- The Communicating Micro
The Lisp Language & LLDOS

Using Newscript 7.0
with Model 1 DDen

Patching for
LDOS Compatibility

RTC by Roy Soltoff
LLDOS Disk I/0O Routines

THE LDOS QUARTERLY Cctober 1, 1982 Vol une 1, Nunber 6

Tabl e of Contents

I NTRODUCTI ON FROM LS :

EDI TOR S NOTES . .. e e e e Page 2

VI EW FROM THE BOTTOM FLOORt e e e e e e e e e e e Page 3

LSl NE S . o Page 5

FROM OUR USERS:

EDAS |V for the Model /111 ... e Page 9

The Communicating M CrO e e Page 12

LDCS and BASIC file structure froma beginner's view Page 20

LI SP Language and LDOSt Page 26

Use JCL to control those FORTRAN and COBCL conpilers Page 32

LDOS and the Hayes Smart Modem e Page 34

Patching for LDOS conpatibility - Visicalc Page 38

Using the LOOS disk 1/O routineS ... e e Page 43

LSCRIPT patches add versatility i Page 45

Super - Short Termi nal program+ new ALIVE command Page 50

Usi ng NEWSCRIPT 7.0 with Model | double density systens Page 55

PARITY = ODD - by TimDaneliuk e Page 59
er - Assenbly Language Progranm ng by Earle Robinson Page 64

FROM THE LDOS SUPPORT STAFF:

ITEMS OF GENERAL | NTEREST e e e e Page 66
I ncl udes TCHRON, TTI MER patch and Assenbl er code

RUN "PROGRAM', V - Chain those BASIC prograns by Dick Konop Page 69

THE JCL CORNER - by Chuck e Page 72
Patch LSCRIPT to be run with a JCL file

RTC - Roy talks about - - - Page 76
Informati on on many different system functions

LES | NFORVATION - by Les Mkesell e Page 83
Input fromthe RS-232 in LBASIC, plus a new *CL filter

LATE BREAKI NG NEWS, ETC e e e Page 92

I ncl udes Super Scripsit patch, FIX D sk news, and nore

Copyright (C 1982 by Logi cal Systens, I|ncorporated
11520 N. Port Washington Rd., Mequon, W 53092
(414) 241-3066

Page 1

EDI TOR S NOTES

This is the sixth and final issue of Volume One of the Quarterly. It nmarks the end of
a year and a half of LDOCS support and devel opment. W have nade nmny changes and
i nprovenrents in both the Quarterly and the LDOS systemin that tine, and will continue
to pass on new information in the pages of this publication.

Besi des a new cover design, this issue of the Quarterly marks a nmajor happening in its
devel opnent - user contribution. Besides the regular user colums from Ti m Daneli uk
and Earl e Robinson, we have a whol e section of user contributed programs and articles.
Maybe it was that offer of free software

Anyway, this issue contains many interesting articles, including a review of the LISP
| anguage and patches for Enhanced Visicalc. The nornal staff colums are, as usual,
full of many different things about the workings of LDOS. So, sit back and enjoy.

We are |looking for reviews of any |anguages for our next issue. W currently have or
will be getting reviews on LDOS "C', STSC APL, PASCAL 80, and ALCOR PASCAL. If you are
currently using another |anguage or one of the previously nmentioned | anguages froma
different author, we would be interested in seeing a review.

The LDOS Quarterly policy on the submission and paynment for articles is as foll ows:

Articles sent for consideration should be acconpanied by typewitten or |lineprinted
copy. An ASCIl text file, Scripsit or SUPERScripsit file MJST acconpany the printed
copy! Please do not send in printed text wthout a disk, or send a file that has been
created by routing the printer to a disk file!. No natter what the word processor used

to create the file, it is nuch easier to format an original file than one that has
been "printed" via a route of *PR Paynent will be nmade in the formof a product from
LSI, or $25.00 per page ("page" is defined as page in the then current newsletter
format). The size of the article will determi ne the value of the product, although no
reasonable request wll be refused. Please include your nanme, address, telephone

nunber and LDOCS serial nunber with your submission. LSl is extrenmely interested in
seeing submssions fromour wusers, and is open to suggestion on any ideas for the
Quarterly.

Submi ssi ons shoul d be sent to:

LDOS Quarterly Editor
11520 N. Port Washi ngton Rd.
Mequon, W 53092

The LDOS Quarterly is copyrighted in its entirety. No material contained herein may be
duplicated for commercial purposes w thout the express witten consent of Logical
Systens, Inc. or the article's author.

Page 2

VI EW FROM THE BOTTOM FLOOR

by Bi |l Schroeder

In nmy last colum | asked for suggestions for possible new l|ocations for Logical
Systens. Many thanks to the people that responded with very interesting suggestions
for that "perfect place". One person even suggested the North Pole..... for sone
reason | don't think he was a totally satisfied LDCS user..... oh well, we try. As of
now, no deci sion has been made and will probably not be nade until early 1983. W will
keep you all infornmed as to our relocation plans.

As | amsure nost of you know, the LDOS operating system (version 5.1.3) has been
chosen by Radio Shack as the operating systemthat wll be provided with their new
Hard Drive system for the Mod | and 11l (cat. #26-1130). W are very proud that after
seriously considering all of our conpetitor's products, support and conpani es behind
those products, Radio Shack selected LDOS and Logical Systens. Al so avail abl e through
Radi o Shack will be LDOs 5.1.3, both Mod | and [III, floppy disk based systens, as
cat al og #26-2213 and 26-2214, respectively. This systemw |l sell for $129 and will be
virtually identical to the LDOS 5.1.3 available in the LSI packaging. LDOS and
official LDOS support products from LSI will continue to be available through our
wor | dwi de deal er network. The only substantial difference between the LDOS sold by
Radi o Shack and the LDOS sold by our dealers is sone statenents in the nanual and the
absence of TWOSIDE/ CMD on the Mbd | system The operating system itself is the sane.
Any programthat is conpletely LDOS conpatible will run just fine on the floppy and
hard drive versions of LDOS provided through Radi o Shack.

Many peopl e have asked about how support will be handled for the LDOS product that is
to be sold through Radio Shack. The answer is quite sinple. Radio Shack will be
provi ding support for LDOS as they do for all products they sell. But of course LS
will always be willing to assist any LEG TIMATE LDOS owner, no matter where that LDCS
was purchased.

Many of our wusers have TRS-80s that are not quite TRS-80s such as PMC80, PMC- 81,
Video Genie, LNWor Mdel 11l conputers that have had NON Radi o Shack disk controllers
installed. Unfortunately we do NOT have all these nmachines and are having a difficult
tinme supporting these. The main problemis the foreign disk controllers in the Mdel
I1l. These controllers, in nost cases, do not function exactly the sane as the
official Radio Shack controller. The disk drivers in the LDOS system are designed and
witten for the TRS-80 and Radi o Shack provided controllers. Use of LDOS with other
controllers and/or conmputers may or may not work and may not always be as reliable as
when used with the hardware that LDOS was witten for and tested on. So please
under stand t hese probl ens.

W would like to help with any problemthat an LDOS owner has. However, sone probl ens
are inpossible for wus to address, because we don't, in sone cases, have the sane
hardware as the custoner. W have only official Radio Shack hardware, all conponents
(except disk drives) are pure Radio Shack. So when you consider new hardware please
call or wite. W will be happy to tell you if the product is supported by LSl or is
known to work well with LDCS. If you don't check wth us, you are on your own. Wen
purchasing new software, make sure that the author or publisher will firmy state that
the programin question IS |IN FACT LDOS COWATIBLE. If not, don't buy it and expect it
to work with LDOCS.

There are many LDOS users groups and special interest sub-groups popping up around the
country. If you are involved with an LDOS group of any sort, please |et us know where
it is and how other wusers can get in touch with the group. In the next issue of the
Quarterly we will be publishing a list of these groups. So | et us know where they all
are as soon as you can. Include: name of group, nane of individual in charge, phone
nunber, nmiling address, neeting address, neeting tines and dates and how to becone a
nmenber .

