nine-bit integer specifying
read, write, and execute permission for the owner of the file [bits 8-6],
for the owner's group [bits 5-3], and for all others [bits 2-0]. Only the
"all others" 3-bit field is used to establish the file protection under
LDOS/TRSDOS. This is translated as follows:

read write execute LDOS/TRSDOS read write execute LDOS/TRSDOS
---- ----- ------- ----------- ---- ----- ------- -----------
 0 0 0 NO ACCESS 1 0 0 READ
 0 0 1 EXEC 1 0 1 READ
 0 1 0 WRITE 1 1 0 WRITE
 0 1 1 WRITE 1 1 1 FULL

If the file specification included a password field, then this password
will apply only to the OWNER's access (UPDATE password for LDOS 5.1). The
USER's access field (ACCESS password for LDOS 5.1) will be changed to
blanks.

Return Code

If the file is properly created, its file descriptor will be returned. If
an error is detected in creating the file, creat() will return EOF (-1).

Example

creat_file(name) char *name;
{

int fd;
if ((fd=creat(name,0777))==EOF) open_error(name);
if ((write(fd,header,RECLEN))!=RECLEN)

printf("Error in writing %s\n",name);
close(fd);

}

See also: close(), open()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ctime(LIBC) ctime(LIBC)

This function is used to obtain the ASCII 26-character time string.

char *ctime(clock);
long *clock;

clock is a pointer_to_long which contains the time as retrieved by
time().

Description

This function converts the UNIX time stored as a long integer obtained from
a function such as time() into a 26-character string of the form:

Tue Oct 22 11:09:08 1985\n\0

All of the fields of the time string have a constant width.

Example

#option INLIB
main()
{

long clock;
long time();
char *ctime();

clock = time((long *) 0);
printf("At the tone, the time will be [%ld]: ",clock);
puts(ctime(&clock));
system("date");
system("time");

}

At the tone, the time will be [500036062]: Tue Nov 05 10:54:22 1985
Tue, Nov 5, 1985
10:54:39

See also: asctime(), localtime(), time()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

curpos(IN) curpos(IN)

This function is used to obtain the position of the CRT's cursor.

#option INLIB
unsigned curpos();

Description

The current location of the cursor can be recovered with the curpos()
function. It returns the cursor position as an encoded value. The cursor
row is in the high-order byte while the cursor column occupies the low-
order byte of the integer return code.

Example

#option INLIB
main()
{

unsigned int crtrow, crtcol;
puts("\x1c\x1f"); /* home, clear, CR */
crtrow=(crtcol=curpos())>>8; /* get curpos; calc row */
crtcol&=0x0ff; /* calc column */
printf("crt: row=%d, col=%d",crtrow,crtcol);

}

crt: row=1, col=0
DOS Ready

See also: cursor()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

cursor(IN) cursor(IN)

This function is used to move the cursor to a designated CRT position.

#option INLIB
int cursor(col, row);

int col, row;

col is the column of the new position.

row is the row of the new position.

Description

To reposition the cursor on the CRT screen, use the cursor() function. The
cursor is re-positioned to the location identified by the arguments.

Return Code

If the position that would result is not on the CRT screen, a range error
(-1) is returned. "col" must be in the range, <0-X>, while "row" must be in
the range, <0-Y>. For 64 x 16 screen sizes, the X and Y limits are 63 and
15. For 80 x 24 screen sizes, the X and Y upper limits are 79 and 23
respectively.

Example

#option INLIB
write_file(fildes) int fildes;
{

int i;
for (i=0;i<10000;i++)
{

if ((write(fildes,itoa(i,record),10))!=10)
return i;

cursor(10,3); /* position cursor to row 3, col 10 */
printf("Writing record %5d\n",i);

}
return NULL;

}

See also: curpos()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

_ddv2(MATH); _ddv230(MATH) _ddv2(MATH); _ddv230(MATH)

These functions obtain a fast divide_by_2 and a divide_by_2^30 of a double.

#include math.h
double _ddv2(argx);

double argx;

double _ddv230(argx);
double argx;

argx is the argument for which the divide operation is desired.

Description

These two functions are special and non-standard. Use them only if you are
not interested in portability. They perform a fast divide operation on a
double. _ddv2() divides a double by 2.0. _ddv230 divides a double by 2^30.

Example

#include <math.h>
double ldexp(argfr, exp) double argfr; register int exp;
{

static double huge, fr;
static int neg;
static int i;
double frexp(), _ddv230();

fr = argfr;
huge = HUGE_VAL;
neg = 0;
if (fr < 0.0) { fr=-fr; neg=1; }
fr = frexp(fr, &i);
while (fr < 0.5) { fr *= 2.0; --i; }
exp += i;
if (exp > 127) { errno=ERANGE; return neg ? -huge : huge; }
if (exp < -127) { errno=ERANGE; return 0.0; }
while (exp > 30)
{ fr *= (1L << 30L);

exp -= 30;
}
while (exp < -30)
{ fr = _ddv230(fr); /* fr /= (1L << 30L) */

exp += 30;
}
if (exp > 0) fr *= (1L << exp);
if (exp < 0) fr /= (1L << -exp);
if (neg) fr = -fr;
return fr;

}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

dfix(MATH) dfix(MATH)

This function obtains the truncated value of a double.

#include math.h
double dfix(argx);

double argx;

argx is the double value to truncate.

Description

The truncated value is obtained by dropping all digits to the right of the
decimal point so the result is a whole number. If argx is negative,
dfix(argx) is equivalent to dint(x)+1.0.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d1,d2;
main()
{

puts("Dfix: enter your number: EOF to exit");
while (TRUE)
{

if (!gets(inbuf)) break;
d2 = dfix(d1=atod(inbuf));
printf("d1 = %g; d2 = %g\n",d1,d2);

}
}

Dfix: enter your number: EOF to exit
-1.275 |d1 = -1.275; d2 = -1
1.275 |d1 = 1.275; d2 = 1

See also: dint(), floor(), ceil()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

dint(MATH) dint(MATH)

This function obtains the integer part of a double. It is identical to the
standard math function, floor().

#include math.h
double dint(argx);

double argx;

argx is the double for which the integer part is desired.

Description

This function obtains the largest integer not greater than "argx". The
"dint()" function has been provided only for the sake of a name
compatibility with other languages. For the sake of portability among C
compilers, it is recommended that you use the equivalent function, floor().

Example

#include stdio.h
#include math.h
char inbuf[81]; double d1,d2;
main()
{

puts("Dint: enter your number: EOF to exit");
while (TRUE)
{

if (!gets(inbuf)) break;
d2 = dint(d1=atod(inbuf));
printf("d1 = %g; d2 = %g\n",d1,d2);

}
}

Dint: enter your number: EOF to exit
-1.275 |d1 = -1.275; d2 = -2
1.275 |d1 = 1.275; d2 = 1

See also: dfix(), floor(), ceil()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

dsgn(MATH) dsgn(MATH)

This function obtains the integer sign of a double.

#include <math.h>
int dsgn(argx);

double argx;

argx is the double for which the sign is desired.

Description

This function returns AS AN INTEGER, the state of the sign of the argument.

Return Code

The returned value will be minus one (-1) if argx is negative, zero (0) if
argx is zero, and plus one (1) if argx is positive other than zero.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d1; int sign;
main()
{

puts("Dsgn: enter your number: EOF to exit");
while (TRUE)
{

if (!gets(inbuf)) break;
sign = dsgn(d1=atod(inbuf));
printf("d1 = %g; sign = %d\n",d1,sign);

}
}

Dsgn: enter your number: EOF to exit
-3.75 |d1 = -3.75; sign = -1
0 |d1 = 0; sign = 0
14.7e-15 |d1 = 1.47e-14; sign = 1

See also: fsgn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

dtoa(MATH) dtoa(MATH)

This function converts a double to string form in "e" notation.

#include math.h
char *dtoa(argx, string);

double argx;
char *string;

argx is the double to convert to string form.

string is a character array of length 14

Description

This function will convert a double to string form using the format:

sd.ddddddEnee

where "s" represents a sign character (blank or minus), "d" represents a
decimal digit, "n" represents an exponent sign (plus or minus), and "e"
represents an exponent decimal digit.

Return Code

A pointer to the string is returned so that the function may be used as a
"string" argument.

Example

#include stdio.h
#include math.h
char string[14];
main()
{

double loop;
for (loop=1.25e1; loop < 10.0e1; loop+=2.75e1)

puts(dtoa(loop,string));
}

 1.250000E+01
 4.000000E+01
 6.750000E+01
 9.500000E+01

See also: sprintf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

dup(LIBC); dup2(LIBC) _dup(LIBC); dup2(LIBC)

These functions duplicate an open file descriptor.

int dup(fildes);
int fildes;

int dup2(fildes , fildes2);
int fildes, fildes2;

fildes is the file descriptor to duplicate.

fildes2 is the file descriptor to use for the duplication of fildes.

Description

These two functions allocate another file descriptor synonymous with the
original. The "fildes" argument must be a file descriptor obtained from an
open() or creat() call or one of the standard file descriptors: STDIN,
STDOUT, or STDERR.

The dup() function will search for a file descriptor to utilize, if one is
available. The dup2() function will reuse the descriptor passed as the
fildes2 argument. If fildes2 refers to an already opened file, that file
will first be closed prior to duplicating the requested descriptor.

Return Code

EOF will be returned if the fildes argument passed is invalid or there are
no more file descriptors left available. In either case, the global error
variable, errno, will contain the UNIX error number associated with the
error.

Example

#include stdio.h
char message[] = "Writing to dup'd file descriptor\n";
main()
{

int fildes;
if ((fildes = dup(STDOUT))==EOF)

{
fputs("dup() error\n",stderr); exit(-1);

}
write(fildes,message,strlen(message));

}

Writing to dup'd file descriptor

See also: creat(), fcntl(), open(), perror(), write()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

execl(LIBC) execl(LIBC)

This function exits the program and causes execution of a command string built
from the argument list.

int execl(path, arg0, arg1, ..., argn, 0);
char *path, *arg0, *arg1, ..., *argn;

path is a pointer to the name of the program which is to be invoked.

argx are pointers to character strings which will be constructed as
arguments to the program being invoked.

Description

The execl() function will build a command string composed of the path name
and the arguments passed to execl(). Files in the current program will
remain open unless the close_on_exec flag is set [see fopen()]. The current
program then terminates and the resulting command string is passed to the
DOS for execution.

Conventionally, the "arg0" argument is the same as the path name.

Return Code

If the resulting command string would exceed the length supported by the
DOS, execl() will return EOF and the global error variable, errno, will be
set to E2BIG; otherwise, execl() will not return.

Example

#include stdio.h
char path[]="dir", arg0[]="dir", arg1[]="sys:0", arg2[]="(sys,inv,a=)";
main()
{

puts("Test of execl()\n");
if (execl(path,arg0,arg1,arg2,0)==EOF)

puts("DOS command line is too long");
}

Test of execl()

Drive :0 VR0005A 153 Cyl, Hard, Free = 732.00K/ 2448.00K, Date 12-Apr-85

SYS0/SYS SIP SYS1/SYS SIP+ SYS10/SYS SIP SYS11/SYS SIP
SYS12/SYS SIP SYS13/SYS SIP SYS2/SYS SIP SYS3/SYS SIP
SYS4/SYS SIP SYS5/SYS SIP SYS6/SYS SIP SYS7/SYS SIP
SYS8/SYS SIP SYS9/SYS SIP SYSTEM/JCL + SYSUAF/DAT P+

See also: execv(), cmdi()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

execovl(IN) execovl(IN)

This function is used to invoke an overlay of the executing C program.

int execovl(ovnum, ovargc, ovargv);
char ovnum; int ovargc; char *ovargv[];

ovnum the requested overlay number in ASCII.

ovargc the quantity of args to be passed to the overlay in the ovargv
array.

ovargv a pointer to the argument vector which is to be passed to the
overlay.

Description

The execovl() function is used to invoke an overlay where a program
environment has been developed around a root module and one or more overlay
modules. The arg vector "ovargv" MUST have ovargc pointers in it. The
"ovargc" and "ovargv" will be passed as arguments to the overlay's ovmain()
function in that order. Note that "ovargc" and "ovargv" are optional.

The generation of the root and overlay files requires the use of the MLINK
linker provided with the MRAS assembler development system. Since the
design of a C program environment which uses overlays is a complex
procedure, its details will be discussed in the "Advanced Topics" chapter.

Return Code

A NULL will be returned if the requested overlay executed, otherwise EOF
will be returned and errno will be appropriately set. Note that any return
code from ovmain() is ignored; you can use public memory location(s) in the
root for communications from the overlay.

Example

/* OVTEST/CCC - sample test root module */
extern int execovl(), printf();
int ovargc = 3;
char *ovargv[3] = { "ovtest", "this is overlay" };

main()
{

ovargv[2] = "1";
if (execovl('1', ovargc, ovargv)) error();

ovargv[2] = "2";
if (execovl('2', ovargc, ovargv)) error();

}

error()
{

perror("ovtest");
 exit(1);

}

/* OVERLAYT/CCC - sample overlay for OVTEST */
ovmain(argc, argv) int argc; char *argv[];
{

printf("%s: %s %s\n", argv[0], argv[1], argv[2]);
}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

execv(LIBC) execv(LIBC)

This function exits the program and causes execution of a command string built
from the array of pointers to strings.

int execv(path, argv);
char *path, *args[];

path is a pointer to the name of the program which is to be invoked.

args[] are pointers to null-terminated character strings which will be
used as arguments to the program being invoked.

Description

The execv() function will build a command string composed of the path name
and the arguments passed to execv(). The array of pointers is terminated
with a NULL pointer. Files in the current program will remain open unless
the close_on_exec flag is set [see fopen()]. The current program then
terminates and the resulting command string is passed to the DOS for
execution.

Conventionally, args[0] is the same as the path name.

Return Code

If the resulting command string would exceed the length supported by the
DOS, execv() will return EOF and the global error variable, errno, will be
set to E2BIG; otherwise, execl() will not return.

Example

#include stdio.h
char *args[] = {"dir","zzzzz","(n)",0 };
main()
{

puts("Test of execv()\n");
if (execv(args[0],args)==EOF)

puts("Command line too long!");
}

Test of execv()

Drive :0 VR0005A 153 Cyl, Hard, Free = 732.00K/ 2448.00K, Date 12-Apr-85
Drive :1 VR0005B 153 Cyl, Hard, Free = 598.00K/ 2448.00K, Date 12-Apr-85
Drive :2 FIXES02 40 Cyl, DDEN, Free = 130.50K/ 180.00K, Date 05-Sep-85
Drive :3 MCTEST05 40 Cyl, DDEN, Free = 169.50K/ 180.00K, Date 06-Nov-85
Drive :6 VR0006A 153 Cyl, Hard, Free = 428.00K/ 2448.00K, Date 23-Sep-85
Drive :7 VR0006B 153 Cyl, Hard, Free = 1520.00K/ 2448.00K, Date 23-Sep-85

See also: execl(), cmdi()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

exit(LIBC); _exit(LIBC) exit(LIBC); _exit(LIBC)

This function is used to exit your program and return to DOS.

void exit(retcod);
int retcod;

void _exit(retcod);
int retcod;

retcod is the return code to be passed to the DOS.

Description

Exit() and _exit() allow the user to exit cleanly from a program and
control the consequences of exiting. Passing a zero (0) for the "retcod"
argument to exit() indicates normal program termination, causing exit() to
take the DOS normal exit. If a non-zero retcod is passed, exit() will take
the error entry into DOS, thus aborting any Job Control Language processing
in effect.

If the terminating program was invoked by the system() function, the value
passed to exit() will be the value returned to the calling program from
system(). An exception is if a negative value is passed to exit(), in which
case a negative one (-1) is returned to cmd().

Exit() closes all open files before returning to DOS; the _exit() function
does not.

MC generates an automatic exit(0) when the terminating brace of main() is
reached; thus, your program need not explicitly call exit() at that point.

Return Code

Exit() does not return to the caller.

Warnings

For compatibility with other C language systems, the programmer should not
depend on exit() to close the program's files (other than standard I/O
files).

See also: close(), fclose()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

exp(MATH) exp(MATH)

This function obtains the exponential of a double.

#include <math.h>
double exp(argx);

double argx;

argx is the double for which the exponential is desired.

Description

Exp() returns the exponential function of x (e raised to the x power).

Return Code

If the resulting value would overflow, exp() returns HUGE_VAL and the
global error variable, errno, is set to ERANGE. An error message indicating
the overflow range error is printed to standard error output. This error
handling may be changed by the use of matherr().

Example

#include stdio
#include math
char inbuf[81]; double d1,d2;
main()
{

puts("Exp: enter your number: EOF to exit");
while (TRUE)
{

if (!gets(inbuf)) break;
errno=0;
d2 = exp(d1=atod(inbuf));
printf("d1 = %g; d2 = %g; errno = %d\n",d1,d2,errno);

}
}

Exp: enter your number: EOF to exit
1.0 |d1 = 1; d2 = 2.71828; errno = 0
14.8 |d1 = 14.8; d2 = 2.67645e+06; errno = 0
150 |overflow range error
 |d1 = 150; d2 = 1.70141e+38; errno = 71

See also: log(), matherr(), errno

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fabs(MATH) fabs(MATH)

This function obtains the absolute value of a double.

#include <math.h>
double fabs(argx);

double argx;

argx is the double for which the absolute value is desired.

Description

This function returns the absolute value of its argument (i.e if argx is
positive, argx is returned; if argx is negative, -argx is returned).

Return Code

The absolute value is returned.

Example

#include stdio
#include math
char inbuf[81]; double d1,d2;
main()
{

puts("Fabs: enter your number: EOF to exit");
while (TRUE)
{

if (!gets(inbuf)) break;
errno=0;
d2 = fabs(d1=atod(inbuf));
printf("d1 = %g; d2 = %g; errno = %d\n",d1,d2,errno);

}
}

Fabs: enter your number: EOF to exit
1.675384692 |d1 = 1.67538; d2 = 1.67538; errno = 0
-13.47e-3 |d1 = -0.01347; d2 = 0.01347; errno = 0

See also: abs(), fabsf(), labs()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fabsf(MATH) fabsf(MATH)

This function is used to obtain the absolute value of a float.

#include <math.h>
float fabsf(xval);

float xval;

xval is the float whose absolute value is to be determined.

Description

This is a non-standard function which will obtain the absolute value of a
float. For portability, use the equivalent construct:

(float)fabs((double)xval);

See also: abs(), fabs(), labs()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fatn(MATH) fatn(MATH)

This function is used to obtain the arc tangent of a float.

#include <math.h>
float fatn(xval);

float xval;

xval is the float whose arc tangent is to be determined.

Description

This is a non-standard function which will obtain the arc tangent of a
float. For portability, use the equivalent construct:

(float)atan((double)xval);

See also: atan(), atan2(), ftan()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fclose(LIBC) fclose(LIBC)

This function is used to close a file opened with fopen().

int fclose(stream);
FILE *stream;

stream the file pointer obtained from fopen().

Description

Fclose() is used to close an open file and to free the File Control Area
(FCA) and file buffer for later use. The stream file pointer passed to
fclose must have been obtained from fopen(). In the MC file system, exit()
also closes files; however, the programmer should use fclose() on files
opened by the program to ensure compatibility and portability.

There is a limited number of files (determined by the MAXFILES compiler
option), including standard files, that may be open at one time. Fclose()
is used to free FCAs so an unlimited number of files may be accessed one
after the other.

Return Code

The return code will be NULL if no error was detected in the closing
operation (i.e. a successful close). If an error was detected during the
close operation, then EOF will be returned and the global error variable,
errno, will contain the UNIX error number associated with the error.

Warnings

The return code convention under MC follows the UNIX Seventh Edition and
UNIX System V convention. As such, the return codes for success and failure
are opposite as that returned under LC.

Example

if (lastc!=0x1a)
putout(0x1a);

fclose(fp1);
fclose(fp2);
puts("Files now closed");
exit(0);

See also: fcntl(), fdopen(), fopen(), freopen(), fflush()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fcntl(LIBC) fcntl(LIBC)

This function provides certain control over files.

#include <fcntl.h>
int fcntl(fildes, cmd, arg);

int fildes, cmd; "varying type" arg;

fildes is the file descriptor of the file you wish to control.

cmd is the specific fcntl() command (see text).

arg is specific to the fcntl() command.

Description

Fcntl() provides for certain control over open files. The file descriptor
which identifies the file is one obtained from creat(), dup(), dup2(),
fcntl(), open(), or one of the standard I/O devices: 0, 1, or 2. The "cmd"
argument directs fcntl() to a specific operation. The commands available to
fcntl() are defined in the "fcntl" header file, and are as follows:

F_DUPFD

This command will duplicate the file associated with fildes and return a
new file descriptor having the following characteristics:

• is the lowest numbered available file descriptor greater than or
equal to "arg";

• is the same open file as fildes;
• has the same access mode as fildes (read, write, or read/write);
• the close_on_exec flag associated with the new file descriptor is

reset to keep the file open upon execution of execl() or execv()
invocations.

F_GETFD

This command will get the status of the close_on_exec flag. If the low-
order bit is a 0, the file will remain open across execl() and execv()
calls; otherwise, the file will be closed upon execution of execl() or
execv().

F_SETFD

This command will set the close_on_exec flag associated with fildes to the
state of the low-order bit of arg, 0 or 1.

F_GETFL

This command obtains the file status flags (O_RDONLY, O_WRONLY, O_RDWR,
O_APPEND, O_CREAT, O_TRUNC) identified in the "fcntl" header file.

F_SETFL

This command permits you to set the file status flags according to "arg".
You may only change the following flags: O_RDONLY, O_WRONLY, or O_RDWR.

Return Code

If fildes is invalid, or if the argument passed as "arg" to F_SETFL is
invalid, or if there is no new available file descriptor to return for the
F_DUPFD command, EOF will be returned and the global error variable, errno,
will contain the UNIX error number associated with the error.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fcntl(LIBC) fcntl(LIBC)

Example

#include stdio.h
#include fcntl.h
struct { int mask; char *name; } oflags[] = {
 {O_RDONLY,"read_only"},
 {O_WRONLY,"write_only"},
 {O_RDWR,"read_write"},
 {O_NDELAY,"delay"},
 {O_APPEND,"append"},
 {O_CREAT,"creat"},
 {O_TRUNC,"truncate"},
 {O_EXCL,"exclusive"}
};
char *path="default/txt:7", sbuf[81], *itob();
main(argc,argv) int argc; char *argv[];
{
 int fildes, i, oflag;
 if (argc==2) path=argv[1];
 if ((fildes=open(path,O_RDWR|O_CREAT,0777))==EOF)
 { printf("Can't open %s\n",path); exit(-1); }
 else printf("Opened %s; fildes = %d\n",path,fildes);
 oflag = fcntl(fildes,F_GETFL,NULL);
 fputs("oflags = ",stdout);puts(itob(oflag,sbuf));
 for (i=0; i<8; i++)
 if (oflag&oflags[i].mask)
 { putchar(' '); fputs(oflags[i].name,stdout); }
 printf("\nc-o-e flag is %d\n",fcntl(fildes,F_GETFD,NULL)&1);
 close(fildes);
}

Opened default/txt:7; fildes = 3
oflags = 100100
 read_write creat
c-o-e flag is 1

See also: dup(), dup2()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fcos(MATH) fcos(MATH)

This function is used to obtain the cosine of a float.

#include <math.h>
float fcos(xval);

float xval;

xval is the float expressed in radians whose cosine is to be
determined.

Description

This non-standard function will obtain the single precision cosine of its
argument. For portability, use the equivalent form:

(float)cos((double)xval);

See also: acos(), asin(), fsin(), ftan(), sin(), tan()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fdopen(LIBC) fdopen(LIBC)

This function is used to associate a stream with an open file descriptor.

FILE *fdopen(fildes, type);
fildes, char *type;

fildes is the file descriptor of the open file.

type is a character string which indicates the access mode chosen from
the following:

 "r", "w", "a", "r+", "w+", or "a+".

Description

Fdopen() allows the programmer to initiate stream access of a given access
type to a file opened with creat(), dup(), dup2(), fcntl(), or open().
"Fildes" is the file descriptor of the already opened file. "Type" points
to a null-terminated string which defines the mode of access and must agree
with the access specified when the file was opened. The allowable modes of
access, which may be entered in upper or lower case, are:

"r" open for reading;
"w" truncate or create for writing;
"a" append; open for writing at the end of the file, or create for

writing;
"r+" open for update (reading and writing);
"w+" truncate or create for update;
"a+" append; open or create for update (appending) at the end of the

file.

When a file is opened for update, both reading and writing may be performed
on the stream; however, writing may not be immediately followed by reading
without an intervening fseek() or rewind(), and reading may not be followed
by writing without an intervening fseek(), rewind(), or an input operation
which encounters an end-of-file [first cleared by cleareof()];

Note that fdopen() is similar to fpup() in that a stream pointer associated
with a file descriptor is returned; however, fdopen() permits you to alter
the access mode of the stream.

Return Code

The stream file pointer is returned if no errors are detected in the
fdopen() operation. If fildes does not refer to an open file descriptor or
the access type requested does not agree with the access of the open file,
NULL (zero) will be returned and the global error variable, errno, will
contain the UNIX error number associated with the error.

Warnings

When a file is opened for append, the file is positioned so that the first
output operation will write to the end of the file. The output functions do
not perform this positioning operation; therefore, do not use rewind() or
fseek() with streams to which you wish to append.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fdopen(LIBC) fdopen(LIBC)

Example

#include stdio.h
extern FILE *fdopen();
char message[] = "This is written to fdopen'd stream";
main()
{

FILE *stream;
if (!(stream=fdopen(STDOUT,"w")))
{

puts("fdopen error");
exit(-1);

}
puts(message,stream);
fclose(stream);

}

This is written to fdopen'd stream

See also: fopen(), freopen()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fdown(LIBC) fdown(LIBC)

This function is used to convert a stream file pointer to a file descriptor.
It is identical to fileno().

int fdown(stream);
FILE *stream;

stream the file pointer of the stream.

Description

Sometimes it may be useful to cross between file stream I/O functions and
block device I/O functions which use file descriptors. Since file streams
are referenced with file pointers and block device files are referenced
with file descriptors, the fdown() function may be used to obtain the file
descriptor given a stream file pointer.

Return Code

If the stream file pointer is recognized as being invalid, EOF will be
returned; otherwise, the needed file descriptor will be returned.

Warning

The stream file pointer passed as the argument of fdown() must be one
obtained from fopen(), fdopen(), or the file pointer of a standard device
(i.e. stdin, stdout, stderr).

Example

if (fd2 = fcntl(fdown(stdin),F_DUPFD,3)) == EOF)
 abend(NULL);
if (fdown(stderr) != STDERR)
 abend("internal error");

See also: fileno(), fpup()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

feof(LIBC) feof(LIBC)

This function is used to determine if the end-of-file has been sensed.

int feof(stream);
FILE *stream;

stream the file pointer obtained from fopen().

Description

This function obtains the status of the EOF flag maintained in the File
Control Area for an open file.

Return Code

If an end-of-file had been previously encountered, feof() will return a
non-zero value; otherwise, NULL will be returned.

Example

#include stdio.h
main()
{

int c; FILE *fp;
if ((fp=freopen("tfeof/ccc","r",stdin))==NULL)
{

perror("main: freopen error"); exit(-1);
}
while ((c=getchar())!= EOF)

putchar(c);
puts(feof(stdin) ? "EOF received" : "no EOF yet");
printf("DOS error number is %d\n",ferror(stdin));
if (ferror(stdin))

perror("main");
}

EOF received
DOS error number is 0

See also: ferror(), clearerr(), cleareof()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ferror(LIBC) ferror(LIBC)

This function is used to obtain the last DOS I/O error number associated with
a file stream.

int ferror(stream);
FILE *stream;

stream the file pointer obtained from fopen().

Description

The MC file system maintains the number of the last error code associated
with a file stream or file. This error code may be recovered via the
ferror() function. When an error occurs, the global error variable, errno,
will contain the UNIX error number associated with the DOS error. Consult
your DOS manual for the meaning of each DOS error code.

Return Code

If no error has been encountered, NULL will be returned. If the file
pointer references a closed file, then EOF will be returned. Otherwise, the
return code will be the DOS error code.

Warnings

The stream file pointer passed as the argument to the function must be one
obtained from fopen() or the stream pointer of any standard device (i.e.
stdin, stdout, stderr). The error number storage is shared with the
ungetc() one character buffer; thus, an ungetc() on the stream may wipe out
the error number obtainable via ferror().

Example

#include stdio.h
main()
{

int c; FILE *fp;
if ((fp=freopen("tfeof/ccc","r",stdin))==NULL)
{

perror("main: freopen error");
exit(-1);

}
while ((c=getchar())!= EOF) putchar(c);
puts(feof(stdin) ? "EOF received" : "no EOF yet");
printf("DOS error number is %d\n",ferror(stdin));
if (ferror(stdin))

perror("main");
}

EOF received
DOS error number is 0

See also: perror()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fexp(MATH) fexp(MATH)

This function obtains the exponential of a float.

#include <math.h>
float fexp(argx);

float argx;

argx is the float for which the exponential is desired.

Description

The non-standard function, fexp(), returns the exponential function of x (e
raised to the x power) of the single precision argument (i.e. a float). For
portability, use the equivalent construct:

(float)exp((double)argx);

See also: flog(), exp(), log()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ffix(MATH) ffix(MATH)

This function obtains the truncated value of a float.

#include <math.h>
float ffix(argx);

float argx;

argx is the float value to truncate.

Description

The truncated value is obtained by dropping all digits to the right of the
decimal point so the result is a whole number. If argx is negative,
ffix(argx) is equivalent to fint(x)+1.0. This is a nonstandard function.
For portability, use the equivalent construct:

(float)dfix((double)argx);

See also: fint(), dfix, dint(), floor(), ceil()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fflush(LIBC) fflush(LIBC)

This function is used to force a physical write of any buffered output to an
output file stream and update the DOS directory.

int fflush(stream);
FILE *stream;

stream the file pointer obtained from fopen().

Description

When program crashes occur, some output data written to a file stream may
have been buffered in the stream's I/O buffer and not written to disk. The
file's directory information also may not get updated. The fflush()
function can be used to complete all physical output and update the
stream's directory without actually closing the file (if invoked prior to
such a program crash).

Return Code

The return code will be NULL if no error occurs during the flushing
operation. If an error is detected, EOF will be returned and the global
error variable, errno, will contain the UNIX error number associated with
the error.

