

Page 1

The LSI Journal April 1984 Volume 2, Number 6

INTRODUCTION FROM LSI:

LATE BREAKING NEWS .. Page 2

NEW PRODUCTS ANNOUNCEMENTS Page 3

ITEMS OF GENERAL INTEREST Page 4
patches and update information

Profile III Plus and LDOS (revisited) Page 7

LSI Journal/BASIC Computing Insert:

View from the Bottom Floor Page 9

Locating high memory routines under LDOS/TRSDOS 6.X Page 11

REGULAR USER COLUMNS:

*** PARITY = ODD *** - Tim Daneliuk Page 12

'C' What's Happening (Part 6) - Earl Terwilliger Page 14

FROM THE LDOS SUPPORT STAFF:

LDOS: HOW IT WORKS - an introduction to COMM and LCOMM Page 16

Les Information - Fast Machine Language Disk 1/0 Page 17

LSI Journal and LDOS Quarterly Index - by Scott Loomer Page 22
(Please note that due to the lead times involved,
the index in Vol2, #5 is actually more complete.)

Copyright © 1983/1984 by Logical Systems, Incorporated
8979 N. 55th Street P.O. Box 23956

Milwaukee, Wisconsin 53223

Main Switchboard and Customer Service: (414) 355-5454
Toll Free Order Number (899) 248-3535

Page 2

LATE BREAKING INFORMATION
By Bill Schroeder

Yes ... this is the issue of the LSI Journal that was to have appeared in the pages
of the magazine BASIC Computing. Alas, it seems that this will never come to pass.

About the first week of March, I was informed that there would never be an April
issue of BASIC Computing. Citing ongoing and growing losses, Irv Schmidt informed me
that BASIC Computing was going to cease publication. At this writing, they have
stated that they are making arrangements to have another publication fulfill their
subscription obligations as they are financially unable to do so. If you have any
questions about your subscription, contact BASIC Computing at 3838 S. Warner St.,
Tacoma, Washington, 98409 - (206) 475-2219.

On March 9th, 1984, the material that was to have been published in the April issue
of BASIC Computing was returned to us. We did a mad scramble to put the issue
together ourselves, and this is the result. Most of the material is presented as it
would have appeared in BASIC Computing. We are sending this issue to all registered
LDOS owners to explain the situation. We sincerely apologize for this development.
Please understand that we had NO KNOWLEDGE WHATSOEVER of the upcoming demise of
BASIC Computing.

LSI ANNOUNCES TOLL FREE ORDER SERVICE
(899) 248-3535

For your convenience, LSI has installed Toll-Free phone service to our order desk.
Now you can place orders with LSI "on our nickel". The number will be (800) 248-3535
and will go into service about March 30th, 1984. We hope you will enjoy the
convenience of this new service. Please remember that this number is for orders
only. Customer Service calls will continue to be taken at the main switchboard
number of (414) 355-5454.

LSI "Such a Deal" Update

Here is the current status of the Deals offered in the last Journal:

DEAL #1:

For those of you that did not receive the previous issue of the Journal, LSI was
closing out all products not manufactured by LSI. All of the non-LSI software is
gone, except for MicroPro's MailMerge, Captain 747 from Molimerx and the IJG book
"How to do it on the TRS-80", by William Barden.

For those who own the LDOS version of WordStar, now is the time to pick up a copy of
MailMerge. For details on the capabilities of MailMerge, see your WordStar manual
(the MailMerge documentation is included in it). There are less than twenty copies
left, so place your order right away. Under Deal #1, MailMerge is $149.40, plus $3
shipping and handling. We also have a limited quantity of extra WordStar/MailMerge
manuals available for $20 each plus $4 shipping and handling (binder not included).

"How to do it on the TRS-80" by William Barden is an excellent book for all TRS-80
owners and LDOS users. This book talks about both hardware and software (including
LDOS) in a very readable manner. Mr. Barden has always received great praise for his
books on microcomputers and assembly language programming, and has done it again
with this book. This is a must for all TRS-80 owners. Whether you buy it from us at
a discount, or pay full retail, don't boot up without it.

The price, you ask? Well, Deal #1 was only for software products, but "Such a deal
we have for you". The normal retail price is $29.95, but order it from LSI for just
$25 by itself, or for $20 with any order over $50 in other merchandise. Enclose your
check with your order, and LSI will pick up the added shipping charges. Otherwise,
add $2 for shipping in the United States. Now how many do you want?

Page 3

DEAL #2:

is over! Please note that the new LSI catalog will be available Real Soon Now. We
will probably start mailing it out by the beginning of June. Unfortunately, along
with the new catalog will come some price increases (except for LS-LED, which will
go down to $49). This makes *now* the time to place that order you've been holding
off on. Orders postmarked before June 1st, 1984, or placed by phone before that date
will be honored at the old prices.

DEAL #3:

continues! We said "until we run out" and we meant it (and still do!). With any
order totaling $50 or more, LSI will include a set of Volume 2 Journals/Quarterlies,
Numbers 1 through 4 at no extra charge. There is still a reasonable supply left of
all four issues. Even if you already have all these issues, please take advantage of
this offer and give them to a less fortunate friend.

DEAL #4:

Speaking of that less fortunate friend, how many of your friends are not using LDOS
on their TRS-80? Tell them about Deal #4. They can take advantage of it and trade in
that "other" operating system. Until June 30th, 1984, LSI will take either
NEWDOS80/v1/v2 or DOSPLUS 3.4/3.5/4 in trade towards the purchase price of the LDOS
5.1 operating system. Send your old MASTER diskette and MANUAL to LSI, and pay only
$64.50 plus $5 shipping and handling for a brand-new copy of the LDOS 5.1.4
operating system (specify model). The only operating system/version other than those
mentioned above that qualifies for this Deal is 5.0 Model 1 LDOS. It may be traded
in on LDOS 5.1.4 for the Model 1.

DEAL #5: Sorry, all the extra Radio Shack Hard Disk Systems are gone.

NEW PRODUCT ANNOUNCEMENTS

LSI Publishes LDOS Source Code

Logical Systems, Inc. announces publication of the complete, commented, assembler
source code for the LS-DOS/TRSDOS 6.2 operating system. This may be the first time
that the complete source code for such a sophisticated operating system has been
made available to the public at a reasonable price.

The publication is entitled LS-DOS/TRSDOS 6.2 "THE SOURCE", and is published in
three 8 and 112 by 11, soft bound volumes:

Volume #1 - THE SYSTEM L-60-011
Volume #2 - THE LIBRARIES L-60-012
Volume #3 - THE UTILITIES L-60-013

Each volume is available for $99, or the complete set of three as L-60-020 for $249.
Delivery of all volumes will begin in June of 1984.

New TRSDOS 6 BASIC Utilities

Logical Systems, the authors of the TRSDOS 6.x operating systems licensed to
Tandy/Radio Shack for the Model, 4 have announced a new product package for use by
BASIC programmers, called "BSORT/MOD324".

This package includes a very powerful SORT utility, called "BSORT", which is
executed from BASIC to sort arrays. BSORT is written entirely in assembler using
advanced sorting techniques for super fast operation. Tag arrays, index arrays,
string and numeric arrays, mid-string sorts, ascending and descending sorts and
much, much more are supported. BSORT requires TRSDOS 6.1.2 or 6.2.0 for proper
operation. The TRSDOS 6.1.2 release includes a new version of BASIC, and should be
available from Radio Shack by the time you read this. Radio Shack's catalog number
for TRSDOS 6.1.2 is 700-2246.

Page 4

A BASIC program conversion aid called MOD324 completes the package. Again, MOD324 is
written totally in assembler for speed. This product will convert a Model 3 BASIC
program to a Model 4-type format. MOD324 is even capable of adjusting print
locations on the screen ("PRINT @" and "PRINT TAB") as well as pointing out the
lines that need further attention after the convert. BSORT/MOD324 is available as
L-32-210 for $49.

LSI Announces FED86

FED86 is the LSI all-purpose File and disk EDitor for the IBM-PC and PC-compatible
machines (*not* the Tandy 2000) running under MS-DOS or PC-DOS (version 2.X
required).

Any byte in any given file or disk can be displayed and/or altered. The display
information in file mode includes: 256 byte record display, file name and drive
number, record number and relative byte number within the current sector. In
addition, the value of the byte under the cursor is displayed in hex, decimal and
binary. In disk mode, the disk relative sector is displayed instead of the file
name.

FED86 also includes commands for: searching for hex or ASCII strings, a
case-independent text search, sending a record or group of records to the printer
and modification of the displayed data (either in hex or ASCII).

All in all, FED86 is a tool that no MS-DOS user should be without. Even if these
operations sound difficult, FED86 makes them a snap!

LSI Announces the LS-Utility Disk

The LS-Utility Disk can be considered as "the best of 5.1 for 6.X". It includes the
majority of the most popular filters and utilities from our LDOS 5.1 Filter Disks #1
and #2, and our Utility Disk #1, reconfigured for use under LDOS/TRSDOS 6. Projected
availability is June 1984, and the programs included with the LS-Utility Disk are
expected to be:

PRCODES/FLT On printers that will backspace, provides for easy control of
boldface and underlining, and also provides slashed zeros.

TRAP/FLT Traps and throws away any user-defined character.
MAXLATE/FLT A complete translation filter system for input or output devices.

Includes tables for EBCDIC and DVORAK translation. Custom tables are
easily built for any application, and a string of characters may be
specified to replace a "match".

CALC/FLT *KI filter - HEX/DEC/Binary conversion and HEX add/subtract.
KSMPLUS/FLT Same as KSM, but allows key redefinition "on-the-fly" from the

keyboard. Also includes "command repeat" and more.
RDTEST/CMD Non-destructive forced read of an entire diskette.
READ40/CMD Allows read-only access to forty cylinder diskettes in a eighty

cylinder drive by double-stepping (96 TPI only).
TYPEIN/CMD Combines the functions of JCL and KSM. Allows most programs that

won't normally accept JCL to be controlled automatically, if they
honor the device 1/0 structure of LDOS/TRSDOS 6.

Items of General Interest

The current release of LDOS for the TRS-80 Models 1, 3 and the LOBO MAX-80 is 5.1.4,
with file dates of 10/01/83.

The latest (known) release version of TRSDOS 6 is 06.01.02. In this release, there
are no operating system changes from 06.01.01, but there is a new version of
Microsoft BASIC supplied by Radio Shack. This version can be obtained from any Radio
Shack Computer Center upon proof-of-purchase (of a Model 4 or 4P). Your old 06.00.00
to 06.01.01 DOS disk should serve. The Radio Shack stock number for this update is
700-2246. Given the heavy demand for this item, your Computer Center may not have it
in stock, but can order and/or reserve one for you.

Page 5

Radio Shack Hard Disk Owners who have not yet received the hard disk drivers to
allow the use of the hard disk under TRSDOS 6 should get a copy of 700-2247. This is
TRSDOS 06.01.01 along with the hard disk drivers (and formatter). You will also need
to get the above mentioned 700-2246 so that you have the new version of Microsoft
BASIC. Again, the Computer Center may not have a 700-2247 in stock for you, but can
order it.

The following patches have been requested to alter the time/date prompts and
commands to accept a period instead of a colon or slash as a delimiter. This patch
accepts a period only (not almost any character as in 5.1.4). The first patch is for
the boot-up prompts, and should be applied to SYS0. The second is for the DATE and
TIME commands, and should be applied to SYS7.

.T611SYS0/FIX

. Patch to TRSDOS 06.01.01 as distributed by Radio Shack

. Use the BUILD command or an editor to type in this patch

. as shown, and then PATCH SYS0/SYS.LSIDOS T611SYS0/FIX

.