Page 3

In nmy last colum, | mentioned our new LSl HOT-LINE (414/241-4100). W had sone

trouble wth the answering machine that was to answer this line with a 3 ninute
nessage. W still don't have this 3 mnute arrangenent resolved but we have installed
a machine with about a 1 minute nessage on that line. If you wish to call the HOT-LINE
you wll get this short message. W wll have the I|onger nmessage nachine ready

shortly, one way or another.

As of LDOS 5.1.3 there are no longer /FIX files included on the master disks. This is
due to the changes needed in these fixes as the prograns they are intended for change.
There al so would not be enough room on the disks for all the fixes we would like to

provide. As a solution to this problemwe wll make available on Cctober 1st, both
hard copy versions and diskette versions of all available /FIX files. The hard copy
set will be available for $5.00 and the diskette version will be $10.00. Postage wl|
be paid by LSI on either version. (Foreign add $3.00 for Airmail). Either /FIX package
will contain all of the official patches that have been developed to allow non-LSl
products to function wth LDOS. Some user contributed patches will also be included

for products that have not been checked by LSI. It should be understood that this will
be an ongoi ng process of patching prograns and that the purchase of a /FIX package is
strictly "ASIS" on the date purchased and no patch is guaranteed to produce any
desired result. W will not offer wupdates or upgrades to these packages. If you
require a patch that is devel oped after you purchase your /FlIX package you will have
to purchase the package again. Wth nany thousands of users to service with these
products, we nust provide themin this way. Please check with us to confirm what
patches are provided. To help you in determining if a particular patch is available we
will publish a directory of the /FIX disk in each issue of this publication along with
any new /FI X files, starting with the January issue.

Those who wi sh to have back issues of this publication can obtain themthrough LSl for
$5. 00 each postage paid. This is issue #6; we still have some copi es of EVERY PREVI QUS
I SSUE on hand for those who want them

The FILTER concept is very inportant in the LDOS systemand allows LDOS to do nany
things that cannot be done with other systens. Last year LSl offered a package called
FI LTER PACKAGE #1. |t contained over a dozen useful filters WTH COVWLETE SOURCE CODE,
at $60. So that even nore of our users can enjoy the benefit of this package, LSl is
permanently reducing the suggested retail price from$60 to $40. This super package
has becone even better with a newlow price. LSl will provide you with conplete info
on this package for the asking. So don't forget the top notch FILTER package from LSI
for just $40. Al so check into FILTER PACKAGE #2 containing a whole new batch of handy
filters for just $30. | MPORTANT: If you order both FILTER PACKAGE #1 and #2 at the
same tinme you receive themboth for just $60 (that was the old price of the FILTER #1
al one) .

A NEW product that we are very proud of at LSl is The BASIC Answer (TBA). This is our
BASI C program source processor which was a year in the naki ng. BASIC prograns can now
be witten WTHOUT LINE NUMBERS, use 14 CHARACTER VAR ABLES, CONDI TI ONAL PROCESSI NG
GLOBAL AND LOCAL VARI ABLES, and FULL CROSS REFERENCI NG during processor run and nore.
Don't mss out on this whole new world of BASIC programming. |'m so confident that
this product will be the BASIC programmers best friend that 1 amoffering a MONEY BACK
GUARANTEE on TBA and a special TBA package. TBA has a retail price of just $69. During
this special offer LSI will provide you with TBA and LED for just $79. That's right -
buy TBA and LED (our text editor) together for just $79 (a $109 value). Don't del ay
too long though. This offer is only good for the rest of 1982. If you are not
satisfied with this package for any reason, returnit wth the original invoice
(postage paid) to LSI within 10 days of receipt and you will receive a FULL REFUND, no
questions asked (But | woul d appreci ate knowi ng what you did not |ike about TBA). This
speci al nmoney back guarantee is available on just TBA for the $69 price or the TBA &
LED special at $79 until Decenber 31, 1982. NOTE: This special offer is available only
when purchasing directly fromLSI. The first 50 TBA packages will also have a speci al
FREE supri se incl uded.

Page 4

Radi o Shack has nowreleased the long awaited Super-Scripsit and Extended Visicalc

products. | have spent sonme tine using each and find the new Super Scripsit to be an
excel l ent product worth rmuch nore than the asking price (note: sonme small bugs have
been found, but should be corrected shortly). Both of these packages will run on LDOS

with little change.

LSl is about to release several new products. Very shortly, we will be rel easing TBA,
FI LTER PACKAGE #2, UTILITY PACKAGE #1, QU Z- MASTER, THE LDOCS USERS GU DE, our new LDOS
513 REFERENCE MANUAL (Model | & 11l conbined) and our /Fl X products.

Many of our users have asked about our RAM BASED LDOS project and how it is com ng.
The answer is sinple; it is ALIVE AND VELL. It will be using the LDOS SVC structure as
is optional in 5.1, wll reside bel ow 3000H and will be called LDOS 6.0. No upgrades,

exchanges, trade-ins or wupdates wll be offered for this product. LDOS 6.0 should
appear on several Z-80 rambased nmachines in the first half of 1983, and yes the
TRS-80 Moddel 11 is being considered as one of the possible inplenmentations.

Arrangenents are being worked out for offering a Mcrosoft conpatible BASIC as well as
an ED TOR ASSEMBLER, a "C' COWPI LER, many systemutilities and hopefully a PASCAL for
use on LDCS 6.0. So standby - it is going to happen. By the way, this new LDOS will
have FULL DEVI CE | NDEPENDENCE! You can even filter a file!!!

The popularity of the LDOS 5.1 systemhas grown to the point that there are books
being witten exclusively (or mainly) for the LDOS user audience. One of these is by
TimDaneliuk, a long standing LDCS user and a promnent author for BYTE, 80-M CRQ
80-US and I NFOMRLD. Hi's book will be called "LDOS - A Systens Quide" and should be
avai |l abl e around the turn of the year. | have seen the first two chapters of this book
and they look excellent. W will also see a work froma MAJOR industry author that
wi Il be published by 1JG (Harv Pennington) that wll be an encycl opedi a of using LDCS
& TRSDCS. This one will be a "biggy" so contact 1JGin Upland, California if you are
interested or want info on this one.

The Snapp TRIAL PACKAGE has gone over quite well. For just $10, you get conplete
docurmentation and a chance to try out ALL of the SNAPP nodules. This is a very

pl easant way to determne which, if any of these extensions to LBASIC will be of val ue
to you. NOTE: this is a TRIAL package!! It will create only ONE functioning di sk, good
for alimted nunber of uses. Wen that disk wears out or fails, you will no | onger be

able to use the products and the $10 is not refundable. If you are interested in
taking a look at the best BASIC extensions in the TRS-80 world (and their excellent
docurent ation) contact Bob Snapp, toll free at 800/543-4628. As discussed in the "Late
Breaki ng News" section at the end of this newsletter, the prices on all the SNAPP
BASI C (LDOS type) products have been reduce by about 50% The trial package and SNAPP
Ext ended BASIC are avail able through LSl as well as through SNAPP I nc.

On Septenber 23rd to 25th LSI hosted a very special TRS-80 industry neeting here in
Mequon. A majority of the successful and innovative individuals providing products to
the TRS-80 industry attended. The official participants were: Bob Snapp (SNAPP INC.),
John Lancione (AEROCOW), Kim Witt, Dennis Brent, Renato Reyes (POAERSDFT), Roy
Soltoff (M SOSYS), Harv Pennington (1.J.G), Irv Schmdt, Canmeron Brown (80-US
MAGAZI NE), John Harding (MOLIMERX England), TimDaneliuk (TRS-80 Author), John Dunn
(Associated Services), Roger Billings, Kirk Hobart (LOBO DRIVES), Earle Robinson
(Soft ERnare), Les M kesell (MODEM 80), Bill Schroeder, Chuck Jensen, D ck Konop, Doug
Kennedy, Rich Hlliard, Sue Dunn & staff (LOd CAL SYSTEM5). This neeting was very
productive (exceptionally so for the non-Mequonites). 80-US nagazine was on hand to
cover this event and do interviews with the participants. These interviews wll be
published in upcomi ng issues of 80-US.