Example

#include <stdio.h>
char message[] = "Testing, 1, 2, 3... Hello, test\n";
main()
{

FILE *stream, *fopen();
if ((stream=fopen("testfile/dat:7","w"))==NULL)

{ perror("fopen error"); exit(-1); }
fputs(message,stream); fputs(message,stream);
if (fflush(stream)==EOF) perror("fflush error");
puts("Program terminating through _exit()");
_exit(); /* simulate error terminate w/o closing files */

}

Program terminating through _exit()

DOS Ready
list testfile/dat:7

Testing, 1, 2, 3... Hello, test
Testing, 1, 2, 3... Hello, test

See also: fopen(), fclose(), putc(), fwrite()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fgetc(LIBC) fgetc(LIBC)

This function is used to obtain a character from a file stream.

int fgetc(stream);
FILE *stream;

stream is the file pointer of the stream

Description

Fgetc() is used to input a single byte from a file stream. The MC library
treats fgetc() as equivalent to getc(): both are functions.

Return Code

The return code is the integer value of the character input from the
stream. If an end of file is encountered, then "EOF" (-1) is returned.

Warning

If the value returned by the function is to be stored before testing for
end-of-file, it must be stored in an integer variable and not a char. If
not, the end of file value will be truncated and will remain undetected, as
a char of -1 does not equal an int of -1.

Example

#include <stdio.h>
filecopy(fp)
FILE *fp;
{ int c;

while ((c = fgetc(fp)) != EOF)
if (c != fputc(c,stdout))

abort("Output file write error");
}

See also: getc(), getchar(), getw()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fgets(LIBC) fgets(LIBC)

This function is used to get a buffered line from a file stream.

char *fgets(buf, maxlen, stream);
char *buf; int maxlen; FILE *stream;

buf is a pointer to the character buffer.

maxlen is the maximum length of the input string.

stream is the stream pointer obtained from fopen().

Description

Fgets() is used to obtain a buffered line from a file. A file may be the
console keyboard, the RS-232 interface, or any input device or disk file.
Up to (maxlen) bytes will be placed in the buffer. Input is terminated when
either a newline or end of file is encountered or maximum buffer size is
reached. The newline character is not stripped from the input.

For compatibility with DOS Job Control Language files, keyboard line input
is performed using the @KEYIN system call. Fgets() recognizes the BREAK key
as the end of file from the keyboard if the O_BREAK flag is set via the
option() function. Also, the maximum number of keyboard characters accepted
for input will be the minimum of (maxlen,255).

Return Code

If an error is encountered, NULL will be returned and the global error
variable, errno, will contain the UNIX error number associated with the
error; otherwise, a pointer to "buf" is returned.

Example

#include stdio.h
main()
{

int i; FILE *stream, *fopen(); char buffer[81];
if ((stream=fopen("testfile/dat:7","w+"))==NULL)
{

perror("fopen error");
exit(-1);

}
for (i=1; i<9999; i*=10)

fprintf(stream,"Record %d is here\n",i);
rewind(stream);
while ((fgets(buffer,80,stream))!=NULL)

fputs(buffer,stdout);
}

Record 1 is here
Record 10 is here
Record 100 is here
Record 1000 is here

See also: fputs(), gets(), puts()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fill(LIBC) fill(LIBC)

This function will propagate a character throughout a memory region.

void fill(buffer, count, cval);
char *buffer, cval; int count;

buffer is the address pointing to the start of the memory region you
wish to populate.

count is the number of bytes to populate.

cval is the character to populate throughout the region of memory.

Description

The fill() function will propagate the character, "cval", into the memory
"buffer" for "count" bytes. If "cval" is passed as an integer value, the
low-order byte is used for the propagation.

Warning

Note that although the fill() function is contained in LIBC, it is not a
standard function. For purposes of portability across C compilers, use the
equivalent standard function, memset().

Example

char *getmem(size)
unsigned size;
{
 if (!(mptr=alloc(size))
 return NULL;
 fill(mptr,size,NULL);
 return mptr;
}

See also: memset()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fint(MATH) fint(MATH)

This function is used to obtain the integer part of a float.

#include <math.h>
float fint(xval);

float xval;

xval is the float whose integer part is to be determined.

Description

This is a non-standard function which will obtain the integer part of a
float. For portability, use the equivalent construct:

(float)floor((double)xval);

See also: floor(), ffix()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

flog(MATH) flog(MATH)

This function is used to obtain the natural log of a float.

#include <math.h>
float flog(xval);

float xval;

xval is the float whose log is to be determined.

Description

This is a non-standard function which will obtain the natural logarithm
(base e) of a float. For portability, use the equivalent construct:

(float)log((double)xval);

See also: log(), fexp()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

floor(MATH) floor(MATH)

This function obtains the integer part of a double.

#include math.h
double floor(argx);

double argx;

argx is the double for which the integer part is desired.

Description

This function obtains the largest integer not greater than "argx".

Example

#include stdio
#include math
char inbuf[81]; double d1,d2;
main()
{ puts("floor: enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 d2 = floor(d1=atod(inbuf));
 printf("d1 = %g; d2 = %g\n",d1,d2);
 }
}

floor: enter your number: EOF to exit
-1.275 |d1 = -1.275; d2 = -2
1.275 |d1 = 1.275; d2 = 1

See also: dfix(), dint(), ceil()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fmod(MATH) fmod(MATH)

This function is used to perform a floating point modulo division.

#include <math.h>
double fmod(xval, yval);

double xval, yval;

xval is the double numerator.

yval is the modulo divisor.

Description

Fmod() returns the floating point remainder of the division of xval by
yval. Zero is returned if xval is zero or if xval/yval would overflow.

Example

#include stdio.h
#include math.h
main()
{
 double numer, denom;
 for (numer=10.1, denom=3.0; numer>0.0; numer--)
 printf("%g ",fmod(numer,denom));
}

1.1 0.1 2.1 1.1 0.1 2.1 1.1 0.1 2.1 1.1 0.1

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fopen(LIBC) fopen(LIBC)

This function is used to open a file or device for stream I/O.

FILE *fopen(path, type);
char *fspec, char *type;

path points to a character string which contains the specification of
the file.

type is a character string which indicates the access mode chosen from
the following:

"r", "w", "a", "r+", "w+", or "a+".

Description

Fopen() allows the programmer to initiate access to a file. Except for
standard input, output, and error files which are automatically opened, all
files must be opened using fopen() [or various other file opening
functions]. "Path" points to a file specification string identifying the
file to open. "Type" points to a null-terminated string which may be in
upper or lower case and which defines the mode of access . The allowable
modes are:

"r" open for reading;
"w" truncate or create for writing;
"a" append; open for writing at the end of the file, or create for

writing;
"r+" open for update (reading and writing);
"w+" truncate or create for update;
"a+" append; open or create for update (appending) at the end of the

file.

The file pointer is used whenever access to the opened file is needed. If
zero is returned, an error occurred during the open process.

When a file is opened for update, both reading and writing may be performed
on the stream; however, writing may not be immediately followed by input
without an intervening fseek() or rewind(), and reading may not be followed
by writing without an intervening fseek(), rewind(), or an input operation
which encounters an end-of-file [first cleared by cleareof()];

Return Code

The stream file pointer is returned if no errors are detected in the open
operation. If an error is detected during the open operation, NULL (zero)
will be returned and the global error variable, errno, will contain the
UNIX error number associated with the error.

Warnings

Opening the same file for both input and output with two or more calls to
fopen() should NOT be done. If the file is accessed in this manner, it will
create unpredictable results, possibly causing loss of file integrity. A
file may be "fopened" for both read and write using the "r+", "w+", or "a+"
access modes.

When a file is opened for append, the file is positioned so that the first
output operation will write to the end of the file. The output functions do
not perform this positioning operation; therefore, do not use rewind() or
fseek() on streams to which you wish to append.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fopen(LIBC) fopen(LIBC)

Example

getfile(path) char *path;
{ FILE *fp;
 if ((fp=fopen(path,"r")) == NULL)
 {
 printf("Open error - %-20s\n",path);
 exit();
 }
 else return fp;
}

Numerous other illustrations of fopen() appear in the many other examples
throughout this chapter.

See also: fclose(), fdopen(), freopen(), open()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fprintf(LIBC)(MATH) fprintf(LIBC)(MATH)

These functions create a formatted image for output.

#include <math.h> ...optional
int fprintf(stream, control, arg1, arg2, ...);

FILE *stream; char *control; args SEE TEXT

stream is the stream file pointer for output.

control is a string containing transparent printing characters and
conversion specifications.

argn are arguments to be formatted for the output print image as
specified by the control.

Description

The fprintf() function is used to write a formatted output image to a file
stream identified by the "stream" file pointer. The function contained in
LIBC does not include support for "e", "f", or "g" translation formats. The
math library package includes a version of fprintf() which supports all
standard format translations and is accessible when your program includes
the preprocessor directive, "#include <math.h>".

The specifications for formatting the output are determined by the
character string, "control". This string will contain ordinary characters
copied directly to the output image and/or specifications denoting the
field conversions of all arguments. The conversion specifications take the
form of:

%{flags}{width}{.prec}char

As can be noted, the specification is a sequence of sub-fields of which the
percent sign (%) and the "char" are mandatory if variables are to be
printed. The percent is an "escape" character signaling the start of the
field specification. The "char" denotes the format of the output field
image {binary, decimal, string, etc.}. The sub-field specifications are
interpreted as follows:

conversion initiator

% the translation specification initiator

flags

space specifies that the result of a signed conversion will always
start with a minus sign or space ('-' or ' ')

- specifies that the value will be left-justified within the print
field image, otherwise it will be right-justified

+ specifies that the result of a signed conversion will always
start with a sign ('+' or '-')

specifies that the value is to be converted to an alternate form.
'c', 'd', 's', and 'u' conversions ignore this flag. For 'o'
conversions, the precision is increased to force the first digit
to be a zero. For 'b' or 'B' conversions, a non-zero value will
be preceded with either 0b' or '0B'. For 'x' or 'X' conversions,
a non-zero value will be preceded with '0x' or '0X'. For 'e',
'E', 'f', 'g', and 'G' conversions, the output will always
contain a decimal point. Finally, for 'g' or 'G' translations,
trailing zeroes will not be removed

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fprintf(LIBC)(MATH) fprintf(LIBC)(MATH)

width specifier

width specifies the minimum width of the print field image. If the
converted value has fewer characters than this value, it will be padded
right or left with a pad character which will be a blank unless the
field-width begins with a zero, in which case the pad character will be
a zero. If the converted value has more characters than the width, then
it (the width) is adjusted to hold the full result.

precision specifier

.prec specifies the maximum number of string bytes for 's' translation,
the maximum number of digits to the right of the decimal point for 'e',
'E', or 'f' translation, the number of significant digits in 'g' or 'G'
translation, or the minimum number of digits in a 'b', 'B', 'd', 'o',
u', 'x', or 'X' translation (the field will be left padded with
zeroes); generally called the "precision".

conversion type

h specifies that the following 'b', 'B', 'd', 'o', 'u', 'x', or 'X'
translation applies to a short integer;

l specifies that the following 'b', 'B', 'd', 'o', 'u', 'x', or 'X'
translation applies to a long integer;

char

the conversion character

b=B=binary
o=octal
d=decimal
x=X=hexadecimal
s=string
c=character
u=unsigned
e=E=float]

of the format, "[-]d.dddesdd" or "[-]d.dddEsdd", with the number of d's
after the decimal point according to the precision (default of 6),
[f=float] of the format, "[-]ddd.dd", with the number of d's after the
decimal point equal to the precision (default of 6); [g=G=float]
printed with format "d", "f", 'e', or "E" whichever gives full
precision in minimum space.

A field width or precision may also be indicated by an asterisk ('*')
instead of a digit string. When this is the case, an integer argument must
then be supplied which contains the value of the precision. A negative
value will be interpreted as invoking the '-' left justification. The
integer argument must immediately precede the argument corresponding to the
value to be translated in the argument list.

Any portion of the control string which cannot be interpreted as a
conversion specification field is considered to be transparent printing
characters and will be passed directly to the print image.

Warnings

Single precision float arguments must be explicitly casted to double if you
are using the "+f" compiler option as the print formatter always assumes a
floating point variable to be double precision.

A string longer than 32767 characters will be truncated. A width not in the
range of a short int will fail. The precision must be in the positive range
of a short int.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fprintf(LIBC)(MATH) fprintf(LIBC)(MATH)

Return Code

If an output error is detected, EOF will be returned; otherwise, the number
of characters actually printed will be returned.

Example

fprintf(stderr,"%d characters, %d lines were copied\n",bytes,lines);

See also: fscanf(), printf(), sprintf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fpup(LIBC) fpup(LIBC)

This function obtains the stream pointer of a file descriptor.

FILE *fpup(fildes);
int fildes;

fildes the file descriptor of the file.

Description

Sometimes it may be useful to cross between file stream I/O and file I/O.
Since file streams are referenced with file pointers and files are
referenced with file descriptors, the fpup() function may be used to obtain
the stream file pointer given the file's descriptor.

Return Code

Fpup() will return NULL on an invalid file descriptor.

Example

if (seek(fd1, block, 3)) == EOF)
{

err_num = ferror(fpup(fd1));
printf("Error %d detected on file %d\n",err_num,fd1);

}

See also: fdown(), fdopen(), fileno()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fputs(LIBC) fputs(LIBC)

This function will output a string to a file/device.

int fputs(string, stream);
char *string; FILE *stream;

string is the address of the string to be output.

stream is the file pointer of the output file.

Description

Fputs() outputs to the file defined by "stream", all characters pointed to
by "string", up to the first NULL byte. This function does not append any
newline character to the string.

Return Code

If an error was detected, fputs() will return EOF and the global error
variable, errno, will contain the UNIX error number associated with the
error; otherwise, NULL will be returned.

Warning

Calling fputs() with an invalid file pointer can result in destruction of
files or other havoc.

Example

#include stdio.h
main()
{ int i; FILE *stream, *fopen(); char buffer[81];
 if ((stream=fopen("testfile/dat:7","w+"))==NULL)
 { perror("fopen error"); exit(-1); }
 for (i=1; i<9999; i*=10)
 fprintf(stream,"Record %d is here\n",i);
 rewind(stream);
 while ((fgets(buffer,80,stream))!=NULL)
 fputs(buffer,stdout);
}

Record 1 is here
Record 10 is here
Record 100 is here
Record 1000 is here

See also: fgets(), puts()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fpow(MATH) fpow(MATH)

This function is the float equivalent of pow().

#include <math.h>
float fraise(argx, argy);

float argx, argy;

argx is the base value to be raised.

argy is the power of the base value.

Description

This function will raise a single precision number to a single precision
power. It is equivalent to:

(float)pow((double)argx,(double)argy);

See also: lpower(), pow()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fread(LIBC) fread(LIBC)

This function reads "n" items into an array from a stream input.

int fread(ptr, size, nitems, stream);
char *ptr; int size, nitems; FILE * stream;

ptr is a pointer to the receiving array.

size is the size of an element in bytes.

nitems is the number of items to read.

stream is a stream pointer from which to read.

Description

This function will read into the array pointed to by "ptr", "nitems"
elements of data from the file stream defined by "stream". Each element
will be of size "size". It is sometimes convenient to use the "sizeof"
operator in determining the size of an element. This is illustrated in the
example.

Return Code

The number of items actually read are returned. A NULL will be returned if
"size" or "nitems" is less than or equal to zero. If an error occurs and no
data items are read, you can use feof() or ferror() to discriminate between
an error return or a "zero" input.

Example

#include stdio.h
main()
{
 char days[12]; FILE *stream; int i;
 if ((stream=fopen("boot/sys.lsidos","r"))==NULL)
 { perror("fopen error"); exit(-1); }
 fseek(stream,0x202L,0); /* seek stream to days_in_month data */
 fread(days,sizeof(char),sizeof days,stream);
 for (i=0; i<12; i++)
 printf("%d ",days[i]);
 fclose(stream);
}

31 28 31 30 31 30 31 31 30 31 30 31

See also: fwrite()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

free(LIBC) free(LIBC)

This function frees memory allocated with alloc(), malloc(), calloc(), or
realloc().

void free(ptr);
char *ptr;

ptr pointer to a block previously allocated.

Description

Free() is called when a memory block allocated to the program by any of the
memory allocating functions [alloc(), calloc(), malloc(), or realloc()] is
no longer needed, and the programmer wishes to free the memory space for
later use. "ptr" points to the first (lowest) byte allocated to the program
and is the pointer returned by the allocating function.

Warning

Calling free() with an address other than that obtained from a call to
alloc(), calloc(), malloc(), or realloc() may cause unpredictable results.
If the pointer passed to free() is outside the scope of the dynamic heap,
free() will report an error. Since free() is used by the standard I/O
facility, the error will be reported directly to the system's output device
to avoid circular errors.

Example

#include "stdio.h"
static int (*_compar)();
static char *_base, *pivot;
static unsigned _width;
extern char *malloc(), *move();
extern void free();
static void _sort(), _swap();
int qsort(base, nel, width, compar)
 char *base; int (*compar)(); unsigned nel, width;
{ if (! (pivot = malloc(width)))
 return EOF;
 _compar = compar;
 _base = base;
 _width = width;
 _sort(0, --nel);
 free(pivot);
 return 0;
}

See also: alloc(), calloc(), malloc(), realloc()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

freemem(IN) freemem(IN)

This obtains the size of the largest block of memory which can be allocated to
your program immediately following the function call.

#option INLIB
unsigned freemem();

Description

Freemem() returns the maximum amount of memory which can be obtained from
alloc(), calloc(), or malloc() at the time of the call to freemem(). The
figure is obtained by taking the maximum of (a) the largest unused block
kept in the free list available for reuse and (b) the amount of memory
above the program break [reduced by approximately 1K less bytes than actual
to account for reserved program stack space and function linkage overhead].

Example

#option INLIB
#define BLOCK 5000
char *ram[10] = {0,0,0,0,0,0,0,0,0,0};
main()
{
 int i; unsigned core_left, core_now; char *alloc();
 core_left = freemem();
 printf("Beginning core left = %u\n",core_left);
 for (i=0 ; (ram[i]=alloc(BLOCK))&&i<10 ; i++)
 printf("%u ",freemem());
 putchar('\n');
 while (i)
 {
 if (ram[--i]) free(ram[i]);
 core_now = freemem();
 printf("%u ",core_now);
 }
}

Beginning core left = 41772
36770 31766 26762 21758 16754 11750 6746 1742
6744 11748 16752 21756 26760 31764 36768 41772

See also: alloc(), free()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

freopen(LIBC) freopen(LIBC)

This function substitutes a named file in lieu of an open stream.

FILE *freopen(path, type, stream);
char *path, *type; FILE *stream;

path points to a character string which contains the specification of
the file.

type is a character string which indicates the access mode chosen from
the following:

"r", "w", "a", "r+", "w+", or "a+".

stream is the stream file pointer to "reopen".

Description

Freopen() substitutes the named file denoted by "path" in place of the
already opened stream designated by the file pointer, "stream". The
original stream is closed, regardless of whether the open actually
succeeds. The function will return a pointer to the new stream. The
freopen() function is typically used to attach the standard I/O streams to
files other than the opened standard devices so that the stream I/O
functions such as putchar(), getchar(), puts(), gets(), printf(), scanf(),
etc., may be utilized.

"Type" points to a null-terminated string which defines the mode of access
and may be in upper or lower case. The allowable modes are:

"r" open for reading;
"w" truncate or create for writing;
"a" append; open for writing at the end of the file, or create for

writing;
"r+" open for update (reading and writing);
"w+" truncate or create for update;
"a+" append; open or create for update (appending) at the end of the

file.

When a file is opened for update, both reading and writing may be performed
on the stream; however, writing may not be immediately followed by input
without an intervening fseek() or rewind(), and reading may not be followed
by writing without an intervening fseek(), rewind(), or an input operation
which encounters an end-of-file [first cleared by cleareof()];

Return Code

The stream file pointer to be used in accessing the file is returned if no
errors are detected in the open operation. If an error is detected during
the open operation, NULL will be returned and the global error variable,
errno, will contain the UNIX error number associated with the error.

Warnings

When a file is opened for append, the file is positioned so that the first
output operation will write to the end of the file. The output functions do
not perform this positioning operation; therefore, do not use rewind() or
fseek() on a stream to which you wish to append.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

freopen(LIBC) freopen(LIBC)

Example

getfile(fname)
char *fname;

{
FILE *fp;
extern FILE *freopen();
if ((fp=freopen(fname,"r",stdout)) == NULL)

 {
fprintf(stderr,"Open error - %-20s\n",fname);
exit();

}
else return fp;

}

See also: fopen(), fdopen()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

frexp(MATH) frexp(MATH)

This function separates a double into its mantissa and exponent.

#include <math.h>
double frexp(value, eptr);

double value; int *eptr;

value is the double value to separate.

eptr is a pointer_to_int to receive the exponent.

Description

Double precision floating point numbers may be written as a fractional
part, x, times an integer power, n, of the base, 2; where x is in the range
[0.5 <= x < 1.0]. The frexp() function separates a double into the "x"
fractional part and the integer "n" exponent of base_2. The function
returns the fractional part and stores the integer exponent into the
location pointed to by the integer pointer, eptr. Thus, the following
relationship is true:

mantissa = frexp(value,&exponent);
value = pow(2.0,(double)exponent) * mantissa;

Return Code

The fractional part of the double is returned. If "value" is zero, both the
fractional part and the exponent are 0.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d, v, m; int e;
main()
{

puts("frexp: enter your number: EOF to exit");
while (TRUE)
{

if (!gets(inbuf)) break;
errno=0;
m = frexp(d=atod(inbuf),&e);
v = pow(2.0,(double)e) * m;
printf("d = %g = %g; e = %d; m = %g; errno = %d\n",d,v,e,m,errno);

}
}

frexp: enter your number: EOF to exit
2 |d = 2 = 2; e = 1; m = 1; errno = 4
4 |d = 4 = 4; e = 2; m = 1; errno = 4
4.75 |d = 4.75 = 4.75; e = 3; m = 0.59375; errno = 4
5.8e4 |d = 58000 = 58000; e = 16; m = 0.88501; errno = 0
0 |d = 0 = 0; e = 0; m = 0; errno = 0

See also: ldexp(), modf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

frnd(MATH) frnd(MATH)

This function obtains a float random number.

#include <math.h>
float frnd(value);

float value;

value used to determine the range of the result.

Description

This function will return a floating point single precision (a float)
random number. If "value" is 0.0, a number between greater than or equal to
zero but less than 1.0 will be returned. If "value" is non-negative and is
in the range 1-32767, the returned random number will be in the range 1.0
through fint(value) inclusive.

Random number

If "value" is negative, frnd() will return "value" and errno will be set to
DOMAIN. This error condition may be trapped by the use of a _fltvec().

See also: errno, fseed(), srand(), rand()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fscanf(LIBC)(MATH) fscanf(LIBC)(MATH)

These functions are used to scan a formatted print image, interpret the image
fields according to a control string, and store the translated results in the
arguments passed in the function's invocation.

#include <math.h> ... optional
int fscanf(stream, control, arg1, arg2, ...);

FILE *stream; char *control; args SEE TEXT

stream is the stream file pointer to read.

control as documented below.

args as required to match the control string.

Description

The fscanf() function is the input analog of the fprintf() function. It
provides similar translations; however, the conversions are from ASCII
string fields to argument values. Fscanf() inputs from the file stream
identified by "stream".

The arguments identified as "arg1, arg2, ..." MUST BE POINTERS, rather than
values since the scan function stores the converted results into the
arguments. The control string may contain:

(1) White space characters [0x20, or 0x09 through 0x0d] which are
ignored,

(2) Ordinary characters other than '%' which are expected to match the
next non-white space character of the input stream,

(3) A conversion specification consisting of the character '%', an
optional assignment suppression character '*', an optional decimal
number specifying a maximum field width, an optional letter "l" or
"h" indicating the size of the receiving variable (i.e. long or
short), and a conversion character.

An input field is defined as a string of non-white space characters
extending to either the next white space or until the field width is
exhausted, whichever comes first. The conversion specification directs the
conversion of the next input field. If assignment suppression is indicated
by the '*', the input field is skipped over and no argument should be
passed in the function's invocation. The scan function reads across new-
lines ('\n') since they are considered to be white space.

The conversion characters supported are:

d A decimal integer is expected. It may be preceded by '+' or '-'.

o An octal integer is expected. It does not require the leading zero.

x A hexadecimal integer is expected.

b A binary integer is expected.

c A single character is expected. The normal skip-over-white-space is
suppressed so that the next character is input and assigned. If you
want to assign the next non-white space character, specify "%1s". If
any other width is specified, that many characters will be input and
assigned to the pointed to character array of sufficient size.

s A character string is expected. The assignment will be terminated
with a NULL ('\0').

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fscanf(LIBC)(MATH) fscanf(LIBC)(MATH)

f A floating point number is expected. The conversion character 'e' is
interpreted the same as 'f'. Preceding the 'e' or 'f' with an 'l'
indicates a double rather than a float. The input format for a float
is an optional sign, a string of decimal digits possibly containing
a decimal point, an optional exponent field containing an 'e' or 'E'
followed by a signed decimal integer. NOTE: In this implementation,
the scan function will not terminate if an invalid character is
detected in the float string. The assigned float value will be that
which is translated up to the offending character.

n Specifies that the number of characters scanned up to that point
will be returned in the corresponding argument; scanning will
continue.

[Indicates string data to be matched against the following set of
characters which are called the "scanset". Note also that the normal
skip over whitespace is suppressed. The scanset designates the list
of permissable characters to be acceptable in the input string. The
scanset follows the left bracket and is terminated by a right
bracket ("]").

A range of characters is entered as "abcdefg". This can also be
entered as "a-g" as in 'first'-'last' where the 'first' character of
the range is lexically less than the 'last' character of the range.
A dash is accepted as a member of the scanset if it is either the
first character in the scanset, the last character in the scanset,
or the character preceding it is lexically greater than the
character following it. A right bracket ("]") may be included in the
scanset if it is the first character following the left bracket.

If a circumflex ("^") is the first character of the scanset, it
indicates that the scanset is actually composed of all characters
not in the following list; thus, it serves to complement the given
list. For example, "[^a-z]" indicates that the scanset is to be
composed of all characters which are not lower-case. If a right
bracket or dash is to be "excluded" from such a list, it must
immediately follow the circumflex. The scanset is selected from the
ASCII character set only.

The input will be terminated when a whitespace character is input, a
character not in the scanset is input, or the maximum field width
specification is exhausted. The corresponding receiving argument
must be large enough to hold the data field and the terminating NULL
which will be automatically appended.

The 'f' [and likewise the 'e'] translation will not be supported unless the
preprocessor statement, "#option MATHLIB" or "#include <math.h>", is
inserted in your C source module or the MATH library is manually searched
first during the linking process.

Any characters remaining in the input stream that were not accepted
including any offending terminating character will still be available to
the next scan invocation [assuming no intervening use of the input file
stream].

Return Code

If end-of-file is reached during the input, EOF will be returned.
Otherwise, the function's return value will be equal to the number of
successfully matched and assigned input items.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fscanf(LIBC)(MATH) fscanf(LIBC)(MATH)

Example

#include <stdio.h>
#include <math.h>
main()
{
 char achar, string[81]; double f1;
 int n_items, aint;
 n_items = fscanf(sfp1,"%c%3d%*2d%6s%lf",&achar,&aint,string,&f1);
 printf("Count = %d |%c %d %s %e\n",n_items,achar,aint,string,f1);
}

For input of: a12345abcdef 12.345e5
Prints : Count = 4 |a 123 abcdef 1.2345E+06

See also: scanf(), sscanf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fseed(MATH) fseed(MATH)

This function seeds the random number generator fetched by frnd().

#include <math.h>
float fseed(seed);

float seed;

seed is the new seed value.

Description

This function seeds the single precision random number generator with a
known value.

Return Code

The function returns the old seed value.

See also: frnd(), srand(), rand()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fseek(LIBC) fseek(LIBC)

This function is the stream equivalent of lseek().

int fseek(stream, offset, ptrname);
FILE *stream; long offset; int ptrname;

stream is the stream file to re-position.

offset is the signed new position of the stream.

ptrname specifies seek from beginning, current position, or the end of
the stream.

Description

This function sets the next input or output operation on the identified
stream to occur at the position designated. The new position is the signed
distance away from the beginning, current position, or end of the file
stream depending on whether "ptrname" is 0, 1, or 2.

Fseek() will undo the effect of any ungetc() on the associated stream.

Note that you cannot fseek() a tty device!

Return Code

Fseek returns non-zero for improper seeks, otherwise NULL.

Example

#include stdio.h
main()
{
 char days[12]; FILE *stream; int i;
 if ((stream=fopen("boot/sys.lsidos","r"))==NULL)
 { perror("fopen error"); exit(-1); }
 fseek(stream,0x202L,0); /* seek stream to days_in_month data */
 fread(days,sizeof(char),sizeof days,stream);
 for (i=0; i<12; i++)
 printf("%d ",days[i]);
 fclose(stream);
}

31 28 31 30 31 30 31 31 30 31 30 31

See also: ftell(), isatty(), lseek(), rewind(), seek()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fsgn(MATH) fsgn(MATH)

This function obtains the integer sign of a float.

#include <math.h>
int fsgn(value);

float value;

value is the float whose sign is desired.

Description

Fsgn() obtains the status as to whether the value is negative, zero, or
positive.

Return Code

Fsgn() returns an integer value less than zero, equal to zero, or greater
than zero, depending on whether the argument value is less than 0.0, equal
to 0.0, or greater than 0.0.

See also: dsgn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fsqr(MATH) fsqr(MATH)

This function obtains the square root of a float.

#include <math.h>
float fsqr(value);

float value;

value is the float whose square root is desired.

Description

This function is non-standard. It obtains the square root of a float and is
equivalent to:

(float)sqrt((double)value);

See also: sqrt()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fstat(LIBC) fstat(LIBC)

This function obtains the file status of an open file.

#include <stat.h>
int fstat(fildes, buf);

int fildes; struct stat *buf;

fildes is the file descriptor of the file to stat.

buf is a pointer to the structure which will be filled with the
file's status.