. This patch forces boot-up date and time prompts to accept

. the period as a delimiter instead of the slash or colon

.

. This part changes the date prompt
D0E,B3=2E
F0E,B3=2F
.
. This part changes the time prompt
D0F,9E=2E
F0F,9E=3A
. End of patch

. T611SYS7/FIX

. Patch to TRSDOS 06.01.01 as distributed by Radio Shack

. Use the BUILD command or an editor to type in this patch

. as shown, and then PATCH SYS7/SYS.LSIDOS T611SYS7/FIX

.

. This patch forces the DATE and TIME commands to accept

. the period as a delimiter instead of the slash or colon

.

. This part changes the date command
D01,EB=2E
F01,EB=2F
.
. This part changes the time command
D03,05=2E
F03,05=3A
. End of patch

The Model 1 to Model 3 upgrade/replacement board mentioned previously by Tim
Daneliuk in his *** Parity = Odd *** column is available from a company called
Northern Technology. They are located in Elk Grove Village, Illinois, and their
phone number is (312) 860-1772. By now you may have already seen their ads in the
TRS-80 magazines.

The following corrections to the article "Profile One Plus" in the January '84 LSI
Journal were prepared by Joseph J. Kyle-DiPietropaolo:

The patch files for RM, CM, EFC8, EFCC and EFCM needed correction. Using the new
patch files on the next page with the rest of the previously published patch files
will result in a properly operating version of Profile One Plus. Please note that
these patches are for 01.00.00 or 01.00.01 only. With version 01.01.00, all patches
except EFCM/FIX seem correct, but have not been tested extensively. With all
versions, PR/FLT should be installed with the SLINE=1 parameter to ensure proper
report pagination:

FILTER *PR PR/FLT (SLINE=1)<enter>

Page 6

.CM/FIX *
X'7BC2'=67 44
X'74B8'=18 43
X'7652'=18 43
X'765E'=18 43
X'74BB'=19 43
X'7661'=05 44
X'7832'=05 44
X'761A'=49 40
X'761E'=49 40
X'7617'=01 30
X'782C'=01 30
X'7ABE'=01 30
X'7B3F'=01 39
X'7151'="ONE"
X'73C5'=DE 41
X'74F6'=63

.RM/FIX *
X'771A'=05 44
X'7770'=05 44
X'779C'=05 44
X'7956'=05 44
X'7598'=18 43
X'770F'=18 43
X'7717'=18 43
X'7765'=18 43
X'776D'=18 43

X'778E'=18 43

X'7796'=18 43
X'759B'=19 43
X'75EO'=63
X'7C63'=01 30
X'7BE2'=01 30
X'7950'=01 30
X'76CE'=01 30
X'714B'="ONE"
X'7CE6'=67 44
X'7591'=DE 41
X'7799'=DE 41

.EFC8/FIX *
X'56F2'=67 44
X'543C'=01 30
X'5668'=01 30
X'56E9'=01 30
X'707B'=01 30
X'70AD'=01 30
X'7BAF'=01 30
X'7BE7'=01 30
X'7BDE'=18 43
X'7BED'=18 43
X'8DE7'=18 43
X'8DFE'=18 43
X'8E51'=18 43

X'5442'=05 44
X'70D4'=05 44
X'7BF0'=05 44

X'8DD9'=49 40
X'9730'=49 40
X'6DF8'=C4 44
X'6E06'=C4 44
X'5764'=5A 44
X'564C'=5D 44
X'8DD2'=DE 41
X'74C9'=60

.EFCC/FIX
X'56E7'=67 44
X'9625'=67 44
X'97E9'=67 44
X'9FFD'=67 44
X'A01F'=67 44
X'565D'=01 30
X'56DE'=01 30
X'73B1'=01 30
X'73D5'=18 43
X'73DD'=18 43
X'9228'=18 43
X'9248'=18 43
X'9298'=18 43
X'73E0'=05 44

X'7406'=05 44
X'9225'=49 40
X'5641'=5D 44
X'5759'=5A 44
X'7100'=C4 44

X'710C'=C4 44
X'587B'=60

EFCM/FIX *
X'8CFF'=67 44
X'7379'=96 43
X'7601'=05 44
X'8843'=05 44
X'8986'=05 44
X'76EC'=C2
X'7423'=18 43
X'75D2'=18 43
X'75FE'=18 43
X'8835'=18 43
X'8840'=18 43
X'882B'=01 30
X'8980'=01 30
X'8BFB'=01 30
X'8C7C'=01 30
X'8772'=DE 41
X'8D7D'=60

Page 7

The following optional patch for LDOS 5.1.3 or 5.1.4 on the Model 1 will allow the
system time and date routines to utilize a hardware clock such as the Alpha Products
Newclock80 or Timedate80, and most other clock devices that use the MSM5832 clock
chip. A similar patch is not possible on the Model 3 as the real-time-clock service
routines are in ROM. A new service routine could be written as a RTC Task, however.

This patch assumes that the clock is addressed as ports BO through BF. If your
particular clock module is addressed differently, the underlined bytes may be
changed. For instance, if your clock uses ports CO to CF, change the underlined B5
to C5, and alter the rest of the underlined bytes in a similar manner.

. Patch to SYS0/SYS.SYSTEM to allow use of a clock device

. Fix the timer interrupt routine
D04,08=D2 45 ED 78 OD CD A6 47 ED 78 OD E6 OF 85 12 1B
D04,18=C9 11 43 40 01 B5 03 CD C3 45 10 FB
. Fix the date initialization on BOOT
D0D,58=21 46 40 01 BA 01 CD C6 4E 06 03 CD C6 4E 01 BC
D0D,68=0F CD C6 4E EB D6 50 47 DB BB E6 03 11 45 40 21 48 40 20
D0D,7B=26 CB FE 18 22 ED 78 OD A0 07 57 07 07 82 57 ED
D0D,8B=78 OD ED OF 82 77 2B C9
. End of patch

Using Profile 3 Plus under LDOS (revisited)

by Joseph J. Kyle-DiPietropaolo

Profile 3 Plus and LDOS are a very powerful combination. There are, however, several
things that can cause trouble if you are not careful. Let's take them one at a time.

First, what version should you buy? Well, the only version that will run under LDOS
is the "Hard Disk" version. Don't let that phrase scare you, as it works quite well
on floppy disk also. At least two double-density drives are required, and if you are
going to do any fancy sorting, three would be better. Double-sided and/or eighty
cylinder drives can be used if you have them.

The "Hard Disk" version is $100 more than the "floppy" version, but this is more
than offset by the fact that PROSORT is included. PROSORT is Small Computer
Company's disk virtual sort and enhanced selection module, which normally sells for
$150 by itself. If you already own the "floppy" version, Radio Shack will sell you
an upgrade to the "Hard Disk" version for $100 and proof of purchase for the
"floppy" version. Their catalog number for the upgrade package is 700-6203.

In terms of actually running Profile 3 Plus, there are three things to keep in mind:

1) If you have the *KI driver installed, all references to the <clear> key in the
Profile documentation should be changed to <shift><clear>. If you are using math
fields, do not use type-ahead, as Profile does not seem to calculate properly if
<shift><clear> is struck before the calculation is complete.

2) Profile checks the printer status by looking directly at the hardware. This means
that if you are using the spooler, the printing rate will not really improve much.
This can be corrected by searching through all the EFC programs (and RM/CM) for the
byte sequence 3A E8 37 and replace it with 3E 30 00. This is a good excuse to learn
how to use FED (included with the LDOS 5.1.4 update). Making these changes will
disable the check of printer status. Since the system printer driver (which contains
its own "Printer *BUSY* test") is used to actually output the data, there will be no
conflicts. Also, you will be able to route printed reports to a disk file without
having a printer ready and on-line.

Page 8

3) Lastly, contrary to what the manual says, Profile will *not* work with "DO files"
under LDOS. This is because of the way keyboard input is requested by Profile. This
difficulty is neatly fixed by using the TYPEIN utility from the LSI Utility Disk #1
(Order L-32-070, $39 direct from LSI).

When creating a file of commands to be used with TYPEIN and a Profile user menu, put
the entire command sequence in the data file. This includes the EFC line. Build the
file by -putting in the exact keystrokes you would type if performing the procedure
by hand. Then, invoke the procedure with TYPEIN. Do not attempt to pass the name of
a DO file to the EFC module by placing it in parenthesis as stated in the Profile
manual, as it will not work.

For example, let's say that we want to be able to expand our existing data file by
100 records by pushing one key. First, create a user menu that has an entry called
"Expand the MAIL file by 100 Records". Set up the user menu so that this entry is
executed by pushing "E". When "E" is pushed, it should execute the command: TYPEIN
EXPAND/KYS. The TYPEIN data file you would have to build (with the name EXPAND/KYS)
is given below. Note that <enter> means the depression of the key marked "ENTER".

Contents of the file EXPAND/KYS:

EFC7<enter>
MAIL<enter>
100<enter>

LSI's LED, the LDOS text EDitor (L-30-020, $29) is an excellent tool for generating
and maintaining these keystroke files for TYPEIN. LED also has a special HEX mode
that will allow you to insert the <shift><clear> code (X'1F') directly into a TYPEIN
keystroke file. This character is needed to terminate "extended mode" functions.
Without LED, it can be done but it is not easy.

If you must use BUILD, and you need to get a <shift><clear> keystroke into the
TYPEIN file, do the following: Make sure that KI/DVR is installed when doing the
BUILD. When you get to the point at which you need to insert the <shift><clear>
keystroke, actually put a <clear><shift><enter> character there. That character is
produced by pressing the <clear> key, and while still holding is down, press the
<shift> key, and while still holding both of them, press the <enter> key and then
release them all. A Plus/Minus symbol (±) or square block on the Model 1 and MAX-80
will appear on the screen. Now continue with the remainder of the key data. Whenever
you need to execute this kind of a TYPEIN procedure, use the following format:
TYPEIN SELECT/KYS (X1=X'7F1F'). Each <clear><shift><enter> will now be translated to
the required <shift><clear> when executing. This TYPEIN command can, of course, be
placed in a user menu.

All prices mentioned above that pertain to LSI products are valid only through May
31st, 1984. Radio Shack pricing policies and product availability is subject to
change. Please contact your local Radio Shack Computer Center for more information.

LSI Quick Hint #3

Don't forget about the LDOS SIG (Special Interest Group) on CompuServe. If you are
already a CompuServe member, simply GO PCS-49. If are not a member, any Radio Shack
Computer Center can set you up with a membership kit (note: RS232 and modem
required). There are many useful public domain programs and utilities in the LDOS
SIG databases, and questions about LDOS and TRSDOS 6 will be answered promptly,
often both by the LDOS Support staff and experienced users. This is an excellent way
to keep abreast of the latest in the LDOS world. For most people, CompuServe is only
a local call away, and that local call plus CompuServe's modest $6 per hour fee is a
lot less than a long distance call during the day to LSI.

Page 9

View from the bottom floor

Bill Schroeder, Logical Systems, Inc.

Hello to all LSI Journal subscribers
and readers of Basic Computing. From this
point forward, the contents of the LSI
Journal will be presented in Basic
Computing. We ,,feel that this will be of
great benefit to both our tens of thousands
of users, and to the existing fans of Basic
Computing magazine. If you are a
subscriber to the LSI Journal, your
subscription will be fulfilled by Basic
Computing, which will contain this LSI
Journal section. Our subscribers gain the
additional information, ads, and interesting
articles from the rest of the magazine,
while Basic Computing subscribers gain
technical information and articles of
special interest concerning LDOS 5.1.x,
TRSDOS 6.x, LSI products, and last (and
least), my ramblings.