Page 5

Speaki ng of magazines, | amoften asked about the publications available to the TRS- 80
user. | get all of these publications and find that the best all subject TRS- 80
publication is, wthout a doubt, 80-US followed by TAS (The Alternate Source). O the
nore general publications, EVERY Mcro conputer user should subscribe to | NFOANORLD.
For those wishing to get just one or two magazines ny choice would be 80-US and
I NFOMORLD. For those of you who are not familiar with 80-US, we have arranged for you
to get one FREE. Al you have to dois wite or call 80-US and give themyour LDCS
serial nunber. They will send you a FREE copy of 80-US for your review with NO STRI NGS
ATTACHED. They are at 3838 5. Warner St. Taconma, Washington 98409 - (206) 475-2219.
There is a coupon for this offer attached at the end of this newsletter. 80-US is al so
actively seeking articles directed towards the LDOS wuser. So if you are inclined to
wite and are an LDOS wuser, send your works to 80-US. I'msure they will get pronpt
attention, and TIMELY PUBLI CATI O\

There is a conpany call Langley St. Cair Instrunentation that is providing both GREEN
and ORANGE repl acenent video tubes for the TRS-80 Mdel | and IlIl. W have both a
green and orange tube installed here at LSl and are very pleased with them W wll be
putting them in all of our TRS-80s this nonth. They are very easy on the eyes and are
a snap toinstall (I'm not atech and it only took ne about 15 mnutes total to put
one in). These new tubes sell for as little as $79 and are worth every penny of it.
For nore info on these contact Langley St. Clair Instrunmentation at 132 W 24th
Street, New York, NY 10011 - (212) 989-6876. Tell them Logi cal Systens sent you.

Last nonth our industry was shook by the passing of Harold Maush, the founder of
PERCOM DATA in Dallas. Qur sincere and heart felt synpathies go out to the Maush
famly and Harold' s co-workers. The TRS-80 industry has lost a great supporter and

innovator that will nost certainly be mssed by us all.
Thank you all for your on going support of LSl products. | hope that you and your
famlies wll have a pleasant and safe holiday season. Until next year...... (the
January '83 issue)...... BYE.

LSl _NEWS

This section contains a list of products available fromLSlI either now or in the near

future. It also provides a tinmetable as to when a product will be available for
shipnent. Due to circunstances beyond our control, it is possible that products nay
not neet their stated delivery dates. LSI acknow edges this fact, but wll nake every
effort to provide delivery on the date specified. Sone of these products are provided
by outside vendors over whomwe have linmted control. If a product is announced but is
not avail able on the specified date, we hope you will have patience as we fully intend

to provide all stated products/services eventually.
The following products have previously been announced and detailed in previous

newsl etters, and are either available now from LSI or wll be available within the
next 30 days:

The BASI C Answer (TBA)

$69. 00 (see Page 4 for a special offer).

LDCS " C - $159. 00
EDAS 4.x Mod /111 - $100. 00
Uility Disk #1 - $50.00
LDOCS 5. 1.3 Manual - $59.00 (or $29.00 exchanged)

LDOS Qperator's Quide - $10.00

Page 6

LDOS Operator's Quide

This is a short publication that is intended for the new LDCS user. 1t describes how
to start using your TRS-80 wth LDOS. In the future, it nmay be included with LDOS
systens sold by LSI. Included are specific instructions on noving prograns from ot her

operating systems onto LDOS, creating working LDOS disks and naki ng backup copies of
them and other information ained at the novice user.

LDCOS 5. 1.3 Conbi ned Manual

This is the LDOS manual that contains all the current changes in Library comrands,
Uilities, and the Technical section as relevant for version 5.1.3. The LBASIC section
has been expanded to include descriptions and exanples of all disk BASI C conmands as
well as the conplete disk BASIC error dictionary listing. The JCL section has been
re-witten and grouped into beginning and advanced sections, wth certain areas

explained in greater detail. The Technical section has been restructured to include
all Model I and Mdel IIl information, including a listing of both machines' entry
poi nt addresses and SVC s (where applicable) and all new systemvectors and entry

points. The layout is also in a nore |ogical order. For those of you doi ng devel opnent
on both machines, it is definitely a worthwhile investment at $29.00 + $4.00 S&H,
exchanged. To order this manual, you should send in the proper amount along wth your
old manual . Be sure to KEEP your binder, tab inserts, and addendum section, as these
wi Il not be provided with the new manual .

UTILITY DI SK #1

This disk wll contain a multitude of useful programs, some of which have been
requested by our users. As of press time, the contents of the disk are as foll ows:

COW/ CVMD will be a file/diskette conpare program In the file conpare node, it will do
a sector by sector conpare of two files and send the differences to either the video
or printer. It will also conpare two di skettes sector by sector.

DCT/CMD is a wutility primarily useful for those developing disk drivers or using
non-standard di sk drives. It provides an easy nethod to set up a DCT entry.

DI RCHECK/ CVD wi || check a disk's directory, looking for incorrect GAT and H T entries,
as wel|l as checking for bad file FPDE/ FXDE chaining. Certain types of errors may al so
be corrected.

FI XGAT/CVMD wi I | re-create an unusable directory GAT sector. The user will be pronpted
for certain information, such as the nunber of cylinders, density, and nunber of sides
on the diskette.

TYPEINCMD is a conbination of JCL and KSM It allows the user to have a specified
string of characters or conmands fed into the systemto control operation. Unlike JCL,
the characters can be fed to any programrequesting keyboard input. This neans that
even Visicalc, Lscript, LBASIC INKEY$ statements, etc. can be answered. The characters
can be directly typed in from the keyboard or can be picked up froma previously
constructed file. It even can be called in the mddle of JCL file, and can convert a
speci fied nunber of lines to single character input.

HGYCVW will show a display of high nmenory usage, as long as the nodul es conform to
the standard LDOS nmenory header fornat.

MAKEFI LE/CVD is similar to the CREATE Library command in that it allows allocating
space for a file by specified size in K or by the nunber of records of a given LRL. It
also wll allowfile to be filled with a specified byte. The file can be marked as
wi t her CREATEd or nornal .

Page 7

MAP/CMD wi || display a list showing where on the disk a fileis stored. It wll be
broken down by extents and sector used in each extent. Killed files may also be
mapped, including an indication if any of their previously used allocation is
currently in use by some other file.

RAMIEST/CMD is a nenory test utility that tests both high menory and that used by the
resi dent LDOS system

READ4080/CMD wi Il allow a 40 track disk to be read in an 80 track drive. This wll
allow copying files froma 40 track disk with the COPY command and the BACKUP and CONV
utilities.

READI | will display a directory of and copy files froma Mdel Il TRSDOS di sk.

RDTEST/ CMD wi || do a non-destructive read test of a diskette, providing a verification
of all tracks and sectors.

RMEST/CMD wi Il do a wite/verify test of a diskette. This will be useful for checking
the operation of a disk drive or diskette nedia.

UNKILL/CVMD will restore a file that has been accidentally Kl LLed or PURGEd.

LC - The LDOs "C' Language Conpil er

LCis an integer-only inplenmentation of C which provides all C statenments except
"struct", "union", "goto", "switch-case", and "typedef". Al data types except "float"
and "doubl e" are inplenented; "long" and "short" declarations are accepted, but 16-bit
fields are used for all integers. In LC, "char" variables are inplicitly unsigned.

Singl e-precision and double-precision floating point operations are supported via
functions supplied in the FP/LIBlibrary included with the LC conpiler. LC accepts
multiple input files, with four levels of nesting for "#include' d" files. The conpiler
generates an EDAS Version |V assenbler source file which is then assenbled wth the
standard library and any other libraries needed to resolve function references in
order to generate the executable program The value in generating assenbler source is
twofold. First, you can obtain a conplete machine code source listing which could
prove inval uable in debugging conplex code. Second, local optimzation of assenbler
source code can be perforned as required by the experienced assenbl er programrer. The

LC standard library provides such functions as standard I/O redirection, dynamc
nmenory al |l ocation, automatic standard 1/O opening and closing, and program chai ni ng.
In addition, functions specific to LDOS and the Mdel [I/IIl are supplied in an

installation |ibrary, to provide access to such functions as graphics and system entry
poi nts.