Description

This function obtains a great deal of information concerning the open file
known by "fildes". The data structure is defined in the stat header file
and is as follows:

struct stat {
 dev_t st_dev; /* device # - (DEC/DRV or Device name) */
 ino_t st_ino; /* index node - unused in MC */
 unsigned short st_mode; /* modes - see #define */
 short st_nlink; /* # of file links - unused */
 short st_uid; /* User ID - MC uses 16-bit user pswd */
 short st_gid; /* Group ID - MC uses 16-bit owner pswd */
 dev_t st_rdev; /* unused */
 off_t st_size; /* Size of file in bytes */
 time_t st_atime; /* time last read - unused in MC */
 time_t st_mtime; /* time last written - MOD date */
 time_t st_ctime; /* attribute change, mtime - unused */
};

Masks for the "st_mode" field are defined in the header file and are:

S_IFMT 0170000 /* type of file - mask */
S_IFDIR 0040000 /* directory - set if DIR/SYS */
S_IFCHR 0020000 /* character special - set if device */
S_IFBLK 0060000 /* block special - set if SYS */
S_IFREG 0100000 /* regular - set for files */
S_IFMPC 0030000 /* multiplexed char special - unused */
S_IFMPB 0070000 /* multiplexed block channel - unused */
S_ISUID 0004000 /* set user id on execution - unused */
S_ISGID 0002000 /* set group id on execution - unused */
S_ISVTX 0001000 /* save swapped text - unused */
S_IREAD 0000400 /* read permission, owner */
S_IWRITE 0000200 /* write permission, owner */
S_IEXEC 0000100 /* execute/search permission, owner */
S_GREAD 0000040 /* read permission, group */
S_GWRITE 0000020 /* write permission, group */
S_GEXEC 0000010 /* execute/search permission, group */
S_UREAD 0000004 /* read permission, user */
S_UWRITE 0000002 /* write permission, user */
S_UEXEC 0000001 /* execute/search permission, user */

Return Code

Upon a successful completion of the function, NULL is returned; otherwise,
EOF is returned and errno will contain the UNIX error number which
describes the error.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fstat(LIBC) fstat(LIBC)

Example (a piece of sortsym/ccc)

#include <stat.h>
struct stat stat;
unsigned short nrecs, fsize, i;
char tempname[NAMELEN], tempaddr[ADDRLEN];
union record
{

struct
{

char name[NAMELEN];
char space;
char addr[ADDRLEN];
char newline;

} byname;
struct
{

char addr[ADDRLEN];
char space;
char name[NAMELEN];
char newline;

} byaddr;
} *record, *base, **prec, **recp;

void abend();
extern int fstat();
extern char *alloc();
extern unsigned short read(), write();

main(argc, argv)
int argc; char *argv[];

{
if (fstat(0, &stat) == EOF)

exit(1); /* stat the input file (stdin) */
nrecs = (fsize = (unsigned short) stat.st_size - 1) / RECLEN;
if (stat.st_size > 0xffffL

|| !(base = (RECORD *) alloc(fsize))
|| ! (prec = (RECORD **) alloc(nrecs * sizeof(RECORD *))))

abend("SYM file too large\n");
if (read(0, (char *) base, fsize) != fsize)

exit(1); /* read SYM file */
}

See also: creat(), open()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ftan(MATH) ftan(MATH)

This function obtains the trigonometric tangent of a float.

#include <math.h>
float ftan(value);

float value;

value is the float whose tangent is desired.

Description

This function obtains the trigonometric tangent of its single precision
floating point argument which must be in radians. It is equivalent to:

(float)tan((double)value);

See also: tan()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ftell(LIBC) ftell(LIBC)

This function obtains the relative position of a stream.

long ftell(stream);
FILE *stream;

stream is the stream file pointer.

Description

This function returns the position, as a long integer, of the stream for
the next character I/O operation. The position is relative to the beginning
of the stream.

Return Code

The current position relative to the beginning of the stream is returned as
a long integer.

Example

#include stdio.h
extern int errno;
extern long ftell();
main()
{
 void abend();
 errno = 0;
 if (isatty(STDIN))
 abend("Can't fseek() a character device");
 if (fseek(stdin,0x1a05L,0))
 abend("fseek() error 1");
 if (fseek(stdin,0x333L,1))
 abend("fseek() error 2");
 printf("Current positition after seeks is %lx\n",ftell(stdin));
}
void abend(s) char *s;
{
 printf("%s: errno = %d\n",s,errno);
 exit(-1);
}

tftell:3
Can't fseek() a character device: errno = 0
DOS Ready
tftell:3 <seek/dat:7
Current positition after seeks is 1d38

See also: lseek()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ftoa(MATH) ftoa(MATH)

This function converts a float to an ASCII string value.

char *ftoa(value, string);
float value; char *string;

value is the value to convert.

string is a pointer to the string buffer.

Description

The ASCII string is constructed according to a specific "e" translation
formatted as follows:

sd.ddddddEnee

where "s" is blank or '+'; "d" represents a decimal digit; "E" is the
exponent indicator; "n" is the sign of the exponent ('+' or '-'); and "e"
is a decimal exponent digit.

Return Code

The function returns a pointer to the ASCII value in "string".

See also: sprintf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

fwrite(LIBC) fwrite(LIBC)

This function writes "n" items from an array to a stream output.

int fwrite(ptr, size, nitems, stream);
char *ptr; int size, nitems; FILE *stream;

ptr is a pointer to the sending array.

size is the size of an element in bytes.

nitems is the number of elements to write.

stream is a stream pointer for which to write.

Description

Fwrite() will append at most "nitems" of data from the array identified by
"ptr" to the file stream identified by the file pointer, "stream". The
function will stop appending when it has written "nitems" of data or if it
detects an error condition on the the output "stream".

Return Code

The number of data items written to "stream" will be returned. A NULL will
be returned if "size" or "nitems" is less than or equal to zero. If an
error occured and no data items had been written, you can use feof() or
ferror() to discriminate between an error return or a "zero" output.

Example

#include stdio.h
#include math.h
float array[8];
main()
{ int i; FILE *stream;
 if ((stream=fopen("test/dat:7","w"))==NULL)
 { perror("main fopen() error"); exit(-1); }
 for (i=0; i<8; i++)
 array[i] = i;
 if (!fwrite(array,sizeof(float),8,stream))
 { perror("main fwrite error"); exit(-1); }
 fclose(stream);
 execl("list","list","test/dat:7","(hex)",NULL);
}

0000:00 = 00 00 00 00 00 00 00 81 00 00 00 82 00 00 40 82@.
0000:10 = 00 00 00 83 00 00 20 83 00 00 40 83 00 00 60 83@...`.

See also: fread()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

genspec(IN) genspec(IN)

This function will generate a new file specification using an input and
partial file specification.

char *genspec(inspec, partspec, extn);
char *inspec, *partspec, *extn;

inspec The input file specification.

partspec The partial specification to expand.

extn The extension to add if one is omitted.

Description

This function will generate a new file specification from the input file
specification, using the given output partial file specification and a
default extension. The new file specification is written to the character
array pointed to by "partspec". The following rules specify the resulting
specification's name, extension, and drive of the partial filespec
expansion:

(1) The expanded specification will contain all fields passed in
"partspec";

(2) If the "partspec" name field is omitted, it will be filled
with the name field of "inspec";

(3) If the "partspec" extension field is omitted, and "extn" is
not a null string, it will be filled with "extn";

(4) If the "partspec" extension field is omitted, and "extn" is a
null string, and "inspec" contains an extension field, it
will be filled with the extension field of "inspec";

(5) If the "partspec" extension field is omitted, and "extn" is a
null string, and "inspec" does not contain an extension
field, the expanded specification will not contain an
extension field;

(6) If the "partspec" drive field is omitted, it will be filled
with the drive field of "inspec", if any.

Return Code

A pointer to the expanded file specification is returned.

Warning

The partial specification string must be stored in a character array of at
least dimension 15 to avoid overextending the allocated string space.

See also: addext()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

getc(LIBC); getchar(LIBC) getc(LIBC); getchar(LIBC)

These functions are used to obtain a character from a file stream. Getchar()
always refers to the standard input device.

int getc(stream);
FILE *stream;

int getchar();

stream is the file pointer of the stream

Description

Getc() is used to input a single character from a file stream. The stream
pointer must be obtained from fopen(), fdopen(), freopen(), or be a
standard file pointer. MC provides getchar() as a function, not as a
#define macro. Getchar() is identical in operation to getc(stdin). Any of
the 256 possible binary codes may be input using getc().

On character devices [i.e. *KI, *CL], the <BREAK> key may be optioned to be
interpreted as an end-of-file condition by means of the option() function.
This provides a means to indicate an EOF for character devices not normally
having the capability to generate the EOF indication.

Return Code

The return code is the integer value of the character input from the
stream. If an end of file is encountered, then "EOF" (-1) is returned.

Warning

If the value returned by the function is to be stored before testing for
end-of-file, it must be stored in an integer variable and not a char. If
not, the end of file value will be truncated and will remain undetected as
a char of -1 does not equal an int of -1.

Examples

#include <stdio.h>
filecopy(fp) /* copy a file to the standard output */
FILE *fp;
{ int c;
 while ((c = getc(fp)) != EOF)
 if (c != putc(c,stdout)) abend("Output file write error");
}

bytes = lines = 0;
while((c=getchar()) != EOF)
{ putchar(c); ++bytes; if (c==EOL) ++lines;
}

See also: gets(), putc(), putchar(),scanf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

gets(LIBC) gets(LIBC)

This function fetches (inputs) a buffered line from standard input.

char *gets(buffer);
char *buffer;

buffer a pointer to a character array of length 81.

Description

Gets() inputs a line up to 80 characters long from the standard input
(stdin) and places the line in memory starting at the address given by
"buffer". The input will terminate on an error or if a new-line character
is input. The new-line is discarded and the string is terminated by NULL.

If you do not want to have the new-line character discarded, use the near-
equivalent form, fgets(buffer,80,stdin);.

Note that if stdin is not the keyboard device and the input line is longer
than 80 characters, it will be split; any part not accepted will be fetched
by the next request for input from stdin.

Return Code

If an error is encountered during the input, or end-of-file is reached, the
return code will be NULL (0); otherwise, buffer will be returned.

Warnings

The "buffer" must be at least 81 characters long.

Example

#include stdio.h
char buffer[81], string[10];
main()
{
 int i;
 fputs("Enter your string: ",stdout);
 gets(buffer);
 for (i=0; i<strlen(buffer); i++)
 fputs(itox(buffer[i],string),stdout);
 putchar('\n');
}

Enter your string: a1b2c3d4
6131623263336434

See also: fgets(), puts(), fputs()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

getw(LIBC) getw(LIBC)

This function will read a "word" from a stream input.

int getw(stream);
FILE *stream;

stream is a file pointer stream to read.

Description

Getw() inputs a word from the designated stream. A "word" is the size of an
integer.

Return Code

If an error is encountered during the input, or end-of-file is reached, the
return code will be EOF (-1).

Warnings

Since EOF is a valid integer value, ferror() or feof() must be used to
differentiate between a -1 return and an error return. Note that since the
low byte and high byte storage order of a word may vary in different
machine environments, getw() is an environment dependent function.

Example

#include stdio.h
int array[16];
main()
{ int i; FILE *stream;
 if ((stream=fopen("test/dat:7","w+"))==NULL)
 { perror("main fopen() error"); exit(-1); }
 for (i=0; i<16; i++)
 array[i] = i;
 if (!fwrite(array,sizeof(int),16,stream))
 { perror("main fwrite error"); exit(-1); }
 rewind(stream);
 while (((i=getw(stream)) != EOF) && !feof(stream))
 printf("%d ",i);
 fclose(stream);
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

See also: getc(), putw(), swab()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

gtty(LIBC) gtty(LIBC)

This function obtains information concerning a character special device.

#include sgtty.h
int gtty(fildes, argp);

int fildes; struct sgttyb *argp;

fildes is a descriptor of the file.

argp is a pointer to the data structure.

Description

This function obtains control information on a "files". The data obtained
is stored in the data structure pointed to by the "argp" argument. The
structure is defined in the "sgtty" header file and is as follows:

struct sgttyb {
char sg_colctr; /* column counter */
char sg_control; /* control byte */
char sg_flag; /* FCA flag byte */

};

The "sgttyb.sg_colctr" element stores a counter for the current column
position of the output image for the device. This item is relative to zero.
The "sgttyb.sg_control" byte stores various bit fields and is masked as
follows:

IO_BREAK 0x10 /* mask for #option BREAK */
IO_TABSTOP 0x0f /* mask for "tabstop-1" */
IO_FDCOE 0x80 /* mask for "close_on_exec" flag */

The gtty() function is equivalent to:

ioctl(fildes,TIOCGETP,argp);

TIOCGETP is defined in the "sgttyb" header file.

Return Code

If the call was successful, NULL will be returned; otherwise, an EOF will
be returned and the global error variable, errno, will contain the UNIX
error number associated with the error.

See also: ioctl(), stty()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

hypot(MATH) hypot(MATH)

This function calculates the Euclidian distance of its arguments.

#include <math.h>
double hypot(argx, argy);

double argx, argy;

argx, argy are the two required elements.

Description

The Euclidian distance is calculated according to the formula:

hypot = sqrt(argx*argx + argy*argy)

Example

#include stdio.h
#include math.h
main()
{
 double x, y;
 for (x=3.0,y=4.0; x<7.0; x++, y++)
 printf("x = %g, y = %g, hypot(x,y) = %g\n",x,y,hypot(x,y));
}

x = 3, y = 4, hypot(x,y) = 5
x = 4, y = 5, hypot(x,y) = 6.40312
x = 5, y = 6, hypot(x,y) = 7.81025
x = 6, y = 7, hypot(x,y) = 9.21954

See also: sqrt()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

index(LIBC) index(LIBC)

This function obtains the position of the first occurrence of a specified
character within a string. It is identical to strchr(), its UNIX System V
counterpart.

char *index(s, c);
char *s; int c;

s is a pointer to the source string.

c is the character to find.

Description

The index() function will look for the first occurrence of character 'c' in
the string pointed to by "s". The low-order byte of the integer, 'c', will
be used as the character. Index will operate properly when 'c' is the NULL
character.

Return Code

If the character 'c' is not found in string "s", NULL will be returned;
otherwise, a pointer to the position of 'c' in "s" will be returned.

Example

#include stdio.h
main()
{
 char *pos, buffer[81], *fgets(), *index();
 puts("Enter your string; EOF to exit");
 while (gets(buffer))
 {
 if (!(pos=index(buffer,'r')))
 printf("'r' not found in [%s]\n? ",buffer);
 else
 printf("'r' is character %d in [%s]\n? ",pos-buffer+1,buffer);
 }
}

Enter your string; EOF to exit
abcdefghijklmnop
'r' not found in [abcdefghijklmnop]
? zyxwvutsrqponmlkjihgfedcba
'r' is character 9 in [zyxwvutsrqponmlkjihgfedcba]
? abcdefghijklmnopqrstuvwxyz
'r' is character 18 in [abcdefghijklmnopqrstuvwxyz]
?

See also: strcat(), strchr(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

inkey(IN) inkey(IN)

The inkey() function scans the DOS keyboard device (*KI).

#option INLIB
int inkey();

Description

The inkey() function makes a single scan of the keyboard and returns the
ASCII value of any depressed key. It will return a zero if no key is
pressed. Note that it will always scan the physical keyboard regardless of
any MC standard input redirection.

Warning

Inkey() cannot return a NULL character.

Example

#include stdio.h
#option INLIB /* needed for automatic search if IN/REL */
#define CTL_C 0x03
extern char *ctime();
unsigned long counter = 0L;
main()
{
 long clock;
 time(&clock);
 fputs(ctime(&clock),stdout);
 while (TRUE) /* simulate some long processing loop */
 {
 ++counter;
 if (inkey() == CTL_C)
 break;
 }
 printf("Counter got to %ld\n",counter);
 time(&clock);
 fputs(ctime(&clock),stdout);
}

Tue Nov 19 10:30:33 1985
Counter got to 9204
Tue Nov 19 10:30:44 1985

See also: checkc(), getchar()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

inport(IN) inport(IN)

This function reads a machine port.

#option INLIB
int inport(port);

int port;

port is the designated machine port to read.

Description

The function, inport(), returns as an integer, the value read from the
specified port.

Example

#include stdio.h
#option INLIB /* needed to automatically search IN/REL */
#define FDC 0xf0
main()
{
 int fdc[4], i;
 for (i=3; i>=0; i--)
 fdc[i] = inport(FDC+i);
 printf("FDC: data=%02x, sector=%02x, track=%02x, status=%02x\n"\
 ,fdc[0],fdc[1],fdc[2],fdc[3]);
}

FDC: data=00, sector=15, track=03, status=00

See also: outport()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ioctl(LIBC) ioctl(LIBC)

This function performs various controlling operations on character special
files (devices).

#include sgtty.h
int ioctl(fildes, request, argp);

int fildes, request; struct sgttyb *argp;

fildes is a descriptor of the file.

request is the desired operation code.

argp is a pointer to the data structure.

Description

This function allows you to control certain characteristics about a file.
The data acted upon is stored in the data structure pointed to by the
"argp" argument and is obtained from an invocation of ioctl() using the
TIOCGETP request. Once you modify the data, it is presented to the device
handler via the TIOCSETP request. The data structure is defined in the
"sgtty" header file and is as follows:

struct sgttyb {
char sg_colctr; /* column counter */
char sg_control; /* control byte */
char sg_flag; /* FCA flag byte */

};

The "sgttyb.sg_colctr" element stores a counter for the current column
position of the output image for the device. This item is relative to zero.
The "sgttyb.sg_control" byte stores various bit fields and is masked as
follows:

IO_BREAK 0x10 /* mask for #option BREAK */
IO_TABSTOP 0x0f /* mask for "tabstop-1" */
IO_FDCOE 0x80 /* mask for "close_on_exec" flag */

Return Code

If the call was successful, NULL will be returned; otherwise, an EOF will
be returned and the global error variable, errno, will contain the UNIX
error number associated with the error.

Example

#include stdio.h
#include sgtty.h
#define TABSTOP 3
int c;
main()
{ static struct sgttyb sg = { 0,0 };
 if (ioctl(STDOUT,TIOCGETP,&sg))
 fputs("Error from ioctl\n",stderr);
 else
 { sg.sg_control &= ~IO_TABSTOP; /* strip current tab stop */
 sg.sg_control |= TABSTOP; /* set new tab stop */
 ioctl(STDOUT,TIOCSETP,&sg); }
 while (((c=getchar())!= EOF) && (c==putchar(c))) {;}
}

See also: gtty(), stty()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

iswhat(LIBC) iswhat(LIBC)

These are a series of functions which perform character type tests.

int iswhat(c);
char c;

iswhat replaced by the test function name.

c the character under test.

Description

The following functions will return TRUE when the character under test matches
the test range:

 function character range for a TRUE condition
 -------- --
 isalnum A-Z, a-z, 0-9
 isalpha A-Z, a-z
 isascii 0x00-0x7f
 _isbdigit 0,1
 iscntrl 0x00-0x1f, 0x7f
 isdigit 0-9
 islower a-z
 _isodigit 0-7
 isprint 0x20-0x7e
 ispunct 0x20-0x2f, 0x3a-0x40, 0x5b-0x60, 0x7b-0x7e
 isspace 0x20, 0x09-0x0d
 isupper A-Z
 isxdigit 0-9, A-F, a-f

Return Code

If the character does not match the test range, FALSE will be returned.

Example

if (isdigit(char))
 printf("Character is <0-9>\n");
else if (islower(char))
 printf("Character is <a-z>\n");
else if (isupper(char))
 printf("Character is <A-Z>\n");
else
 printf("Character is none of the above\n");

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

isatty(LIBC) isatty(LIBC)

This function determines if the designated file is character special.

int isatty(fildes);
int fildes;

fildes is the descriptor of the file to check.

Description

Isatty() returns TRUE if the file descriptor refers to an open character
special file (i.e. a character device). A FALSE condition is returned if
the descriptor is invalid or does not refer to an open file.

Return Code

The return code is TRUE or FALSE as required.

Example

#include stdio.h
extern int errno;
extern long ftell();
main()
{
 void abend();
 errno = 0;
 if (isatty(STDIN))
 abend("Can't fseek() a character device");
 if (fseek(stdin,0x1a05L,0))
 abend("fseek() error 1");
 if (fseek(stdin,0x333L,1))
 abend("fseek() error 2");
 printf("Current positition after seeks is %lx\n",ftell(stdin));
}
void abend(s) char *s;
{
 printf("%s: errno = %d\n",s,errno);
 exit(-1);
}

tftell:3
Can't fseek() a character device: errno = 0
DOS Ready

See also: gtty(), ioctl(), stty(), ttyname()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

itoa(LIBC); ito?(LIBC) itoa(LIBC); ito?(LIBC)

These functions are used to convert integers to character strings of digits
(binary, octal, decimal or hexadecimal).

char *itoa(ival, string);

char *itob(ival, string);

char *itoo(ival, string);

char *itou(ival, string);

char *itox(ival, string);
int ival; char string[];

ival is an integer value to convert.

string is the resulting string of signed decimal, unsigned decimel,
binary, octal, or hexadecimal digits for "?" equal to a", "u",
"b", "o", or "x" respectively.

Description

These standard C functions are used to convert integer values to their
character string image. Functions are provided to deal with character
strings containing binary, octal, decimal or hexadecimal digits.

Return Code

A pointer to the character string is returned.

Example

#include stdio.h
char a[33], b[33], o[33], u[33], x[33];
int num = 100;
main(argc,argv) int argc; char *argv[];
{ if (argc==2) num = atoi(*++argv);
 itoa(num,a);
 itob(num,b);
 itoo(num,o);
 itou(num,u);
 itox(num,x);
 printf("num = %d: %sD %sB %sO %sU %sX\n",num,a,b,o,u,x);
}

num = 100: 100D 1100100B 144O 100U 64X
num = -32768: -32768D 1000000000000000B 100000O 32768U 8000X
num = 32767: 32767D 111111111111111B 77777O 32767U 7FFFX

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

labs(LIBC) labs(LIBC)

This function is used to obtain the absolute value of a long integer.

long labs(lval);
long lval;

lval is the long integer whose absolute value is to be determined.

Description

This function will obtain the absolute value of its long integer argument.
If lval is negative, -lval will be returned. If lval is non-negative,
lval will be returned.

Example

#include stdio.h
char inbuf[81];
extern long labs(), atol();
main()
{
 long num;
 puts("Enter your number: EOF to exit");
 while (TRUE)
 {
 if (!gets(inbuf)) break;
 printf("Absolute value of %ld is %ld\n",num,labs(num=atol(inbuf)));
 }
}

Enter your number: EOF to exit
-123456789 |Absolute value of -123456789 is 123456789
-276893105 |Absolute value of -276893105 is 276893105
987654321 |Absolute value of 987654321 is 987654321

See also: abs(), fabs(), fabsf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ldexp(MATH) ldexp(MATH)

This function multiplies a fractional value times two-to-an-exponent.

#include <math.h>
double ldexp(value, exp);

double value; int exp;

value the fractional part of a double.

exp the integer exponent of two.

Description

This function calculates a double floating point number composed of a
fractional "value" and an integer exponent, "exp", of base 2. It is used in
combining parts of a double floating point number.

Return Code

If the resulting value would overflow, +/- HUGE_VAL will be returned and
errno will be set to ERANGE. If the result would cause underflow, 0 is
returned and errno is set to ERANGE.

Example

#include stdio
#include math
char inbuf[81]; double d, v, m; int e;
main()
{
 puts("ldexp: enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 errno=0;
 m = frexp(d=atod(inbuf),&e);
 v = ldexp(m,e);
 printf("d = %g = %g; e = %d; m = %g; errno = %d\n",d,v,e,m,errno);
 }
}

ldexp: enter your number: EOF to exit
1234567 |d = 1.23457e+06 = 1.23457e+06; e = 21; m = 0.588687; errno = 0
-7.684e10 |d = -7.684e+10 = -7.684e+10; e = 37; m = -0.559085; errno = 0
1e40 |d = 1.70141e+38 = 1.70141e+38; e = 127; m = 1; errno = 3

See also: frexp(), modf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

line(IN) line(IN)

This function is used to plot a line of pixels on the CRT.

#option INLIB
int line(funcod, x1, y1, x2, y2);

int funcod, x1, y1, x2, y2;

funcod an operation code to set (1) or reset (0) the pixels involved in
the line.

x1,y1 the coordinate of the first point defining the line.

x2,y2 the coordinate of the second point defining the line.

Description

The "line()" function will plot a line connecting coordinate point (x1,y1)
with coordinate point (x2,y2).

Virtual Points

A virtual point is any pixel that is part of the plot request which cannot
appear on the CRT screen as it is out of the range of acceptable coordinate
values. The line function permits your arguments to describe such "virtual"
images; however, any portion of the geometric shape that would be outside
of the CRT image area is not plotted.

Return Code

A minus one (-1) indicates that the coordinate points (x1,y1) or (x2,y2),
or a portion of any plot is out of range (i.e. virtual and does not appear
in the CRT image). A minus three (-3) will be returned if the function code
passed is invalid (i.e. not in the range <0-1>).

Example

#option INLIB
#define PLOT 1
#define ERASE 0
int x1,x2,y1,y2,t,t1;
main()
{ for (x1=0,y1=0,x2=127,t=0; t<=47; t++)
 { line(PLOT,x1,y1,x2,t); line(ERASE,x1,y1,x2,t); }
 for (y2=47,t=127; t>=0; t--)
 { line(PLOT,x1,y1,t,y2); line(ERASE,x1,y1,t,y2); }
}

See also: box(), circle(), ploc(), pmode(), point(), reset(), set()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

localtime(LIBC) localtime(LIBC)

This function obtains a pointer to the broken down time structure.

#include <time.h>
struct tm *localtime(clock);

long *clock;

clock is a pointer to the long integer containing the UNIX time.

Description

This function returns a pointer to the structure, tm (defined in the "time"
header file), which will contain the broken down time based on the contents
of the long integer pointed to by "clock". Note that localtime() is based
on the actual time set in your machine and makes no automatic allowance for
time zone or Daylight Savings Time.

Return Code

A pointer to the broken down time structure will be returned.

Warning

The pointer returned by localtime() points to local static storage which
may be valid only immediately following the function call.

Example

#include stdio.h
#include time.h
extern struct tm *localtime();
extern long time();
struct tm *p;
char *ps[4] = { "th","st","nd","rd" };
main()
{ long clock; int s;
 clock = time(NULL);
 p = localtime(&clock);
 if ((s = p->tm_yday % 10) > 3) s = 0;
 printf("The time is %d:%d:%d on the %d%s day of %d\n",\
 p->tm_hour,p->tm_min,p->tm_sec,p->tm_yday,ps[s],p->tm_year+1900);
 system("date");
 system("time");
}

The time is 15:51:12 on the 323rd day of 1985
Tue, Nov 19, 1985
15:51:13

See also: asctime(), ctime(), sysdate(), systime(), time()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

log(MATH); log10(MATH) log(MATH); log10(MATH)

These functions calculate the log of a double.

#include "math.h"
double log(argx);

double log10(argx);
double argx;

argx is the double for which the log or log10 is to be determined.

Description

The log() function obtains the natural log (base_e) of its argument. The
log10() function takes the base_10 logarithm of its argument. In either
case, the value of "argx" must be positive.

Return Code

Both log() and log10() return HUGE_VAL and set errno to EDOM when "argx" is
not greater than zero. A message indicating DOMAIN error is printed on the
standard error output device. This error handling may be changed via the
matherr() function.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d, le, l10;
main()
{ puts("log: enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 errno=0;
 le = log(d=atod(inbuf)); l10 = log10(d);
 printf("d = %g; log = %g; log10 = %g; errno = %d\n" \
 ,d,le,l10,errno);
 }
}

log: enter your number: EOF to exit
100 |d = 100; log = 4.60517; log10 = 2; errno = 0
2.7182818284590452 |d = 2.71828; log = 1; log10 = 0.434294; errno = 0
-5 |argument domain error
 |argument domain error
 |d = -5; log = -1.70141e+38; log10 = -1.70141e+38; errno = 70

See also: exp(), pow(), sqrt(), matherr()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

longjmp(LIBC) longjmp(LIBC)

This function performs a long jump to an environment saved by setjmp().

#include <setjmp.h>
void longjmp(env, val);

jmp_buf env; int val;

env is the environment saved by setjmp().

val is the value returned by setjmp().

Description

A longjmp() will restore the program to the environment as saved in "env"
by a previous call to setjmp(). After the longjmp() is completed, the
program execution will continue as if the corresponding call to setjmp()
had just occurred; however, the returned value will be the value passed as
"val" in the longjmp() call, rather than zero. The setjmp()/longjmp()
companion functions can be used in error control within nested functions so
as to effect an escape from a lower-level function error without back-
tracking through error handling in each higher level nest.

Example

#include setjmp.h
jmp_buf env;
main()
{ int i, val;
 if (val=setjmp(env))
 printf("Error %d on i=%d\n",val,i);
 else
 for (i=0;i<3;++i)
 { func1(i); printf("No error %d\n",i); }
}
func1(i) int i;
{ func2(i); }
func2(i) int i;
{ func3(i); }
func3(i) int i;
{ if (i<2) return; else longjmp(env,1); }

See also: setjmp()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

lpower(LIBC) lpower(LIBC)

This function is used to raise a long integer to a long integer power.

long lpower(argx, argy);
long argx, argy;

argx is the base long integer to be raised to the argy power.

argy is the long integer exponent.

Description

Lpower() will raise a long integer, argx, to the long integer power, argy.
Note that the result could overflow with relatively small values of argy;
thus, exercise caution in the argument values.

Return code

If argy is not in the range 0L through 31L, the value returned will be zero
and the global error variable, errno, will be set to ERANGE. Otherwise, the
returned value will be argx raised to the argy power.

Example

#include stdio.h
#define SET 1
long john, silver;
extern long lpower();
main()
{
 option(O_KBECHO,SET);
 puts("lpower: enter your numbers: EOF to exit");
 while (TRUE)
 {
 if (scanf("%ld %ld",&john,&silver) != 2) break;

 printf("%ld to the %ld power = %ld\n", \
john,silver,lpower(john,silver));

 }
}

lpower: enter your numbers: EOF to exit
2 20 |2 to the 20 power = 1048576
3 8 |3 to the 8 power = 6561

See also: fraise(), pow()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

lseek(LIBC) lseek(LIBC)

This function is used to reposition a file.

long lseek(fildes, offset, whence);
int fildes, whence; long offset;

fildes is a file descriptor obtained from open(), creat(), dup(), or
fcntl().

offset the new position relative to whence.

whence specifies offset from beginning, current, or end for origin equal
to 0, 1, or 2.

Description

The lseek() function is used for random positioning in a file in
preparation for reading or writing. Offset is a signed long integer
allowing you to seek to any relative character position in the file.

Return Code

Upon successful completion, the new position relative to the beginning of
the file will be returned. If an error occurs during the seeking function,
EOF (-1) will be returned and the global error variable, errno, will
contain the UNIX error number associated with the error. The DOS error
number may be obtained via ferror(fpup(fildes));.

Warning

Remember that "offset" is treated as a SIGNED long integer. Thus, a
negative offset passed with an origin of 0 is an error. It is not an error
to lseek past the end of a file. You cannot lseek() a tty device.