Just so rumors don't start to fly ... LSI
was not bought out by Basic Computing,
nor were they bought by LSI. There is NO
connection between our companies. The
name LSI Journal still belongs to LSI, but
Basic Computing has been granted the
right to use the name as needed for
promotional purposes both in and outside
of this publication. LSI provides all the
editorial material in our corner of Basic
Computing magazine. No money changed
hands between the folks at Basic
Computing and us here at LSI.

This arrangement is purely one of
convenience. LSI is a software company,
Basic Computing is a magazine. Both
companies are very good at what they do
best, and less efficient at "the other guy's
specialty". So, Basic Computing will be
our publisher.

Mike Schmidt (the owner of Basic
Computing magazine) and I have been
discussing the possibility of this
arrangement for well over a year now.

Being from a conservative German
background, I tend to move very slowly on
this type of major decision. To slow things
down even more, Mike comes from the
same conservative German background.
Between the two of us, we were almost
moving backward. The final result is, from
now on, the LSI Journal will be
incorporated in (about) every third issue of
Basic Computing (read that as at least that
often).

Should you have occasion to write or
call regarding information presented in this
area of the magazine, please contact LSI
directly at: 8970 N. 55th St. PO Box
23956, Milwaukee, WI 53223 (414)
355-5454. Of course you can always
contact Basic Computing also, but I would
like to make it very clear that LSI provides
all of the material contained in this section
of Basic Computing.

Now down to what's happening at LSI.
There have been many changes at LSI as
we prepare to enter the MSDOS world
(IBM & compatibles). We will not be
providing an operating system for this
market... at this time. Our first product will
be a truly "RELATIONAL" data base
manager. This product is very dynamic in
concept for a micro. It will be easier to use
than any existing product of similar
capabilities, faster, more versatile and will
be very "friendly" to the average user. The
name and price for this product remain
undecided at the time of this writing, but
should be known by the time you read this.
Please call for additional information if
you are interested. Note: This product will
be for use with MS-DOS 2.x only.

Question: What is AT&T up to!?
Answer: Who knows?

One thing is certain: with IBM having
sold about 850,000 PCs in 1983, and
projecting about 2,500,000 (that's right--
2.5 million!) to be sold in 1984, it will take
a very heavy hitter to slow them down. If
there is a company that can actually go
head to head against IBM in the small
business and professional market, it is
most certainly AT$T (whoopsthat $ must
have been a slip). AT&T is one of the
largest and richest companies in the world
(much larger than even IBM).

AT&T could have kept their antitrust
case of the Seventies in court for another
20 or 30 years if they wanted to. But lo
and behold, all of a sudden they offer a
settlement to the U.S. government. What is
most amazing is the fact that the airheads
in Washington, D.C. accepted it. AT&T
drew their own draft for a break-up and
reorganization of their own operations.
They would agree to this "massive"
break-up only if they would be allowed to
enter "new markets", that they had (years
earlier) agreed to stay out of. One of those
markets is, of course, computers and other
end-user DP equipment and services.

For many years, the fellows up at Bell
Labs have been far ahead of private
industry in computer technology. They
have perfected practical bubble memory,
32-bit microprocessors and some of the
best concepts (and implementations) in the
software industry. Now, AT&T owns Bell
Labs, and gets to take the cost of operating
it as a TAX DEDUCTION (by a special
Act of Congress). Boy, I wish LSI could
write off our costs of software
development that way.

AT&T has more ready cash, a larger
manufacturing capability, a larger support

LSI Journal

Page 10

system, and a larger marketing system
than any company in the microcomputer
field today. For that matter, make that
ANY company at all, in any field.

And now AT&T cometh
Let us imagine an AT&T

manufactured, marketed, and supported
microcomputer system. The word "system"
is very important here, and is going to
encompass a lot more than what IBM,
Apple or Tandy calls a "system" today.
Think more of something like the United
States telephone "SYSTEM". That, of
course, was the last AT&Tcontrolled
accomplishment. The U.S. phone system
(and other types of communications
associated with this "system") are without
a doubt a major reason for the prosperity,
industrial growth and power of the U.S.

I believe that the next AT&T system
will begin to take shape in 1985, and be
providing full services to the top 50 U.S.
population centers by 1990, with full
coverage of the North American continent
by 2000. Let's take a look at what this next
"system" might bring.

With the present cable, microwave,
satellite, and radio network under the
direct and indirect control of AT&T, it is
possible today to communicate in "full
duplex" with almost every residence and
business in the United States, and many
foreign countries. Much of the capacity of
this network is already utilized for data
transmission, collection and distribution.
This usage is for many different reasons,
and by many varied interests ranging from
Government activities to medical
education to airline pilot weather data.
Note: at present, the list of data
accumulation and distribution uses for the
AT&T system is growing at an
accelerating rate, faster than ever before,
and this rate will continue to accelerate for
a long time to come as the true potential of
the system, and the hunger for "DATA" is
exploited by our friends at AT&T.

I believe that AT&T is about to
introduce a new computer intended for
everyone, from the home user, to the
president of a large company, to the bank
around the corner. This computer will
become part of a system of distributive
processing the likes of which the world has
never dreamed of. These machines will be
entirely "solid state" in that they will
contain no moving parts (other than the
keyboard system until full voice control is
perfected).

These machines will have a megabyte
or more of bubble memory, and at least
256K of regular RAM (bubble memory is
relatively slow). There will be a 9- or
12-inch monitor, with color and graphics
capability, and TV interface options. A
keyboard of 90-plus keys will be provided
and initially a 1200 to 4800 baud
communication system. This will all be
available to the customer as components,
CPU, keyboard, and monitor, with several
options for each component.

The systems will initially rent for
between $50 and $250 per month, with all
maintenance provided by AT&T. By 1990,
the price should fall to around $25 to $75
(or the equivalent at the time, adjusted for
inflation). The initial thrust of this product
will be aimed at the business market place.
As production distribution and profits rise,
they will decrease the costs to truly enter
the "home" market at around the cost of
present phone service.

Now for the "magic" - the
SOFTWARE system

The most expensive and the most
volatile part of any computer system is the
software. Not the operating system itself,
but the user applications. The mass market
for "software" does not exist! But the
"mass use" potential of software does
exist. Think about it. Any particular piece
of music is enjoyed by many more people
than own the recording. Movies are
watched by tens of thousands more than
own a legitimate copy of the movie.
Libraries are used by many more people
than own complete libraries, or for that
matter, those that even own a significant
number of books.

For the want of a better term, let's call
this concept "mass-use software". All the
items mentioned above are "authored",
"edited", "produced", "published", "stored
on media", "reproduced" and then
"marketed". Computer software is handled
in a similar manner until it reaches the
"marketed" stage. In most cases you must
buy or license a physical copy of the
reproduced media to use the product. That
would be like having to buy a "print" of a
movie so you could watch it, or marketing
a book and NOT allowing it to be added to
libraries.

This is not efficient, and would have
greatly reduced the mass acceptance of
products from the aforementioned

industries. In the early days of each of
these industries, the one to one marketing
concept was all that existed, just like the
handling of software today. I believe
AT&T is about to change that, and bring
computing in the U.S. to a new age of
maturity.

AT&T could easily provide fifty or
more supercomputers, properly placed
around the country. When you turned on
your own AT&T computer, it would
automatically establish a link to the local
supercomputer. You would then select the
software you wished to use for the day (or
as long as your machine stays on). The
software and all support files would be
sent to your machine. The host system
would automatically know who you are
and provide you with your personal data
files at the same time. It would then
disconnect from your computer. When you
complete your work and sign off at the end
of the day, your machine would
automatically call the host and send back
your updated data files, and then shut itself
off.

Initially, data transmission speeds will
be limited to 4800 bits per second, or less.
This will change rapidly in the 1990s as
fiber optic cables are laid, and fiber optic
links enter most houses in the U.S. This
"optical cable" will carry your T.V. as well
as your phone and computer services, at up
to hundreds of times faster than existing
data transmission speeds.

There are several very strong points in
favor of such a system. First, software
piracy is eliminated (or made very
difficult), as only the host has your data,
and you will not have on-sight permanent
storage. Handling of diskettes, making
proper backups of data files and the like
would not be the user's problem (most
users don't handle this job correctly
anyway).

Second, the customer would always
have the most recent version of the
software to run. Then, if a bug is reported
to a vendor, he simply corrects the bug and
updates the product on any one of the host
supercomputers. In the middle of the night,
the host machines exchange updated files.
The next morning, all software is corrected
for EVERY user. The same concept
applies to documentation and updates.

Third, you will be able to send data to
anyone in the country in just hours or
maybe minutes. The postal service would

LSI Journal

Page 11

finally be dealt a long deserved death
blow.

Fourth would be the reduced cost of
such a system for the user. How much
software do you own that you DO NOT
USE? With this system, you could select
between dozens (or hundreds) of word
processors or spreadsheet programs, and
only pay when you use them. The
"Software Usage Fee, For End Reception"
("SUFFER" for short) would probably
range from 25 cents to as much as $25 per
day for "rental". AT&T would keep a
percentage of this fee as a "distribution"
charge (20 to 30% seems reasonable). The
SUFFER charges would be levied on your
regular phone bill, along with: your mail
charges, T.V. usage, data file storage
charges, and of course your charges for
local equipment, options and services.
Sounds like AT$T will be getting a lot
more out of us than when they were "just
the phone company".

One last point is that AT&T would
probably have little or nothing to do with
applications software (too much trouble).
They would accept most professionally
written packages for installation on the
system. It would be up to the developer to
promote and advertise the product to
generate usage. Programs with very limited
use would be removed from the system. A
good software product will make millions
for the authors under this system. Users
will get much better quality software, as
"JUNK MERCHANTS" will not be able to
survive under this type of system. The
computer owners would have to use a
product repeatedly to make it a success.

One big negative is that this whole
system will make 1984 (the "Big Brother"
syndrome) a reality, and turn Orwell into
-a prophet. The government will be able to
get their hands on "anything and
everything", from payroll data to the letter

you write to your mother, and how much
you owe on your house, directly through
the system. Tax collections should
skyrocket. This is the main reason why I
feel this overall concept will become
reality. The government will want access
to the tremendous database created by this
type of system. Complete electronic
banking will become reality (there will be
no cash transactions to avoid taxes) and no
one will have any truly private
information.

The end of an era and the dawn of the
information revolution is upon us.
Whatever the outcome, our civilization is
about to undergo radical change.

For all that the AT&T Mega-lith has
done for the American people in the past,
AT&T, we thank you. One can only wish
that the results of your next
accomplishment will be as benevolent to
the American people. I hope so.

Locating high memory routines under
LDOS/TRSDOS 6.X

Richard Schulman, MagiComp
2710 W. Country Club Rd., Philadelphia, PA 19131

A short while after my Mod 4 came rolling in, I got the tech
manual and turned to the SVC section to find out how to
convert my Mod 3 subroutines. One of the first SVCs I looked
for was the one to get USTOR$ - the LDOS 8 byte storage area
allocated to the user. I store the addresses of my subroutines
there so that I can find them from LBASIC. Unfortunately, I
never found the SVC -because there isn't one. So I plunged in to
find out how to locate my routines.

LSI has adopted a convention for a header to precede high
memory routines. Using this header allows an SVC to locate the
routine for you. Listing I demonstrates the technique by fetching
the address of INKY4.