LC supports separate conpilation; prograns nay be conpiled in segments, and
frequently used functions can be pre-conpiled. You can create your own library of
commonly used functions with the Partitioned Data Set wutility (PDS is not included
with LC but is available as a separate package). The assenbler source code output by
LC is designed to use the extensive SEARCH and conditional assenbly support in EDAS
Version |V. The assenbl er and conpani on assenbler cross-reference utility are supplied
with the LC package. You need nothing nore to start witing and running GCI|anguage
prograns except your LDOS-equipped conputer and a copy of the book "THE C PROGRAMM NG
LANGUAGE" by Kernighan and Ritchie. A 48K-RAMtwo-drive Mddel | (lower case video) or
Model [I1 is required.

Sone highlights of the "elsie" conpiler are:

I nt eger subset of the C |anguage.

Access to floating point routines in ROMvia function calls.

Al statenments supported except STRUCT, UNI QN, TYPEDEF, SW TCH CASE, QGOTO
Al operators supported except "->", ".", SIZEOF, and (TYPENAME).

UNI X- conpati bl e standard 1/ O library.

O O0o0OO0Oo

Page 8

Standard 1/Oredirection with conpl ete device i ndependence.

I nput using FGETS or CETS functions support LDOS Job Control Language.
Dynami ¢ nenory managenent (ALLCC, FREE, SBRK).

Sequential files open for READ, WRI TE, and APPEND.

Generates Z-80 EDAS Version |V source code as out put.

User libraries in Z-80 source | SAM accessed PDS fil es.

Conpact one-line invocation of the conpiler.

LC s interactive friendly interface provides easy way to learn LC options.
Supports separate conpilation of functions.

Conpi | ed prograns run under both Models | and |1l without nodification.
Installation library gives access to graphics and LDCS entry points.
Supplied with exanple programs and utilities in source form

LC LIB includes: FPRINTF, PRINTF, ALLOC, FREE, SBRK, and String functions.
The LC package is Mddel 1/111 LDCS conpatible and includes LG CVD, LCLIB, FP/LIB,
INLIB, EDAS-1V, XREF, and nore than 200 pages of documentati on.

OO0OO0OO0OO0OO0OOODOODOOOO

A New Version - EDAS-1V

by Marc Leager
The following is a review of some of the features of the new Model 1/111 EDAS 4.1.

Sone prograns are terrific when they are first released, then a new version cones out
which is five times better than the original. LDOS is one of these prograns. EDAS is
another. M SOSYS has recently released a new version of its editor/assenbler called
EDAS-1V. It is the nost exciting piece of software | have seen in along tine. It not
only provides the best editor/assenbler around, but conbines many of the |atest
features of mcro-conputer programstorage into a single working system Please read
on to discover what the new EDAS can do for you.

First we need an introduction for those who have not yet wused EDAS. As its nane
inplies, EDAS is a program editor and an assenbler. The primary use for EDAS is in
mai ntai ning assenbly | anguage prograns. But wait! As you read further you will see how
the new EDAS can be used for other |anguages also. The traditional EDAS is a superior
programeditor for assenbler |anguage prograns. It |oads the entire programin nmenory
so there are no disk accesses during an edit session for a single nodule. Line nunbers
are nmintained for all programlines, so reference to a printed |isting of the program
during the edit session is possible. Best of all, EDAS allows all input to be in |ower
case. It automatically converts the actual |anguage instructions to upper case,
| eaving comments and strings in their original typed form At any tinme, the nodule in
nenory can be assenbled by pressing a single key. If the nmodule is a conplete program
then the assenbly is done instantaneously w thout disk access. Sone prograns are |arge
and nust be stored in several nodules. For these, EDAS is able to | oad nodules into
the work space using the *CGET operator to assenble the full program

The first reason for wusing EDAS is that it works well. Oher editors for assenbly
prograns constantly turn the disks on for reading another 256 bytes of source, and
tend to scranble the code when nodules get larger than O code lines. EDAS is quiet
and doesn't wipe out your hard fought code lines. Another reason is its speed.
Assenbly with EDAS is very fast for single-nodule prograns. Even for rmulti-nodule
prograns, it is faster than assenbling nodules separately, then |inking themtogether
with a linkage edit program A third reason for wusing EDAS is its friendliness.
Mentioned before was the upper/lower case support. This produces a very readable
program where code is upper case and comments are |lower case. The search, insert,
edit, print and display comrands are al so easy to use. They work quickly and correctly
every tinme.

If you are wondering whether you would get any use out of this sophisticated
editor/assenbler, consider these itens. LDOs is a fully docunented, wide-open
operating system W are encouraged to wite our own filters and drivers and special
routines. Wth LDCS you can easily open and read DIR/'SYS fromany | anguage, and from

Page 9

assenbly | anguage you can read or wite ANY part of the disk if you want to. Al so
usi ng assenbly |l anguage, you can wite filters, drivers, and special routines to fit
your individual needs. LDOS is designed for this type of wuser enhancenent. (Note: LC,
the "C' conpiler, will include EDAS-1V as its assenbler. "C' is another |anguage which
is well suited for systemtype prograns.) |If you have been thinking of taking full
advantage of the LDOS architecture by witing a few assenbly prograns for special
effects, EDAS is a good editor/assenbler for this purpose.

Now for descriptions of some of the outstanding features of EDAS-IV. | assune you have
a noderate understanding of the basic purpose of the original EDAS. Sone of the
features described here are extensions of the original, and some are new Since the
nost exciting features are entirely new, this article should still be informative for
many of its readers without prior EDAS understanding. First is the treatnment of line
nunbers. EDAS-1V supports line nunbers simlarly to EDAS 3.5.2, but the default for
EDAS-1V is unnunbered lines. This may be startling to sonme, but now EDAS-1V can read
any valid source file, nunbered or unnunbered, w thout any specific action by the
operator. Previously, you had to know whet her each source file had |line nunbers, and
al so whether it had the standard EDAS 7-byte header. Now all of this is handled
automatically! The reason for preferring unnunbered lines on disk is to save file
space. In a typical source file, the line nunbers take up 16% of the space. It also
allows EDAS-1V to process the source for any |anguage which does not require line
nunbers in the source file. One nore winkle with line nunbers is that if you want the
nunbers, and you intend to use the M 80 assenbl er, EDAS-1V has an option for using the
M 80 |ine nunber format when the file is saved. This is inperative when you are using
M 80 to produce listings of your assenbl ed prograns.

Sonme new commands have been added with EDAS-1V. First is Copy. You nmay wonder how this
is done since the <C> operator is already in use for string replacenent. The answer is
the <C now does both functions. If you follow the <C with a nunber, then EDAS-1V
assumes you are entering line nunbers for a copy operation. Gtherwise, it processes
your keym as a string replacenent operation. Due to popul ar request, the <Z> operator
has been added. You nay wonder what <Z> does, and the answer is that it does anything
you want it to. EDAS-1V has a 50-byte patch area just for users, and <Z> can be used
tojunp to this patch area. | have been thinking of using this function for several
things, such as showing the name of the nmobdule currently in menory, or changing the
default extension during an edit session, or presetting assenbly options, or plugging
in ny alternate keyboard routine, or ... Another keyboard feature in EDAS-1V concerns
the BREAK key. In EDAS 3.5.2, if BREAK was the last key pushed before a Wite
operation, the BREAK could sonetimes reappear during the wite, aborting the wite and
producing a null file on disk. This was very disturbing, since there was no indication
of this event to the operator. Now in EDAS-1V, all is well with BREAK correctly
handl ed.

Now we wi |l begin sone new features in EDAS-1V. The *GET operator has been enhanced
and a *SEARCH operator has been developed. These operators tell EDAS-IV during an
assenbly to read nore source code fromfiles on disk. They are a way of expanding the
nodule in nenory to larger than nenory size, and of including standard functions into
an application program The *GET operator just reads the naned source file and inserts
it inthe current nodule at the current location. The enhancenent to *GET is to allow
nesting of wup to five levels. This allows you to collect subroutines or nacros (!)
fromseparate locations into standard sets using a series of *GETS. The sets can be
i ncl uded en nmasse by namng the desired collection with a single *GET in your source
nodul e. *CGET can appear at any point in your program in the beginning for declaring
equate nanes or defining macros, or in the body for |oading standard subroutines. The
*SEARCH operator is simlar to *GET since it accesses files stored on disk, but what a
di fference! *SEARCH doesn't read sequential files. Instead it processes nenbers froma

partitioned data set, PDS. This is an exciting feature since *SEARCH will only | oad
the nenbers fromthe PDS which are referenced in your program This neans you can
collect your standard subroutines into a PDS library, then search the library when

assenbling any program Advantages are that the PDS saves space on disk, allows
standardi zati on of your subroutines, encourages centralization into a small nunber of
subroutine libraries, and nakes your application source nuch cleaner. You can even

Page 10

begi n packaging your subroutine libraries for exchange or distribution anobng other
EDAS- 1V users, for nutual benefit. The net effect of the *GET and *SEARCH operators is
to standardi ze and reduce the effort of witing new code.