Example

#include stdio.h
#include fcntl.h
char string[58]; int fildes;
main()
{ if ((fildes=open("boot/sys.lsidos",O_RDONLY))==EOF)
 { perror("open error"); exit(-1); }
 lseek(fildes,0x2c7L,0); /* seek date mnemonics */
 read(fildes, string, 57); /* read them into string */
 string[57] = '\0'; /* set NULL for string terminator */
 puts(string); /* display the mnemonics */
 close(fildes); /* close the file */
}

SunMonTueWedThuFriSatJanFebMarAprMayJunJulAugSepOctNovDec

See also: feof(), fseek(), isatty(), rewind(), seek(), tell()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ltoa(LIBC); lto?(LIBC) ltoa(LIBC); lto?(LIBC)

These functions are used to convert long integers to character strings of
digits (binary, octal, decimal or hexadecimal).

char *ltoa(lval, string);

char *ltob(lval, string);

char *ltoo(lval, string);

char *ltou(lval, string);

char *ltox(lval, string);
long lval; char xstring[];

lval is a long integer value to convert.

string is the resulting string of signed decimal, unsigned decimal,
octal, decimal, or hexadecimal digits for lto? equal to "a", "u",
"b", "o", "u", or "x" respectively.

Description

These standard C functions are used to convert long integer values to their
character string image. Functions are provided to deal with character
strings containing binary, octal, decimal or hexadecimal digits.

Return Code

In each case, a pointer to the resulting string is returned.

Example

#include stdio.h
char a[33], b[33], o[33], u[33], x[33];
long num = 100000;
extern long atol();

main(argc,argv)
int argc; char *argv[];
{

if (argc==2) num = atol(*++argv);
ltoa(num,a);
ltob(num,b);
ltoo(num,o);
ltou(num,u);
ltox(num,x);
printf("num = %ld: %sD %sB %sO %sU %sX\n",num,a,b,o,u,x);

}

num = 100000: 100000D 11000011010100000B 303240O 100000U 186A0X
num = 65537: 65537D 10000000000000001B 200001O 65537U 10001X

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

malloc(LIBC) malloc(LIBC)

This function is used to allocate a zeroed memory block.

char *malloc (size);
unsigned size;

size unsigned number of bytes needed.

Description

Malloc() is used to dynamically allocate memory during program execution.
The complementary function, free(), is used to release memory allocated
through malloc(). Malloc may be used to get table or buffer space when the
amount of memory space available is unknown, or when the program needs to
dynamically allocate space for an array.

Return Code

If a memory block has been allocated, the value returned is a pointer to
the memory block (pointer to char). If insufficient memory is available to
satisfy the allocation, a NULL will be returned.

Warnings

The program must not access memory outside of the area allocated. File
access routines use dynamic allocation to establish and release File
Control Areas (FCA's). The programmer cannot assume that memory not
allocated is free for use, since later file opens may cause memory
overlays. It is advised that the programmer always use the supplied dynamic
allocation functions for memory accessing.

Example

symtbsz -= symtbsz % symsiz; /* make integral */
if (!(symtab = malloc(symtbsz)))
 abend("not enough memory");
glbptr = startglb = symtab;

See also: alloc(), brk(), calloc(), realloc(), and sbrk()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

memccpy(LIBC) memccpy(LIBC)

This function will copy "n" characters in memory until character 'c' is
detected.

char *memccpy(s1, s2, c, n);
char *s1, *s2; int c, n;

s1 a pointer to the receiving memory area.

s2 a pointer to the originating memory area.

c the copy stops after the first occurrence of this character or until
n characters.

n the number of characters to copy.

Description

This function will perform a copy of characters from the memory region
pointed to by "s2" into the memory region pointed to by "s1", stopping
after the first occurrence of character 'c' has been copied or after "n"
characters have been copied, whichever comes first.

Warning

There is no checking on the magnitude of "n"; thus, a memccpy() with an
erroneous value for "n" could overwrite a critical portion of memory. Over-
lapping copies may produce unpredictable results.

Return Code

A pointer to the character after the copy of 'c' in "s1" is returned if 'c'
was found; otherwise, a NULL pointer will be returned.

See also: memchr(), memcmp(), memcpy(), memset()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

memchr(LIBC) memchr(LIBC)

This function finds the first occurrence of a character in memory.

char *memchr(s, c, n);
char *s; int c, n;

s a pointer to the memory region to search.

c is the character to look for.

n is the number of characters to search.

Description

This function will scan the memory region pointed to by "s" for "n"
characters looking for the first occurrence of character 'c'.

Return Code

A pointer to the character 'c' will be returned if that character is found
within the "n" bytes; otherwise, a NULL pointer will be returned.

Example

#include stdio.h
extern char *memchr();
char *s = NULL, *t; int c; unsigned n = 0;
main()
{
 fputs("Enter the character to find: ",stdout);
 c = getchar();
 while (TRUE)
 {
 if (!(t=memchr(s,c,n)))
 break;
 printf("Found %c at %04x (%c)\n",c,t,*t);
 n = n - (++t - s);
 s = t;
 }
}

Enter the character to find:
Found | at 033d (|)
Found | at 0384 (|)
Found | at 03ab (|)
Found | at 058b (|)
 continued

See also: memccpy(), memcmp(), memcpy(), memset().

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

memcmp(LIBC) memcmp(LIBC)

This function will compare two regions of memory.

int memcmp(s1, s2, n);
char *s1, *s2; int n;

s1 is a pointer to the first memory region.

s2 is a pointer to the second memory region.

n is the number of characters to compare.

Description

This function will compare "n" characters of memory region "s1" to memory
region "s2" and returns an integer less than, equal to, or greater than 0,
depending on whether the first n-characters of "s1" are lexicographically
less than, equal to, or greater than the first n-characters of "s2".

Example

#define SIZE 4096
main()
{
 char *p, *s;
 if (!(p=alloc(SIZE))) /* allocate non-zeroed memory block */
 abort();
 if (!(s=malloc(SIZE))) /* allocate zeroed memory block */
 abort();
 if (memcmp(p,s,SIZE))
 puts("Before zero(): memory compares different");
 zero(p,SIZE);
 if (memcmp(p,s,SIZE))
 puts("After zero(): memory compares different");
 else
 puts("After zero(): memory compares same");
}

Before zero(): memory compares different
After zero(): memory compares same

See also: memccpy(), memchr(), memcpy(), memset()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

memcpy(LIBC) memcpy(LIBC)

This function will copy n characters from one area of memory to another.

char *memcpy(s1, s2, n);
char *s1, *s2; int n;

s1 a pointer to the receiving memory area.

s2 a pointer to the originating memory area.

n the number of characters to copy.

Description

This function will perform a copy of "n" characters from the memory region
pointed to by "s2" to the memory region pointed to by "s1".

Warning

There is no checking on the magnitude of "n"; thus, a memcpy() with an
erroneous value for "n" could overwrite a critical portion of memory. Over-
lapping copies may produce unpredictable results.

Return Code

The function returns a pointer to "s1".

See also: memccpy(), memchr(), memcmp(), memset()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

memset(LIBC) memset(LIBC)

This function sets a region of memory to a given character.

char *memset(s, c, n);
char *s; int c, n;

s a pointer to the memory region to set.

c is the character value to set in memory.

n is the number of memory characters to set.

Description

This function will set "n" characters of memory starting with the address
pointed to by "s" with the designated character, "c".

Warning

There is no checking on the magnitude of "n"; thus, a memset() with an
erroneous value for "n" could overwrite a critical portion of memory.

Return Code

A pointer to "s" is returned.

See also: memccpy(), memchr(), memcmp(), memcpy()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

modf(MATH) modf(MATH)

This function obtains the signed fractional part of a double.

#include <math.h>
double modf(value, iptr);

double value, *iptr;

value the number to obtain the fractional part.

iptr a pointer to a double where the integer part of "value" is to be
stored.

Description

This function returns the signed fractional part of the double, "value",
and stores the integer part (as a double) in the location pointed to by
"iptr". It is used to split a double floating point number into its integer
part and its fractional part.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d, f_part, int_part;
main()
{
 puts("modf: enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 f_part = modf(d=atod(inbuf),&int_part);
 printf("d = %g; f = %g; i = %g\n",d,f_part,int_part);
 }
}

modf: enter your number: EOF to exit
1.234e2 |d = 123.4; f = 0.4; i = 123
-1765e-2 |d = -17.65; f = -0.65; i = -17
0.56789e4 |d = 5678.9; f = 0.9; i = 5678

See also: frexp(), ldexp()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

move(LIBC) move(LIBC)

This function will copy a memory block in memory.

void move(pfrom, pto, len);
char *pfrom, pto; int len;

pfrom the address of the block to be moved.

pto the address of the block's new starting address.

len the length of the block, in bytes.

Description

This function will perform a nondestructive move of a memory block. That
means that if the "pto" address is less than the "pfrom" address, the move
will start from the beginning of the block. If the "pto" address is greater
than the "pfrom" address, the move will start from the end of the block.
For portability across C compilers, it is recommended that you use the
equivalent function, memcpy().

Warning

There is no checking on the magnitude of "len"; thus, a move() with an
erroneous value for "len" could overwrite a critical portion of memory.

See also: fill(), memccpy(), memchr(), memcmp(), memcpy(), memset(), zero()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

open(LIBC) open(LIBC)

This function is used to open a file for block I/O.

#include <fcntl.h>
int open(path, oflag [,mode]);

char *path; int oflag, mode;

path a pointer to the string containing the file specification.

oflag is an ORing of bit-flags defined in fcntl.h which specify the
access of the file.

mode user protection level when the O_CREAT flag is specified and the
file does not exist.

Description

The open() function is used to prepare an existing file or newly created
file for access via read(), write(), or lseek(), or other file operation.
If the "oflag" argument specifies the O_CREAT flag, then open requires the
third argument, "mode", which should contain the creation access mode to be
applied to the designated file if it is non-existing [see creat()].

The "oflag" field is entered by ORing the desired conditions defined in the
fcntl header file. These symbols are as follows:

O_RDONLY /* Open for reading only */
O_WRONLY /* Open for writing only */
O_RDWR /* Open for reading and writing */
O_NDELAY /* Non-blocking I/O - unsupported */
O_APPEND /* Append (initial writes guaranteed at the end) */
O_CREAT /* Open with file create */
O_TRUNC /* Open with truncation */
O_EXCL /* Exclusive open - unsupported */

Exactly one of the first three must be specified.

Return Code

If an error is detected in opening the file, open() will return EOF (-1)
and the global error variable, errno, will contain the UNIX error number
which describes the error; otherwise, the file's descriptor will be
returned.

Warning

If the "path" field references a character special device, you will not be
able to use lseek() with the returned file descriptor.

Example

#include <stdio.h>
#include <fcntl.h>

main(argc, argv)
int argc; char *argv[];

{
int fd1, fd2, n; char buf[BUFSIZE];

if (argc != 3)
error("Usage: cp from to", NULL);

if ((fd1=open(argv[1],O_RDONLY))==EOF)
error("Can't open %s\n",argv[1]);

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

open(LIBC) open(LIBC)

if ((fd2=open(argv[2],O_WRONLY||O_CREAT,0777))==EOF)
error("Can't create %s\n",argv[2]);

while ((n = read(fd1, buf, 512)) > 0)
if (write(fd2,buf,n)!=n)

error("Write error\n",NULL);
}

error(s1, s2)
char *s1, *s2;

{
printf(s1, s2);
exit(1);

}

See also: creat()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

option(LIBC) option(LIBC)

This function will set the state of and/or return the state of an option flag
of MC.

int option(flag, switch);
int flag, switch;

switch is the designated operation on flag; 0 to reset; 1 to set; 2 to
test

flag is the designated flag to test or alter.

Description

This function can be used to alter any of the run-time option settings. The
option masks are defined in the stdio header file and are as follows:

O_ERRORMSG When reset, the I/O system will be inhibited from displaying
the usual DOS error message on an I/O error. This is the
default.

O_KBECHO When set, and keyboard input will be echoed to stdout. The
default is "reset".

O_BRIEF When set, this will force the I/O system to display brief
error messages if O_ERRORMSG has also been set. MC defaults
this to "reset".

Return Code

The function will return FALSE if the designated flag is reset, TRUE if the
designated flag is set, or EOF if the designated flag is out of range. For
"switch" equal to 0 or 1, the returned flag state is the state before the
reset or set (i.e the state prior to the option() request).

Example

#include "stdio.h"
main()
{ FILE *stream;
 option(O_ERRORMSG,1);
 if (!(stream=fopen("nosuchf.ile:7","r"))) perror("fopen error");
 else fclose(stream);
}

** Error code = 24, Returns to X'363F'
** File not in directory
File = NOSUCHF/ILE:7
Last SVC = 102, Returned to X'1A19'
fopen error: File not in directory

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

otoi(LIBC); otol(LIBC) otoi(LIBC); otol(LIBC)

These functions are used to convert character strings of octal digits to their
integer or long integer value.

int otoi(string);
char *string;

long otol(string);
char *string;

string is a pointer to a string containing octal digits <0-7>.

Description

These standard C functions are used to convert strings containing octal
character digits to their (long) integer equivalent. Conversion stops as
soon as the first character not in the valid range is detected. The result
is returned as the function value.

Example

#include stdio
char inbuf[81]; int ival;
main()
{ puts("Enter your octal number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 ival=otoi(inbuf);
 printf("Your number in decimal is: %d\n",ival);
 }
}

Enter your octal number: EOF to exit
1777 |Your number in decimal is: 1023
111 |Your number in decimal is: 73
1777777 |Your number in decimal is: -1

See also: btoi(), btol(), xtoi(), xtol()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

outport(IN) outport(IN)

This function outputs a character to a machine port.

#option INLIB
void outport(port, value);

int port, value;

port is the designated machine port.

value the low-order byte of value is output.

Description

The outport() function outputs the integer value to the port. The value is
truncated to its low-order byte.

Example (partial illustration of dcal/ccc)

#include stdio.h
#define SELECT 0xf4
#define COMMAND 0xf0
#define STATUS COMMAND
#define RESTORE 3
#define BUSY 1
#option INLIB
int ds[4] = {1,2,4,8};
unsigned drive, ckpulse();
char buffer[81];
main()
{
 input:
 {
 fputs("Enter floppy physical drive number <0-3> : ",stdout);
 if (!gets(buffer)) exit(0);
 drive = atoi(buffer);
 }
 if (drive > 3) goto input;
 printf("Insert a disk in floppy %d and depress return",drive);
 drive = ds[drive];
 getchar();
 outport(SELECT,drive);
 outport(COMMAND,RESTORE);
 while (inport(STATUS) & BUSY)
 {
 outport(SELECT,drive);
 if (inkey()) exit(0);

 }
}

See also: inport()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

perror(LIBC) perror(LIBC)

This function produces an error message on standard output.

void perror(s);
char *s;

s is a pointer to a message string printed as a prefix to the
generated message.

Description

The perror() function writes an error message corresponding to the error
number contained in the global error variable, errno, to standard error
output. The argument string, "s", is first written. Then a colon and blank
are next written. Finally, a message describing the error number contained
in "errno" is written followed by a new-line character.

The "errno" message written by perror() is obtained from sys_errlist().
Note that in order to keep program-occupied memory to a minimum,
sys_errlist is implemented in MC as a function which generates the message
as required rather than as an array of message strings.

Example

#include stdio.h
#option MAXFILES 5
char message[] = "Writing to dup'd file descriptor\n";
main()
{
 int fildes;
 if ((fildes=dup2(STDOUT,10))==EOF)
 {
 perror("main: dup2() error");
 exit(-1);
 }
 write(fildes,message,strlen(message));
}

main: dup2() error: Illegal logical file number

See also: errno, sys_errlist()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

pixel(IN) pixel(IN)

This plotting function supports the block graphics mode available to the CRT
screen to turn on, turn off, or determine the status of any point (pixel) in
the screen image.

#option INLIB
int pixel(funcod, xval, yval);

int funcod, x, y;

funcod specifies whether the pixel is reset (0), set (1), or pointed
(2).

xval specifies the horizontal coordinate.

yval specifies the vertical coordinate.

Description

The "pixel()" function can be used to point, reset, or set the pixel
depending on the function code supplied as the argument. The function code
(funcod) specifies the operation to be performed on the pixel. It is an
integer value in the range <0-2>. These codes are used as follows:

1 Indicates "reset", which will turn off (make dark) the pixel.

2 Indicates "set", which will turn on (make light) the pixel.

3 Indicates "point", which will return the status of the specified
pixel. The status will be zero (0) for reset, one (1) for set,
negative one (-1) if (x1,y1) is not in the CRT image, or negative
two (-2) if the specified pixel does not contain a graphic
character.

The "xval" and "yval" are integers which specify the pixel position along
the x-axis (horizontal) or y-axis (vertical). The value is a virtual pixel,
which means that it does not have to be a position in the CRT image. The
direction away from the origin is always considered to be in the positive
direction (for more information on this subject, see the pmode() function).

Return Code

Pixel() returns a zero (0) to indicate that the pixel is reset; a one (1)
to indicate that the pixel is set; a minus one (-1) to indicate that the
point (x1,y1) is out of range (i.e. virtual and does not appear in the CRT
image); a minus two (-2) to indicate that the pixel does not contain a
graphics character; or a minus three (-3) to indicate that the function
code passed to pixel() is invalid (not in the range <0-2>); otherwise, for
functions 0 and 1, a NULL will be returned.

See also: box(), circle(), line(), point(), reset(), set()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

point(IN) point(IN)

This function is used to sense the state of a pixel in the screen image.

#option INLIB
int point (xval, yval);

int x, y;

xval specifies the horizontal coordinate.

yval specifies the vertical coordinate.

Description

The "point()" function will obtain the state of the specified pixel
according to the designated point, (x,y). The "xval" and "yval" values
specify the pixel position along the x-axis (horizontal) and y-axis
(vertical) respectfively. The value is a virtual pixel, which means that it
does not have to be a position in the CRT image.

"point(xval,yval)" is equivalent to "pixel(2,xval,yval)".

Return Code

Point() returns a zero (0) to indicate that the pixel is reset; a one (1)
to indicate that the pixel is set; a minus one (-1) to indicate that the
point (x1,y1) is out of range (i.e. virtual and does not appear in the CRT
image); and a minus two (-2) to indicate that the pixel does not contain a
graphics character.

See also: box(), circle(), line(), pixel(), reset() set()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ploc(IN) ploc(IN)

This function establishes the starting address of the CRT image area.

#option INLIB
char *ploc(buffer);

char *buffer;

buffer specifies the starting address of the plotting image area.
Plotting functions use the CRT address unless changed by ploc().

Description

The ploc() function can be very powerful in creating dynamic displays. By
establishing an off-CRT buffer equal in length to the CRT image area, its
address can be passed via ploc() so that the plotting functions plot into
the buffer. The buffer could be subsequently moved to the CRT image area
with the move() function on memory-mapped video machines or via a
SuperVisor Call request on banked video machines.

On machines which do not have user-accessible memory-mapped video, an
address of zero is used to reference the CRT. Ploc() is initialized to
reference the video region. On machines with memory-mapped video, "address"
is initialized to the video memory address. Thus, if you pass some other
address via ploc(), you can restore plotting to the CRT by passing this CRT
memory address via another ploc() invocation. An address of zero also will
reference the video RAM; thus, denoting video reference via a ploc()
argument of zero will be portable across all MC releases.

Passing a zero as the address will also return the current ploc() address
as the function value while it resets the referencing to the video.

Warning

The buffer must be large enough to contain the screen image.

Example

#option INLIB
int r; unsigned regs[6]; char *p1;
main()
{ putchar('\x0f');
 if (!(p1=alloc(1920))) exit(-1);
 memset(p1,' ',1920);
 ploc(p1);
 for (r=1;r<40;r+=3) circle(1,79,35,r);
 regs[1]=0x500; regs[3]=p1;
 call(15,regs); getchar();
}

See also: pixel(), pmode()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

pmode(IN) pmode(IN)

The "pmode()" function establishes the CRT image area as one of the four
quadrants in the cartesian coordinate system.

#option INLIB
int pmode(quadrant);

int quadrant;

quadrant sets the plotting image to quadrant <1-4> of the x-y plane;
initialized to quadrant 4. If quadrant = 0, then the current
quadrant number in effect will be returned.

Description

The pmode() function is quite useful when your application concerns the
graphing of mathematical functions in the standard cartesian coordinate
system. Since most functions are graphed in the first quadrant, a
"pmode(1)" will establish the image area for that purpose. Please note that
any graphics or characters currently on the screen at the time pmode() is
invoked are left undisturbed; pmode() does NOT refresh the current screen
contents to the revised quadrant but prepares the plotting functions for
the new quadrant.

"Quadrant" is used when changing the base origin of the plot image area
with the pmode() function. The image area is considered to represent only
one quadrant of the x-y plane in the cartesian coordinate system. The
quadrants are numbered as follows:

 |
 2 | 1
 ________O|O_________
 O|O
 3 | 4
 |

with the point 0,0 (the origin) appearing at the corner identified with the
letter "O". The standard quadrant used by the plotting functions will be
quadrant 4 unless changed with a pmode() function call. Remember that the
direction away from the origin is always considered to be positive.

Return Code

A return code of 1, 2, 3, or 4 indicates the current quadrant in effect
when a pmode(0) function is invoked. A value of EOF (-1) is returned if
"quadrant" is not in the range <0-4>.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

pow(MATH) pow(MATH)

This function raises a double value to a double power.

#include "math.h"
double pow(argx, argy);

double argx, argy;

argx is the base value to raise.

argy is the power to raise argx.

Description

This function will raise a double precision number to a double precision
power and return a double precision result.

Return Code

Pow() returns 0 and sets errno to EDOM when argx is zero and argy is non-
positive, or when argx is negative and argy is not an integer value. In
both of these cases, a message is printed to standard error indicating
DOMAIN error. When the correct value for the function would overflow or
underflow the machine maximum or minimum for a double, pow() returns
HUGE_VAL or zero respectively and sets errno to ERANGE. This error handling
procedure may be changed via the matherr() function.

Example

#include stdio.h
#include math.h
double d,e,r;
main()
{ option(O_KBECHO,1);

puts("pow: Enter your x and y values: EOF to exit");
while (TRUE)
{

if (scanf("%lf %lf",&d,&e) != 2) break;
errno=0; r = pow(d,e);
printf("%g to the %g power = %g; errno = %d\n",d,e,r,errno);

}
}
matherr(x) struct exception *x;
{ fprintf(stderr,"Type %d function error in %s...\n",x->type,x->name);

fprintf(stderr," Args = %g,%g: ",x->arg1,x->arg2); return 0;
}

pow: Enter your x and y values: EOF to exit
2 32 | 2 to the 32 power = 4.29497e+09; errno = 0
-2 4 | -2 to the 4 power = 16; errno = 4
-5 4.7 | Type 1 function error in pow...
 | Args = -2,4.7: argument domain error
 | -2 to the 4.7 power = 0; errno = 70

See also: exp(), log(), log10(), matherr(), sqrt()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

printf(LIBC)(MATH) printf(LIBC)(MATH)

These functions create a formatted image for standard output.

#include "math.h" ... optional
int printf(control, arg1, arg2, ...);

char *control; args SEE TEXT

control is a string containing transparent printing characters and
conversion specifications.

argn arguments to be formatted for the output print image as specified
by the control.

Description

The printf(...) function is used to write an output image to the standard
output device and is identical to fprintf(stdout,...).

The specifications for formatting the output are determined by the
character string, "control". This string will contain ordinary characters
copied directly to the output image and/or specifications denoting the
field conversions of all arguments. The conversion specifications are
detailed under the documentation for fprintf().

Including the preprocessor statement, "#include math", will force an
automatic search of the MATH/REL library during the link process and link
the module which supports double precision floating point formatting.

Return Code

If an error is detected during printing, EOF will be returned; otherwise,
the number of characters actually printed will be returned.

Example

printf("%d characters, %d lines were copied\n", bytes, lines);

See also fprintf(), sprintf(), scanf(), fscanf(), sscanf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

putchar(LIBC); putc(LIBC) putchar(LIBC); putc(LIBC)

These functions are used to output a character to a file stream.

int putc(c, stream);
char c; FILE *stream;

int putchar(c);
char c;

c is the character to be output.

stream is the file pointer for the output file.

Description

Putc() is used to output single characters to the file stream identified by
the file pointer, "stream". 'c' is any of the 256 possible character codes.
If an integer value is passed it is left-truncated, so that only the least
significant byte is output.

Putchar() outputs the character 'c' to the standard output file and is
functionally equivalent to putc(c,stdout). Although some C implementations
support putchar() as a #define macro, MC supports putchar() as a function.

Return Code

The return code is the character passed in 'c' if no errors are detected;
otherwise, it will be different from the character passed in 'c'. When an
error is detected, the global error variable, errno, will contain the UNIX
error number which describes the error. Ferror() can also be used on the
stream to obtain the DOS error number.

Example

if (putc(c, fp) != c)
 return(1);
else return(0);

See also: fputc(), puts(), putw()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

puts(LIBC) puts(LIBC)

This function is used to output a string to the standard output.

int puts(string);
char *string;

string is the address of the string to be output.

Description

Puts() outputs "string" to the standard output file. All characters up to
the first zero byte are output. A new-line character is then output. This
function is similar to fputs(string,stdout); however, puts() adds a new-
line character whereas fputs() does not.

Return Code

A NULL (zero) will be returned if no error was detected in the I/O
operation, otherwise, the function will return EOF (-1) and the global
error variable, errno, will contain the UNIX error number associated with
the error. The DOS error may be recovered from the stream by invoking
ferror().

Example

if (argc!=3)
{ puts("Format error: compare file1 file2");
 exit();
}

See also: putc(), putw()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

putw(LIBC) putw(LIBC)

This function will write a "word" to a stream output.

int putw(word, stream);
int word; FILE *stream;

word is the integer value to write.

stream designates the output file stream.

Description

Putw() outputs a word to the designated stream. A "word" is the size of an
integer.

Return Code

If an error is encountered during the output, the return code will be EOF
(-1); otherwise, the word output will be returned.

Warnings

Since EOF is a valid integer value, ferror() or feof() must be used to
differentiate between a -1 return and an error return. Note that since the
low byte and high byte storage order of a word may vary in different
machine environments, putw() is an environment dependent function.

Example

#include stdio.h
main()
{ FILE *stream, fopen(); int ii, i, array[10];
 if (!(stream=fopen("test.dat:7","w+"))) exit(-1);
 for (i=0; i<10; i++)
 if (putw((ii=i*i),stream) != ii) fputs("fwrite error\n",stderr);
 rewind(stream);
 read(fileno(stream),array,sizeof(array));
 for (i=0; i<10; i++)
 printf("%d ",array[i]);
 fclose(stream);
}

0 1 4 9 16 25 36 49 64 81

See also: getc(), getw(), swab()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

qsort(LIBC) qsort(LIBC)

This function implements a recursive quicker sort algorithm.

int qsort(base, nel, width, compar);
char *base; unsigned int nel, width; int (*compar)();

base a pointer to the base of the table to sort.

nel is the number of elements in the table.

width is the size of an element in bytes.

compar is a pointer to a comparison function which returns -1, 0, or +1
according to a comparison of two elements.

Description

This function implements Hoare's quicker sort algorithm. The implementation
orders the table via a recursive invocation of the ordering function. The
comparison function must return a value less than zero, equal to zero, or
greater than zero depending on whether a comparison of element_a to
element_b finds element_a less than, equal to, or greater than element_b.

Return Code

If qsort() cannot obtain dynamic storage for the pivot element, an EOF is
returned; otherwise, a NULL is returned to indicate success.

Warning

An attempt to qsort() a very large table may result in a stack overflow
with unpredictable results.

Example

/* excerpt from sortsym/ccc */
if (read(0, (char *) base, fsize) != fsize) exit(1); /* read SYM file */
for (i=0, record=base, recp=prec; i<nrecs; ++i)
 *recp++ = record++;
puterr("\nSorting by name...");
if (qsort((char *) prec, nrecs, sizeof(RECORD *), compare) == EOF)
 abend("Can't sort\n");
tabify();
puterr("\nWriting by name...");
if (fputs("Alphabetic sort:\n\n", stdout)) exit(1);
for (i = 0, recp = prec; i < nrecs; ++i)
 if (write(1, (char *) *recp++, RECLEN) != RECLEN) exit(1);

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

rand(LIBC) rand(LIBC)

This obtains a pseudo-random integer number in the range 0 to 32767.

int rand();

Description

This function obtains a pseudo-random number in the range 0 to 32767. It is
seeded by srand() and initially seeded with a value of 1.

The following functions define the implementation of rand() and srand():

static unsigned long int next = 1;
int rand()
{
 next = next * 1103515245 + 12345;
 return ((unsigned int)(next/65536) % 32768);
}

void srand(seed) unsigned seed;
{
 next = seed;
}

Example

main()
{ int loop;
 for (loop=0; loop < 12; loop++)
 printf("%d ",rand());
 putchar('\n');
 srand(1);
 for (loop=0; loop < 12; loop++)
 printf("%d ",rand());
}

16838 5758 10113 17515 31051 5627 23010 7419 16212 4086 2749 12767
16838 5758 10113 17515 31051 5627 23010 7419 16212 4086 2749 12767

See also: frnd(), fseed(), srand()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

read(LIBC) read(LIBC)

This function is used to read a block of bytes from a file.

int read(fildes, buffer, n);
int fildes, n; char *buffer;

fildes is the file descriptor of the file.

buffer a byte buffer of at least length n.

n the number of bytes (block size) to read.

Description

The read() function will read a number of bytes equal to the "n" argument
or until the file's EOF is reached. In either case, the exact number of
bytes read will be returned as the function's return code. If the file is
at it's EOF, zero will be returned. Use the lseek() or seek() function to
position to where you want the reading to start. For sequential reads,
neither lseek() nor seek() is needed. The block size which is optimum for
speed of throughput will be a multiple of the file's sector size which is
defined as BUFSIZ in the stdio header file.

Return Code

The number of bytes actually read will be returned. The file will be at its
EOF when NULL is returned.

Example

#include <stdio.h>
#include <fcntl.h>
main(argc, argv) int argc; char *argv[];
{ int fd1, fd2, n; char buf[BUFSIZE];
 if (argc != 3) error("Usage: cp from to", NULL);
 if ((fd1=open(argv[1],O_RDONLY))==EOF)

 error("Can't open %s\n",argv[1]);
 if ((fd2=open(argv[2],O_WRONLY||O_CREAT,0777))==EOF)
 error("Can't create %s\n",argv[2]);
 while ((n = read(fd1, buf, 512)) > 0)
 if (write(fd2,buf,n)!=n) error("Write error\n",NULL);
}
error(s1, s2) char *s1, *s2; { printf(s1, s2); exit(1); }

See also: close(), open(), write()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

realloc(LIBC) realloc(LIBC)

This function changes the length of a previously allocated block.

char *realloc(ptr, size);
char *ptr; unsigned int size;

ptr is a pointer to the current block.

size is the size of the new block in bytes.