Listing 1

START: LD DE,FSPEC ;header to find

LD A,83 ;GTMOD

RST 28H

FSPEC: DEFM 'INKY4'

DEFB 0DH

LSI Journal

Page 12

DE is loaded with the address of the name of the routine you
want to find, and A with the number of the SVC (in this case
83). The name must be in UPPER CASE characters and
terminated

Listing 2

PUSH HL ;Save the parameter address

LD E,(HL) ;Load the actual parameter

INC HL ;itself into DE

LD D,(HL)

LD HL,18

ADD HL,DE ;Add 18 to DE

EX DE,HL ;Address of 'INKY4' to DE

LD A,83 ;SVC number

RST 28H

POP DE ;Recover parameter location

EX DE,HL ;Move routine location to DE

LD (HL),E ;Move LSB to parameter

INC HL

LD (HL),D ;Move MSB to parameter

RET

DEFM 'INKY4'

DEFB 0DH

Listing 3

14 DIM US(11):FOR X=0 TO 11:US(0)=0:NEXT X

15 DATA 24293,22051,4641,6400,16107,-4269,
-5167,9075,-13966,2004l,22859,3380

16 FOR X=0 TO 11:READ US(X):NEXT X:
X=VARPTR(US(0))

17 CALL X(X):INKY4=X '** SAVE INKY4 ADDRESS

20100 '** INKEY ROUTINE

20105 CALL INKY4(Z)

Listing 4

;************

;** HEADER **

;************

BEGIN: JR START

DEFW LAST-1 ;HIGHEST MEMORY BYTE

DEFB 5

DEFM 'INKY4'

MODDCB:DEFW $-$

DEFW 0

START: PUSH HL ;SAVE LOCATION OF PARAMETER

with a character whose code is in the range 0-31. After
executing the SVC with RST 28H, the starting address of
INKY4 is in HL, and the Z flag is set (NZ if it wasn't found).

Of course, that doesn't entirely solve the problem of how to
get this address into BASIC so that you can CALL (or USR) the
routine.

The method I chose involves passing a parameter to the
routine, and sending the address back in the parameter. The key
to finding the routine is to know where to find the name of the
routine (so it can be loaded into DE). The program is shown in
Listing 2. The parameter passed to this program is the
ADDRESS of the program itself.

That is the secret to finding the location of the name of the
routine you wish to locate. The program is exactly 18 bytes
long. Therefore adding 18 to the address of the program (the
parameter we passed) gives us the location of the name of the
routine we are searching for. That is the purpose of the LD
HL,18 and ADD HL,DE instructions. The 18 instructions can be
loaded into an integer array as shown in the BASIC program in
Listing 3.

On line 16, X is set to the location of X(0) in memory. It is
both the location of the routine CALLed in line 17 and the
parameter passed to it. The integer INKY4 is the location of the
high memory routine.

There is one more secret to success. You have to translate
the name of the high memory routine into integers. The letters
I,N,K,Y and 4 are represented in memory by the ASCII codes
73,78,75,89 and 52 respectively. To find out what integers to
use, let's look at I and N. Those two letters make up one integer.
Set I%=0. Then poke the codes for the letters into I%: POKE
VARPTR(I%), 73: POKE VARPTR(I%)+1,78. Then PRINT
1% and you will find that I%=20041. The value for NK is
22859, and the value for 4 + carriage return (code 13) is 3380.
Those are the last three values in the DATA statement at line 15.

If your routine name has an even number of characters you
can terminate the name with an integer value of 0-31 (assuming
an extra byte of value 0 following the terminating character). I
just use 13 from habit.

High Memory Headers

None of this is possible without the proper header. My
header for INKY4 is shown in Listing 4. The first two bytes
jump to the start of the actual routine. Next is a two byte integer
with the address of the highest byte of memory occupied by the
routine. Then one byte which gives the length of the name of the
routine, 5 in this case INKY4. There follows two byte reserved
for the address of a Device Control Block if the routine is
associated with a device and two bytes that are reserved for I
don't know what.

Do it Again

You can reuse the routine in lines 14-17 in the same
program. Line 18 would reset US(9) to (11) or however
many elements after US(8) need to be changed. For
example, let's find the routine FLASH. Line 18 would be

LSI Journal

Page 13

US(9)=19526:US(10)=21313:US(11)=72 (I terminated 'FLASH'
with a 00), followed by X=VARPTR(US(0)):CALL
X(X):FLASH=X. You can do it as many times as you need in
the same program. And since you can wipe out arrays in BASIC
under LDOS (TRSDOS) 6.x, you can ERASE US when you're
done to reclaim its space and have the addresses of your routines
in the integers INKY4 and FLASH (and whatever else).

Be sure to put X=VARPTR(US(0)) before each CALL X.
BASIC moves things around dynamically and the address of

US(0) might change between calls to X. And be absolutely
certain that X is an integer. I can promise you from experience
that you will not like the results if X in not an integer.

That's all there is to it. Simply MERGE lines 14-17 with
your BASIC program, then remove the last three integers and
replace them with the name of the high memory routine you are
looking for.

Parity = Odd

© 1983, Tim Daneliuk, TH Communications Associates

Welcome to PARITY = ODD! This
may be the first time you've seen this
column, so introductions are in order.
PARITY = ODD originated in the early
days of the LDOS Quarterly. At the time, I
was reviewing TRS-80 related products for
several magazines, as well as beta testing
products for the LDOS operating system.
In talking with Bill Schroeder of Logical
Systems, it became clear that LDOS was
soon to become a dominant force in the
TRS-80 industry. And what a force it is!
There are LDOS products for the TRS-80
Models 1 and 3, and the latest machines in
that family (the Models 4 and 4P) use a
descendant of LDOS 5.1 as their primary
DOS. Yes folks, TRSDOS 6 is a version of
LDOS. In fact, LDOS and TRSDOS 6 are
so closely related in concept that most of
the major commands work almost
identically.

Originally, PARITY = ODD was
created as a forum for examining topics of
particular interest to the LDOS user. In
this column you'll see product reviews,
discussions of programming technique,
solutions to user's problems, and almost
anything else that strikes my fancy. If you
have a particular question or want to see a
specific product reviewed, let me know.
Moreover, feel free to bring up topics

unrelated to LDOS directly. In the coming
installments you'll probably see items
concerning CP/M and MSDOS now that
Tandy will be distributing these operating
systems.

I can be contacted by mail and via
CompuServe. If you choose to write,
please send your letter to this magazine
and my attention. If you want to "talk" by
electronic mail, you'll find me skulking
about on the LDOS Special Interest Group
(SIG) of Compuserve. My PPN # is
70745,1520. Either way, there are some
vital pieces of information you should
always include. First, please include your
name and address (a telephone number is
helpful too). Second, always include a
description of the system you are using.
Please state explicitly which TRS-80 or
TRS-80 "work alike" you are using as well
as the types and sizes of disks drives,
controller, etc., you have. Finally, if you
are requesting help with a problem, please
try to describe the problem in a logical,
step-by-step manner. Be as explicit as
possible. I can't much with a problem like
"It doesn't work right".

Remember, this column reflects my
opinion. I try to responsibly evaluate those
products about which I write, but errors

can and will happen. If you find such an
error, let me know.
Chips

Tandy recently unveiled their
MS-DOS machine, the Tandy 2000. The
2000 is notable because it is one of the
first personal computers to use the Intel
80186 microcomputer chip. To understand
the power of the '186 we need to take a
quick look under the hood of the modern
microprocessor.

The much-touted IBM-PC uses the
Intel 8088 microprocessor. IBM will tell
you that this makes the PC a "sixteen bit"
computer. Horsefeathers! Internally, the
8088 contains data registers which are
indeed 16 bits wide. BUT -externally (i.e.
those places where the 8088 "talks" to the
rest of the computer and the outside world)
data is transferred 8 bits at a time. This is a
situation which is much like the 8 bit Z-80
microprocessor. The Z-80 also has 16 bit
internal registers and it transfers data to the
rest of the system a byte at a time. In fact,
the only significant advantage that a 8088
has is that it can address up to 1 Megabyte
of memory directly compared to the Z-80's
64K Byte maximum. This 16 Bit internal/8
Bit external architecture is a large part of
the reason the IBM-PC is so wretchedly
slow! That's just my opinion of course, but

LSI Journal

Page 14

if you want an eye-opening experience, try
benchmarking a program on a TRS-80
Model 4 or LOBO MAX-80 against an
IBM-PC. The PC will generally be slightly
faster, but not enough in my judgement to
justify the 30-50 percent price difference
between these machines.

So, what's an 80186? It is an enhanced
version of the Intel 8086 microprocessor.
The 8086 is a processor which has the
same instruction set as the 8088. However,
the '86 not only has internal 16-bit data
paths, it also has EXTERNAL 16-bit data
paths. For this reason alone, it generally
runs quite a bit faster than the '88. The
'186 enhances this further by including
almost an entire computer on one chip, and
offering a faster clock speed. In addition to
the 8086 microprocessor, the 80186
includes such things as a DMA (Direct
Memory Access) controller, and memory
chip select logic all on one piece of
silicon. This makes the '186 a very cost
effective part when you're designing a
complete computing system. The 80186
also has some new instructions which the
'88 and '86 don't have. The '186 also has
the advantage of being compatible with all
the instructions of the '88 and '86. This
means that programs written for the latter
two will also run on the 80186!

The bottom line is that you can expect
the Tandy 2000 to be quite a performer.
Though it does not appear to be
"compatible" with the IBM-PC, most
software which uses the MS-DOS
operating system for 1/0 (and doesn't try to
"talk" to the hardware directly) ought to
work with the Tandy 2000. The one
potential weakness of the 2000 is that is
uses "quad density" (doublesided,
double-density eighty track) disk drives.
While this gives an enormous amount of
storage, it may not be easy to move
programs and files to and from "normal"
MS-DOS forty track drives. I'm expecting
a review machine fairly soon - I'll let you
know what I find.

Disk, Disk, Disk...
If you've followed the evolution of

LDOS at all, you probably realize that
Logical Systems also publishes many
useful add-on products for their operating
system. The latest such product is called
diskDISK, and will be especially useful for
those of you using LDOS on a hard disk

drive. To understand how diskDISK can
be used, we need to step back and look at a
hard disk system.

By virtue of its tremendous storage
capacity, a hard disk can contain literally
hundreds of files. While all that storage is
great, it becomes difficult to keep track of
all the files on the disk after a while. One
partial solution to this dilemma is to use
hard disk "partitions". A partition is simply
part of the hard disk treated as a separate
logical drive. For instance, if you had a
disk drive with four platters (storage
surfaces) each capable of storing 2
Megabytes, you could organize the drive
one of several ways. You could have one
eight Meg, two four Meg, four two Meg or
any combination of the above which totals
8 Megabytes of storage. By the way,
partitioning is only possible if the hard
disk driver program is written to do so.
The point is that one large hard disk is
made to "look" like several smaller disk
drives. The advantage of this approach is
that you break the mass storage into
smaller, more easily managed "chunks" of
storage.

Even with disk partitioning, there are
still times when you will be limited by the
large number of files you have to manage
on a hard disk. It would be ideal to go
even further and sub-divide a given
PARTITION of a hard disk. The diskDISK
utility does just that. With diskDISK, you
can create a "logical" storage area on a
hard disk which has the capacity of a 5 or
8 inch floppy. In other words, diskDISK
creates a file which is large enough to store
as much as say, a single 5" floppy. Then
this FILE is installed in LDOS as a logical
disk drive.

For instance, I generally use a LOBO
1850 hard disk as the principal drive of my
system. This drive stores 8 Megabytes, and
is partitioned into two 2 Megabyte
partitions (Drives 0 and 1) and one 4
Megabyte partition (Drive 2). On Drive 1,
1 have a file called C/DD. This is a
diskDISK file which ordinarily looks just
like any other file to the system. If I issue
the command "DD :3 C/DD" from LDOS
Ready, this FILE is installed as logical
Drive 3. From then on, any LDOS
operation on Drive 3 (DIR, FREE, KILL,
etc.) takes place physically in the file
C/DD. This is entirely invisible to the user.
The diskDISK drivers make C/DD "look"
like a floppy disk drive. In the case of this
particular file, I used diskDISK to "format"
it to look like a double-density,
double-sided, 40 track disk drive. This

gives me about 360K of storage on this
logical drive, more than enough to store a
C compiler and my current C program
source files.