The | ast new feature we will cover here is Macros. O all the enhancenents in EDAS-1V,
this is the nost exciting. You nmay wonder why it is mentioned |ast. The reason is that
macros are a very conplex feature, and | felt that sone groundwork was needed before

introducing them Despite the conplexity, the inplenmentation in EDAS-IV is
conpr ehensi ve; probably the best you will find in any mcro-conputer assenbler. First,
we will define a macro as an expression in a single line of code that is expanded by
the assenbler to produce nmany lines of code. The LDOS JCL feature is sonewhat simlar
to assenbler macros. Using a macro, you nanme none, or one or nore values which are to
be assigned to variables in the macro. The assenbler then takes the values, inserts
themin the necessary lines of code contained in the nmacro, and produces useable
source code for further assenbly. Doing this, you can tailor the effect of any nacro
by changing the val ues you use for paraneters. For instance, a nacro to nove data from
one area to another m ght be

MOVE MACRO #FR #TQ #LG

LD HL, #FR
LD DE, #TO
LD BC, #LG
LDl R
ENDM
To use this macro you could code ... MWNE FRAREA (TOPTR), 50 This single statenent

woul d be expanded to the four Z-80 instructions needed to performthe nove. Notice
that one area was defined by name, one was defined by a pointer, and the Il ength by an
explicit value. This shows the way you can use a standard macro to produce code froma
wi de variety of value expressions. The macro processor in EDAS-1V covers all bases in
code expansion by allowing both positional and keyword notation. This neans it is very
flexible in the structures it can handle. For exanple, the above macro call could have
been coded ... MOVE #FR=FRAREA, #LG=50, #TO=(TOPTR) . These features alone are
extrenely useful to the assenbly programmer, but EDAS-1V does nore. It has inpl enented
a full range of tests and conparisons on the nmacro variables for conditional |ogic
within the nmacro expansion. Wth this you are truly able to generate any code
structure desired. For instance, you can test how many paraneters were coded in the
macro statenent, you can test the value of any paraneter against a string or against
an assenbled |label. You can test to see if a |label named by a paraneter is defined
el sewhere in the program or is referenced el sewhere. The tests can be nested to eight
| evel s. The ELSE operator is available for either/or constructions. I nmay have |eft
out sone features, but EDAS-1V seens to have enough strength to handle the nost
sophi sticated nmacro construction imagi nable. Sone nacros | have already witten do the
following: initialize a program to run on the Mddel | or IIl, nove data (see above),
create a BASIC dummy program so an assenbly programcan define arrays in BASIC, read a
line froma disk file simlar to the @EYIN vector for the keyboard, and on and on.

At last, a summary. You should be very excited by EDAS-1V for several reasons. The
macro processor is super. You can plan to use it for sinplifying your coding. As in
the MOVE exanple, it reduced the code lines by 75 percent. You can build a nacro
library, again wusing EDAS, then access it wth *CET for each assenbly. By putting
*LIST OFF at the head of the macro library, and *LIST ON at the end, you can avoid
having the text of the macros print in your program listings. The *SEARCH feature is
also a terrific addition. You can build one or nore subroutine |ibraries, then |let
EDAS sel ect subroutines only as needed fromthem (Note that the M SOSYS PDS program
isrequired if you plan to build your own libraries.) These two features, nacros and
*SEARCH, shoul d nake assenbly |anguage much easier for many of us. Unfortunately,
there is even nore in EDAS-1V that could not be included in this review You can be

sure that the other features not nentioned are just as well inplenented as the
superstars we covered here. In closing, let me say that | am really enjoying EDAS-1V
and hope that you will too. Maybe we can share an idea or a subroutine or a nmacro

soneti ne as the new EDAS nakes us nore proficient programers.

Page 11

THE COWMUNI CATI NG M CRO

Gordon B. Thonpson,
Bel | -Nort hern Research, Otawa, Canada

Even anongst the experts, a communicating personal conputer is perceived as being a
smal | conputer that has been programmed to behave as a snart terminal for accessing
| arge mai nframe conputers, or other simlar services, via a comunications link. The
terminal prograns that are on the narket today stress this "nother and child"
rel ati onship, although nost do offer sone kind of symetrical facility for
transferring files.

As small personal systens proliferate, other patterns of intercommunication can begin
to energe. However, if the nodels that the users have of the basic communication
processes are too sinplistic, they will fail to see the utility of those richer nodes
of interaction.

The Shared Space Model of Conmuni cati ons.

The common, faniliar telephone creates a common acoustic space that can be shared by
two people, who may be many mles apart. The calling and the called parties can
interrupt, talk sinmultaneously, and even share a cry, or whatever. As evidenced by
their behavior, this sinple property of the famliar telephone, this sharing of a
conmon acoustic space, is not conceptual |y understood by nobst users

The shared space nodel of interpersonnal conmunication recognizes the prinme inportance
of periods during which both communi cants are talking, overlapping each other. The
sinple tw wire tel ephone allows both parties to talk sinultaneously, should they so
desire. Wien this happens, we can say both parties are sharing the common acoustic
space that the tel ephone provides. They are occupying the same space, at the sanme
time.

Perhaps one of the reasons Picturephone failed to achieve any significant market
acceptance is that it really added very little to the size of the common information
space that was shared between the comunicating parties. That the Picturephone doesn't
have a shared visual space can be denonstrated by considering what must be done to
play a sinple gane of tic-tac-toe. Wien we start, you have the grid which | can see on
ny screen. Wiere do | put ny cross? On the screen? That won't work because you woul d
not see it. No, | nust copy your grid onto a sheet of paper, viewed by ny canera, and
place ny cross on that grid. Now, you, in turn, nust copy ny cross which you see on
your screen, onto the grid on your paper. And so it goes. Because the two visua
spaces are different, they can't be shared

The Shared Vi sual Space

A shared visual space is one where the people at both ends see the sane thing at al
times, and both have equal access to altering what they both see. In order to initiate
an interrupt, they nmust be able to input to the common vi ewi ng screen sinultaneously.
They nust share both the seeing and the creating or altering, just as they do on the
t el ephone, when they can, at the same tine, both talk and listen

Today's technology allows the creation of various forns of shared visual space. W can
share a graphics space wherein we both see the same things, and can both input into
that space. However, should our inputs collide, we nmust not react as conputer purists
and strive to protect the integrity of the individual data streans. NO W mnust permt
the streans to collide and produce what they will. An interruption is, after all, a
change in the expected way the world is to unfold.

Page 12

Also, as the shared visual space only makes sense when the two parties are also
connected by telephone, any confusion, loss of synchronization etc., that m ght
result, can be quickly resolved. Proper sinultaneous voice-and-data shared space
conmuni cati on nakes the conputer scientist a bit uneasy. It relates to enhancing human
interaction, not conputer niceties. As the new technol ogy got cheaper, and our ability
to apply it inproved, it became easier and easier to achieve simltaneous shared
acoustic and shared visual spaces. Sone spectacul ar tel econferencing experiences were
generated this way. However, it was soon discovered that nost people were not capable
of operating in an unconstrained shared graphic space. Cartoonists had denonstrated
what could be done, but for nost people, the results nore closely resenbled the
graphi ¢ out pourings of preschool ers.

The nore proscribed visual spaces of word processing and el ectroni c broadsheets were
then exam ned. This work was started using Radi o Shack Mbdel | machines, back in the
VTCS era. Versions of ELECTRIC PENCIL and VISICALC were prepared that exhibited many
of the shared space characteristics. However, with the advent of Radio Shack's TRS-80
Model 111, and Logical Systens' LDOS 5.1.2, with its superb communications and device
filtering features, a truly workable and fully practical system could be easily
pr oduced.

The Refl ex Connecti on.