Description

This function may be used to increase or decrease the size of a block of
memory previously allocated via malloc(), calloc(), alloc() or a previous
realloc(). If the new block size is larger than the old block size, the
existing contents of the block will be unaltered and the remainder of the
block will be zeroed. If the new size is smaller than the old size, the
contents of the block will be unaltered up to the new size.

Return Code

If no additional memory is available, realloc() returns a NULL pointer;
otherwise, a pointer to the new block is returned.

Warning

If insufficient additional memory is available, the contents of the old
block may be lost.

Example

mrealloc(ptr, newsize, oldsize) /* reallocate data space of size bytes */
 char *ptr;
 unsigned newsize, oldsize;
{ static char *p;
 static int i;
 printf("attempting to reallocate %d bytes at %#X\n", newsize, ptr - 4);
 if (! (p = realloc(ptr, newsize))) /* couldn't do it */
 return NULL;
 printf("reallocated %d bytes at %#X\n", newsize, p - 4);
 printf("data = ");
 for (i = 0; i < newsize; ++i)
 printf("%2.2X ", p[i]);
 printf("\n");
 cfill(p, newsize - oldsize, oldsize);
 return p;
}

See also: alloc(), brk(), calloc(), free(), malloc()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

reset(IN) reset(IN)

This function is used to turn off any point (pixel) in the screen image.

#option INLIB
int reset (xval, yval);

int xval, yval;

xval specifies the horizontal coordinate.

yval specifies the vertical coordinate.

Description

The "reset()" function will turn off the specified pixel according to the
designated point, (x,y). The "xval" and "yval" values specify the pixel
position along the x-axis (horizontal) and y-axis (vertical) respectively.
The value is a virtual pixel, which means that it does not have to be a
position in the CRT image.

"reset(x,y)" is identical in function to "pixel(0,x,y)".

Return Code

A return code of minus one (-1) indicates that the point (xval,yval) is out
of range (i.e. virtual and does not appear in the CRT image).

Example

for (x=0, y=40; x<128; x++)
 set(x, y);
for (x=0, y=40; x<128; x++)
 reset(x, y);

See also: box(), circle(), line(), pixel(), point() set()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

rewind(LIBC) rewind(LIBC)

This function positions a stream to its beginning.

void rewind(stream);
FILE *stream;

stream is the stream file pointer.

Description

This function positions a stream to a zero offset relative to the
beginning. The stream must be associated with a block file device rather
than a character special device (i.e. isatty(fileno(stream)) must return
FALSE). It is equivalent to "fseek(stream,0L,0);" except that no value is
returned.

Example

#include stdio.h
main()
{ FILE *stream, fopen(); int ii, i, array[10];
 if (!(stream=fopen("test.dat:7","w+"))) exit(-1);
 for (i=0; i<10; i++)
 if (putw((ii=i*i),stream) != ii) fputs("fwrite error\n",stderr);
 rewind(stream);
 read(fileno(stream),array,sizeof(array));
 for (i=0; i<10; i++)
 printf("%d ",array[i]);
 fclose(stream);
}

0 1 4 9 16 25 36 49 64 81

See also: fseek(), ftell()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

rindex(LIBC) rindex(LIBC)

This function obtains the position of the last occurrence of a specified
character within a string. It is identical to strrchr(), its UNIX System V
counterpart.

char *rindex(s, c);
char *s; int c;

s is a pointer to the source string.

c is the character to find.

Description

The rindex() function will look for the last occurrence of character 'c' in
the string pointed to by "s". The low-order byte of the integer, 'c', will
be used as the character for which to look. Rindex() will operate properly
when 'c' is the NULL character.

Return Code

If the character 'c' is not found in string "s", NULL will be returned;
otherwise, a pointer to the position of the last 'c' in "s" will be
returned.

See also: index(), strcat(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

sbrk(LIBC) sbrk(LIBC)

This function is used to obtain a memory block.

char *sbrk(nbytes);
unsigned int nbytes;

char *sbrk(0);

nbytes an unsigned integer number of bytes needed.

Description

Sbrk() reserves memory for use by a program from the system memory pool.
The memory allocated by sbrk() cannot be deallocated until the program
finishes execution. Alloc() uses sbrk() to request blocks of memory as
needed but maintains a linked list of blocks available but unallocated. If
the memory requested will only be needed for part of the execution of the
program, it is recommended that either alloc(), calloc(), or malloc() be
used.

If the argument passed to sbrk() is zero, then the current value of the
program break ($LOMEM) will be returned. This may be useful with brk().

Return Code

The return code, "ptr", is the address of the allocated block of memory if
the sbrk() was successful. If not enough memory is available to satisfy the
request, "ptr" is set to NULL (0).

Warnings

Only memory allocated by sbrk(), alloc(), calloc(), malloc(), or realloc()
should be used by the programmer for dynamic space. File opens and closes,
including standard files, use these functions for setting up File Control
Areas (FCA's). These FCAs can be clobbered if the program accesses
unauthorized memory. If you inadvertantly pass a negative int as "nbytes",
it will be treated as a large unsigned request.

See also: brk()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

scanf(MATH); scanf(LIBC) scanf(MATH); scanf(LIBC)

This function is used to scan a formatted print image from standard input,
interpret the image fields according to a control string, and store the
translated results in the arguments passed in the function's invocation.

int scanf(control, arg1, arg2, ...);
char *control; SEE TEXT for type of arg1, arg2, ...

control is the decoding control string.

args as required to match the control string.

Description

The scanf() function is the input analog of the printf() function. It
provides similar translations; however, the conversions are from ASCII
string fields to argument values. Scanf() inputs from standard input
[stdin].

The arguments identified as "arg1, arg2, ..." MUST BE POINTERS, rather than
values since the scan function stores the converted results into the
arguments. For an argument defined as an array, its name will be a pointer.
For all scaler arguments, use the "address of" operator. The control string
is detailed under the documentation for fscanf().

The scanf() function contained in the LIBC library supports all variable
types except floats and doubles; thus "e", "f", and "g" translations will
be ignored unless #option MATHLIB is specified to request the MATH/REL
scanf.

Return Code

If end-of-file is reached during the input, EOF will be returned.
Otherwise, the function's return value will be equal to the number of
successfully matched and assigned input items.

Warnings

Arguments receiving strings must be large enough to contain the string.

Example

#include <stdio.h>
#include <math.h>
main()
{ char achar, string[81], float f1; int n_items, aint;
 n_items = scanf("%c%3d%*2d%6s%f",&achar,&aint,string,&f1);
 printf("Count = %d |%c %d %s %e\n",n_items,achar, \
 aint,string,(double)f1);
}

For input of: a12345abcdef 12.345e5
Prints : Count = 4 |a 123 abcdef 1.2345E+06

See also: fscanf(), sscanf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

seek(LIBC) seek(LIBC)

This function is used to randomly move around a file without actually reading
or writing (unflushed output buffered by the system will be physically written
when a seek() is performed).

int seek(fildes, offset, origin);
int fildes, offset, origin;

fildes the file descriptor of the file.

offset the new position relative to origin.

origin specifies offset from beginning, current, or end for origin equal
to 0, 1, or 2. For origin values of 3, 4, or 5, offset is
multiplied by 512 prior to the seek and origin is then
reinterpreted as 0, 1, or 2.

Description

The seek() function is used for random positioning in a file. Since offset
is treated as a signed integer, you can only seek within 32K of a position
(beginning, current, or end). For files of size greater than 64K, it is
best to consistently use a 512-byte block seek followed by a block offset
seek to postion to a location. Thus for large files, you can use origins of
3, 4, or 5 to seek to any given 512-byte block then invoke a subsequent
seek to position to the offset from that block.

It is recommended that you use the long form of the function, lseek().

Return Code

On origins of 0, 1, or 2, the positive offset from the current 512-byte
block prior to the seek will be returned. On origins of 3, 4, or 5, the
number of the current 512-byte block will be returned. These numbers may be
used to calculate the current record position or the number of records in a
file.

If an error occurs during the seek, EOF (-1) will be returned.

Warning

The file descriptor passed as the fildes argument of the function must be
one obtained from open(), creat(), dup(), dup2(), or fcntl(), or be a
standard file descriptor: STDIN, STDOUT, STDERR. Also, remember that the
offset is treated as a SIGNED integer. Thus, a negative offset passed with
an origin of 0 or 3 is an error. You can't seek a tty device!

See also: isatty(), lseek(), fseek()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

set(IN) set(IN)

This function is used to turn on any point (pixel) in the screen image.

#option INLIB
int set (xval, yval);

int xval, yval;

xval specifies the horizontal coordinate.

yval specifies the vertical coordinate.

Description

The "set()" function will turn on the specified pixel according to the
designated point, (x,y). The "xval" and "yval" values specify the pixel
position along the x-axis (horizontal) and y-axis (vertical) respectively.
The value is a virtual pixel, which means that it does not have to be a
position in the CRT image.

"set(x,y)" is identical in function to "pixel(1,x,y)".

Return Code

A return code of minus one (-1) indicates that the point (xval,yval) is out
of range (i.e. virtual and does not appear in the CRT image).

Example

for (x=0, y=40; x<128; x++)
 set(x, y);
for (x=0, y=40; x<128; x++)
 reset(x, y);

See also: box(), circle(), line(), pixel(), point() reset()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

setjmp(LIBC) setjmp(LIBC)

This function saves the environment for a "far" return via longjmp().

#include <setjmp.h>
int setjmp(env);

jmp_buf env;

env is the environment saved by setjmp().

val is the value returned by setjmp().

Description

The initial call to setjmp() always returns zero. A subsequent longjmp()
using the same environment will restore the program to the environment as
saved in "env" by the previous call to setjmp(). After the longjmp() is
completed, the program execution will continue as if the corresponding call
to setjmp() had just occurred; however, the returned value will be the
value passed as "val" in the longjmp() call, rather than zero. The
setjmp()/longjmp() companion functions can be used in error control within
nested functions so as to effect an escape from a lower-level function
error without backtracking through error handling in each higher level
nest.

Warning

The values of automatic and register variables are unpredictable following
a longjmp(). Do not use setjmp() in any expression other than an immediate
assignment or relational test.

Example

#include setjmp.h
jmp_buf env;
main()
{ int i, val;
 if (val=setjmp(env))
 printf("Error %d on i=%d\n",val,i);
 else
 for (i=0;i<3;++i)
 { func1(i); printf("No error %d\n",i); }
}
func1(i) int i;
{ func2(i); }
func2(i) int i;
{ func3(i); }
func3(i) int i;
{ if (i<2) return; else longjmp(env,1); }

See also: longjmp()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

sin(MATH) sin(MATH)

This function obtains the trigonometric sine of a double.

#include <math.h>
double sin(value);

double value;

value the double whose sine is desired.

Description

The sin() function obtains the triginometric sine of the double argument
entered in radians. The result is a double.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d1,d2;
main()
{ puts("sin: enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 errno=0;
 d2 = sin(d1=atod(inbuf));
 printf("sin of %g = %1.14f; errno = %d\n",d1,d2,errno);
 }
}

sin: enter your number: EOF to exit
1.5707963 | sin of 1.5708 = 1.00000000000000; errno = 0
1 | sin of 1 = 0.84147098480790; errno = 0
-1 | sin of -1 = -0.84147098480790; errno = 0

See also: asin(), cos(), tan(), fsin()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

sinh(MATH) sinh(MATH)

This function obtains the hyperbolic sine of a double.

#include <math.h>
double sinh(value);

double value;

value a double whose hyperbolic sine is desired.

Description

The sinh() function obtains the hyperbolic sine of the double argument
entered in radians. The result is a double.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d1,d2;
main()
{ puts("sinh: enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 errno=0;
 d2 = sinh(d1=atod(inbuf));
 printf("sin of %g = %1.14f; errno = %d\n",d1,d2,errno);
 }
}

sinh: enter your number: EOF to exit
.5 | sin of 0.5 = 0.52109530549375; errno = 0
1.0 | sin of 1 = 1.17520119364380; errno = 0
10.0| sin of 10 = 11013.23287470339369; errno = 0

See also: cosh(), tanh()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

sprintf(LIBC); sprintf(MATH) sprintf(LIBC); sprintf(MATH)

These functions create a formatted image for output to a string.

int sprintf(buffer, control, arg1, arg2, ...);
char *buffer, *control; args SEE TEXT

buffer the string area to receive the output.

control is a string containing transparent printing characters and
conversion specifications.

argn arguments to be formatted for the output print image as specified
by the control.

Description

The sprintf() function performs the same formatted output operations as the
printf() and fprintf() functions; however, the output is placed in a string
buffer and is terminated by a NULL ['\0'].

The specifications for formatting the output are determined by the
character string, "control". This string will contain ordinary characters
copied directly to the output image and/or specifications denoting the
field conversions of all arguments. The conversion specifications take the
form of:

%{flags}{width}{.prec}char

and are detailed under the documentation for fprintf().

Sprintf() may be used when more flexible control over floating point
formatting is required than that provided by dtoa() and ftoa().

Warning

The buffer must be large enough to contain the entire formatted string.

Return Code

The number of actual characters printed excluding the terminating NULL is
returned.

Example

sprintf(buf,"%d characters, %d lines were copied",bytes,lines);
puts(buffer);

See also: dtoa(), fprintf(), fscanf(), ftoa(), printf(), scanf(), sscanf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

sqrt(MATH) sqrt(MATH)

This function obtains the square root of a double.

#include <math.h>
double sqrt(value);

double value;

value a double whose square root is desired.

Description

The sqrt() function obtains the double precision square root of its double
precision argument. The result is a double.

Return Code

Sqrt() returns 0 and sets the global error variable, errno, to EDOM when
"value" is negative. A message indicating DOMAIN error will also be written
to standard error. These procedures may be changed via matherr().

Example

#include stdio.h
#include math.h
int i; char inbuf[81]; double d1,d2;

main()
{ puts("sqrt: Enter your number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 errno=0; d2 = sqrt(d1=atod(inbuf));
 printf("The square root of %g is %g; errno = %d\n",d1,d2,errno);
 }
}

matherr(x) struct exception *x;
{ fprintf(stderr,"Type %d function error in %s...\n",x->type,x->name);
 fprintf(stderr," Args = %g,%g: ",x->arg1,x->arg2);
 return 0;
}

sqrt: Enter your number: EOF to exit
170e6 | The square root of 1.7e+08 is 13038.4; errno = 0
-9 | Type 1 function error in sqrt...
 | Args = -9,0: Argument domain error
 | The square root of -9 is 3; errno = 70

See also: exp(), log(), pow()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

srand(LIBC) srand(LIBC)

This function seeds the pseudo-random number generator, rand().

void srand(seed);
unsigned int seed;

seed a seed for the rand() number generator.

Description

The srand() function may be invoked anytime to seed the random number
generator, rand(). Rand() is initially seeded to a value of 1 by the
system.

Example

main()
{ int loop;
 for (loop=0; loop < 12; loop++)
 printf("%d ",rand());
 putchar('\n');
 srand(1);
 for (loop=0; loop < 12; loop++)
 printf("%d ",rand());
}

16838 5758 10113 17515 31051 5627 23010 7419 16212 4086 2749 12767
16838 5758 10113 17515 31051 5627 23010 7419 16212 4086 2749 12767

See also: frnd(), fseed(), rand()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

sscanf(MATH); sscanf(LIBC) sscanf(MATH); sscanf(LIBC)

These functions are used to scan a formatted print image stored in a string,
interpret the image fields according to a control string, and store the trans-
lated results in the arguments passed in the function's invocation.

int sscanf(buffer, control, arg1, arg2, ...);
char *buffer, *control; args SEE TEXT

buffer the string area containing the input image.

control a string containing translation control.

args as required to match the control string.

Description

The sscanf() function is the input analog of the sprintf() function. It
provides similar translations; however, the conversions are from ASCII
string fields to argument values.

The arguments identified as "arg1, arg2, ..." MUST BE POINTERS, rather than
values since the scan functions store the converted results into the arg-
uments. The format of the control string is detailed under the documen-
tation for scanf().

If the end of the string is reached during the input, a newline character
will be automatically supplied to serve as a terminating whitespace.

A typical use for sscanf() is to provide reformatting of variables under
controlled conditions using internal memory buffers along with the comp-
lementary function, sprintf().

Return Code

When the end of the string is reached during the input, sscanf first treats
it as a new-line character for the purpose of terminating the scanned field
by whitespace. Subsequent requests for "input" from the string will return
EOF. Otherwise, the function's return value will be equal to the number of
successfully matched and assigned input items.

See also: fscanf(), scanf(), sprintf()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strcat(LIBC) strcat(LIBC)

This function appends one string to another.

char *strcat(dest, source);
char *dest, *source;

dest is a pointer to the destination string.

source is a pointer to the source string.

Description

The strcat() function will concatenate (append) the source string to the
destination string. The "dest" argument is a pointer to a character array
which must be of sufficient size to contain the appended string.

Return Code

A pointer to the "dest" string is returned.

Example

char string[81], lilbuf[9];
main()
{
 strcpy(string,"Today is ");
 strcat(string,sysdate(lilbuf));
 strcat(string," and the time is ");
 strcat(string,systime(lilbuf));
 puts(string);
}

Today is 11/21/85 and the time is 14:50:56

See also: strchr(), strcpy(), strcspn(), strncat(), strncpy(), strpbrk(),
strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strchr(LIBC) strchr(LIBC)

This function finds the first occurrence of a character in a string.

char *strchr(s, c);
char *s; int c;

s is a pointer to the source string.

c is the character to find.

Description

The strchr() function will look for the first occurrence of character 'c'
in the string pointed to by "s". The low-order byte of the integer, 'c',
will be used as the character. Strchr() will operate correctly when 'c' is
the NULL character.

Return Code

If the character 'c' is not found in string "s", NULL will be returned;
otherwise, a pointer to the position of 'c' in "s" will be returned.

Example

char *p, string[81];
main()
{
 puts("Enter your string; EOF to exit");
 for (;;)
 {
 if (!gets(string)) break;
 p=string; /* point p to string[0] */
 while (p=strchr(p,'.')) /* until no more dots */
 p='?'; / replace '.' with '?' */
 puts(string);
 }
}

Enter your string; EOF to exit
this is a test. | this is a test?
This "..." is an elipsis of dots. | This "???" is an elipsis of dots?

See also: strcat(), strcpy(), strcspn(), strncat(), strncpy(), strpbrk(),
 strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strcmp(LIBC) strcmp(LIBC)

This function compares two strings

int strcmp(string_1, string_2);
char *string_1, *string_2;

string_1 is a pointer to the first string.

string_2 is a pointer to the second string.

Description

This function compares "string_1" to "string_2" and returns an integer less
than zero, equal to zero, or greater than zero, depending on whether
"string_1" is lexicographically less than, equal to, or greater than
"string_2".

Return Code

The return code of strcmp() is <0, 0, or >0 as noted above.

Example

If you are unfamiliar with how ASCII strings are "ordered", perhaps a
strong example will clarify this discussion. The following is an ordered
list of strings in ascending order:

 a8bcde
 abc
 abcd
 jim
 karl
 rich
 roy
 this_is_a_long_string

Keep this ordered list in mind in the following examples. The statement:

if (strcmp("abc","a8bcd") < 0) ? printf("above") : printf("below");

should print the word, "below" since the string, "abc" is below the string
"a8bcd" in an ascendingly sorted list. The statement:

if (strcmp("abc","abcd") < 0) ? printf("above") : printf("below");

should print the word, "above" since the string, "abc" is above the string
"abcd" in an ascendingly sorted list.

See also: strcat(), strchr(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strcpy(LIBC) strcpy(LIBC)

This function copies one string into another.

char *strcpy(dest, source);
char *dest, *source;

dest is a pointer to the destination string.

source is a pointer to the source string.

Description

The strcpy() function copies an image of the source string to the
destination string buffer. Strcpy() is useful to initialize an allocated
but unzeroed character array to known string value. You cannot use strcat()
to copy a string into a buffer unless either the first element of the
buffer is known to be NULL or the buffer contains a string; thus, strcpy()
is useful in order to "prime" a string buffer.

Warning

The destination character array must be large enough to contain the source
string.

Return Code

A pointer to the "dest" string is returned.

Example

char string[81], lilbuf[9];
main()
{
 strcpy(string,"Today is "); /* initialize output string */
 strcat(string,sysdate(lilbuf)); /* add date to string */
 strcat(string," and the time is ");
 strcat(string,systime(lilbuf)); /* add time to string */
 puts(string);
}

Today is 11/21/85 and the time is 14:50:56

See also: strcat(), strchr(), strcspn(), strncat(), strncpy(), strpbrk(),
 strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strcspn(LIBC) strcspn(LIBC)

This function obtains the length of the initial sub-string of a first string
composed entirely of characters not found in a second string.

int strcspn(string1, string2);
char *string1, string2;

string1 is a pointer to the first string.

string2 is a pointer to the second string.

Description

This function will scan "string_1" for a substring of characters beginning
with the first character of "string_1" which is composed entirely of
characters not found in "string_2". Both the "string_1" and "string_2"
arguments should be pointers to character arrays.

Return Code

The length of the resulting substring is returned.

Example

char string[81], *field = "aeiou";
main()
{ int count;
 puts("Enter your string; EOF to exit");
 for (;;)
 {
 if (!gets(string)) break;
 if (count=strcspn(string,field))
 {
 *(string+count)='\0';
 printf("Substring <%s> contains no vowels\n",string);
 }
 else
 puts("A vowel starts your entry");
 }
}

Enter your string; EOF to exit
"rhythm" is a great word for the game of hangman!
Substring <"rhythm" > contains no vowels

See also: strcat(), strchr(), strcpy(), strncat(), strncpy(), strpbrk(),
strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strepl(IN) strepl(IN)

This function replaces a substring of one string with another string.

char *strepl(source, dest, pos, count);
char *source, *dest; int pos, count;

count is the destination sub-string length.

dest is a pointer to the destination string.

pos starting index position or array subscript.

source is a pointer to the source string.

Description

The strepl() function replaces that portion of the destination string
starting at relative position "pos" and continuing for "count" characters
[the destination substring] with the source string.

The argument "pos" represents a starting position relative to the beginning
of the destination string. It is essentially used as an index or subscript
into the "dest" character array.

The argument, "count", controls how much of the destination string is to be
replaced. If "count" is zero (0), then an insert operation is performed
without deleting any characters of the destination string.

The length of the replacement string is the length of the entire source
string. If the source string is null (i.e. of zero length), then only the
identified destination sub-string is deleted.

Warning

The destination character array must be of a size sufficient to contain the
generated string.

Return Code

If "dest+pos" exceeds the bounds of the destination string, a NULL (0) will
be returned and the string operation will be aborted; otherwise, a pointer
to the destination string will be returned. For instance:

if (!strepl(s, "destination_string", 24, 3)) puts("String error!");

will result in the error message display since the position, 24, is not in
the range of the destination string.

See also: strcat(), strchr(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strept(IN) strept(IN)

This function replicates a string.

#option INLIB
char *strept(dest, source, repeat);

char *dest, *source; int repeat;

dest is a pointer to the destination string.

source is a pointer to the source string.

repeat a repetition counter.

Description

The strept() function replicates the source string into the destination
string the number of times indicated by "repeat". Both "source" and "dest"
represent pointers to character arrays. Note that the replication uses the
entire source string and not just the first source string character.

Return Code

The function returns a pointer to the destination string.

Warning

The destination character array must be of a size sufficient to hold the
resultant string generation.

Example

#option INLIB
char string[81], *repeats[5] = {"*","*=.","*_* ","{[(<>)]}","=="};
main()
{ int loop;
 for (loop=0; loop<5; loop++)
 puts(strept(string,repeats[loop],5));
}

=.=.*=.*=.*=.
_ *_* *_* *_* *_*
{[(<>)]}{[(<>)]}{[(<>)]}{[(<>)]}{[(<>)]}
==========

See also: strepl(), stright(), strleft(), strmid(), strfind()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strfind(IN) strfind(IN)

This function will obtain the position of a substring in a string.

#option INLIB
char *strfind(dest, source, pos);

char *dest, *source; int pos;

dest is a pointer to the destination string.

pos starting index position or array subscript.

source is a pointer to the source string.

Description

The strfind() function will search the destination string for the first
appearance of the source string. The destination string will be searched
starting at the position "dest+pos". Both "source" and "dest" represent
pointers to character arrays containing the respective strings. "Pos" is
the starting position relative to the beginning of the destination string.

Return Code

If the source string is a null string, the value of "dest+pos" will be
returned. If the destination string is a null string or if the source
string is not found (i.e. is not a sub-string of the destination), a NULL
(0) will be returned. If the source string is found in the destination
string, a pointer to its position in the destination string will be
returned.

Example

#option INLIB
char *p, *string = "This is string one";
char *find[5] = {"hello","is","is","is","is"};
int loop, pos[5] = { 0,0,3,8,20 };

main()
{ for (loop = 0; loop < 5; loop++)
 if(p=strfind(string,find[loop],pos[loop]))
 printf("Found %s[%d]: %s\n",find[loop],pos[loop],p);
 else
 printf("Could not find %s[%d]\n",find[loop],pos[loop]);
}

Could not find hello[0]
Found is[0]: is is string one
Found is[3]: is string one
Could not find is[8]
Could not find is[20]

See also: strepl(), strept(), strleft(), strmid(), strfind()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

stright(IN) stright(IN)

This function obtains the rightmost substring of a string.

#option INLIB
char *stright(dest, source, count);

char *dest, *source; int count;

count is the integer sub-string length.

dest is a pointer to the destination string.

source is a pointer to the source string.

Description

The stright() function will copy the rightmost "count" characters (the sub-
string) of the source string to the destination string. This is NOT an
append operation. The destination string is replaced with the sub-string.
"Count" indicates the length of desired substring. If "count" is zero, the
destination becomes a null string. If the "count" is greater than the
source string length, the entire source string is copied.

Warning

The destination character array should be dimensioned large enough to
contain the entire sub-string and terminating NULL.

Return Code

The function returns a pointer to the resulting string.

Example

#option INLIB
char *string = "This is a test string", buf[100];
main()
{ int loop;
 for (loop=5; loop<30; loop+=5)
 puts(stright(buf,string,loop));
}

tring
est string
s a test string
his is a test string
This is a test string

See also: strepl(), strept(), strleft(), strmid(), strfind()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strleft(IN) strleft(IN)

This function obtains the leftmost substring of a string.

#option INLIB
char *strleft(dest, source, count);

char *dest, *source; int count;

count is the integer sub-string length.

dest is a pointer to the destination string.

source is a pointer to the source string.

Description

The strleft() function will copy the leftmost "count" characters (the sub-
string) of the source string to the destination string. This is NOT an
append operation. The destination string is replaced with the sub-string.
"Count" indicates the length of the desired substring. If "count" is zero,
the destination becomes a null string. If the "count" is greater than the
source string length, the entire source string is copied.

Warning

The destination character array should be large enough to contain the
entire substring and terminating NULL.

Return Code

The function returns a pointer to the resulting string.

Example

#option INLIB
char *string = "This is a test string", buf[100];
main()
{ int loop;
 for (loop=5; loop<30; loop+=5)
 puts(strleft(buf,string,loop));
}

This
This is a
This is a test
This is a test strin
This is a test string

See also: strepl(), strept(), stright(), strmid(), strfind()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strlen(LIBC) strlen(LIBC)

This function obtains the length of a string.

int strlen(source);
char *source;

source is a pointer to the source string.

Description

The strlen() function returns the length of the source string. The length
of a string is the number of characters up to but not including the first
NULL.

Return Code

The return code of strlen() is the length of the target string.

Example

#include stdio.h
char buffer[81];
main()
{
 puts("strlen: Enter your string; EOF to exit");
 while (TRUE)
 {
 if (!gets(buffer)) break;
 printf("Your string length is %d\n",strlen(buffer));
 }
}

strlen: Enter your string; EOF to exit
this is a test string |Your string length is 21
when in the course of human events |Your string length is 34
she sells sea shells down by the seashore|Your string length is 41
to err is human; to forgive is divine |Your string length is 37

See also: strcat(), strchr(), strcpy(), strcspn(), strncat(), strncpy(),
strpbrk(), strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strmid(IN) strmid(IN)

This function will obtain a substring from a string.

#option INLIB
char *strmid(dest, source, pos, count);

char *dest, *source; int pos, count;

count is the integer sub-string length.

dest is a pointer to the destination string.

pos starting index position or array subscript.

source is a pointer to the source string.

Description

Strmid() replaces the destination string with a substring of "count"
characters starting at the source string position, "source+pos". "Pos" is
the starting position relative to the beginning of the source string. Both
"dest" and "source" represent pointers to character arrays. "Count"
indicates the length of the desired substring. If "count" is zero, the
destination string will be null. "Count" may be greater than the length of
"source+pos".

Warning

The destination array must be a size sufficient to hold the sub-string.

Return Code

If "source+pos" exceeds the bounds of the source string, a NULL (0) will be
returned and no string replacement will occur; otherwise, strmid() will
return a pointer to the destination string. For instance:

if (!strmid(s,"error",6,3)) puts("String error!");

will result in the error message display since the position, 6, is not in
the range of the string, "error".

Example

#option INLIB
char *string = "This is a very long test string", buf[100];
main()
{ int loop;
 for (loop=0; loop<30; loop+=5)
 puts(strmid(buf,string,loop,11));
}

 This is a v |
 is a very l |
 very long t |
 long test s |
 test string |
 string

See also: strepl(), strept(), stright(), strleft(), strfind()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strncat(LIBC) strncat(LIBC)

This function appends at most "n" characters of one string to another.

char *strncat(dest, source, n);
char *dest, *source; int n;

dest is a pointer to the destination string.

source is a pointer to the source string.

n the maximum number of characters to append

Description

The strncat() function will concatenate (append) at most "n" characters of
the source string to the destination string. If "n" is greater than
strlen(source) then the entire source string will be appended.

Warning

The "dest" character array must be large enough to contain the resulting
string.

Return Code

A pointer to the "dest" string is returned.

Example

char *init = "Now is the time for all good men ",
 *string = "to come to the aid of their country",
 buf[100];
main()
{ int loop;
 for (loop=10; loop<40; loop+=5)
 {
 strcpy(buf,init); /* init buf */
 puts(strncat(buf,string,loop));
 }
}

Now is the time for all good men to come to
Now is the time for all good men to come to the
Now is the time for all good men to come to the aid o
Now is the time for all good men to come to the aid of the
Now is the time for all good men to come to the aid of their co
Now is the time for all good men to come to the aid of their country

See also: strchr(), strcpy(), strcspn(), strncat(), strncpy(), strpbrk(),
strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strncmp(LIBC) strncmp(LIBC)

This function compares at most "n" characters of one string to another.

int strncmp(string_1, string_2, n);
char *string1, *string_2; int n;

string_1 is a pointer to the first string.

string_2 is a pointer to the second string.

n the maximum number of characters to compare.