You can create a different diskDISK
file for each major type of file in your
system to help organize your files. For
instance, I can have one diskDISK set up
for BASIC programs, another for
PROFILE, and still another for utilities.
There's a hidden benefit in all this too. The
granule size for an LDOS hard disk system
is always at least 4K. Even if your file only
has 2 bytes of data in it it will still occupy
at least 4K of disk space. When you save a
file on a diskDISK, the granule size is that
of the floppy disk you're emulating. For
instance, files stored on a SSDD 5"
diskDISK use 1.5 K granules. Your two
byte file will occupy 1.5 K instead of 4 K,
for a net savings of 2.5 K of disk space. If
you have many small files, the savings are
tremendous. A special diskDISK format
(called type 1) uses 256 byte granules for
the most efficient storage possible.

Another advantage is that a diskDISK
only occupies one directory entry on the
hard disk, no matter how many files
actually exist inside. If you have a lot of
small files on a hard disk or 8 inch floppy,
you can easily run out of directory space
before you run out of disk space. In a
sense, diskDISK gives LDOS the capacity
of having sub-directories similar to
MD-DOS 2.x and UNIX.

diskDISKs can be created on any type
of LDOS compatible media. This product
is available for either the Model 4 running
TRSDOS 6 or the LDOS 5.1.x family of
DOS products. Either package costs $99
and is available from Logical Systems Inc.,
8970 N. 55th Street, P.O. Box 23956,
Milwaukee, WI 53223.

Random Items of Interest
Because of the volume of products

sent to me for review, it isn't always
possible to look at each one in depth.

From time to time, you'll see mini-
reviews like these. First, if you're an LDOS
5.1.x user and need a great disk cataloging
program, take a look at ZCAT from
MicroConsultants. It is written entirely in
assembly language and is the best of its
type I've seen to date. It costs only $35 and
is available from MicroConsultants, 7509
Wellesley Drive, College Park, MD
20740-3037 (301) 474-8486.

LSI Journal

Page 15

Model 4 owners may be interested in
the new "PRO-CESS" utility from
MISOSYS. This product is very similar to
the CMDFILE program included with
LDOS 5. 1, except that PROC-CESS runs
under TRSDOS 6. This product also has
some nice new twists, like being able to
sort load module records by address and
conversion of X-type patches to D patches.
PRO-CESS is $40 and can be obtained
from MISOSYS, P.O. Box 4848,

Alexandria, VA 22303-0848, (703)
960-2998.

Finally, if you use SuperScripsit, there
are two sources of printer drivers you
should know about. One is softERware,
and the other is PowerSOFT. I've used the
softERware product which seems to work
fine, but I've not seen the PowerSOFT
driver. Contact these companies for more
details: PowerSOFT, 11500 Stemmons
Freeway, Suite 125, Dallas, TX 75229
(214) 484-2976, or softERware, 300

Grenola St., Pacific Palisades, CA 90272
(213) 459-3414.

The Finishing Touches
That about wraps it up for this

installment of PARITY = ODD. Hopefully
the next time you read this column, I'll
have something to report on the Tandy
2000, as well as the usual collection
TRS-80 reviews and trivia! So long for
now.

The "C" Language, part 6
Pointers, arrays, structures and common errors

Earl "C." Terwilliger, 647 N. Hawkins Ave., Akron, Ohio 44313

Could you use some POINTERS on how to STRUCTURE
better C programs? In this part, Part VI, structures will be
introduced and the discussion on pointers and arrays will
continue. Oh? You thought when you read the word POINTERS
and the word STRUCTURE that this part would really be
discussing techniques for improving your C code? Ha! Well,
okay, not to disappoint you, included in this part is a discussion
of the most common errors or "things" not to do in a C program.
Will that help?

First, let's continue on from the last part with pointers and
arrays.

In the last part, you saw an expression *ptr++. Were you
puzzled? Remember back when the ++ and -operators were
introduced? It was stated that ++ added one to its operand and --
subtracted one from its operand. Be careful applying this to
pointers. The "one" referred to which is added to or subtracted
from a pointer is actually a scale factor. This scale factor is
dependent on the type the pointer points to. That means it is
scaled by a size equal to the data type length. This holds true for
all "pointer arithmetic". (For example, in a Z80 based machine
the scale factors are 1 for char, 2 for int.)

There are some rules to follow when doing arithmetic in C
using pointers. It is legal to:

add an integer to or subtract an integer from a pointer
subtract a pointer from a pointer
compare a pointer to another pointer

All other conceivable arithmetic, including shifting or
masking is illegal. Note: a pointer containing NULL or 0 is a

special case. The C language guarantees that if a pointer points
to valid data, it will not contain 0. The 0 value is usually used to
indicate an error condition. An example of this would be when a
storage allocate function is called. This function may have been
designed to return a non zero pointer to the beginning of the
allocated storage. If storage can not be allocated it could return a
NULL (zero) value indicating an error of some type occurred.
Consider the statements below for the discussion following:

char *ptr;
static char a[5] = "test";
ptr = a;
++ptr;

ptr is a pointer to type character. ptr is initially set to the
address of the array a. This is written as &a[O] or simply a.
Next, ptr is incremented to point to the next element of the
array. This is written as ptr++. (Other possible ways to code it,
in this example, could have been *ptr++, *++ptr, *(++ptr) or
*(ptr++). Note that (*ptr)++ would create a different undesired
result than *ptr++. The ++ and * operators are of equal
precedence and associate right to left.) From the above
statements, you can conclude that array subscripting can be done
by incrementing a pointer. You can also conclude that the
following two expressions are equivalent:

ptr = a;
ptr = &a[0];

(Note that, in effect, an array name is a pointer expression.
Note also that using pointers rather than array subscripting
usually results in more efficient code.)

LSI Journal

Page 16

As general rules:

a[n] is equivalent to *(a+n)
*(&a[n]) is equivalent to *(a+n)
&a[n] is equivalent to &a[0]+n is equivalent to a+n

Perhaps if I spelled out how to "pronounce" some of the
expressions used in the general rules above, these rules might
become more clear?

& means the address

* means the data at

a[n] means element n of array a

&a[n] means the address of element n of
array a

*(&a[n]) means the data (element) at the
address of element n of array a

This says the same thing as element
n of array a

*(a+n) means element n of array a

a + n means element n of array a

Did the above help?

If you have been looking at some sample C programs, you
may have seen by now that sometimes an array name is written
as a[] or *a when used as parameters in a function. Rather nice
don't you think? The function, when passed an array name, can
treat it as an array, as a pointer or both. If you have some doubt,
look at the C code in Listing 1.

The arguments argc and argv are not new to you, they were
described in Part II. As you noted, argv is treated as an array and
as a pointer in the above program. Are you curious about the
argv[0][0] expression used in the printf function? What will
print is a single character, the first character of the command
line argument after the program name. If the above program was
called test, to invoke it and pass it an argument, you might type:

test –l myfile/dat

If you compile it and try it using the above invocation, you
should see the - printed. (Try it with different argument values
and different numbers of arguments.) Of what value is this?

Listing 1

main (argc, argv)
int argc;
char **argv;

{
if (argc < 2) {

printf("Error - no parameter was
given!");

exit(1);
}
++argv;
printf("%c\n",argv[0][0]);

}

Well, actually this program might be used as part of a larger
program and the argv[0][0] could be used to test for a "switch"
such as + or - in front of a parameter. In the example invocation
above, I included the myfile/dat parameter to suggest some
possibilities for you to ponder!

The argv function parameter, as mentioned in Part II, is a
pointer to an array of pointers. Here is a list of possible ways or
forms in which you might see it used: argv, *argv, argv[n],
*argv[0], (*argv)[0], argv[0][0]. Having some trouble
"visualizing" what each represents? Look at a possible storage
map (chart) of argv:

|---------|
argv | address |--------|

|---------| |
|

|----V----|
argv[0] or *argv | address |------|

|---------| | *argv[0]
|---------------| address | | or
| |---------| | argv[0][0]
| | address | |---V----|
| |---------| | string |

|--V-----| | | | data |
| string |
| data |

I hope the above map will be of some aid. Try to fit into the
above map all of the ways of using the function argument argv.
Enough of this for awhile! Let's switch topics and introduce
structures.

A nice feature for a language is the ability to group variables
of different types and treat them as one. This grouping of
variables, called a structure in C, is called a record in other
computer languages. Listing 2 is an example of the declaration
of a sample C structure.

The struct keyword is used to declare a structure. An
optional name or tag can follow the struct keyword. In this
example, I used the tag of payroll. The tag names the structure
and can be used as a shorthand method for the complete
structure declaration. For example, to declare two more
structures of type payroll, it might be done as follows:

struct payroll personl, person2;

The variables declared in the structure are referred to as
members. Structure members or tags can have the same name as
other simple variables. The C compiler can tell them apart due
to the way they are used. Members of a structure are referenced
as follows:

structure-name.member

The "." is called the structure operator. It connects the
structure name to a member name. More will be said about
structures in the next part!

Now, as promised, Table I is a list of many of the most
common errors found in a C program. Keep these "mistakes" in
mind as you code in C. Looking out for these pitfalls will help
you design a more "bug free" program.

LSI Journal

Page 17

As you read some of the above most frequent C coding
errors didn't you say to yourself, "Yes, I have done that before."?
If you did, you are not alone! Some of these errors are caught by
the C compiler, many are not. Another program for detecting
possible errors in C code is called LINT. It typically better
enforces the rules of C and reports more possible errors than
does the C compiler.

In the next part, the C programming environment will be
discussed along with many functions which are part of (or
should be part of) the "standard" library. Structures will also be
covered in more detail. Practice your C coding techniques until
then!

Listing 2

struct payroll { char name[30];
int age;
char sex;
int pay;

}

Table 1 - C Language Pitfalls

Using = instead of == in an if statement
Thinking arrays start at index 1 instead of 0
Unclosed braces or brackets
Forgetting a ;
Using / instead of \
"Off by one" errors in looping or array indexing
Declaring function arguments after the {
Forgetting the precedence of operators
Thinking C has built in string comparisons
Using ' instead of "
Using () instead of []
Function arguments placed in the wrong order
Not reserving an array element for the terminal \0
Forgetting about "side effects"

LDOS: How it works - an introduction
to COMM and LCOMM

Joseph J. Kyle-DiPietropaolo

LCOMM (on LDOS 5.1.x) and
COMM (on TRSDOS 6.x) are both very
powerful communications packages, but
few people use them to their full
advantage. Admittedly, the manual(s) are a
hit terse in regards to these packages, but
with a little help everyone should be able
to use these utilities. If you need any help
in regards to physically connecting your
modem to your computer, contact your
vendor for the proper cables and
instructions.

Getting started-- First, type the
commands below at DOS ready:

Under TRSDOS 6.x:
SET *CL COM/DVR<enter>
SETCOM (DTR,W=8,P=N)<enter>
COMM *CL<enter>

Under LDOS 5.1.x:
SET *KI KI (T,J)<enter>
SET *CL RS232T
(DTR,W=8,P=N)<enter>
LCOMM *CL<enter>

Note that <enter> means to press the
"ENTER" key. If you have a Model 1, on
the second line type: "SET *CL
RS232R<enter>" instead. Your system is
now set up for RS232 communication at
300 baud, the most common mode when
using a modem over the telephone line.
This setup should work for most modems,
including the Radio Shack modems and
their DC Modem II.