In the course of this work, a new formof interconnection between two stand al one
conputers was defined. |In deference to the mrror |I|ike symetry that the particular
connection nmethod features, the term"REFLEX' was used to describe it. In operation

both machines scan their inconming data lines every time they scan the keyboard. If a
| ocal |y generated keyboard character is available, they send that character to both
the local CPU and to the outgoing data line. if a character is found in the RS232
incomng register, it is passed only to the ocal processor. In effect, both nmachines
are fed fromboth keyboards, and respond equally to keystrokes from either. They are
fully symretrical, in a reflexive sense. Such a connection produces a shared visua

space when the two machines are sinmilar and are running simlar software. |f your
TRS-80 is loaded with SCRIPSIT, suitably patched so as to use the LDOS keyboard
driver, and the REFLEX filter is active, and if nmy nachine is simlarly configured, we
can connect the two machines together via a data line and, while talking on the
t el ephone to each other, jointly edit the same contract, or whatever. Watever you do
to your copy happens instantly to mine, and vice versa. And while this is happening,

we are talking to each other about the changes we are naking. W will arrive at a very
power ful , denocratically achi eved consensus when we do this. Wth today's nodens, this
style of working requires two separate telephone lines, one for the telephone

connecti on and one for the data connection.

Wth such an arrangenent, two | awers, separated by perhaps many thousands of ml es,
can confidently and very quickly, jointly produce or exam ne a contract, and so arrive
at a nutually satisfactory one in a nere fraction of the tine required if the nail
either electronic or conventional, were used. Press rel eases can be jointly perused,
and a strong consensus built about the docunment, even though nmany mles nay separate
the communicants. It is far nore neaningful to be able to see exactly what it is that
is being discussed than to see the face of the person at the far end. Any significant
information contained in the facial clues is also present in the aural clues, already
avai | abl e over the phone. The | abels of Appendix | were conposed using a Mddel | and a
Model [I1 running Scripsit reflexively.

However, our experience to date in denonstrating and eliciting usage of the reflexive
way of working w th another person suggests that although this mght be the world's
greatest nousetrap, few are tranpling down our door. It is nuch too early to be
certain about the causes of this resistance, but one hypothesis suggests that not only
does our ability to learn new |anguages dimnish significantly during our teens, but
so does our ability to learn new nodes of comunications. If this is the case, then
the big market for shared space or reflexive word processors nust wait for a
generation to cone of age that has a different comunicati ons background, one that
i nvol ves nore sharing of infornation.

Page 13

In the nmeantime, those who are at the |eading edge, the explorers, can be encouraged
to use the technique. Consequently, we have chosen to place the requisite software in
the public domain, and publish in journals that have a readership nost likely to apply
the ideas of simul taneous voice and data shared space interaction between
conmmuni cating mcros. The LDOS operating systemis, if not the only viable one, far
and away the nost suitable one, to support REFLEX

Two appropriately programmed conmunicating personal conputers can be so |inked over a
sinple | ow speed data line as it is only the key strokes that get transmtted, and not
the screen wupdates. The resident application package, present at both ends, be it
SCRIPSIT, VISICALC or whatever, handl es the demandi ng chore of wupdating the screens at
both ends. Consequently, any |ow speed data facility, such as a 300 baud link, is very
adequate. Perhaps, as famliarity with this shared space node of working grows, and a
mar ket devel ops, snart nodens specifically designed for this particular way of
conmmuni cating may evol ve. Such nodens would elimnate the need for two tel ephone |ines
by sharing one line for both data and voice. As the data rate requirenent of this node
of comunication is extrenely variable, ranging froman upper lint set by the need
for speedy file transfer, down to a few keystrokes per second, the devel opment of such
apparatus, and the requisite interfacing drivers for the conputers nmay not be easy.

Since it is only the keystrokes that are sent, non-simlar nachines using identical
man/ machi ne protocol s can communicate. VISICALC, if properly nodified, can run between
an Apple and a TRS-80 in a fully reflexive, shared space way. The only difficulty is

that the Apple lacks a full set of cursor positioning arrows, and needs sone
interfacing software to make up for this deficiency when connected to other machines
with the full up/down, left-right arrow key conplenent on the keyboard. A "prel oader"

that conditions an Apple Il to interpret the standard Apple VISICALC disk in such a
way that VISICALC runs reflexively is now commercial ly avail abl e.

Vast differences in display sizes, such as that between the Apple and the TRS-80 are
i nsi gni ficant when the subject matter is viewed on a full screen editor that is driven
by cursor position. The interest area is always where the cursor is, and not at the
other side of the screen, where the display disparencies cause different material to
be seen. In the case of the 40x20 display of the Apple and the 64x16 display of the
TRS-80, the discrepancy was essentially unnoticed in operation.

The REFLEX filter, when active, allows any application package that runs on the
TRS-80, and uses the systemkeyboard driver, to be run reflexively with another
simlar nmachine. Mdel | machines can work wth Mdel Il machines, for LDOS nakes
them sufficiently simlar. As LBASIC, the LDOS version of BASIC, uses the system
keyboard driver, anything witten in BASIC, that does in fact use the system keyboard
driver, can be run reflexively.

Prosoft's current version of NEWSCRIPT, being largely witten in BASIC, uses the
system keyboard driver for the mgjority of its conmmands, and so can be nade to operate
quite well with REFLEX. The BASIC code nust be nodified somewhat, however. The Prosoft
driver, NS/CMD, nust be placed at the top of nmemory as it is not fully relocatable
code. The various BASIC prograns |ook at the Keyboard DCB to determ ne the scratch
nmenory's |ocation.

However, once the LDOS keyboard driver and the REFLEX and M N DOCS filters have been
put in place, the DCB no |longer points to where it was expected to point. By setting
the particular variables involved to -1765, the problemis avoided. Once the LDCS
driver is installed, the overflow error nessage indicates this problem and identifies
the line that needs fixing. Peeks to and 7 are the culprits. The final result
is a very powerful word processor capable of fully comunicating with another of its
ilk in full REFLEX, of working alone, or of working into a large |IBM nai nfrane system
This conbination is the essence of a communicating mcro!

Page 14

Installing the LDCS keyboard driver somewhat alters the controls for NEWSCRI PT. The
<CLEAR> key, which was wused for control, now becones <SH FT><CLEAR>, w th the <SH FT>
pushed slightly ahead of the <CLEAR> key. Only the toggle node of control character
entry remains, the continuous nobde having been lost. It doesn't use the system
keyboard call, apparently. [If the <CLEAR><SH FT> keys are depressed, with the <CLEAR>
key being a bit ahead of the <SH FT> key, then REFLEX and M N DCS are addressed.
Finally, where the <BREAK> key was previously used to break a line, <SH FT><DOMW
ARRON-<A> now does this. The <BREAK> key returns control to LBASIC. Although it m ght
seemthat the controls are a bit nore awkward, only the delete a bunch of characters
is significantly slowed. Oher techniques, such as breaking the line, and deleting to
the end of the line nake wup for it. At the tine of witing, a bug was noted in the
printer driver portion of NS that becones active when any keyboard driver other than
NS/CMD is used. This bug persists even when the DCB path is "bent" so it |oops into NS
and then into either the regular or the LDOS keyboard drivers.

The REFLEX filter allows the TRS-80 to run in three nodes, the conventional LOCAL
node, the REFLEX node, and a sinple term nal node. These nbdes are chosen by sel ecting
"1*,"U" or "Y' respectively, while the <CLEAR><SH FT> conbination is depressed. The
nore logical "R' and "T" keys are used by LDOS's M N DOS, and so were not avail abl e.

REFLEX needs an eight bit data word as the LDOS keyboard driver can generate codes
that need this longer word length. Consequently, to use REFLEX, it is necessary to
first install the LDOS keyboard driver with the SET command, and then to install the
proper RS232 driver with the 8 bit word option. The REFLEX filter can then be
installed. The LDCS filter MNDOS can then be installed, and the nachine's
configuration captured. The assenbler listing for REFLEX/ FLT for the TRS-80, Model 111
is in Appendix 1 with the changes noted for Mdel I.