Description

This function will compare at most "n" characters of "string_1" to
"string_2" and return and integer less than zero, equal to zero, or greater
than zero, depending on whether "string_1" is lexicographically less than,
equal to, or greater than "string_2".

Return Code

The return code of strcmp() is <0, 0, or >0 as noted above.

Example

If you are unfamiliar with how ASCII strings are "ordered", perhaps a
strong example will clarify this discussion. The following is an ordered
list of strings in ascending order:

 a8bcde
 abc
 abcd
 rich
 roy
 this_is_a_long_string

Keep this ordered list in mind in the following examples. The statement:

if (strncmp("abc","a8bcd",2)<0) ? printf("above") : printf("below");

should print the word, "below" since the string, "ab" is below the string
"a8" in an ascendingly sorted list. The statement:

if (strncmp("abc","abcd",4)<0) ? printf("above") : printf("below");

should print the word, "above" since the string, "abc" is above the string
"abcd" in an ascendingly sorted list.

See also: strcat(), strchr(), strcmp(), strcpy(), strcspn(), strncat(),
strncpy(), strpbrk(), strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strncpy(LIBC) strncpy(LIBC)

This function copies at most "n" characters of one string into another.

char *strncpy(dest, source, n);
char *dest, *source; int n;

dest is a pointer to the destination string.

source is a pointer to the source string.

n the maximum number of characters to copy.

Description

The strncpy() function copies an image of at most "n" characters of the
source string to the destination string buffer. If the length of "source"
is equal to or greater than "n", the result will NOT be null-terminated.
If the length of "source is less than "n", NULLs will be added to "dest".

Return Code

A pointer to the "dest" string is returned.

Example

char *string = "123456789012345678901234567890", buf[100];
main()
{ int loop;
 for (loop=25; loop; loop-=5)
 {
 strncpy(buf,string,loop); /* copy ast most n chars */
 (buf+loop)='\0'; / add NULL, in case! */
 puts(buf); /* display the result */
 }
}

1234567890123456789012345
12345678901234567890
123456789012345
1234567890
12345

See also: strcat(), strchr(), strcpy(), strcspn(), strncat(), strpbrk(),
strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strpbrk(LIBC) strpbrk(LIBC)

This function finds the first occurrence in one string of any character in
another.

char *strpbrk(string_1, string_2);
char *string_1, *string_2;

string_1 is a pointer to the first string.

string_2 is a pointer to the second string.

Description

This function will scan through "string_1" and return a pointer to the
first character in "string_1" which is also found in "string_2".

Return Code

A NULL will be returned if no character of "string_1" is contained in
"string_2"; otherwise, a pointer to the matching character in "string_1" is
returned.

Example

#option INLIB
char *init = "the quick brown fox jumped over the lazy dogs back",
 *find[4] = {"aeiou","abc","xyz",",.;:?"}, *p;
main()
{ int loop;
 puts(init);
 for (loop=0; loop<4; loop++)
 {
 if (p=strpbrk(init,find[loop]))
 printf("Found char in set [%s] at init+%d\n", \
 find[loop],p-init);
 else
 printf("No chars from set [%s] in init\n", \
 find[loop]);
 }
}

the quick brown fox jumped over the lazy dogs back
Found char in set [aeiou] at init+2
Found char in set [abc] at init+7
Found char in set [xyz] at init+18
No chars from set [,.;:?] in init

See also: strcat(), strchr(), strcmp(), strcpy(), strcspn(), strncat(),
strncpy(), strrchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strrchr(LIBC) strrchr(LIBC)

This function finds the last occurrence of a character in a string.

char *strrchr(s, c);
char *s; int c;

s is a pointer to the source string.

c is the character to find.

Description

The strrchr() function will look for the last occurrence of character 'c'
in the string pointed to by "s". The low-order byte of the integer, 'c',
will be used as the character for which to look. Strrchr() will operate
properly when 'c' is the NULL character.

Return Code

If the character 'c' is not found in string "s", NULL will be returned;
otherwise, a pointer to the position of the last 'c' in "s" will be
returned.

Example

int find[4] = {'a','e','i','o'}; char *p, *rule =
"012345678901234567890123456789012345678901234567890123456789012345",
*init =
"this function finds the last occurrence of a character in a string";
main()
{ int loop;
 puts(rule); puts(init);
 for (loop=0; loop<4; loop++)
 {
 if (p=strrchr(init,find[loop]))
 printf("Found last char %c at init+%d\n",find[loop],p-init);
 else
 printf("Char %c not in init\n",find[loop]);
 }
}

012345678901234567890123456789012345678901234567890123456789012345
this function finds the last occurrence of a character in a string
Found last char a at init+58
Found last char e at init+52
Found last char i at init+63
Found last char o at init+40

See also: strcat(), strcpy(), strcspn(), strncat(), strncpy(), strpbrk(),
strchr(), strspn()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

strspn(LIBC) strspn(LIBC)

This function obtains the length of the initial substring of a first string
composed entirely of characters found in a second string.

int strspn(string_1, string_2);
char *string_1, string_2;

string_1 is a pointer to the first string.

string_2 is a pointer to the second string.

Description

The "strspn" function will scan "string_1" for a substring of characters
beginning with the first character of "string_1" which is composed entirely
of characters found in "string_2". The "string_1" and "string_2" arguments
represent pointers to character arrays which contain the strings.

Return Code

The length of the resulting substring is returned.

Example

char string[81], substr[81], *field = "asdfghjkl";
main()
{ int count;
 puts("Enter your string; EOF to exit");
 for (;;)
 {
 if (!gets(string)) break;
 if (count=strspn(string,field))
 {
 (string+count)='\0'; / terminate the substring */
 printf("Substring <%s> on home row\n",string);
 }
 else
 puts("String does NOT start on home row");
 }
}

Enter your string; EOF to exit
dash |Substring <dash> on home row
chaff |String does NOT start on home row
shaft |Substring <shaf> on home row

See also: strcat(), strchr(), strcmp(), strcpy(), strncat(), strncmp(),
strncpy(), strpbrk(), strrchr()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

stty(LIBC) stty(LIBC)

This function sets control information concerning a file.

#include <sgtty.h>
int stty(fildes, argp);

int fildes; struct sgttyb *argp;

fildes is a descriptor of the file.

argp is a pointer to the data structure.

Description

This function sets control information on files. The data to be set is
stored in the data structure pointed to by the "argp" argument and has been
previously obtained via a call to gtty() or ioctl(). The structure is
defined in the "sgtty" header file and is as follows:

struct sgttyb {
char sg_colctr; /* column counter */
char sg_control;/* control byte */
char sg_flag; /* FCA flag byte */

};

The "sgttyb.sg_colctr" element stores a counter for the current column
position of the output image for the device. This item is relative to zero
and is reset to zero when a new-line is sent to the fildes. It is
initialized to zero when the filedes is opened. The "sgttyb.sg_control"
byte stores various bit fields and is masked as follows:

IO_BREAK 0x10 /* mask for #option BREAK */
IO_TABSTOP 0x0f /* mask for "tabstop-1" */
IO_FDCOE 0x80 /* mask for "close_on_exec" flag */

The stty() function is equivalent to:

ioctl(fildes,TIOCSETP,argp);

TIOCSETP is defined in the "sgtty" header file. The function is typically
used to establish tab stops at other than the default of every 8 columns or
to establish the BREAK key value as EOF on an input device. Note that for
tabs, IO_TABSTOP is one less than the stop value (i.e. for every eight
columns, use 7).

Return Code

If the call was successful, NULL will be returned; otherwise, an EOF will
be returned and the global error variable, errno, will contain the UNIX
error number associated with the error.

See also: ioctl(), gtty()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

swab(LIBC) swab(LIBC)

This function copies bytes from one region to another with swapping.

void swab(from, to, nbytes);
char *from, *to; int nbytes;

from is a pointer to the region to copy.

to points to the region to copy into.

nbytes is the number of bytes to swap.

Description

This function copies "nbytes" from the location pointed to by "from" into
the location pointed to by "to", while it exchanges odd and even bytes
during the copy operation. The value, "nbytes", should be even and non-
negative. The function is typically used to prepare integer data on the
host machine for transmission to another machine which uses a reverse order
for storing 2-byte words.

Example

int loop, flipped[5], words[5] = {1,10,100,1000,10000};
char *p;
main()
{
 swab(words,flipped,sizeof(words));
 fputs("Before swab: ",stdout); p = words;
 for (loop=0; loop<sizeof(words); loop++)
 printf("%02x ",*p++);
 fputs("\nAfter swab : ",stdout); p = flipped;
 for (loop=0; loop<sizeof words ; loop++)
 printf("%02x ",*p++);
}

Before swab: 01 00 0a 00 64 00 e8 03 10 27
After swab : 00 01 00 0a 00 64 03 e8 27 10

See also: getw(), putw()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

sys_errlist(LIBC) sys_errlist(LIBC)

This function returns a pointer to an error message for a UNIX error.

char *sys_errlist(errnum);
int errnum;

errnum is the error number of the desired message.

Description

The sys_errlist() function is normally used by perror() to post an error
message to standard error. It can be used to obtain the error message
string associated with any UNIX error. In this implementation,
sys_errlist() uses the DOS error message dictionary to produce the error
message string for selected errors which have a near-UNIX counterpart -
although the actual text may not be that which is printed in some manuals
covering the UNIX system.

Warning

UNIX implements sys_errlist as an array of strings; however, in order to
keep program-occupied memory to a minimum, sys_errlist is implemented in MC
as a function which generates the message as required rather than an array
of message strings. This is non-standard!

Note that the returned character pointer references static data which is
subject to change.

Example

extern char *sys_errlist();
main()
{
 int i;
 for (i=0; i<75; i++)
 printf("%d = %s\n",i,sys_errlist(i));
}

See also: errno, perror()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

sysdate(LIBC) sysdate(LIBC)

This function returns the DOS 8-character date string.

char *sysdate(sdate);
char *sdate;

sdate is a pointer to your 9-character buffer.

Description

This function obtains the 8-character date string from the system and
places it into your buffer appending a NULL following the eighth character.
The string is in the format:

MM:DD:YY\0

Warning

Your buffer must be a minimum of 9 characters in length.

Example

char buf[9];
main()
{
 printf("The date is %s and from buf: %s\n",sysdate(buf),buf);
 printf("The time is %s and from buf: %s\n",systime(buf),buf);
}

The date is 11/25/85 and from buf: 11/25/85
The time is 13:40:19 and from buf: 13:40:19

See also: asctime(), ctime(), localtime(), systime(), time()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

system(LIBC) system(LIBC)

This function is used to invoke a DOS command from within a program and then
return to your program when the DOS command completes.

int system(cmdstr);
char *cmdstr;

cmdstr a pointer to the string which contains the DOS command which is
to be executed.

Description

If you want to execute a command and return to your program, use the
system() function. This function will pass the command string pointed to by
the pointer argument or the command string passed as the function's
argument to the DOS command interpreter. Upon completion of the command,
control will be returned to the running program. Your program and variables
will be saved during the execution of the command.

Return Code

A return code of zero (0) will be retrieved If the executing command
returns through @EXIT. If the @ABORT exit is taken, the return code gener-
ated will be obtained from the value contained in register pair "HL". If
this value is positive (i.e. bit 15 reset), it becomes the return code. If
the value is negative (i.e. bit 15 set), then a negative one (-1) will be
returned.

Example

#include stdio.h
char buf[81];
main()
{ puts("Test of system()\n");
 system("LIB");
 puts("Hit EOF to exit back to DOS");
 while (TRUE)
 { puts("Enter command: ");
 if (!gets(buf)) break;
 printf("\nReturn code is %d\n",system(buf));
 }
 puts("Now leaving system()...");
}

See also: cmdi(), execl(), execv()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

systime(LIBC) systime(LIBC)

This function returns the DOS 8-character time string.

char *systime(s_time);
char *s_time;

s_time is a pointer to your 9-character buffer.

Description

This function obtains the 8-character time string from the system and
places it into your buffer appending a NULL following the eighth character.
The string is in the format:

HH:MM:SS\0

Warning

Your buffer must be a minimum of 9 characters in length.

Example

char buf[9];
main()
{
 printf("The date is %s and from buf: %s\n",sysdate(buf),buf);
 printf("The time is %s and from buf: %s\n",systime(buf),buf);
}

The date is 11/25/85 and from buf: 11/25/85
The time is 13:40:19 and from buf: 13:40:19

See also: asctime(), ctime(), localtime(), sysdate(), time()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

tan(MATH) tan(MATH)

This function obtains the double precision trigonometric tangent of an angle
given in radians.

#include <math.h>
double tan(argx);

double argx;

argx is the angle in radians for which the tangent is desired.

Description

The function obtains the double precision trigonometric tangent of a double
precision argument entered in radians. The result is double precision.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d1, d2;
main()
{
 puts("tan: Enter your number: EOF to exit");
 while (TRUE)
 {
 if (!gets(inbuf)) break;
 d2 = tan(d1=atod(inbuf));
 printf("The tangent of %g is %e\n",d1,d2);
 }
}

tan: Enter your number: EOF to exit
1 |The tangent of 1 is 1.557408e+00
1.57 |The tangent of 1.57 is 1.255766e+03
1.6 |The tangent of 1.6 is -3.423253e+01

See also: ftan(), sin(), cos()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

tanh(MATH) tanh(MATH)

This function obtains the hyperbolic tangent for an angle in radians.

#include <math.h>
double tanh(argx);

double argx;

argx is the angle in radians for which the hyperbolic tangent is
desired.

Description

This function obtains the double precision hyperbolic tangent of its double
precision argument entered in radians. It returns a double precision
result.

Example

#include stdio.h
#include math.h
char inbuf[81]; double d1, d2;

main()
{
 puts("tanh: Enter your number: EOF to exit");
 while (TRUE)
 {
 if (!gets(inbuf)) break;
 d2 = tanh(d1=atod(inbuf));
 printf("The hyperbolic tangent of %g is %e\n",d1,d2);
 }
}

tanh: Enter your number: EOF to exit
0.5 |The hyperbolic tangent of 0.5 is 4.621172e-01
1.0 |The hyperbolic tangent of 1 is 7.615942e-01
3.0 |The hyperbolic tangent of 3 is 9.950548e-01

See also: sinh(), cosh()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

tell(LIBC) tell(LIBC)

This function obtains the current position of a file.

long tell(fildes);
int fildes;

fildes is the file descriptor of the file.

Description

Tell() obtains the current position of the file identified by the file
descriptor, "fildes". The function is identical to:

lseek(fildes, 0L, 1)

and is considered obsolete.

Return Code

The file's position relative to the beginning of the file is returned as a
long integer.

See also: lseek(), open(), creat(), fseek()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

time(LIBC) time(LIBC)

This function obtains the UNIX time measured in seconds.

long time(0);
long time(tloc);

long *tloc;

tloc is a non-zero pointer where the returned value will also be
stored.

Description

The UNIX time is defined as the number of seconds since 00:00:00 standard
local time January 1, 1970. As long as "tloc" is not zero, the return value
is also stored at the location pointed to by "tloc".

Example

main()
{
 long tod;
 time(&tod);
 printf("Time now is %ld seconds since 1/1/70\n",tod);
 printf(" in ASCII is %s",ctime(&tod));
}

Time now is 501780054 seconds since 1/1/70
 in ASCII is Mon Nov 25 15:20:54 1985
Time now is 501780066 seconds since 1/1/70
 in ASCII is Mon Nov 25 15:21:06 1985

See also: asctime(), ctime(), localtime(), systime(), sysdate()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

toascii(LIBC) toascii(LIBC)

This function is used to convert a character to ASCII.

char toascii(c);
char c;

c is the character under test.

Description

Toascii() converts the character under test to ASCII by stripping bit_7
from the character passed as the argument.

Return Code

The function will return the converted character, as required.

Example

char *p,*input="ThIs Is A f\xf5NnY \xD3tRinG";
main()
{
 p=input-1;
 while (*++p)
 *p=toascii(*p);
 puts(input);
 p=input-1;
 while (*++p)
 *p=tolower(*p);
 puts(input);
 p=input-1;
 while (*++p)
 *p=toupper(*p);
 puts(input);
}

ThIs Is A fuNnY StRinG
this is a funny string
THIS IS A FUNNY STRING

See also: tolower(), toupper()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

tolower(LIBC) tolower(LIBC)

This function is used to convert a character from upper or lower case to lower
case.

char tolower(c);
char c;

c is the character under test.

Description

Tolower is used to convert an upper-case character <'A' through 'Z'> to a
lower-case alphabetic <'a' through 'z'>. The function affects only alpha-
betic characters; numbers, special symbols, etc., are returned unaltered.

Return Code

The function will return the converted character, as required.

Example

char *p,*input="ThIs Is A f\xf5NnY \xD3tRinG";
main()
{
 p=input-1;
 while (*++p)
 *p=toascii(*p);
 puts(input);
 p=input-1;
 while (*++p)
 *p=tolower(*p);
 puts(input);
 p=input-1;
 while (*++p)
 *p=toupper(*p);
 puts(input);
}

ThIs Is A fuNnY StRinG
this is a funny string
THIS IS A FUNNY STRING

See also: toascii(), toupper()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

toupper(LIBC) toupper(LIBC)

This function converts a character from lower or upper case to upper case.

char toupper(c);
char c;

c is the character under test.

Description

Toupper() performs the function opposite to tolower(); a lower case
character is converted to upper case. The function affects only alphabetic
characters; numbers, special symbols, etc., are returned unaltered.

Return Code

The function will return the converted character, as required.

Example

char *p,*input="ThIs Is A f\xf5NnY \xD3tRinG";
main()
{
 p=input-1;
 while (*++p)
 *p=toascii(*p);
 puts(input);
 p=input-1;
 while (*++p)
 *p=tolower(*p);
 puts(input);
 p=input-1;
 while (*++p)
 *p=toupper(*p);
 puts(input);
}

ThIs Is A fuNnY StRinG
this is a funny string
THIS IS A FUNNY STRING

See also: toascii(), lower()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ttyname(LIBC) ttyname(LIBC)

This function obtains the file name of the terminal device associated with an
open file descriptor.

char *ttyname(fildes);
int fildes;

fildes is the file descriptor for which the terminal name is desired.

Description

This function returns a pointer to the name of the character special file
(i.e. device) identified by the file descriptor, "fildes".

Warning

The returned pointer references static data which is subject to change.

Example

/* cktty/ccc */
extern char *ttyname();
main()
{
 int fildes;
 for (fildes=0; fildes<3; fildes++)
 printf("The name of fildes %d is %s\n",fildes,ttyname(fildes));
}

cktty #*pr

The name of fildes 0 is *KI
The name of fildes 1 is *DO
The name of fildes 2 is *PR

See also: isatty()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

ungetc(LIBC); ungetch(LIBC) ungetc(LIBC); ungetch(LIBC)

These functions can be used to return a single character to a file stream.

int ungetc(c, stream);
char c; FILE *stream;

int ungetch(c);
char c;

c the character or byte to un-get.

stream the file pointer obtained from fopen().

Description

The opportunity may present itself where a character that has been obtained
via getc() is not needed and should be left available for the next getc()
invocation. The ungetc() function can be used to store this character in a
one-character buffer associated with the file stream.

The ungetch() function is identical to the construct, ungetc(c,stdin);.
Note, the scanf() function uses ungetc().

Return Code

If the one-character buffer is already storing a character from a previous
ungetc(), EOF will be returned; otherwise, NULL will be returned.

Warnings

The file pointer passed as the stream argument of the function must be one
obtained from fopen(). Do not use ungetch(fpup(fildes)) as the block file
I/O functions do not utilize the ungetc() buffer. The ungetc() storage is
shared with the storage of the last DOS error number encountered.

Example

/* after newline, strip line feed if present */
if ((c=getchar()) != 'x0a') ungetch(c);

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

unlink(LIBC) unlink(LIBC)

This function is used to delete a file from disk.

int unlink(path);
char *path;

path the file specification of the file that is to be removed.

Description

This function performs the same operation as the DOS function to delete a
file [LDOS - KILL, TRSDOS - REMOVE]. The file must not currently be open in
the MC file system.

Return Code

The return code will be NULL if the file is unlinked without error. A
return code of EOF indicates that an error has occurred and the global
error variable, errno, will contain the UNIX error number associated with
the error.

Warning

It is an error to try to unlink a file which is currently open [via
fopen(), open(), dup(), dup2(), or creat()] in the MC file system and
unlink() will not permit the deletion.

Example

#include <stdio.h>
main(argc,argv) int argc; char *argv[];
{
 FILE *fp;
 if (argc==1)
 { puts("Usage: testunlk filespec [inhibit]\n"); exit(-1); }
 if (argc == 3)
 if ((fp=fopen(argv[1],"R"))==NULL)
 { printf("Error in opening %s\n",argv[1]); exit(-1); }
 printf("Unlink's return code = %d\n",unlink(argv[1]));
}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

write(LIBC) write(LIBC)

Write() is used to write a block of bytes to a file.

int write(fildes, buffer, n);
int fildes, n; char *buffer;

fildes the file descriptor of the file.

buffer a buffer containing the bytes to write.

n the number of bytes (block size) to write

Description

The write() function will write a number of bytes equal to the "n" argument
or until an error in writing is detected. Use lseek() or seek() to position
to the start of where writing is to occur. If you are writing sequentially,
a seek operation is not needed. The block size which is optimum for speed
of throughput will be a multiple of the file's sector size which is defined
as BUFSIZ in the "stdio" header file.

Return Code

The exact number of bytes written will be returned as the function's return
code. If this number does not equal "n", then an error has occurred and the
global error variable, errno, will contain the UNIX error number which
describes the error. The DOS error number may be obtained with ferror().

Example

creat_file(name) char *name;
{ int i,fd;
 if ((fd=creat(name,0777))==EOF) open_error(name);
 for (i=0;i<10000;i++)
 {
 if ((write(fd,itoa(i,record),10))!=10)
 { printf("Error in writing %s\n",name); exit(-1); }
 cursor(10,3); /* position cursor */
 printf("Writing record %5d\n",i);
 }
 close(fd);
}

See also read(), open(), lseek()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

_xlate(LIBC) _xlate(LIBC)

This function obtains the equivalent UNIX error number of a DOS error.

int _xlate(errnum);
int errnum;

errnum is the DOS error number for which the UNIX equivalent is desired.

Description

This is not a standard UNIX function; thus, it is not portable across C
implementations. Of course, DOS error codes are not portable, either. The
error number may be one obtained from ferror(). The UNIX errors are defined
in the "errno" header file. A Unix error may be displayed via perror() or
the error message obtained via sys_errlist().

Example

main()
{
 int i;
 for (i=0; i<25; i++)
 printf("%02d ",i);
 putchar('\n');
 for (i=0; i<25; i++)
 printf("%02d ",_xlate(i));
}

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
00 04 02 04 04 04 06 04 08 04 02 04 04 04 04 15 16 04 04 16 04 04 04 04 24

See also: perror(), ferror(), errno, sys_errlist()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

xtoi(LIBC); xtol(LIBC) xtoi(LIBC); xtol(LIBC)

This function is used to convert character strings of hexadecimal digits to
their integer or long integer value.

int xtoi(string);
char *string;

long xtol(string);
char *string;

string is a string containing hexadecimal digits <0-9, a-f, A-F>.

Description

This C function obtains the machine value of a string of hexadecimal digits
in character form (i.e. composed of nothing but characters in the range 0-
9, a-f, and A-F). Left truncation of the integer value takes place if an
excess number of digits is present (i.e. ival=xtoi("10001"); would result
in the integer value of 1 decimal). Conversion stops as soon as the first
character not in the valid range is detected.

Return Code

The obvious return code of the xtoi() function is the integer value of the
string. The xtol() function returns a long integer.

Example

#include stdio.h
char inbuf[81]; int ival; long lval;
extern long xtol(); /* to show that function returns a long */

main()
{ puts("Enter your hexadecimal number: EOF to exit");
 while (TRUE)
 { if (!gets(inbuf)) break;
 ival=xtoi(inbuf);
 lval=xtol(inbuf);
 printf("Number in decimal (int|long)is: (%d|%ld)\n",ival,lval);
 }
}

Enter your hexadecimal number: EOF to exit
1234 |Number in decimal (int|long)is: (4660|4660)
12345 |Number in decimal (int|long)is: (9029|74565)
fffff |Number in decimal (int|long)is: (-1|1048575)
abcd |Number in decimal (int|long)is: (-21555|43981)
8000 |Number in decimal (int|long)is: (-32768|32768)

See also: atoi(), atol(), btoi(), btol(), otoi(), otol()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

zero(LIBC) zero(LIBC)

This function will fill a memory block with binary zeroes.

void zero(address, length);
char *address; unsigned length;

address is the starting address of the memory region to zero.

length is the number of memory cells to zero.

Description

This function is equivalent to "fill(address, length, 0);".

Example

#define SIZE 4096
main()
{
 char *p, *s;
 if (!(p=alloc(SIZE))) /* allocate non-zeroed memory block */
 abort();
 if (!(s=malloc(SIZE))) /* allocate zeroed memory block */
 abort();
 if (memcmp(p,s,SIZE))
 puts("Before zero(): memory compares different");
 zero(p,SIZE);
 if (memcmp(p,s,SIZE))
 puts("After zero(): memory compares different");
 else
 puts("After zero(): memory compares same");
}

Before zero(): memory compares different
After zero(): memory compares same

See also: fill(), memset()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Advanced Topics

Runtime options and I/O control
Runtime options provide flexibility in customizing some aspect of the program
that you are developing. Note that the option support provided in MC is not
something usually found in other C compilers; or where provided, it would
typically be implemented in some other manner (such as forcing you to edit
some library or invoke some function other than a standard function). What
this means is that when you utilize these options, a little lack of port-
ability is introduced into your C source program. You therefore should
adequately document your use of these options so that you may recognize their
effects when you choose to port your program to some other system.

MC provides a few different facilities for invoking options. The specific
facility used depends on the scope of the desired effect. For instance, the
"#option" preprocessor directive is usually used to change which library
modules are to be included during the link session. The "option()" function is
used to alter the behaviour common to the entire I/O package while the
"ioctl()" function is used to alter the behaviour of a specific device. In
addition, compiler options, such as "+f", alter a particular aspect of the
compiler's behaviour.

The following sections include material on various options. Some of the
material enhances the information provided elsewhere in this document while
other material specifically documents the use of an option facility.

ERRORMSG
The I/O package provided in LIBC has the capability of invoking the DOS I/O
error handler when any error is indicated by a DOS service call. This handler
uses the "@ERROR" DOS facility. Since the DOS error facility always issues its
error message display through the "*DO" device, any display will be
irrespective of standard output or standard error output redirection. The
default state of "errormsg" is FALSE; thus, any detected error will not
initiate a request to the DOS error handler.

There will always be some error returned from a library function when a DOS
I/O error has been detected regardless of the state of "errormsg". Using the
function's error indication, along with any DOS error available via ferror()
or the UNIX error variable, "errno", and perror(), your program can obtain
some "controlled" error message display. A controlled display is usually more
appropriate for an installed program. The error return codes are documented
for each function in Chapter 4, "Library Functions", where applicable.

During program development, you may desire to have the DOS I/O error message
displayed automatically upon detection of an I/O error. All you need do is set
the "errormsg" flag to TRUE. The state of this flag is altered by coding the
option() function as follows:

option(O_ERRORMSG,TRUE);

within your C source program. The symbolic constant "O_ERRORMSG" is defined in
the stdio header file. When an I/O error occurs, the DOS error handler will
report an error diagnostic similar to the following:

** Error code = 24, Returns to X'363F'
** File not in directory
File = NOSUCHF/ILE:7
Last SVC = 102, Returned to X'1A19'

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

BRIEF

This option works in concert with "errormsg". The DOS provides a facility for
specifying a long or a short (brief) error diagnostic display message. If the
long message identified above is too lengthy, it can be shortened to:

File not in directory

by invoking the option() function as follows:

option(O_BRIEF,TRUE);

The symbolic constant "O_BRIEF" is defined in the stdio header file. Note that
neither the long error diagnostic nor the short error diagnostic will be
displayed unless "errormsg" has been optioned TRUE.

KBECHO

In certain types of programs, such as screen and graphics editors, the
programmer may choose to control the display of characters typed at the
keyboard. However, for most programs it is desirable to be able to see what is
being typed without overt action on the part of the program, even if standard
output has been redirected. The "kbecho" option allows this flexibility. When
set TRUE, "kbecho" will cause the getc() function (and likewise the getchar()
function) to echo all characters input from the keyboard to the video display
device (*DO). This holds true for ANY file opened as "*KI", not just the
standard input. Since "kbecho" defaults to FALSE, if you desire its effect,
you need to set it TRUE by invoking the option function as follows:

option(O_KBECHO,TRUE);

The symbolic constant "O_KBECHO" is defined in the stdio header file. The
state of "kbecho" (i.e. FALSE to TRUE and TRUE to FALSE) may be freely altered
while your program is running.

BREAK

The TRSDOS 6 keyboard driver provides a facility for generating an end of file
indication by a specific combination of keystrokes (specifically,
<CTRL><SHIFT><@>). Thus, an EOF can be generated from the keyboard just like
an EOF is generated when reading a file stream and the end of the file is
reached. Unfortunately, LDOS 5.1 does not have such a capability. Therefore,
an option has been provided to enable the <BREAK> key to be used as an EOF
indicator. This option is device specific; thus, it is enabled or disabled via
the ioctl() function. The option is operational on all MC releases. You should
read the documentation on the ioctl() function contained in Chapter 4,
"Function Libraries". The "break" option appears in numerous examples
throughout chapter 4.

WILDCARD

The "wildcard" facility in MC provides an automatic search of a disk directory
so as to expand a command line wildcard file specification argument into a
vector of all file specifications found in the directory which match the
wildcard file specification found on the command line. The wildcard file
specification is interpreted as containing three fields: a file name, a file
extension, and a drive specification.