When you enter COMM/LCOMM in
this manner, you are immediately in the
terminal mode. Anything you type will be
sent to the modem, and whatever is
received will be displayed on your screen.
If you use a JCL (Job Control Language)
procedure to set this up automatically for
you, don't forget to add a line reading
"//STOP" as the last line of the JCL file. If
you don't, control will be returned to DOS
if you attempt to execute certain
COMM/LCOMM commands.

Now to actually communicate. Let's
take CompuServe as an example. Dial the
phone number for your local CompuServe
node. If you have a "smart"-type modem,
refer to your operators manual for dialing
instructions. Once the phone number has
been dialed, put your modem on-line. For
most "dumb" modems, this will mean
flipping the switch on, or placing the
phone handset into the acoustic cups. Most
"smart"-type modems automatically enter
the on-line mode after dialing.

When the "CD" or carrier detect light
comes on, type a <control>-C. On the
Models I and III, this is the combination
<Shift><Down Arrow> (meaning
"control") and (while still holding them
down) then a <C>. On the Model 4, you
have a <control> key. Depress this, then
(while still holding it down) type a <C>. In
either case, Compuserve should respond
with "User Id:". This is your first prompt.
Type in your user number (provided in
your sign-up package -- obtain from Radio

LSI Journal

Page 18

Shack). For example, the user number for
the people here at LSI is 76703,437. We
would type in "76703,437;".

The semi-colon is very important.
Until you tell CompuServe otherwise, they
assume that you are using what is called a
"Videotex-compatible terminal". When
using LCOMM or COMM, this will cause
all sorts of nasty things to appear on your
video display. The semi-colon prevents
this from happening. Once you are logged
on, if you change your terminal type (tell
CompuServe that you have an "other"-type
terminal) this will not happen and you may
omit the semi-colon.

CompuServe will now respond with
"Password:". Type your password from the
sign-up package and hit <enter>. After a
few seconds, CompuServe will respond

with its first menu. Congratulations! You
have successfully communicated!

Now we know how to establish a
communications channel from our
computer, let's look at how we give
instructions to COMM/LCOMM. All
commands begin with a
<clear><keystroke> or <clear>
<shift><keystroke> sequence. For
instance, pressing <clear> and holding it
while you press <8> will display the
COMM/LCOMM command menu. The
<clear> key is used as a second type of
"control" key, one that has special meaning
to COMM/LCOMM (and many other DOS
utilities).

But-- what does all this menu
information represent? Let's take a look at
an example. *PR stands for the "logical"

printer device, and the word "ON" is
relatively self-explanatory. If you hit
<clear><3> and then <clear><:>, (the
keystrokes that represent "*PR" and "ON"
respectively) the *PR device will be
"turned on". Typing <clear><8> will
re-display the menu. Do you see the
difference? There is now a "*" below the
*PR device, indicating that it is "ON".
Now, any characters received by your
computer will be sent to the printer in
addition to the video display.

So far, we have covered the initial
"set-up" phase of COMM/LCOMM. In
future installments, we will cover more
advanced features of these utilities, such as
file uploading and downloading.

Les information - faster file access

Les Mikesell

When accessing data files and devices in machine language,
there are many different techniques that can be used. The operating
system @GET and @PUT calls (these are called the "Byte 1/0
calls" because they move one byte at a time) are easy to use, and
allow use of either devices or files. See past issues of the LDOS
Quarterly (volume 2, numbers 2 and 3) for more information on
this method.

@GET and @PUT are convenient, but there is a speed penalty
as compared to full sector operations. The single byte operations
can only access one sector per disk revolution, while full sector
operations may be able to handle an entire track in two or three
revolutions (depending on the disk type and the processing time
needed between sectors). Thus, it may be possible to speed up disk
operations considerably by buffering as much as possible in
memory using full sector disk I/O. One significant drawback to this
approach is that the program then becomes responsible for
observing or setting the proper end-of-file offset when the data file
does not end on a sector boundary.

The sector interleave on floppy disks is designed to allow just
enough time to move a sector of data in or out of the file buffer

before the next consecutive sector passes under the read/write head.
Any additional processing at this point will usually cause the next
sector to be missed, and necessitate a wait until the next revolution
of the disk. When using a hard drive or MemDISK, the interleave
factor is not critical, but programs will still benefit from the
reduced overhead of full sector operations.

After opening a file, its size can be determined from the
contents of the open FCB (file control block). The ending record
number (ERN) is stored at FCB+12 & 13, and the end of file offset
(EOF) is at FCB+8. If the ERN is 00, the file is empty. Otherwise,
ERN-1 is the number of full sectors in the file, and EOF is the
number of bytes included in the ending sector (where 0 = 256).
Thus EOF-1 is the offset of the last valid byte in the file buffer
when the last sector is read. This may be easier to remember by
keeping in mind that these three bytes are always maintained as a
pointer to the next record to write to extend the file.

For many operations, a file may be read into memory until the
DOS error 1CH (end of file) or 1DH (past end of file) occurs, then
the buffer pointer adjusted back to the correct byte offset in the
previous sector. However, it may sometimes be necessary to

LSI Journal

Page 19

determine if the current sector contains any data past the end of file
before reading the next sector (which would return the EOF error).
In this case, the next record number (NRN) at FCB+10 & 11 may
be compared to the ERN after the read. If the NRN is the same as
the ERN, the sector just read contains the end-of-file.

When writing sequential data using the full sector operations, it
is necessary to update the EOF byte before closing the file. If
@POSN has been used, it is necessary to update the ERN, since the
system will then consider the file to be "random-access" and update
the length only if it has been extended. Moving the NRN into the
ERN in the FCB will set the current position as the end of file even
if the previous ERN was larger.

Listing 1, a program to either add line-feed characters after
carriage returns, or remove line-feeds, demonstrates some of the
techniques of handling byte data with the DOS sector operations.
Note that the input routine simply moves the buffer pointer in the
FCB for each sector read rather than moving the data from the file
buffer.

The output routines are a little slower, and will miss the disk
interleave on a Model I or III with the standard CPU speed. This
could be avoided by processing the data into a larger buffer space,
then writing several sectors at once. Pre-allocating the disk space
before the write would increase the speed also, by reducing the
number of times the system has to go to the disk directory. This
may be done simply by using @POSN and @WRITE to write
(anything) to the last sector of the output file, then re-position to
record 0.

This program may also be assembled for use with the
TRSDOS/LDOS 6.x system by deleting the beginning lines
between the asterisks, and including the standard 6.x header. For
TRSDOS/LDOS 6.x operation, delete lines 100 to 410 and insert
the code from Listing 2.

Listing 1 LDOS 5.1 version

00100 ;********************************

00110 ;This part is for LDOS 5.1

00120 ;operating system entry points:

00130 @ABORT EQU 4030H

00140 @CLOSE EQU 4428H

00150 @DSPLY EQU 4467H

00160 @ERROR EQU 4409H

00170 @EXIT EQU 402DH

00180 @FSPEC EQU 441CH

00190 @INIT EQU 4420H

00200 @KEYIN EQU 0040H

00210 @OPEN EQU 4424H

00220 @READ EQU 4436H

00230 @WRITE EQU 4439H

00240 HIGH$ EQU 4411H ;Model 3

00250 HIGH1 EQU 4049H ;Model 1

00260 ;

00270 ORG 5200H

00280 ;Put file buffer first to force location

00290 ;on memory page boundary

00300 BUFFR1 DS 256

00310 BUFFR2 DS 256

00320 ;Machine specific code:

00330 BEGIN: LD A,(125H) ;Check mod1/3 ROM

00340 CP . 'I'

00350 LD HL,(HIGH$) ;Mod 3 location

00360 JR Z,SETHI ;Go if mod 3

00370 LD HL,(HIGH1) ;Mod I location

00380 SETHI: LD (MYMEM),HL ;Store correct value

00390 ;

00400 ;End of LDOS 5.1 specific code

00410 ;********************************

00420 ;

00430 ;Special chars

00440 ETX EQU 03H

00450 CR EQU 0DH

00460 LF EQU 0AH

00470 ;

00480 ;

00490 ;FCB offset definitions

00500 BUFRLO EQU 3 ;Buffer address

00510 BUFRHI EQU 4

00520 ERNHI EQU 13 ;Ending record #

00530 ERNLO EQU 12

00540 EOF EQU 8 ;Offset of last byte

00550 NRNLO EQU 10 ;Next record pointer

00560 NRNHI EQU 11

00570 ;

00580 START: LD HL,LOGON ;Log on

00590 CALL @DSPLY

00600 DISKIN: LD HL,MSG1 ;Prompt for input
file

00610 CALL INPFSP ;Get answer

00620 LD DE,FCB1

00630 CALL @FSPEC ;Move filename

00640 LD B,0 ;LRL=O (256)

00650 LD HL,BUFFR1 ;=>disk buffer

00660 CALL @OPEN ;Open the file

00670 JR Z,GOTINP ;Go if successful

00680 CALL SHOERR ;Else report error

00690 JR DISKIN ;And ask again

00700 ;

00710 ;File is open, check if it contains any records

00720 GOTINP: LD HL,(FCB1+ERNLO)

00730 LD A,H ;Is ending record 0?

00740 OR L

00750 JP NZ,ASK ;Go if file has data

00760 LD HL,NODAT ;Else report empty
file

00770 CALL @DSPLY

00780 JP @ABORT ;And quit

00790 ;

00800 ASK: LD HL,MSG2 ;Prompt for output
file

00810 CALL INPFSP ;Get answer

00820 LD DE,FCB2

00830 CALL @FSPEC ;Move filename

00840 LD B,0

00850 LD HL,BUFFR2

00860 CALL @INIT ;Create file

00870 JR Z,ASK1A ;Continue if good
init

00880 CALL SHOERR ;Else report error

LSI Journal

Page 20

00890 JR ASK ;And re-prompt

00900 ;

00910 ;Set up for add or remove LF's

00920 ASK1A: LD HL,MSG3 ;Remove linefeeds?

00930 LD DE,RLF

00940 CALL SGETYN ;Prompt, set flag

00950 JR Z,AGAIN ;If yes, skip 2nd
prompt

00960 ;

00970 ASK1B: LD HL,MSG4 ;Add linefeeds?

00980 LD DE,ALF

00990 CALL SGETYN ;Prompt, set flag

01000 JR NZ,ASK1A ;Must do one or the
other

01010 ;

01020 ;Read file into memory - set (MORE)=0FFH if it
doesn't fit

01030 AGAIN: LD HL,(MYMEM) ;=>end of free space

01040 LD BC,BUFFER ;=>working buffer
start

01050 OR A

01060 SBC HL,BC

01070 LD B,H ;# of sectors that
will fit

01080 LD HL,BUFFER ;Start of buffer

01090 LD DE,FCB1 ;=>input file buffer

01100 RLOOP: LD (FCB1+BUFRLO),HL ;Set load
address

01110 CALL @READ ;Get a sector

01120 JP NZ,CKEND ;End or error

01130 INC H ;Bump ptr for next

01140 DJNZ RLOOP ;Stop if memory is
full

01150 ;Now check to see if the last sector contained the
EOF

01160 ;To be sure all data loaded belongs in file

01170 PUSH HL ;Save current posn

01180 LD HL,(FCB1-NRNLO) ;Check if this is

01190 LD DE,(FCB1+ERNLO) ;The last sector

01200 OR A

01210 SBC HL, DE ;Is NRN=ERN?

01220 POP HL ;Get end ptr

01230 JR Z,ISEOF ;Go if this is EOF

01240 LD A,0FFH ;Set flag for more
input

01250 LD (MORE),A

01260 JR FINIS ;And start
processing

01270 ;