The Sinmultaneous Voice and Data, Shared Space way of working together increases the
need for easy ways to toss files back and forth between the communicants. Most
application packages, of the word processing and broadsheet class, do not cater to
sending or receiving the current work space. Two notable exceptions are VISICALC for
the TRS-80 Model |, and Prosoft's NEWSCRI PT. Because the LDOS operating system in
SYS2, recogni zes devspecs, like *SlI, *KI etc., and substitutes the appropriate device
for the usual disk drives and a filespec, NEWSCRIPT achieves this desirable feature,
with effort on Prosoft's part. SCRIPSIT, unfortunately, clobbers the * in the Special
Command area, and so can't send the contents of its work space in this easy fashion.
This shouldn't be too hard to fix, and perhaps soneone will locate this constraint and
renove it.

VISICALC is rather special with regard to sending and receiving its work space. The
feature is nmentioned on the summary card, not in the instruction book. However,
substituting :Rfor a filename, as is indicated on the instruction card, fails to
produce the desired results. The code is sinply incorrect in the Model | version. Wth
a few fixes, however, it can be made to work. This feature even further enhances the
value of VISICALC. Details of the fix are in Appendix I1I.

If the principal wutility of the serious microconputer is in the broadsheet and word
processing areas, then Prosoft's NEWSCRI PT and the LDOS patched version of Model |
VI SICALC provide a nmeans of doing these inportant things in a fully reflexive way. The
Model 111 machine, because of its interrupt driven RS232 interface, does a somewhat
better job than the older Mddel I. Al so, the Model | seens constrained to booting in
single density if NSCMDis to be at the top of nenory.

Interactive ganmes, played in sinultaneous voice and data in ways that are perhaps nore

conpl ex than sinple REFLEX, is a whole new area of possibility. Atic-tac-toe gane, in
BASIC, is shown in Appendix II1I.

Page 15

This game uses the conputers to handle the displays while the two players, connected

via telephone and a data line, supply the logic. The conputers act as referees and
accept only legal noves. This gane requires LDOS with the keyboard driver active, *Sl
active, and the REFLEX filter operating on *KI. This is a trivial gane, but it does

illustrate the notion of ganes in silmultaneous voice and data by wusing two
communi cating' mcros in REFLEX

One very popul ar current managenent theory suggests that the levels of nutual trust
that exist in North Arerica nmay be too low for effective human interaction. Enlarging
the size of the common information space that conmunicants share is one way of
encouraging the building of nmutual trust. The trust level and the ease with which we
adapt to nore sharing of our information are likely quite synbiotic. Increases in one
feed the other. As the technology gets nore and nore conplex, perhaps we need to
devel op neans of increasing the intellectual synergy between nanagers rather than
increasing the conpetition. Learning to handle sinultaneous voice and data shared
space communi cations with our Communicating Mcros is one giant step towards such an
obj ecti ve.

EDI TOR S NOTE: The EQUate |istings below contain the differences between the Mdel |
and IIl. Use whichever version is appropriate.

APPENDI X |

00100 ; RELOCATABLE REFLEX.

00110 ; By Jimand Gordon Thonpson. June, 1982.
00120 ;

00130 ; MOD 3 MOD 1

00140 ;

00150 @\BORT EQU 4030H

00160 DODCBS EQU 401DH

00170 @SPLY EQU 4467H

00180 @EXIT EQU 402DH

00190 @=ET EQU 0013H

00200 H GH$ EQU 4411H

00210 KIDCB$ EQU 4015H

00220 KIJCL$ EQU 42BEH : 43BEH

00230 @;ur EQU 001BH

00240 RFLAG EQU 4413H : 401AH

00250 SFLAGS EQU 442BH ; 430FH

00260 SIDCB$ EQU 42C8H ; 43C8H

00270 ;

00275 ORG 5200H

00280 ENTRY: PUSH DE : SAVE DCB

00290 LD A (S| DCB$) ;*Sl DCB ADRESS
00300 BIT 03H, A ; CHECK OFF/ ON
00310 JR Z, GOOD :*Sl HAS DRI VER
00320 LD HL, NCsI ;" DUMWYT

00330 CALL @SPLY :NO *SI MBG TO *DO
00340 JP @\BORT ;: BACK TO SYSTEM
00350 GOOD: LD HL, BANNER : REFLEX TI TLE
00360 CALL @SPLY ;DI SPLAY | T.

00370 LD BC, LAST- START ; PROPER LENGTH
00380 LD HL, (H GH$) ; PUT I NTO MOD | 1]
00390 I NC BC D H GHS.

00400 XOR A

00410 SBC HL, BC

00420 LD (H GH$) , HL ; NEW H GH$ FOR MOD3
00430 POP I X ; RECALL DCB ADDRESS
00440 I NC HL

00450 LD A, (SFLAGS) : SFLAG

00460 BIT 5 A :DOin effect?

Page 16

00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620

00630 ;
00640
00650 ;
00660

00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080

RTEST:

LTEST:

TTEST:

REINIT

RESTRT:

Z, NODO
I X, KI JCLS$
A (1 X+1)

(START+1), A
(RESTRT+1) , A

A (1 X+2)

(START+2) , A
(RESTRT+2) , A

(IX+1),L
(I1X+2), H
DE, HL

HL, START

A
(RFLAG) , A
@XT

ACTUAL FILTER

OH
AF

A

Z, ABORT
080H

C, ABORT
OFFH
OF5H

NZ, LTEST
AF

A O1H
(RFLAG) , A
A 52H
(3C38H), A
A

INT

OE9H

NZ, TTEST
AF

A, 4CH
(3C38H), A
A

(RFLAG) , A
INT
OF9H

NZ, ABORT
AF

DE

I X

A, 54H
(3C38H), A
| X, KI DCB$
DE, KI DCB$
OH

A

Z Sl

OE9H

Z, REPAIR
OF5H

Z, REPAIR
OF9H

NZ, CONT

; KLJCLS

; ADDRESS LQADI NG

; COPY UP UNDER NEW

; TOP OF MEMORY

; SET REFLEX BYTE TO
; ZERO GO TO SYS.

; CALL TO DRI VER

; KEY PUSHED?

; NO, GO AVWAY!

; CHARACTER GIR 80H?
; PASS CHAR CALLER

; TEST FOR "U'
; SHIF & CLR

; I N REFLEX, SET FLAG

; PUT "R' TO SCREEN

; TEST FOR "I
i SHFT & CLR
;1IN LOCAL, SO

s WRITE "L" TO

; SCREEN.

; SET A REG TO ZERQ

; SET REFLEX FLAG

; TO ZERO

; TEST FOR " T"

; PASS CHAR TO CALLER

sVWRITE " T TO
; SCREEN

;1S 1T CLR SHFT |2
;1S 1T CLR SHFT U?

IS 1T CLR SHFT T?
: YES.

Page 17

RESTRT

DE, SI DCB$

1

GO BACK.

;xS
; QUTPUT TO S

;> Sl

DCB ADDRESS

; *DO DCB ADDRESS
; WRI TE CHAR TO *DO

DCB ADDRESS
; I NPUT FROM * SI

; *DO DCB ADDRESS
; WRITE TO *00

END OF "T" LOOP

SEE WHAT MODE VEE I N
1 FOR REFLX, 0 LCC.

;1 TWS LOCAL

;1 TS REFLEX

; KEY, GO TO *SI
; NO CHARACTER

DCB ADDRESS
GET T,

; RETURN TO CALLER W TH CHAR

;> Sl

;xS

DCB ADDRESS
; QUTPUT * S

© ((((((SI DRIVER NOT ACTIVE))))))’
ODH

' *** REFLEX FI LTER ***
"June 1982 \Version.', OAH
'<CLEAR SH FT> |
' <CLEAR SHI FT> U REFLEX , OAH

' <CLEAR SHI FT> Y TERM NAL'

ODH
ENTRY

BI NHEX | i sting

JR
CONT: PUSH
LD
CALL
POP
PUSH
LD
CALL
POP
Sl LD
CALL
R
JR
LD
CALL
JR
REPAI R PCP
POP
JR
ABORT: LD
R
JR
PCOP
PUSH
R
JR
PCOP
LD
JP
TALK: PUSH
LD
CALL
POP
LEAVE. PCP
LAST: RET
NCSI - DB
DB
BANNER: DB
B
DB
DB
DB
DB
END
is the
C8 42 CB 5F 28
ED 42 22 11 44
7E 02 32 59 52
00 F5 B7 28 76
FE E9 20 OC F1
DD 21 15 40 11
C8 42 CD 1B 00
18 C4 DD E1 D1
CD 1B 00 D1 F1
43 54 49 56 45
52 20 2A 2A 2A
43 4C 45 41 52
48 49 46 54 3E
59 20 54 45 52

09

21
El
9C

for the REFLEX filter.