A wildcard file specification uses two special characters significant for
matching purposes: the asterisk "*" and the question mark "?". The question
mark will match any character in that character position. The asterisk is used
to match all trailing characters in that field. When the asterisk is used, it
should be the last character in a field (the "last" might also be the
"first"). The drive specification field does not accept the two "matching"
characters but is considered to be an asterisk if the field is omitted.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Since the design of a program must specifically take into account the use of
wildcards, the wildcard expander module contained in LIBC is not normally
linked to your program. You specify the use of wildcards by adding an
"#option" directive to your program such as the following:

#option wildcard

As is typical with other #option directives, the operand may be upper or lower
case. The "wildcard" option directive can also be used to inform the wildcard
expander that you want it to ignore checking the first "n" arguments for
wildcards. This is accomplished by specifying the directive as:

#option wildcard nskip

The "nskip" operand is the quantity of arguments that should be skipped. Note
that the first argument, argv[0], is always the program name and is never
included in the "nskip" count. If no arguments are to be skipped, the "nskip"
operand MUST be omitted; do NOT enter it as a ZERO. This argument skipping
facility allows you to accept pattern-matching arguments on the command line
without worrying about them being interpreted as wildcards. The appearance of
the "#option wildcard" directive in either form will automatically alter the
conditions established in the MC/ASM file so as to link the wildcard expander
module to your program during the link session.

The typical command line would use one or more wildcard specifications to
designate a collection of files for an input stream. Any output generated by
the program would need to use the standard output stream which may be
redirected on the command line or reopened within the program by the freopen()
library function. A command line could also include "switches" which are
usually prefixed by a plus or minus sign.

The following rules are used by the wildcard expander in determining whether a
command line argument is to be interpreted as a wildcard specification:

1) The first command line argument is always interpreted as the invoked
program name; thus, it is not treated as a wildcard.

2) The next "nskip" arguments encountered on the command line are passed
unchanged to the argument list; they are never treated as wildcards.

3) Any argument enclosed in either single quotes or double quotes is NOT
treated as a wildcard, regardless of the presence of any wildcard
characters (*,?) within the text of the argument.

4) If the first character of an argument is a question mark, the argument
is interpreted as a wildcard.

5) If the first character of an argument is an asterisk and the following
character is not alphabetic, the argument is interpreted as a wildcard.

6) If the first character of an argument is an asterisk and the following
character is an alphabetic, the argument is not interpreted as a
wildcard but as a possible devicespec.

7) If the first character of an argument is an alphabetic, then the entire
argument is scanned for wildcard characters (*,?). If any are found,
the argument is considered a wildcard, otherwise it is passed unchanged
to the argument list.

Non-wildcard arguments are included in the argument list in their position
relative to adjacent arguments. Wildcard arguments force a search of the
appropriate directory for matches to the wildcard specification. If the drive
specification is omitted from the wildcard specification, the directories of
all connected disk drives will be scanned for file specifications that match
the wildcard specification. Note that a device specification (the typical
device specification is an asterisk followed by two alphabetic characters) is
still interpreted as a device specification since an alphabetic following an

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

asterisk will not be interpreted as a wildcard file specification. Note that
arguments enclosed within single or double quotes will not be expanded; they
are not treated as wildcards.

If the command line includes one or more wildcard specifications and no match
is found during the directory search(es), the diagnostic message:

No files matched wildcard(s)

will be displayed and the program will abort. This acts as a safety valve to a
program that could not function since no input file specification was
provided.

The following test program can be used to illustrate the expansion effects of
various command lines that include one or more wildcards.

/*
 * WILDTEST/CCC - test "built-in" wildcard arg expander
 */
#include <stdio.h>
#option WILDCARD
int i;
main(argc, argv)

int argc; char *argv[];
{

printf("argc: %d, argv: %#04X\n\n", argc, argv);
for (i = 0; i < argc; ++i, ++argv)

printf("argv[%4d]: %#04X is '%s'\n", i, *argv, *argv);
}

The following program reads a collection of assembler source files and writes
to the standard output, all lines that begin with a comment indicator (the
semicolon). The wildcard expander makes it easy to specify the collection of
"*/ASM" files on a particular drive for use as input.

#include stdio.h
#option wildcard
char buffer[81];
main(argc,argv)

int argc; char *argv[];
{

while (--argc) /* while there is still an input spec */
{

if (!freopen(*++argv,"r",stdin)) /* attempt to open it */
{

fprintf(stderr,"Unable to access %s\n",*argv);
continue;

}
while (gets(buffer)) /* while the file still has input lines */
{

if (*buffer == ';') /* if a comment, then output it */
if (puts(buffer)==EOF) /* continue if no output error */

exit(-1); /* error exit */
}

}
}

Compiler "float" option
K&R is quite specific concerning the operational characteristics of floating
point numbers. In paragraph 6.2, they state, "All floating point arithmetic is
carried out in double-precision; whenever a float appears in an expression it
is lengthened to double by zero-padding its fraction." What this means is that
double precision floating point arithmetic is the norm for a standard C
compiler. The type of float is available only to limit the storage of floating
point numbers; arithmetic is carried out in double precision. Thus, C dictates

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

an automatic upward conversion of floats to doubles for calculations.
Furthermore, in paragraph 10.1 concerning the parameter list of a function,
they state, "C converts all float actual parameters to double, so formal
parameters declared float have their declaration adjusted to read double."

What these preceding statements mean is that a standard C compiler has no
facility for calculating with single precision floating point; double
precision is the standard. MC follows this standard; however, since MC is
targeted for a machine environment which is necessarily slow in performing
double precision floating point calculations, an option has been provided to
specify a non-standard single precision floating point mode. Bare in mind,
this option is not without headaches. Great care must be exercised in its use.
You also must thoroughly understand the behaviour of the compiler when dealing
with the arguments of a function.

Since any float argument to a function is always converted up to a double,
none of the single precision functions provided in the math library [fabsf(),
fatn(), fcos(), fexp(), ffix(), fint(), flog(), fraise(), frnd(), fseed(),
fsin(), fsgn(), fsqr(), ftan(), and ftoa()] may be used in the normal compiler
mode. You cannot explicitly cast a float argument to a float and override this
upward conversion.

The default compiler mode for floats is to treat them as doubles in three
places:

(1) When used in a complex expression.
(2) When passed as actual arguments to functions.
(3) When declared as formal arguments in function definitions.

The "+f" option disables all three. It also causes floating point constants to
be treated as float, not double, thus causing a (possible) loss of precision.
It also allows you access to the much faster single precision floating point
functions (with a resultant loss of accuracy). The "+f" compiler option does
not prevent you from using any double precision function or performing any
complex expression evaluation that mixes floats and doubles. Floats will still
be upgraded to double when in an expression with a double (see the Arithmetic
conversion specifications noted under "binary operators" in Chapter 2).
Explicit casts to float or double may thus be necessary in certain places. For
instance, the various print() functions ALWAYS expect a double for a floating
point argument. If you have invoked the "+f" compiler option and pass a float
as a print() parameter, you must explicitly cast it to a double since the
compiler will no longer do this for you. All this boils down to a couple of
observations:

(1) Use this option sparingly; only when lower precision is acceptable
and/or when faster execution is desired and/or when code/data space is
at a premium.

(2) The generated code is obviously non-portable.
(3) Mixing of doubles and floats is not recommended.
(4) The need for casts forces the code to get somewhat tricky in places.

Call: DOS SVC interface
You will usually find the C langauge useful in writing DOS utility programs
which extend the capabilities of the DOS just like the DOS provided library
commands. Such utility programs may need direct access to DOS service calls.
Since these types of programs are DOS specific in nature, there is usually no
need to worry about portability aspects; however, it is always wise to provide
some standardized method of isolating the non-portable DOS interface. Thus,
the programmer has been provided with a function in the installation library
that provides a level of standardization. This is the call() function.

The call() function has been provided in the installation library to
standardize the invocation of machine language routines and DOS service calls.
The use of call() is thoroughly documented in Chapter 4, "Function Libraries".
The call() function saves the state of the index registers, IX and IY, during

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

its execution; thus, there is no restriction on its use. Note that the
function will either invoke a system SVC or directly CALL a machine address
based on the "address" parameter value passed in the function's invocation.
That means that even in an SVC interfaced DOS, it is still possible to use
call() to execute and return from a memory resident machine language module
which is external to the C program's environment.

Separate Compilation of Modules
MC supports separate compilation: functions and modules can be compiled at
different times, assembled separately, then linked together to produce one
program. This facilitates the creation of relocatable module function
libraries, and results in great time savings. Commonly used functions can be
compiled and assembled once, then only linked into new programs, without
recompiling or assembling. Large programs may be segmented and each segment
compiled and assembled separately, then linked as a whole by the linker. With
the "extern" and "static" statements, the variables used in a module may be
specified as external or local.

When separately compiling modules that reference variables in other modules,
there is only one approach that may be taken to supply declarations for the
shared variables. That approach, which is the proper method and results in
better structure in programs, is to define variables as extern when referenced
by all but one of the modules with that one module defining the "public"
variables outside of all functions that it contains.

To illustrate the mechanics of separate compilation, consider a large program
which has been broken up into four separate C source files. The files are:
"progmain", "progio", "progmenu", and "progwork". Each of these files may be
compiled with a JCL command line such as:

DO MC (N=progname,C)

The JCL parameters specify the name of the file to be compiled (N=progname)
and the compile option (C). After the JCL has been invoked for each of the C
source files, this results in four assembly output files. Following the
compilation phase, the three subordinate files ("progio", "progmenu", and
"progwork") can each be assembled to a separate relocatable module with a
command such as:

MRAS progname -NL
M80 progname=progname

which results in the generation of a /REL file with the same filename as
"progname". The "progmain" file which includes the main() function would be
assembled with a command line such as:

MRAS MC +I=PROGMAIN +O=PROGMAIN -NL
M80 prognameprogname

The difference in this MRAS invocation is that the MC/ASM file is the primary
file to be assembled with "progmain" as an "INCLUDE" file. The "+O=PROGMAIN"
is used to override the default output file name with a specific designation
of "PROGMAIN". The "progmain" file could also be compiled and assembled in one
command step via the JCL command string previously shown by adding the JCL
parameter, "A", as in:

DO MC (N=progname,C,A)

The subordinate files cannot be compiled and assembled in one JCL command step
with the MC/JCL file supplied; however, it could be done by altering the MRAS
invocation command line in the JCL file to appear like the first illustration.

Once all of the four files have been compiled and assembled, you generate the
executable command program with the linker. To continue with this
illustration, an appropriate link command would be:

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

MLINK PROGMAIN,PROGIO,PROGMENU,PROGWORK-N=PROG:d-E
L80 PROG:d-N,PROGMAIN,PROGIO,PROGMENU,PROGWORK,-E:M80BGN

where the ":d" would be replaced with the output drive specification. The
resulting executable command file would be named "PROGMAIN/CMD".

Obviously, the rationale for using this separate compilation approach would be
to limit your development efforts to more managable "chunks" of code. You
would rarely be working on all of the files simultaneously but would most
likely complete the development of a subordinate module (compile and assemble
steps) prior to continuing with the remaining modules. This provides a scheme
of partitioning your program into a sequence of small development efforts.

An alternative method of partitioning a large program into small "chunks"
would be to isolate every function into a separate file. Compile and assemble
each function individually. Write small test programs to exercise each
function separately, then build a library, say PROGLIB", with the relocatable
function modules. Your "progmain" could then just declare an "#option PROGLIB"
to search the library during the link process. See the section on "Building
and Maintaining Relocatable Libraries" in this chapter.

Using extern and static
When writing a large program, it is best to try to logically structure your
program into modules containing related functions with the data structures
they use within the same module. Any functions or non-automatic data
structures in a module that need not be accessed by any external function can
be declared as "static". These static functions and variables will be unique
in name when compiled and assembled, and will not be accessible to other
modules; thus, there will be no conflicts in naming.

Those functions and non-automatic data structures declared in the module which
need to be accessed by functions in other modules should be declared without
any storage class. This causes these functions and data structures to become
"public", meaning that they are defined in this module, and can be accessed
from other modules.

When a module uses a function or data structure declared in another module,
the "extern" statement is used to declare the type of the object. "extern" is
required for accessing variables outside the module. However, if a function is
used without an "extern" declaration, the compiler will assume that the
function returns an integer value. If any other result is returned, the
function must be declared "extern" with the appropriate type.

A few examples may help you appreciate the distinctions being addressed here.
Spend a little time studying the C source code declarations in the following
module until you understand the accessibility of each variable.

 int var1; /* public to all functions of all modules */

 static int var2; /* accessible to functions which follow in
 this module: main(), func1(), func2() */

 main()
 { static int var3;/* local to main only */

 int var4; /* local to main only */
 }

 int var5; /* public to all functions of all modules */

 static int var6; /* accessible to functions which follow in
 this module: func1(), func2() */

 func1()

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

 { int var7; /* local to func1 only */

 static int var8;/* local to func1 only */
 }

 static int var9; /* accessible to functions which follow in
 this module: func2() */

 func2()
 { ; }

The variables "var1" and "var5" become public to all modules because these
variables are defined outside of all functions of this module and are also not
defined with a storage class. Thus, some other module may access these two
variables if that other module includes the statement,

extern int var1, var5;

Now even though "var2", "var6", and "var9" are variables defined outside of
all functions in this module, since they have the storage class "static", they
become accessible only to the functions within this module. In fact, note that
a static variable defined outside of a function becomes accessible only to the
functions that follow the declaration. Thus, "var2" is accessible to main(),
func1(), and func2(); but "var6" is accessible only to func1() and func2()
since it is declared following main().

Static variables declared inside of a function are local only to that
function. The primary difference between a static and an auto is that a static
has a specific memory storage assignment whereas an auto's storage is strictly
on the stack. Statics are generally accessed faster than autos; thus, if speed
is important, consider the use of statics. The contents of such static
variables also persist across repeated calls to the same function.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Building and Maintaining Relocatable Libraries
We encourage C users to create libraries of commonly used functions. This
increases your productivity, since functions need not be rewritten for each
program. A library should contain self-contained functions; i.e, they do not
require the calling function to know about the library module's internal
structure, and do not assume anything about data structures that the calling
function declares. In structured programming lingo, library functions should
be data-coupled and functionally cohesive. Also, functions should be tested
and be well debugged before being placed in a function library.

The first point to make concerning relocatable libraries is that the filename
field of a library file specification cannot exceed seven characters. The
second point is if you name your library "USERLIB", you need take no further
action after you have built the library.

If you are using the MRAS assembler package, building a library is very easy
since you have the MLIB relocatable module librarian. MLIB is used to build
and maintain relocatable libraries. If you have no library of your own already
built, you start just by using the "load library" MLIB command and load a
compiled and assembled function (a module). You can continue to add additional
compiled and assembled function modules via the "add module" MLIB command. The
library is "built" in memory as the modules are added; then you write it to
disk via the "save library" MLIB command.

If you are using the M80 assembler package, you may not have access to a
convenient librarian such as MLIB. Thus, you must build your library
sequentially by appending modules together using the APPEND library command
provided with your DOS. Any number of functions can be added in this fashion;
however, since you have no facility to extract or rearrange the library
modules, remember to save a copy of each module individually on an archive
disk. When you use the APPEND command to add each module, use the STRIP
parameter of APPEND to remove the end of file byte (X'9E') from the library
file when you are appending a module to the library. For instance, if you want
to build a NEW library composed of three modules named "eenie", "meenie", and
"minie", the sequence of commands would be like the following:

COPY EENIE/REL USERLIB/REL
APPEND MEENIE/REL USERLIB/REL (STRIP)
APPEND MINIE/REL USERLIB/REL (STRIP)

The first command is used to copy the first module into a new file called
"userlib/rel". The subsequent APPEND commands will append the second and third
modules to the "library" while the use of the "strip" parameter tells APPEND
to backspace over the last byte of the library file (the X'9E) before
appending the new module.

A library is normally searched by the linker sequentially from beginning to
end unless the library is constructed as an "indexed relocatable" library
(IRL) by the MLIB librarian. Therefore, the order in which functions are
placed in the library becomes important. If a function of a module in the
library is called by another function in another module within the library,
then the calling function's module must appear first. This is because the
external reference for the called function will not be sensed until the
calling function is linked. So the general rule is: Calling functions first,
called functions last.

Note that in the above discussion, it was recommended that you name your
library "USERLIB/REL". That's because there are two files provided with the MC
package which need to be adjusted depending on the name and quantity of user
provided libraries. The first file which needs modification is the MCMACS/???
file (where ??? could be ASM or MAC depending on the assembler you are using).
For each user provided library you want to have searched, the definition,

@_LIBRARYNAME DEFL 0

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

must be added to the list of "established defaults". In the following excerpt
of the provided file,

; establish defaults for MC options
@_MATHLIB DEFL 0
@_INLIB DEFL 0
@_ARGS DEFL -1
@_REDIRECT DEFL -1
@_FIXBUFS DEFL 0
@_MAXFILES DEFL 13
@_USERLIB DEFL 0

note that the declaration for a "userlib" library has already been inserted
(the seventh line). There is no requirement for any specific position of the
declaration in this file. It can be placed anywhere.

The other file which needs to be altered is the MC/??? file. This file must
include the statements:

IF @_LIBRARYNAME
$REQ LIBRARYNAME
ENDIF

Contrary to the insertion into the MCMACS/??? file, the positioning of these
statements is very important in the MC/??? file. The following excerpt of the
provided MC/??? file shows that the statements needed for a library named
"userlib" have already been included.

LD HL,0 ;Set return code
PUSH HL
CALL EXIT ;Back to DOS
IF @_USERLIB ;TRUE if #option USERLIB
$REQ USERLIB
ENDIF
IF @_MATHLIB ;TRUE if #option MATHLIB
$REQ MATH
ENDIF
IF @_INLIB ;TRUE if #option INLIB
$REQ IN
ENDIF
$REQ LIBC ;Standard lib always!
$REQ LIBA ;Run-time lib always!

The "$REQ" assembler macro statement passes a request to the linker to search
the designated library. Note that the "userlib" request precedes those for
MATH, IN, LIBC, and LIBA. This means that your "userlib" is searched before
any of the MC provided libraries. It was stated above that calling functions
must precede called functions in a library. Likewise, it is also mandatory
that a library that has functions that call functions in another library must
be searched prior to the library that contains the called functions. This
means that the functions in your library have access to all of the functions
in MATH, IN, LIBC, and LIBA but that no function in those libraries can "call"
any of your user provided functions.

The order of library requests is significant when you want to provide a second
user library, say MYLIB. If the request statements for MYLIB are inserted into
MC/??? prior to the statements for USERLIB, then no function in "userlib" can
call a function in "mylib" but functions in "mylib" can call functions in
"userlib". These restrictions could be overcome by adding multiple library
search requests during a manual invocation of the linker; MLINK or L80.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Programs with overlays
MC provides a support function and interface control for the development of a
complex program environment involving a root program and one or more overlay
programs. The generation of the root and overlay files requires the use of the
MLINK linker provided with the MRAS assembler development system. Depending on
the total size of the relocatable modules making up the root and the overlays,
you may need to invoke the virtual memory facility of the linker. This is
discussed in the linker documentation. The design of a C program environment
that uses overlays is a complex procedure. It will certainly be difficult to
provide an in-depth analysis of all details concerning the design of such a
complex program environment. This section will cover only the mechanics for
the procedure, not the underlying rationale behind the design of such a
complex program.

In general, a root module contains all of the functions and external variables
that must be accessible to the root and all overlay modules. The root module
contains the function, main(), and also must contain the overlay handler
provided in the IN/REL installation library, execovl(). Each overlay module
must contain a similar "main" function called ovmain(). Your job is to decide
how your program environment is to partition itself into root and overlay
modules. In order to accomplish this, you need to understand exactly what
overlay support is provided.

To begin with, there is absolutely NO facility provided for the automatic
loading of an overlay when a function is called. Your program MUST know it
wants to access a given overlay. An overlay is loaded and executed only as the
direct invocation of the C overlay handler, execovl(). Next, the root module
does not have knowledge of any variable that is a part of any overlay module.
Neither does any overlay module have any knowledge of any variable that is a
part of another overlay module. On the other hand, every overlay module has
total knowledge of "public" variables declared in the root module provided
that they are declared "extern" in the overlay. Remember from the discussion
of external variables, in the section on separate compilation, that "public"
variables are variables declared outside of all functions of a module and
declared without a storage class. The functions of an overlay must still
declare such variables "extern" to be able to access them.

The execovl() function will call an overlay from the root program. This
function is used to invoke an overlay of the executing C program and
optionally pass an argument list to the called overlay. Duplicating somewhat
the information on execovl() from Chapter 4, it is defined as follows:

 int execovl(ovnum, ovargc, ovargv);
 char ovnum; int ovargc; char *ovargv[];

 ovnum - the requested overlay number in ASCII.

 ovargc - the quantity of args to be passed to the
 overlay in the ovargv array.

 ovargv - a pointer to the argument vector which is
 to be passed to the overlay.

The argument vector "ovargv" MUST have ovargc pointers in it. The "ovargc" and
"ovargv" will be passed as arguments to the overlay's ovmain() function in
that order. Note that "ovargc" and "ovargv" are optional.

NULL will be returned if the requested overlay loaded and executed, otherwise
EOF will be returned and errno will be appropriately set. The options O_BRIEF
and O_ERRORMSG will be in effect, if set, when such an error occurs. Note that
any return code from ovmain() is ignored; you can use public memory
location(s) in the root for communications from the overlay.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Your root program can be preprocessed, compiled, and assembled as usual with
two exceptions. First, all library routines (i.e. functions provided in MATH,
IN, or LIBC as well as runtime routines in LIBA) which are to be common across
the overlays MUST be declared "extern" in this root program regardless of
whether or not the root makes use of them. The library routines needed by a
program may be ascertained by manually linking (i.e. not via Job Control
Language) the program with the libraries, specifying the library searches
explicitly, then obtaining a symbol table listing which will include all
public symbols. Second, the C source module must include the directive,

#option root

This statement passes information to the MC/ASM file during the assembly phase
of your root program. The file, OVTEST/CCC, which follows, contains a fully
functional sample root program.

/* OVTEST/CCC - overlay test root */
#option INLIB /* used to obtain execovl() */
#option root
extern int execovl(), printf();
int ovargc = 3; char *ovargv[3] = { "ovtest", "this is overlay" };
main()
{

ovargv[2] = "1";
if (execovl('1', ovargc, ovargv))

error();
ovargv[2] = "2";
if (execovl('2', ovargc, ovargv))

error();
}
error()
{

perror("ovtest");
exit(1);

}

The overlay programs MUST each have a public function called ovmain(), which
will be the entry point to each overlay. They each can be preprocessed,
compiled, and assembled as usual with one exception. The directive,

#option overlay

must be included in the C source module of each overlay. The following file,
OVERLAYT/CCC, contains a sample overlay program.

/* OVERLAYT/CCC - overlay for OVTEST */
#option overlay
ovmain(argc, argv) int argc; char *argv[];
{

printf("%s: %s %s\n", argv[0], argv[1], argv[2]);
}

Obviously, with an understanding of the preceding discussion, it becomes
obvious that you must compile and assemble the program and its overlay modules
separately. The procedure produces a relocatable module for the root and one
for each overlay. The link session will then utilize the overlay generating
capabilities of the MLINK linker to produce the proper executable root command
and overlay files. Thus, the linker will need to be operated manually (without
the benefit of the provided MC/JCL Job Control Language file). The link
session used to generate a root program from ovtest and two overlay programs
using overlayt (using the same module twice just for the purpose of
illustration), is as follows:

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

. Link OVTEST etc. to OVTEST/CMD,OV1,OV2
mlink -l=2600 -a=y
ovtest
-o overlayt
-o overlayt
-n=ovtest -e
//exit

In general, the link session must be in something like the following order:

MLINK
? -v=:4> optional; preferably a RAM drive!
? root_program_rel_file(s)
? -S=necessary_library_1
? -S=necessary_library_2
...
? -S=necessary_library_n
? -O overlay_1_rel_file(s)
? -O overlay_2_rel_file(s)
...
? -O overlay_n_rel_file(s)
? -N=program_name
? -E

When Things Go Wrong
C is a language that offers great flexibility, but not without a price. The
price of C's freedom is the programmer's ability to make catastrophic errors
with ease. The programmer is not protected from himself when using C. Your
best protection is to carefully check your programs when you write them, for
any evident errors before you try to run them. Of course, any time you test a
program you should not have any disks in your drives that you would care about
if they were suddenly erased. This is not to say that you should limit experi-
mentation; quite the contrary. However, always be prepared for the worst.

With MC, you have an advantage over some other compilers. MC generates an
assembly language source file. You can debug the program without trying to
second-guess the compiler, or having to disassemble the compiled output. The
modularity of the program also helps, since there are clear interfaces
(functions) to breakpoint at. It would be helpful, though not essential, for
the programmer to have familiarity with the Z-80 instruction set and with the
debug facility of DOS.

Debugging Techniques
One of the most direct methods of debugging a C source program which compiles,
assembles, and links without error, yet produces incorrect or unexpected res-
ults, is to liberally sprinkle the C source code with printf() statements.
These "debugging" statements can usually be contained within a preprocessor
"#if DBUG ... #endif" directive. By using this method, you can conveniently
eliminate the debugging printf() statements after you have corrected the prob-
lem by undefining the DBUG symbol. This saves you a lot of editing. In fact,
it is highly useful to design such debugging printf() statements into your
program to begin with, rather than wait until you need to debug unexpected
results.

If you feel the need to step through the program's execution with the DEBUG
utility provided with the DOS, it is recommended that you obtain the
appropriate DD&T package to complement DEBUG. This package adds an online
disassembler to DEBUG's display. With a good debugger at your disposal, a copy
of the symbol table produced by the linker, and the assembly listings approp-
riate to the modules you wish to debug, you should be ready to investigate the
behaviour of your program. Since machine code debugging is a lengthy and
brutal experience, it is strongly recommended that you first go back to your C
source listings and triple check your coding and algorithms. Also verify the

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

proper checking for error codes returned by functions. Your C source listing
is the best place to start your efforts.

Compilation Errors
MC generates an error message whenever it finds something in the input file
that cannot be recognized, or that doesn't fit the syntax of the C language.
When MC outputs an error message, it should print the line in error and point
to the particular character where the error was recognized. It also displays
the line number of the file currently being processed as well as the line
number of the function currently being processed. This helps you locate what
statement in your source stream is being flagged as containing an error. The
actual programming error may be earlier in the program, depending on the type
of error.

Some errors may not be detected until many lines later. For example, if a
closing brace is missing in the input file, MC will not be able to detect the
error until the next function declaration, which will then be flagged as a
function call without an ending semicolon. This is because MC thinks the
previous function has not been completed. Similarly, if an opening brace is
missing, MC may not find out until the last closing brace is encountered, with
no match.

In the appendix of this manual is a list of the error messages which MC can
generate, and some likely causes for each. Most errors are usually
typographical, but the user should be well versed in the C language and the MC
implementation. Learn where to find information regarding syntax and
capabilities of the language. The language definition chapter of this manual
and the appendix of the K&R text are good places to look when you are not sure
of syntax.

Assembly errors
There are few assembly errors which can occur if you assemble your programs
using MC/??? with your compiled C modules. Your safest bet is to use MC/JCL
when compiling, assembling, and linking. If you have written portions of your
program in assembly language, you may have a few more errors to deal with.
Please read the section on assembly language interfacing for hints in
debugging your assembly language.

If you are creating a CMD file directly from the MC/JCL file, you will be
aware of an assembly error if the JCL aborts from MRAS. To specifically
isolate the assembly error, you will need to invoke MRAS without the "-NL"
switch. The most direct way to accomplish this is to list the SYSTEM/JCL file
(the one that is generated from the MC/JCL invocation) and examine the line
that invoked MRAS. It may look something like this:

MRAS MC +I=YOURPROG/ASM +O=YOURPROG/CMD -NL

At the DOS Ready prompt, all you need do is input the line modified as
follows:

MRAS MC +I=YOURPROG/ASM -WE -NC

When the assembler is invoked in this manner, it will pause when an error is
detected. One of the following two errors should usually prevail.

UNDEFINED SYMBOL - A symbol that you referenced in your program was
undefined in any module in your program. This can be caused by omitting
the definition, misspelling the identifier, or defining them incorrectly.
A look at the name that is undefined will give you a clue as to which
situation was the cause. Misspelling should be obvious. Look out for
upper-case versus lower-case names. Remember that C is case sensitive.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

MULTIPLE DEFINITION - A symbol was defined twice with the same name. If
you are assembling separately compiled functions, you may have named two
external variables or functions the same. To correct this, make one or
both of the identifiers static within the module. If separate compilation
is not being used, you have defined two external objects in your program
with the same name.

It is useful to familiarize yourself with the section on MC assembly language
output structure. Also, if you are assembling separately compiled functions, a
good understanding of the "extern" statement and external versus static
variables is essential. Refer to the section on storage classes in Chapter 2,
MC Language Definition.

Linker errors
The linker errors which you may experience may be limited to the following
three errors. A "Symbol table overflow" error could be experienced when you
are linking a large C program. If you are using MLINK, you should attempt to
relink your program using the virtual memory switch. You also could experience
a "Multiply defined symbol" error. This means that you have either defined the
same public symbol in two different modules or that you have defined as
public, a symbol already defined in one of the provided library functions.
This is an easy problem to correct in your program. The third error would be
"Undefined symbol". This would arise from a symbol declared as "extern" in one
of your C source files but no module defined the symbol. It may be a spelling
error or a programming oversight.

Runtime Error trapping
As stated in the section on Runtime Error Control in Chapter 1, MC provides
certain facilities for the detection and control of four types of runtime
errors: DOS I/O errors, C environment errors, low-level floating point errors,
and high level floating point mathematical errors. The facilities at your
disposal to detect and trap the first two types should be obvious to you after
even a brief perusal of Chapter 4, Library Functions. That's because DOS I/O
errors and C environment errors are indicated by an error return code passed
back from a function call.

The following methods are available to your program for displaying I/O errors:

1) Enable the ERRORMSG option via "option(O_ERRORMSG,TRUE);" as discussed
earlier under Runtime Options. This provides automatic display of an
error diagnostic message when a DOS I/O error occurs.

2) Use the ferror() function to obtain the DOS error code from the stream
and act on that code accordingly. You can introduce your own messages
as appropriate. With ERRORMSG set to FALSE, your program controls the
error diagnostic display.

3) Use the perror() function to obtain the UNIX error message associated
with the error. Remember that every DOS I/O error code is automatically
translated to a corresponding UNIX error number, which is stored in
"errno". If you desire portability, you should restrict your error
handling to the use of "errno" and perror().

A discussion covering specific methods of dealing with these errors is beyond
the scope of this document.

The C environment errors will only be reported via an error return code from a
function call with "errno" set to the appropriate UNIX error number. Thus,
these types of errors can be displayed by method (3) shown above for DOS I/O
errors. You don't have to use perror(). Your program can still invoke its own
messages in its own manner based on the error code contained in "errno".

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Since the detection and control of low-level floating point errors is an
implementation specific entity, this topic will be discussed in a little more
detail. All of the low level math routines that operate on floats or doubles,
(i.e. those that perform addition, subtraction, multiplication, division,
etc.) exit through a common routine, which sets "errno" to an appropriate
error number if the routine's return code is non-zero. The only math routines
which provide a non-zero return code are the single and double precision
floating point routines. When errno is set, control is passed to a floating
point vector, called "_fltvec". This normally vectors to an assembler RET op
code. Thus, when such a low-level floating point error is detected, nothing
unusual happens other than the setting of "errno".