01280 CKEND: CP 1CH ;EOF?

01290 JR Z,ISEOF

01300 CP 1DH ;Or past EOF?

01310 JP NZ,DOSERR ;Quit if other error

01320 ISEOF: LD A,(FCB1+EOF) ;Get EOF offset byte

01330 DEC A ;Point to end byte

01340 LD E,A

01350 LD D,0 ;DE=offset of EOF

01360 DEC H ;Back up to last
full sector

01370 ADD HL,DE ;Add in contents of
last sector

01380 INC HL ;HL=>1 past buffer

01390 ;

01400 FINIS: EX DE,HL ;Pointer to DE

01410 LD BC,BUFFER ;START OF DATA AREA

01420 ;

01430 ; Memory is loaded, check for changes

01440 ; BC=>current char, DE =>end+1

01450 ACHAR: LD A,D ;Is this the end of
the buffer?

01460 CP B

01470 JP NZ,NOTEND ;Go if not

01480 LD A,E

01490 CP C

01500 JR Z,CHECKM ;End, check for more
input

01510 NOTEND: LD A,(BC) ;Get a character

01520 INC BC ;bump pointer

01530 CP LF ;a linefeed?

01540 JP NZ,NTLF ;go if not LF

01550 LD A,(RLF) ;Removing line
feeds?

01560 OR A

01570 JR Z,DOLF ;Not removing line
feeds

01580 JR ACHAR ;Skip LF

01590 NTLF: CP CA ; carriage RET?

01600 JR NZ,WRBYT ;Write if not CR

01610 CALL PUTTER ;Write CR

01620 LD A,(ALF) ;Adding line feeds?

01630 OR A ;Test

01640 JR Z,ACHAR ;Skip if not wanted

01650 DOLF: LD A,LF ;Load the line feed

01660 WRBYT: CALL PUTTER ;Write char to file

01670 JP ACHAR ;Loop through buffer

01680 ;

01690 ;End of buffer, is file done?

01700 CHECKM: LD HL,MORE ;Is there more to
read?

01710 LD A,(HL) ;Zero if done

01720 LD (HL),O ;Set for next time

01730 OR A ;Set Z if done

01740 JP NZ,AGAIN ;Loop till finished
with files

01750 ;

01760 ;Finished, close the output file

01770 CALL LSTSEC ;Flush buffer

01780 LD DE,FCB2 ;=>output FCB

01790 CALL @CLOSE ;Close output file

01800 JP NZ,DOSERR ;Go if error

01810 LD HL,MSG5 ;Else report
completion

01820 CALL @DSPLY

01830 JP @EXIT ;And go back to DOS

01840 ;

01850 ;Set flag according to 'Y' response

01860 SGETYN: PUSH DE ;Save flag address

01870 CALL @DSPLY ;Issue prompt

01880 LD HL,YN$;Add Y/N?

01890 CALL @DSPLY

01900 LD B,1 ;Max input wanted

01910 CALL KEYIN ;Get 1 char answer

01920 AND 5FH ;Force upper case

01930 CP 'Y' ;Is it Y?

LSI Journal

Page 21

01940 POP HL ;Get flag address

01950 RET NZ ;Return if not "Y"

01960 LD (HL),0FFH ;Set flag if "Y"
response

01970 RET

01980 ;Get a filename:

01990 INPFSP: CALL @DSPLY ;Display prompt

02000 LD B,1FH ;Set max length

02010 ;Get user input

02020 KEYIN: LD HL,INBFR ;=>buffer to receive
input

02030 CALL @KEYIN ;Get input

02040 JP C,@ABORT ;Quit if BREAK
pressed

02050 LD A,(HL) ;Else pick up 1st
char

02060 RET

02070 ;

02080 ;Add a byte to disk buffer/write if full

02090 ;Note that disk buffer must end on XXFFH boundary

02100 ;So the INC L will set the Z flag when sector

02110 ;Buffer is full. (PUTPTR) is a pointer to the next
char

02120 ;Position in the sector buffer

02130 PUTTER LD HL,(PUTPTR) ;Point to buf pos

02140 LD (HL),A ;Move to buffer

02150 INC L ;Bump buffer ptr

02160 LD (PUTPTR),HL ;Save for next

02170 RET NZ ;If not full

02180 ;Write a physical sector to disk

02190 WSEC: PUSH DE

02200 LD DE,FCB2

02210 CALL @WRITE ;Write

02220 POP DE

02230 RET Z ;That was easy

02240 DOSERR: CALL SHOERR ;Report any error

02250 JP @ABORT ;And quit

02260 ;

02270 SHOERR: OR 0C0H ;Mask for short
msg.,ret

02280 JP @ERROR

02290 ;

02300 ;Fill remainder of sector buffer with 00's

02310 ;Set the EOF offset, and flag DOS to reset the

02320 ;File's ERN to the current sector

02330 LSTSEC: LD HL,(PUTPTR) ;Get posn in buffer

02340 LD A,L ;Did last write

02350 OR A ;Hit sector end'

02360 JR Z,SETEOF ;Finished on sec
boundary

02370 PUSH AF ;Save last char I

02380 XOR A ;Set A=0

02390 FLSEC: LD (HL),A ;Zero remaining
buffer

02400 INC L

02410 JR NZ,FLSEC ;Pad sec w/nulls

02420 CALL WSEC ;Write the last
sector

02430 POP AF ;EOF byte to A

02440 ;

02450 SETEOF: LD (FCB2+8),A ;Set EOF offset

02460 ;Note: this step is actually not necessary unless
@POSN called

02470 LD HL,(FCB2+NRNLO) ;Put NEXT record no.

02480 LD (FCB2+ERNLO),HL ;Into ENDING record
no.

02490 RET

02500 ;

02510 ;

02520 ;END OF PROGRAM AREA

02530 ;ASCII DATA

02540 LOGON: DB LF,'TEXT FILE PROCESSOR ',LF,CR

02550 MSG1: DB 'Input Filespec?

02560 MSG2: DB 'Output Filespec?

02570 MSG3: DB LF,'Remove line-feed characters',ETX

02580 MSG4: DB 'Add line-feed characters',ETX

02590 MSG5: DB LF,'File output completed -,CR

02600 NODAT: DB 'Input file is empty!',CR

02610 YN$: DB '(Y/N) ? ',ETX

02620 ;

02630 ;BUFFERS & POINTERS

02640 RLF: DB 0 ;Remove LF flag

02650 ALF: DB 0 ;Add LF flag

02660 MORE: DB 0 ;More input flag

02670 EOFFLG: DB 0 ;Last sector flag

02680 MYMEM: DW 0 ;HIGHS pointer

02690 PUTPTR: DW BUFFR2 ;Posn in output
buffer

02700 GETPTR: DW BUFFR1,255 ;Posn (-1) in input
buffer

02710 FCB1: DS 32 ;File FCBs

02720 FCB2: DS 32

02730 INBFR: DS 40 ;KB input buffer

02740 BUFFER EQU $;START OF DATA
BUFFER

02750 END BEGIN

Listing 2 LDOS 6.x version
00100 ;********************************

00110 ; Header to convert programs with 5.1 CALLS to 6.x

00120 ;

00130 ORG 2600H

00140 BUFFR1: DS 256 ;put on page
boundary

00150 BUFFR2: DS 256

00160 ;

00170 BEGIN: DI

00180 LD (STACK),SP ;save SP at entry

00190 PUSH HL ;Save ptr to CMD
buffer

00200 LD HL,0

00210 LD A,103 ;Disable break
vectoring

00220 RST 40

00230 EI

00240 LD HL,0 ;get HIGH$

00250 LD B,L ;B=0

00260 LD A,100

00270 RST 40

00280 LD (MYMEM),HL ;Store for later

00290 LD A,101 ;set up IY

LSI Journal

Page 22

00300 RST 40 ;pointing to flag
table

00310 PUSH IY ;trans to DE

00320 POP DE

00330 LD HL,'S'-'A' ;SFLAGS offset

00340 ADD HL,DE

00350 LD (SFLAG),HL ;store away

00360 POP HL ;restore ptr to CMD
line

00370 CALL START ;execute program

00380 ; set up for exit.....

00390 @EXIT: LD HL,0 ;HL=0 if no error

00400 QUIT$: LD SP,$-$;restore SP

00410 STACK EQU $-2

00420 RET

00430 @ABORT: LD HL,-1 ;non-zero if abort

00440 JR QUIT$

00450 ;use SVC's for operating system functions

00460 ;create label for each CALL used by program

00470 @FSPEC LD A,78 ;SVC #

00480 RST 40

00490 RET

00509 @OPEN PUSH HL ;set inhibit bit

00510 LD HL,$-$

00520 SFLAG EQU $-2

00530 SET 0,(HL) ;ignore LRL errors

00540 POP HL

00550 LD A,59

00560 RST 40

00570 RET

00580 @INIT LD A,58

00590 RST 40

00600 RET Z

00610 CP 42 ;LRL error

00620 RET

00630 @READ LD A,67

00640 RST 40

00650 RET

00660 @WRITE LD A,75

00670 RST 40

00680 RET

00690 @CLOSE LD A.60

00700 RST 40

00710 RET

00720 @KEYIN LD C,0

00730 LD A,9

00740 RST 40

00750 RET

00760 @ERROR PUSH BC ;save BC

00770 LD C,A ;trans error # to C

00780 LD A,26 ;display error

00790 RST 40

00800 POP BC ;restore BC

00810 RET

00820 @DSPLY LD A,10

00830 RST 40

00840 RET Z ;can return an error

00850 LD H,0 ;due to device
routing

00860 LD L,A

00870 OR 0C0H

00880 CALL @ERROR

00890 JP QUIT$

00900 ;

Index
Index to LDOS Quarterly/LSI Journal, issues 1,1 to 2,4

Scott Loomer

This is the subject index to the LDOS Quarterly and LSI
Journal for the period from its inception in July, 1981 to the
October, 1983 issue. Back issues for this period are still available,
some as individual issues and some as sets. Contact LSI at (414)
355-5454, or write to Logical Systems, Inc., 8970 N. 55th St.,
Milwaukee, WI 53223. Volume 2, Number 5 (Jan.'84) is also
available. It includes an expanded version of this index (which, by
the way, was originally prepared by Scott Loomer).

Subject/Author Vol/No/Page

"Active Variable Dump for LBASIC" - Alan Moyer V2N3P15 V2N4P38

"Alcor Pascal" - Scott Loomer V2N1P18

Allocation, disk V2N4P08

AM Electronics, disk controller V1N1P03

"APL*PLUS/80 A System Overview" - Daniel Lofy & Lee Rice V2N1P09

"Article, An" Charlie Butler V1N4P40

"ASCII File Listing Utility for The BASIC Answer" - Jeffrey Brenton V2N3P19

Assembly language basic concepts V2N2P58 V2N3P46 V2N4P40

Assembly language patching V1N6P38 V2N1P46

Assembly language programing tips V1N5P14 V1N6P64

"At Large" - Earl Terwilliger V1N6P50

"Automatic Chaining with JCL" - Jim Kyle V2N4P52

"BASIC and File Structure - A Beginner's View" - Wes Goodnough V1N6P20

"BASIC Concepts - The RUN,V Command" - Dick Konop V1N6P69

"Beta Tester, I was an LDOS" - Tim Daneliuk V1N3P16

Byte I/O V1N3P38 V1N6P76 V2N2P52

under LDOS 6.0 V2N3P56

'C' graphics V2N4P16

" 'C' language, The" - Earl Terwilliger:

general introduction V2N1P15

LSI Journal

Page 23

functions, variables, constants, expressions V2N2P35

operators V2N3P39

logic, control & flow V2N4P34

" 'Card' Utility" - Paul Tonini V2N2P18

"Case of Mis-Allocation, A" - Bill Schroeder V2N4P08

Case mode indicator V2N2P11

Changing operating systems V1N4P40

"Clock Speedup Kits with LDOS, Using" - Tim Mann V1N1P13

Cobol V1N6P32

"Color Comes to the TRS-80's" - Scott Loomer V2N3P28

"Communicating Micro, The" - Gordon Thompson V1N6P12 V2N1P28

Communications V1N5P40 V1N6P83

"Communication Host" - James Bruckart V2N1P35

"Confessions of a Machine Language Addict" - Ray Pelzer V1N6P38

Configuring with non-relocatable code V2N4P50

Customer service tips V2NlP07

Cylinder term explained V1N1P04

DAMs, Old V1N1P19

"Data Address Marks" - Roy Soltoff V1N1P05

Date conversions V2N4P60

"Device I/O and Independence, LDOS" - Roy Soltoff V1N3P38

Disk allocation schemes V2N4P08

Disk Controller, AM Electronics V1N1P03

Disk byte I/O V1N3P38 V1N6P76 V2N2P52

Disk drive first access delay V2N4P63

"Disk Drive Control Linkages, LDOS" - Bob Hawker V1N6P43

Disk drives (8") on the Model III V2N3P08

Disk drives, non-Radio Shack V2N3P55

Disk drive poll V2N2P27

Disk drive select time hardware fix (Mod 1) V1N3P18

"Disk I/O in Assembler" - Doug Kennedy V2N2P55

Disk speed (300 RPM delays) V1N4P11

"Double Sided Drives with LDOS" - Tim Mann & Roy Soltoff V1N2P37 V1N3P56

"Easy LScript" James Bruckart V2N2P22

"Easy VisiCalc" James Bruckart V2N3P23

"EDAS IV 'Z' Command" - Earl Terwilliger V2N1P37

Electric Webster with Newscript, LDOS and Sole V1N6P55

"Electronic Inbasket, The" - Gordon Thompson V2N4P15

"ELSIE - The Contented Compiler" - Jim Frimmel V1N3P21

Epson MX-80 tips V1N5P18

".... er" - Earle Robinson:

assembly language efficiency V1N6P64

printers, TBA, UTILZAP V2N1P39

printers, word processors, MNet, 'C', LDOS 6.0 V2N2P26

'C' book, SS drivers, Model 4, PROMPT/CMD V2N3P33

UNIX, IBM PC, Telex V2N4P28

Expansion interface V1N4P39

"Fast Graphics for 'LC' " - Scott Loomer V2N4P16

File listing utility for TBA V2N3P19

File structure, BASIC V1N6P20

Filter linkage V1N3P47

"Fortran, Cobol and LDOS JCL" - Glen Rathke V1N6P32

Fortran With interrupts and SVC's V2N4P19

"Greek to Me, LDOS - It's" - Charles Knight V1N5P15

"Hayes Smartmodem, LDOS and a" - John Mullin V1N6P34

High memory, avoiding memory conflicts V1N4P13

High memory module header V1N3P46

Host, communications V2N1P35

"Inside the Expansion Interface" - Earle Robinson V1N4P39

"Interrupts and SVC's in Fortran, Using" - J. Bender V2N4P19

JCL chaining V2N4P52

"JCL Corner" - Chuck Jensen:

clear screen V1N1P03

file copying V1N2P30

compilation macros V1N3P51

hex codes, more compilation macros V1N4P46

keyboard input V1N5P34

logical operators, keyboard filters, LScript patch V1N6P72

creating and defining JCL procedures V2N1P54

backups V2N2P49

JCL With FORTRAN and Cobol V1N6P32

LBASIC:

active variable dump V2N3P15 V2N4P38

"CMD"O" implementation and possible uses" V1N4P15

default extension patch V1N5P19

file structure V1N6P20

notes (items missing from 1st printing of the LDOS manual) V1N1P09

RUN,V command V1N6P69

USR routines (relocating to high memory) V1N3P47

LDOS 5.1.4, New features V2N4P03

LDOS 6.0

announced V2N2P46

licensing V2N4P07

technical manual V2N4P07

patches V2N4P64

"LDOS: How it Works" - Joe Kyle-DiPietropaolo:

PATCH utility V2N1P52

REPAIR, CONV and COPY238 utilities V2N2P44

non-Radio Shack disk drives V2N3P55

configuring with non-relocatable code V2N4P50

"Les Information" - Les Mikesell:

communications V1N5P40

RS232 drivers V1N6P83

SYSTEM(FAST) and SLOW commands V2N1P58

byte 1/0 V2N2P52

byte 1/0 under LDOS 6.0, CTLP/FLT V2N3P56

@PARAM under LDOS 6.0 V2N4P61

"Let Us Assemble" - Rich Hilliard:

the basics V2N2P58

using DEBUG, sorts V2N3P46

number base conversion V2N4P40

"Library, The" - Earle Robinson V1N4P28

Library commands;

LOAD documentation correction V2N1P47

SYSTEM(FAST) VlN1P13 V2N1P58

SYSTEM(SLOW) V2N1P58

Limited backup policy explained - Bill Schroeder V2N3P04 V2N4P06

"Linking to LDOS in Assembly" - Roy Soltoff V1N1P12

"LISP Implementations for the Z-80" Lee Rice & Daniel Lofy V1N6P26

Listing utility for TBA V2N3P19

LScript made easy V2N2P22

"LScript Patches to Add Versatility" - Scott Lower V1N6P45 V2N1P47

Load module structure V1N4P42

Lower case lock V1N4P11

LSI Journal submission and subscription policies V2N4P02

MAX-80 LDOS described V2N1P50

"MAX-80 Memory Map" - Chuck Jensen V2N4P58

Magazines V2N3P35

LSI Journal

Page 24

Manual story, with corrections to 1st edition V1N1P16

Memory map V2N1P34

Minimum configuration disk V1N2P29

"Mixing Newscript, Electric Webster, LDOS and Sole" Jerry Latham V1N6P55

"My BASIC Answer" - E. Cheatham (TBA review) V2N3P17

"Newscript 7.0 and REFLEX" - Gordon Thompson V2N1P28

"Newscript and The BASIC Answer" - Jerry Latham V2N2P20

"New Version - EDAS IV, A" - Marc Leager V1N6P09

Number base conversion V2N4P40

Old DAMs (see also Data Address Marks) V1N5P19

Parity errors V1N1P04

-- PARITY = ODD - Tim Daneliuk:

introduction, DATAENTR 200 & ISAM 200 V1N4P17

tips for better programming, DISCATER, Filter Disk V1N5P11

BASF drives, drive poll, TAS, MODEM80, HEXSPELL II, Utilities, HELP
V1N6P59 V1N6P56

Tandy, MAX-80, AEROCOMP, Electric Webster, The BASIC Answer
V2N1P42

disk drive poll, gold plugs, LX-80, Proofreader, Scripsit Dict. V2N2P27

magazines V2N3P35

rumors, LX-80 software compatibility, TRSDOS 6.0 software V2N4P31

"Partitioned Data Sets, MISOSYS Announces" - Roy Soltoff V1N3P23

"Pascal 80, LDOS and" – D. Hill V2N1P22

Passwords for LDOS 5.1.x V1N1P03

Patch, how to V2N1P52

"PDS - Standard and Other Types of Uses" - Scott Loomer V2N1P24 V2N3P45

"Performing Date Conversions in BASIC" - Dick Konop V2N4P60

Printers V2N1P39

Profile III Plus with LD03 V2N4P55

Quarterly reader survey results V2N2P06

Radio Shack V2N1P42 V2N3P03

"Relocating Code for LBASIC USR Routines" - Chuck Jensen V1N3P47

Reviews;

Alternate Source (TAS) - Tim Daneliuk V1N6P60

APL*PLUS/80 (STSC) - Daniel Lofy & Lee Rice V2N1P09

CHROMAtrs (South Shore Computer Concepts) - Scott Lower V2N3P28

DATAENTR200 & ISAM20V (Johnson Associates) - Tim Daneliuk V1N4P18

EDAS IV (MISOSYS) - Marc Leager V1N6P09

Electric Webster (Cornucopia) - Tim Daneliuk V2N1P45

HELP (MISOSYS) - Tim Daneliuk V1N6P63

HEXSPELL II (Hexagon) - Tim Daneliuk V1N6P61

LDOS Utilities (P owersoft) - Tim Daneliuk V1N6P62

LISP (Supersoft) - Lee Rice & Daniel Lofy V1N6P29

MAX-80 (Lobo) - Tim Daneliuk V2N1P44

Microcomputer Math book (SAMS) - Earle Robinson V1N5P10

MODEM80 (LSI) Tim Daneliuk V1N6P60

Pascal (Alcor) Scott Lower V2N1P18

Pascal-80 IN ew Classics) - D. Hill V2N1P22

PDS (MISOSYS) Scott Lower V2N1P24

Printers - Earle Robinson V2N1P39

Profile III' (Radio Shack) - Sam Goldberg V2N3P25

Proofreader (Aspen Software) - Tim Daneliuk V2N2P30

Scripsit Dictionary (Radio Shack) - Tim Daneliuk V2N2P30

Structured BASIC Translator (Acorn) - Sue Ratkowski V1N4P21

The BASIC Answer (LSI) E. Cheatham V2N3P17

The BASIC Answer (LSI) Tim Daneliuk V2N1P46

UOLISP (Far West) - Lee Rice & Daniel Lofy V1N6P30

Routing a device V1N3P38

"Roy's Technical Corner" Roy Soltoff:

load module structure VIN4P42

task processor V1N5P20 V1N6P76

error handling during byte 1/0, @CKDRV, KFLAGS, @ICNFG, @KITSK
V1N6P76

LDOS 6.0 V2N2P46

RS-232 drivers V1N6P83

"Running 8-Inch Drives on the Model III Under LDOS" - Peter Simon V2N3P08

Sector I/O V2N2P55

"SOLEFIX - Fix that GAT Error" - Erik Ruf V2N2P14 V2N4P38

Speedup kits V1N1P13

Sysgen and type-ahead V1N1P04

System routines:

@ADTSK, @RMTSK, @KLTSK, @RPTSK - task proc.
V1N5P31 V1N6P76 V2N4P19

@CKDRV - determining 5.1.2 vs. 5.1.3 for @CKDRV adjustment V1N6P78

@CKDRV – moved V1N5P06

@CMNDI - command interpreter V1N1P12

@CTL, @GET, @PUT - byte 1/0 V1N3P38

DAY$ - day of the week V1N4P11

@GET and @PUT under LDOS 6.0 V2N3P56

@ICNFG configuration interfacing V1N6P81

@KITSK keyboard task V1N6P82

KFLAG$ keyboard scanner V1N6P78

"@PARAM, Using" - Roy Soltoff V1N2P31

@PARAM under 6.0 V2N4P61

"@PARAM, @DSPLY, @EXIT and INBUFS for Everyone" David Vinzant
V2N2P23

@RAMDIR documentation correction V2N2P39

SVC's and Fortran V2N4P19

Tandy V2N1P42 V2N3P03

Task processor V1N5P20 V1N6P76

"T-Timer, LDOS Supports the" - Roy Soltoff V1N4P12 V1N5P18 V1N6P66

TRSDOS (Mod I) to LDOS (Mod III) transfer without REPAIR V1N3P03

TRSDOS (LDOS) 6.0 (see also LDOS 6.x) V2N2P46

Update policy explained - Bill Schroeder V1N2P02 V2N4P64

Upper case lock V1N4P11

Users group directory V2N1P06

Utilities:

CONV V2N2P44

COPY238 V2N2P44

PATCH V2N1P52

REPAIR V2N2P44

Version number explanation V1N2P02

VisiCalc made easy V2N3P23

"VisiCalc with LDOS, Using" - Roy Soltoff V1N2P20