If your C program wants to take control when such an error is detected, your
program only needs to replace the default "_fltvec" vector with the address of
your handler function. The following header file illustrates a low-level
floating point handler called "floaterr()" which can display an error message
appropriate to the detected error. It includes a function which is called from
main() named "initflterr()". This function replaces the "_fltvec" vector with
the address of the "floaterr()" handler. Examine closely the behaviour of the
various parts of the header file.

/*
 * FLOATERR/H - general floating point error routine - 01/07/86
 */
#include <math.h> /* needed for definitions */
void floaterr(), initflterr();
extern int _fltvec; /* kludge to declare _fltvec */
static char codes[] = /* error codes returned by math routines */
{ 0,
 UNDERFLOW,
 DOMAIN,
 OVERFLOW,
 DIVBY0
};

static char *msgs[] = /* appropriate error message strings */
{ "No error",
 "Underflow",
 "Illegal function call",
 "Overflow",
 "Division by zero",
 "Unknown error"
};

/*
 * Initialize floating point error routine - call from main()
 */
initflterr()
{ _fltvec = floaterr; /* set error vector */
}

/*
 * Routine to trap floating point error
 */
floaterr(retaddr)
 unsigned retaddr;
{ unsigned *sp;
 int i;
 sp = &retaddr; /* get stack pointer */
 for (i=0; i< sizeof codes; ++i) /* search table, if not found i = 5 */
 if (codes[i] == errno)
 break;
 fprintf(stderr, "\nFP error %2d (%s), Trace: %04x, %04x, %04x\n",

 errno, msgs[i], *(sp - 1), *sp, *(sp + 1));
}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

There is no way to recover the name of the routine that returned the error;
you can only detect the error number. It is beyond the scope of this document
to provide any additional material for such purposes. The following example
illustrates a program that uses this header file. The diagnostic error
messages displayed upon running the example are also noted.

#include <stdio.h>
#include <floaterr.h>
main()
{
 initflterr(); /* set error vector */
 1. / 0.; /* division by zero */
 1.701411e+38 * 1.701411e+38; /* overflow */
 1.701411e-38 * 1.701411e-38; /* underflow */
}

FP error 7 (Division by zero), Trace: 5455, 31d8, 0000

FP error 3 (Overflow), Trace: 5455, 31ea, 4986

FP error 4 (Underflow), Trace: 5455, 31fc, 4c82

MC also supports the high-level mathematical function error exception
reporting as documented for UNIX System V. In this facility, when errors are
detected by certain high-level functions, they will invoke the matherr()
function in a structured manner. The supplied matherr() function is a NULL
function; it does nothing. The high-level error handler, however, will print
an appropriate diagnostic message to the standard error file when an error
occurs. If you supply your own matherr() function, you can disable the
system's message display as well as provide your own error handling.

When matherr() is called, a pointer to the exception structure as defined in
the math header file is passed as an argument. This structure includes the
following members:

 int type; - type of error
 char *name; - pointer to name of function where error ocurred
 double arg1, - first argument with which *name was invoked
 arg2, - second argument with which *name was invoked
 retval; - default value returned by the function

The member named "type" contains the error number that describes the error.
The following list of symbolic constants, defined in the math header file
along with the system's standard error messages, shows the possible error
numbers.

 DOMAIN - argument domain error
 SING - argument singularity
 OVERFLOW - overflow range error
 UNDERFLOW - underflow range error
 TLOSS - total loss of significance
 PLOSS - partial loss of significance
 DIVBY0 - divide by zero

The member "name" points to the actual name of the function that detected the
error. The following list of functions report errors through matherr(): exp(),
log(), log10(), pow(), sqrt(), asin(), acos(), atan(). This list may not be
all inclusive.

The members "arg1" and "arg2" contain the first two values of the arguments of
the function which was invoked. Obviously, if the invoked function has only
one argument, then "arg2" is irrelevant.

The "retval" member will contain the value that the invoked function will
return to the calling function. If you want to change that value, all you need
do is assign a new value to the structure member.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

The matherr() function has the following invocation syntax:

 #include <math.h>
 int matherr(x);
 struct exception *x;

 x - is a pointer to the exception structure
 defined in the math header file.

The return code from matherr() is used by the system. If matherr() returns a
non-zero value, the normal error message printed to standard error by the math
error handler will be suppressed and the global error variable, "errno", will
not be altered. On the other hand, if your matherr() function returns a zero
value, the system's error message will be output normally and "errno" will be
set to the appropriate error number.

Some of the example programs provided as illustrations of functions in Chapter
4, Function Libraries, depict various implementations of a matherr() function
provided by the program. The examples for exp(), log(), and log10() provide no
matherr() function so the system supplied error messages, "Overflow range
error" and "argument domain error" are displayed. Make note of the matherr()
functions provided in acos(), asin(), and sqrt(). An example of a more
involved and complex matherr() function is illustrated here. This version
traps domain errors which would occur from passing a negative argument to
sqrt(). The example "fixes up" the error by assuming that the argument to the
square root function should have been positive. Pay attention to the method of
altering the value to be returned by the high level math function by assigning
a new value to "x->retval".

matherr(x)
 struct exception *x;
{
 fprintf(stderr,"Type %d function error in %s...\n",x->type,x->name);
 fprintf(stderr," Args = %g,%g: ",x->arg1,x->arg2);
 if ((x->type==DOMAIN) && (!strcmp(x->name,"sqrt")))
 x->retval= sqrt(-x->arg1);
 return TRUE;
}

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Assembly Language Interfacing
Since we encourage the programmer to use 100% C source code in the generation
of a program, no attempt will be made to document any assembly language
interface to library modules. The barest minimum is provided to assist the
experienced assembly language programmer who desires to include some assembly
language control into his C programming. The programmer who wishes to learn
more about the interface between the C language and the provided libraries
would be best advised to examine the compiler's assembly language output from
compilations of various C source statements. The caution to be observed is
that this output may not be consistant across future releases of the compiler.

While it is possible to insert assembly language source code directly into
your C program using the "#asm-#endasm" construct, it is much cleaner to
interface by placing your assembly language code into a separate module. This
keeps all the non-portable code separate from the portable C code. It is best
to call assembly language as a function, rather than including it directly
into a C function by mixing C and assembly source code in line.

Program Memory Map
MC programs, once assembled and linked, have the following utilization of
available memory:

 $DBEG - Established as the program's LINK ORIGIN
 [or $CBEG] during the link process. This will be the
 lowest machine address used by the program.

 $START - Program execution begins here. This is an
 ENTRY within the MC/ASM file.

 - MC generated modules.

 - In-line assembly language modules.

 - Static variables and strings intermixed
 within modules.

 - Library modules from USERLIB/REL, IN/REL,
 MATH/REL, LIBC/REL, and LIBA/REL.

 ($MEMRY) - Highest machine address used by the program
 and the static variable storage.

 ($FREEP) - Contains first machine address available
 for dynamic memory allocation.

 - Memory allocated by sbrk(); in use by the
 program, or maintained by alloc(), malloc(),
 calloc(), and free().

 ($LOMEM) - Unused memory available from alloc(),
 calloc(), malloc(), or sbrk().

 (SP-1024) - Memory reserved from dynamic allocation for
 use as program stack space. Local variables
 are stored here. MC always reserves space
 for the program stack when requests for
 dynamic allocation of memory are made.

 (HIGH$) - Original CPU Stack Pointer.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

MC Identifier Output
The following table outlines the format of label generation from MC:

 Identifier Class MC Output

 Local labels $?#

 External identifiers NAME
 -longer than 3 characters NAME
 -3 characters or less NAM$

 Static identifiers
 -external to functions Same as externals
 -internal to functions NAME@?+

 Goto labels NAME$?*

 NAME, NAM MC identifier, 1 to n characters, upper case
 [external identifiers should be limited to a
 length of seven significant characters].

 # The local label number

 * The function number (within the module)

 + The compound block number (within the module)

MC generates labels in this fashion so that static variables, external vari-
ables, and labels will not conflict with each other. Thus, there can be an
external variable named x, a static named x in two different modules, a static
named x in two different functions in the same module, and a (goto) label
named x, all within the same program, with no conflicts. A dollar sign, '$',
is appended to external or static labels which are three characters long or
less. This prevents possible conflicts with register names and logical
operators in your assembler.

Local labels are used to implement strings, double precision constants, condi-
tional statements and operators, and loops. They are assigned numbers starting
with 1 and incremented by 1.

Runtime variable storage format
Characters occupy eight bits and are stored in single 8-bit bytes; they are
considered unsigned.

Integers and short integers occupy sixteen bits and are stored in two 8-bit
bytes. The leftmost bit (which is the sign bit of signed integers) is the most
significant; the rightmost bit the least significant. Integers are stored in
memory with the low-order byte occupying the lower machine address.

Long integers occupy thirty-two bits and are stored in four 8-bit bytes. The
leftmost bit, bit 31 (which is the sign bit of signed integers), is the most
significant; the rightmost bit the least significant. Long integers are stored
in memory with the lowest-order byte occupying the lower machine address, the
next higher-order byte occupying the next higher machine address, and so
forth.

Single precision floating point numbers occupy thirty-two bits and are stored
in four 8-bit bytes, a three-byte fractional part in bit positions 0-23 and a
one-byte exponent in bit positions 24-31. The leftmost fraction bit (which is

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

the sign bit of the number) is the most significant; the rightmost bit the
least significant. Floats are stored in memory with the lowest-order fraction
byte occupying the lower machine address, the middle-order fraction byte occu-
pying the next higher machine address, the highest-order fraction byte
occupying the next higher machine address, and the exponent occupying the
highest address.

Double precision floating point numbers occupy sixty-four bits and are stored
in eight 8-bit bytes, a seven-byte fractional part in bit positions 0-55 and a
one-byte exponent in bit positions 56-63. The leftmost fraction bit (which is
the sign bit of the number) is the most significant; the rightmost bit the
least significant. Double precision floating point/ numbers are stored in mem-
ory with the lowest-order fraction byte occupying the lower machine address,
the next higher fraction byte occupying the next higher machine address, etc.,
and the exponent occupying the highest address.

The exponent of a floating point number is stored in "excess 128" notation.
Using the syntax "**" to indicate "raise to the power", this means that an
exponent of zero (2**0 = 1) is represented by 128D (80H); positive exponents
are denoted by values of greater than 128, and negative exponents by values of
less than 128. Thus, by subtracting 128 from the value, the true exponent is
obtained.

The fractional part of a floating point number is always in BINARY normalized
form, which means that the values lie within the range:

2**-1 <= X < 2**0

A little simple arithmetic will show that this range, base 10, is (.5<=X<1).
All this means is that there will always be a one (1) immediately to the right
of the binary point when the binary normalized mantissa is shown in its binary
form. Since there will always be a one bit in this high-order bit of the
normalized fraction, it is not necessary that it be kept. In fact, the bit is
dropped entirely and the position in the normalized fraction is used to store
the SIGN of the entire number; a one indicating a negative number and a zero
indicating a positive number.

Register Utilization
All registers are available for use by an assembly language function with the
exception of the index registers, IX and IY. If you want to use the index
registers, they must be saved on entry to your function and restored on exit.
The stack pointer must be returned in the same condition as it was upon entry.

For math operations, the following CPU registers are used, in general, to
contain the various variable types:

Type primary secondary notes
------ ------- --------- ---------------------------------
char L* E* * high-order byte zeroed
int HL DE
long BCDE stack
float BCDE stack
double (HL)* stack * 8 bytes moved to memory storage

Argument passing
C passes arguments on the machine stack. Each argument is pushed onto the
stack according to its memory storage format [characters take two bytes of
stack space of which the higher order byte is ignored]. Arguments are pushed
in an order opposite of the order they are specified in the function call.
Here is the assembly language which C generates to perform a function call (it
is assumed that "x", "a", "b", and "c" are each static integers and the
function returns an integer; we will ignore the use of macros):

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

 ; x=func(a,b,c);
 LD HL,(C$)
 PUSH HL
 LD HL,(B$)
 PUSH HL
 LD HL,(A$)
 PUSH HL
 CALL FUNC
 POP AF
 POP AF
 POP AF
 LD (X$),HL

This process generates the following appearance on the Z-80 machine stack:

 (SP+6) ==> <c>
 (SP+4) ==>
 (SP+2) ==> <a>
 (SP+0) ==> return address

That is how the arguments appear to the called function when first entered.
Several methods can be used within the called function to obtain the
arguments. The simplest method is to POP each argument off the stack. This is
not suitable for large numbers of arguments, but most efficient for 3 operands
or less. Using the example above, the arguments could be retrieved as follows:

 FUNC POP AF ;return address saved
 POP BC ;argument <a> in BC
 POP DE ;argument in DE
 POP HL ;argument <c> in HL
 PUSH HL ;restore argument <c>
 PUSH DE ; " "
 PUSH BC ; " " <a>
 PUSH AF ;stack is same as at entry

Note that the stack is returned to its original condition. It is always impor-
tant to keep track of the stack pointer. However, the contents of the stack,
i.e., the arguments, are "owned" by the called function and can be used like
any local variable. A better method to use when dealing with large numbers of
arguments is shown below:

 LD HL,2 ;offset to <a>
 ADD HL,SP ;HL = address of <a>
 CALL @GINT ;get contents of <a>

@GINT is a run-time library function which gets the integer pointed to by HL
into HL.

Another method is to utilize the Z-80 index registers. The stack pointer must
be placed into the index register first, then index offset values can be used
to get and store the arguments:

 PUSH IX ;Must save register IX
 LD IX,0
 ADD IX,SP ;Get SP into IX
 LD L,(IX+2+2) ;Get LSbyte of a
 LD H,(IX+3+2) ;Get MSbyte of a
 POP IX ;Restore IX

If an argument is intended to be a character variable, only the least signif-
icant byte (LSbyte) is needed, so a single indexed load is used.

Returning a value from a function
MC programs use the primary register associated with the function type in
order to return the function's value (see "register utilization" above). For

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

instance, a short int should use the HL register pair for a 16-bit accumu-
lator. Any short int value to be returned by a called function must be placed
in HL before returning to the calling function. Take care that a full 16-bit
value is returned. If a character or 8-bit value is being returned, then H
should be loaded with zero. If a TRUE or FALSE indication is to be returned,
HL should be set to 1 or 0, accordingly.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Appendix

Error Messages

Preprocessor errors - Warning
The following messages may occur during the preprocessor phase of compilation
and are only warnings; processing continues. Preprocessor warnings are
unnumbered messages.

"Conditionals nested too deeply"

The maximum conditional nest depth is 256. How you reached that limit is
beyond imagination.

"#else without #if"

This obviously occurs when a "#else" is detected without any previously
corresponding "#if".

"#endif without #if"

This is emitted when a "#endif" is detected without a previously
corresponding "#if".

"Extra macro parameters, ignored"

A parameterized macro was invoked with more arguments than when the macro
was defined. Double check your argument list.

"Illegal preprocessor directive"

The input stream provided a "#something" when "something" was not one of
the legal directives.

"Multiple #else's"

Only one #else per #if is allowed.

"Redefining <macro_identifier>"

This informs you that a previously defined macro is being redefined. It is
not an error.

"Undefining nonexistent macro"

This informs you that a macro is being undefined which had not previously
been defined. It is not an error.

"Unterminated conditional(s)"

The end of the input file stream was reached while one or more "#if"
conditionals was left unclosed by a corresponding "#endif".

"Unterminated input line"

The end of the input file stream was reached with a missing newline at the
EOF.

"Unterminated string or char constant"

A string or character constant was being read from the input stream and the
end of the line (EOL) was reached without the closing corresponding double
quote or single quote.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Preprocessor errors - Fatal
The following errors which may occur during the preprocessor phase of
compilation are considered "fatal errors"; they result in the termination of
the process.

"-? argument too long"

A command line -d or -u option is longer than 64 characters.

"Duplicate macro arguments"

A parameterized macro definition has two dummy arguments with the same
name.

"Illegal constant expression"

The operand field of a "#if" or "#option" must be a valid constant
expression.

"Illegal floating point constant"

The floating point constant does not follow the K&R rules.

"Illegal hex constant"

A hexadecimal constant is improperly formed according to the rules for such
constants as noted in K&R.

"Illegal macro definition"

A parameterized macro dummy argument list was improperly formed.

"Include filespec missing"

A "#include" directive was encountered which had no file specification in
the operand field.

"Includes nested too deeply"

The "#include" statement would have nested too deeply, if not ignored. Up
to eight (8) nesting levels are available in MC.

"Invalid command line option"

One of the options specified in the command line was not a valid MC option.

"Invalid #line"

A "#line" preprocessor statement was improperly formed.

"Macro calls nested too deeply"

The maximum macro nest depth is 20 which has been exceeded. You will have
to redesign your use of macros.

"Missing ')'"

The operand field of a "#if" or "#option" used an open parenthesis in a
constant expression but the corresponding closing parenthesis was omitted.

"Missing ':'"

The conditional operator "?:" was used in the constant expression operand
of a "#if" or "#option" directive but the ":" was omitted.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

"Missing macro parameters"

A parameterized macro was invoked with fewer formal arguments than when the
macro was defined. Double check your argument list.

"Missing or illegal identifier"

The syntax required an identifer, but the input text did not conform to C's
rules for identifiers.

"Must be short int or char constant"

#option requires a short integer or character constant if a constant
expression is present.

"No input file given"

No input files were specified on the command line that invoked MCP.

"Out of memory"

No more memory space is available. Either decrease the amount of memory
reserved in high memory or split the module being compiled into smaller
modules with fewer external variables. You may also consider decreasing the
amount of modules in high memory (filters, KSM, SYSRES'ed overlays, etc.)
and try to execute MCP again.

"Too many macro arguments"

A parameterized macro was defined with more dummy arguments than allowed
(128). Double check your argument list.

"Unterminated macro call"

A macro call was missing the closing parenthesis.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Compiler errors - fatal
The following messages may occur during the compiler phase. The errors
attributing to the emittance of such messages are considered fatal errors.
These messages are unnumbered.

Compilation aborted

A fatal error was detected which prevented the compiler from continuing the
process of compilation.

"No input filespec"

No input file was specified on the command line that invoked MC.

"Out of memory"

No more memory space is available. Either decrease the amount of memory
reserved in high memory or split the module being compiled into smaller
modules with fewer external variables. You may also consider decreasing the
amount of modules in high memory (filters, KSM, SYSRES'ed overlays, etc.)
and try to execute MC again.

"Too many input files"

Only one input file may be passed on the command line to the compiler.

"Unrecognizable option"

This results from a bad command line option.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Compiler errors - warning
The following messages are warnings and do not normally result in an immedate
abort of the compiler's processing. The messages fall into broad
classifications. These messages are emitted along with the error number shown.

General syntax errors (10-19)

10 - "Missing ':'"

A "?" operator was found without a matching ":" operator. This may also
arise from an omission of the colon from a structure/union bit field
declaration.

11 - "Missing '('"

An opening parenthesis was omitted from where it was required.

12 - "Missing ')'"

The syntax of the statement being parsed required a closing parenthesis,
which was omitted.

13 - "Missing ']'"

The field specifying the subscript of an array object was not terminated
with the closing square bracket.

14 - "Missing '{'"

The opening brace required to designate a compund block was omitted.

15 - "Missing '}'"

The end of the input stream was encountered without a closing brace for the
current function being found.

16 - "Missing ';'"

No semicolon was found at the end of a statement. The ';' character is the
statement terminator, and must be placed at the end of a simple statement.
It's also required in a "for" statement [i.e. for (; ;)].

17 - "Missing ','"

The context of the input required a comma, but none was found.

Constant expression errors (20-29)

20 - "Illegal constant expression"

A constant expression did not follow the K&R rules.

21 - "Must be short int or char constant"

An object of case, array dimension, or initializer requires a short integer
or character constant.

Declaration errors (30-49)

30 - "Illegal declaration or typename"

A catchall - Some sort of bad syntax in a declaration or cast or sizeof,
not otherwise mentioned.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

31 - "Declaration too complex"

More than 16 levels of "array of", "pointer to", or "function returning"
occurred in a declaration.

32 - "Struct/union includes self"

A structure/union may not include an instance of itself as a member;
however, a pointer to an instance of itself may be included as a member.

33 - "Cannot return struct/union"

It is impossible for a function to return a structure or union; however, a
function can return a pointer to a structure or union.

34 - "Function not declared"

The context of the input demanded that a function be declared, i.e., the
input did not match anything that could be a compiler directive or a
variable declaration, so it was assumed that a function was being declared.

35 - "Zero size illegal"

An array dimension is zero or missing where required, or sizeof returned
zero when invoked.

36 - "Redefinition"

The object being declared has already been defined in the module.

37 - "Argument list illegal"

A function argument list was found in a function FORWARD DECLARATION. Only
allowed in a function DEFINITION.

38 - "Illegal argument name"

An argument name in the argument list of a function definition is not a
valid C identifier.

39 - "Unmatched argument"

The function argument being declared did not match any of those in the
argument list for the function.

Initialization errors (50-59)

50 - "Illegal initializer"

This is a catchall emitted when something wrong is detected with the syntax
of an initializer.

51 - "Undefined"

The object being referenced in an initializer has not been defined. You may
wish to check the spelling.

52 - "Must be static or external"

An initializer using the address of an automatic or register variable is
illegal.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

Statement errors (60-69)

60 - "Compound statement required"

The switch-case statement must have a compound statement as its sub
statement. The body of a function must also be a compound statement (i.e.
one enclosed in curly braces).

61 - "Declaration follows executable statement"

All declarations in a block must precede the first executable statement in
that block. Resequence your statements.

62 - "No while after do"

A "do" statement was compiled, but no "while" statement followed it.

63 - "Void function return"

A function declared as void contains a return statement with an expression
following.

64 - "Bad label"

The label specified in a "goto" statement or as a statement label was not a
valid C identifier.

65 - "Extra default"

The body of a "switch" statement included more than one default sub-
statement.

Expression errors (70-99)

70 - "Illegal expression"

The input could not be recognized as an expression when the context of the
program required an expression.

71 - "Illegal floating point operation"

A float or double expression is using an operator that's not allowed. See
the language specifications in Chapter 2 for valid floating point
operators.

72 - "Illegal pointer operation"

An operation was attempted on a pointer other than that documented on page
2-12.

73 - "Illegal address"

The "&" (address of) operator was used with an expression that was not an
object in memory.

74 - "Not a pointer expression"

The indirection operator, "*", was used with an expression that does not
result in the address of an object in memory.

75 - "Using void result"

An expression is attempting to use the non-existent return value of a
function that was defined to be of type void.

The MISOSYS C Language Compiler
Copyright (c) 1985 MISOSYS, Inc., All rights reserved

76 - "Function name illegal"

The name of a function was used improperly. Check for misspelling or
missing variable definition.

77 - "Must be lvalue"

The expression being processed specifies that a value be placed into an
object, but no object which could be stored into was found. This occurs in
assignments, "++", and "--". Usually it's the result of a spelling error.

78 - "Must be struct/union and not array"

The left side of a "." or "->" requires this.

79 - "Unknown struct/union"

The structure/union object being declared or referenced has not had a
template defined for it.

80 - "Must be struct/union pointer"

The designated operation requires a pointer, not the object itself.

81 - "Member name required"

The operand on the right hand side of a "." or "->" must be a member of the
structure/union on the left hand side.

82 - "No such member"

The referenced member of a structure/union has not been defined in the
structure/union template.

83 - "Must be array or pointer"

Square brackets "[]" were applied to an object which was neither a pointer
nor an array.

84 - "Illegal function call"

A function call is being attempted, but the object being called is not a
function name or dereferenced function pointer.

	Top of document
	Copyrights
	Introduction
	MC Provided Files
	MC Environment
	Standard Input/Output
	Standard I/O Redirection
	Command Line Arguments
	Standard Header Files
	Function Libraries
	Runtime Error Control
	Closing Comments

	Language Definition
	Statements - Simple and Compound
	Data Representation - Constants
	Variable Names (Identifiers)
	Data Declarations
	Scope of Variables and Functions
	Storage Classes
	Expressions
	Unary Operators
	Binary Operators
	Statements
	If Statement
	Switch-Case Statement
	While Statement
	Do Statement
	For Statement
	Break Statement
	Continue Statement
	Return Statement
	Goto Statement

	MC Preprocessor
	Parameterized Macro Substitution [#define]
	Forgetting a Macro Name [#undef]
	Conditional IF Evaluation [#if]
	Conditional test of an Identifier [#ifdef, #ifndef]
	Alternate Conditional Block [#else]
	Conditional Block Termination [#endif]
	Including Additional Files [#include]
	Forcing Assembler Options [#option]
	Including Assembler Source [#asm, #endasm]
	Line Number Control [#line]
	Program examples
	Program Example - SORTSYM
	Program Example - DCAL

	Running the Compiler
	Keyboard Refresher
	Operation
	Using Job Control Language
	Invoking the MCP Preprocessor
	Invoking the MC Compiler
	Creating an Executable CMD File
	Compile-Time Directives
	Assembly of the ASM file
	Linking the relocatable object module

	MC Library (Function Libraries)
	General Information
	Stream I/O functions
	Block I/O functions
	Integer (int, long) math functions
	Double precision (double) math functions
	Environment information functions
	Memory access functions
	Plotting functions
	Program control operations
	String handling functions
	FUNCTIONS
	A
	abort()
	abs(LIBC)
	acos(MATH)
	addext(IN)
	alloc(LIBC)
	asctime (LIBC)
	asin (MATH)
	atan(MATH)
	atod(MATH)

	B
	box(IN)
	brk(LIBC)
	btoi (LIBC)

	C
	call (IN)
	calloc(LIBC)
	ceil(MATH)
	checkc(LIBC)
	circle(IN)
	cleareof(LIBC)
	clearerr(LIBC)
	close(LIBC)
	cmdi(LIBC)
	cos(MATH)
	cosh(MATH)
	creat(LIBC)
	ctime(LIBC)
	curpos(IN)
	cursor(IN)

	D
	_ddv2(MATH)
	dfix(MATH)
	dint(MATH)
	dsgn(MATH)
	dtoa(MATH)
	dup(LIBC)

	E
	execl(LIBC)
	execovl(IN)
	execv(LIBC)
	exit(LIBC)
	exp(MATH)

	F
	fabs(MATH)
	fabsf(MATH)
	fatn(MATH)
	fclose(LIBC)
	fcntl(LIBC)
	fcos(MATH)
	fdopen(LIBC)
	fdown(LIBC)
	feof(LIBC)
	ferror(LIBC)
	fexp(MATH)
	ffix(MATH)
	fflush(LIBC)
	fgetc(LIBC)
	fgets(LIBC)
	fill(LIBC)
	fint(MATH)
	flog(MATH)
	floor(MATH)
	fmod(MATH)
	fopen(LIBC)
	fprintf(LIBC)(MATH)
	fpup(LIBC)
	fputs(LIBC)
	fpow(MATH)
	fread(LIBC)
	free(LIBC)
	freemem(IN)
	freopen(LIBC)
	frexp(MATH)
	frnd(MATH)
	fscanf(LIBC)(MATH)
	fseed(MATH)
	fseek(LIBC)
	fsgn(MATH)
	fsqr(MATH)
	fstat(LIBC)
	ftan(MATH)
	ftell(LIBC)
	ftoa(MATH)
	fwrite(LIBC)

	G
	genspec(IN)
	getc(LIBC)
	gets(LIBC)
	getw(LIBC)
	gtty(LIBC)

	H
	hypot(MATH)

	I
	index(LIBC)
	inkey(IN)
	inport(IN)
	ioctl(LIBC)
	iswhat(LIBC)
	isatty(LIBC)
	itoa(LIBC)

	L
	labs(LIBC)
	ldexp(MATH)
	line(IN)
	localtime(LIBC)
	log(MATH)
	longjmp(LIBC)
	lpower(LIBC)
	lseek(LIBC)
	ltoa(LIBC)

	M
	malloc(LIBC)
	memccpy(LIBC)
	memchr(LIBC)
	memcmp(LIBC)
	memcpy(LIBC)
	memset(LIBC)
	modf(MATH)
	move(LIBC)

	O
	open(LIBC)
	option(LIBC)
	otoi(LIBC)
	outport(IN)

	P
	perror(LIBC)
	pixel(IN)
	point(IN)
	ploc(IN)
	pmode(IN)
	pow(MATH)
	printf(LIBC)(MATH)
	putchar(LIBC)
	puts(LIBC)
	putw(LIBC)

	Q
	qsort(LIBC)

	R
	rand(LIBC)
	read(LIBC)
	realloc(LIBC)
	reset(IN)
	rewind(LIBC)
	rindex(LIBC)

	S
	sbrk(LIBC)
	scanf(MATH)
	seek(LIBC)
	set(IN)
	setjmp(LIBC)
	sin(MATH)
	sinh(MATH)
	sprintf(LIBC)
	sqrt(MATH)
	srand(LIBC)
	sscanf(MATH)
	strcat(LIBC)
	strchr(LIBC)
	strcmp(LIBC)
	strcpy(LIBC)
	strcspn(LIBC)
	strepl(IN)
	strept(IN)
	strfind(IN)
	stright(IN)
	strleft(IN)
	strlen(LIBC)
	strmid(IN)
	strncat(LIBC)
	strncmp(LIBC)
	strncpy(LIBC)
	strpbrk(LIBC)
	strrchr(LIBC)
	strspn(LIBC)
	stty(LIBC)
	swab(LIBC)
	sys_errlist(LIBC)
	sysdate(LIBC)
	system(LIBC)
	systime(LIBC)

	T
	tan(MATH)
	tanh(MATH)
	tell(LIBC)
	time(LIBC)
	toascii(LIBC)
	tolower(LIBC)
	toupper(LIBC)
	ttyname(LIBC)

	U
	ungetc(LIBC)
	unlink(LIBC)

	W
	write(LIBC)

	X
	_xlate(LIBC)
	xtoi(LIBC)

	Z
	zero(LIBC)

	Advanced Topics
	Runtime options and I/O control
	Call: DOS SVC interface
	Separate Compilation of Modules
	Using extern and static
	Building and Maintaining Relocatable Libraries
	Programs with overlays
	When Things Go Wrong
	Runtime Error trapping
	Assembly Language Interfacing
	Program Memory Map
	MC Identifier Output
	Runtime variable storage format
	Register Utilization
	Argument passing
	Returning a value from a function

	Appendix
	Error Messages
	Preprocessor errors - Warning
	Preprocessor errors - Fatal
	Compiler errors - fatal
	Compiler errors - warning