FO
23
52
38
32

52 CD 67
3A 2B 44
DD 75 01
72 E6 FF
38 3C AF
00 00 BY
1D 40 CD
13 44 BY7
28 28 28
29 29 29
4A 75 6E
49 46 54
52 45 46
41 4C 0D

', OAH, OAH

LOCAL' , OAH

44

6F

30
28
02

40
04
EB

Page 18

The

21
DD
21
F1
D4
28
C8
B7
49
2A
38
4C
3C

checksumi s

14
21

4F
43

53
BE
52
01
F9
FE
CD
07
44

42

01
01
32
3E

FE

42
45
45
72

98
32
13
52

F9

52

58
73

3C 43

20

53

APPENDI X 11

*x VI SI CALC PATCH TO FI X RS232C FUNCTI ONS **
MODI FI CATI ONS TO LDOS PATCHED VI SI CALC.

. Hardware differences between MODEL | & Il force
.the use of calls to 1B & 13 for RS232C in and out.
.RS232C I nterface MUST BE PRESET TO DESI RED STATUS.

.Code at follow ng address previously set the RS232C
. hardware when a ":R' was detected. This is now nmuch

reduced as a consequence of using the systemcalls.
X 9B3C = 28 05 FE 50 CA 8B 9B B7 9

.This code senses MODEL | OR IIl and |l oads DE with

.*Sl DCB address. It will be called during both SEND and

. RECEIl VE oper ati ons.

X 9B45'= F5 3A 25 01 FE 49 28 05 11 C3 43 18 03 11 C8 42 F1 9

. QUTPUT A BYTE TO *SI
X 9B7C = CD C0 9B D5 CD 45 9B CD 1B 00 DI B7 C9 00 00

: KEYBD SCAN, REPAI RED HANDSHAKE AND RECElI VE A BYTE
X 9751'= FA D5 CD 45 9B CD 13 00 D1 C2 57 9B CD 2B 00 28 FO 3E 60 37 C9 B7 C9 00 00

. CHECKS | NCOM NG BYTE FOR HANSHAKE

X 9B57' = FE 5B 28 02 B7 C9 3E 60 37 C9

. ** NOTICE **

.Al'though VI SI CALC expects a &¥HEB to term nate the RECElI VE
.state, the transnmt node never sends it. Code at 9BQ0 is
.never triggered into doing it, as the required &60 is
.never there, so it never sends the &H5B.

.Incidently, in the original code, the send handshake was
.&B6B and the expected receive one &6BE! W chose the &5B
.for both. They are located at 9BC5, and 9B58 as a result
.of the patch.

.Because the transmt node doesn't automatically trigger
.the termnation of the receive node, the RECElI VE code has
.been altered to al so accept any keyboard entry as a
.request to termnate the reception of incom ng data, and
.return to normal VC

. Shoul d soneone el se be nore successful at naking the
.transmt send the proper termnation signal, the receive
.routine, as it now stands, will term nate properly, as
.it contains the requisite code to termnate the receive
.function upon the recei pt of &H5B.

APPENDI X |11
EDI TOR S NOTE: Due to the length (3 pages) of the Tic Tac Toe listing, it was not

printed in this issue. A copy of the listing may be obtained by sending a |arge, self
addr essed stanped envel ope (postage will be approxinately 37 cents.)

Page 19

BASIC and File Structure - A Beginner's View

by Wes Goodnough

This articleis witten by Ws Goodnough, a relatively new "mcroconputer” user,
although he has experience on larger nachines. 1t covers the subjects of file
structure and busi ness use of a microconputer.

Since for a long tine mcroconputers were marketed principally as a hobby and personal
product, software production had tended to focus on entertainment. Mre recently,
however, the business world has begun to recogni ze the advantages of "a conputer on ny

own desk that will give nme the information I need to have." Mre and nore mcros are
appearing on nmanagenent desks, and sonetimes in spite of the wi shes of professional
people in the "Department of Data Processing”". |In response to this growth, software
offerings for business usage are also burgeoning. If the TRS-80 Mddel IIl is to have a
place in business usage, it is operating systems software of the quality and scope of
LDOS that will make it a contender in this narket.

Wiile entertainment prograns have tended to focus on getting the nost out of a
conputer in terms of manipulating its displays and in terns of interacting creatively
with the hobbyist-operator, business oriented software nust have other concerns.
I ndeed, when you cone right down to it, the reasons for the proliferation of conputers
in our society in the first place have been business directed. The traditional
rational for conputer wusage in business organizations is that they contribute to
reducing the "cost of doing business", that they help an organization grow strong by
providing nore tinely and accurate reports, and that they assist in insuring the basic
satisfaction of custoners doing business with the firm As such, it is the DATA to be
processed itself that is of concern to a business, not the creativity of the display
nor the "elegance" of the programm ng. Happily, LDOS stands out as providing many
enhancenents that conpl enent this concern.

Wthout a doubt, the VERSATILITY provided by LDOS is a nmajor asset for business usage
of the Mbdel IIl. The availability and flexibility of drivers and filters as well as
the JCL features within LDOS hold great opportunity for business application as well.
And the device independence features of LDOS allow the use of high capacity storage

devi ces. Above all, however, business data processing applications nmust be able to
organi ze, store, retrieve, and manipulate literally mllions of bytes of information,
and an operating systemthat lends itself to this task is a must. For those who
contenplate wusing a Mbdel 11 in their business or for those who are intent on
produci ng productive business software for the Mddel 111, LDOS with its file friendly

features stands out as a nmjor resource.
It is nmyintent in this article to outline the basic file structures used in business

data applications and to note sonme possible ways they may be inplenmented using the
features of LDOS and LBASIC.

SEQUENTI AL FI LE ORGANI ZATI ON

The sequential file structure is the native structure of files on magn0 ic tape where
processing nmust start at the beginning of the tape and proceed through one record
after another to conpletion. It is fundanental therefore, that wth sequential file
structure, even on direct access nedia, that the only sure entry point is at the
begi nning of the file. |In addition, it is not hard to visualize that because new data
cannot be inserted between records already witten on the nedia, it is necessary in
updating sequential files tore-wite the entire file. Preferably this will be done on
a separate drive in order to maintain at |least two versions of the file. The term
"Fat her-Son Processing"” refers to the practice of naintaining a rotation of separate
di sks (usually three) to acconbdate the wupdate and security back-up of sequential
files. It is inherent in sequential wupdating that the processing be batch oriented,
for it is nost efficient to nmake as nmany changes to the file as possible on any pass
through it.

Page 20

Wiile sequential file structure does not readily lend itself to interactive
applications, it should not be assunmed that there is no place for sequential files in
Model |11 applications. Indeed certain cases are actually inproved with sequentia

access nethods. In the case where all or nearly all of the records on file are used
during processing, it is both efficient and orderly to proceed through the file from
beginning to end. Such is the case in payroll applications where every record is
exam ned and processing ought to proceed in an orderly fashion so as to provide
adequate controls over the results. The strict order of records in a sequential file
can al so serve to control the order of other processing. Such was the case in an
El ection Returns System with which | am famliar. 1In order to produce a periodic
printed report of the progress of precinct returns on election night, a file of
candi dates and proposal s was prepared. Each pass through this file presented in fixed
order the pertinent information to enable access to other files and tables where the
vote tabul ation was stored, and to format and print the desired report.

LBASI C supports the Di sk BASIC of TRSDOS and uses the sane structure and nonencl ature
for sequential files. Qutput to files is through the PRINT# instruction while input
is through the [INPUT# and LINE I NPUT# instructions. Using these instructions, record
formatting nust be handled entirely by the programmer by the construction of the
string variable argument wused wth these instructions. Concatenation of separate
strings is one nethod of building the string arguenent. If the programmer is carefu

to provide for a constant field length as well as for left or right justification and
zero or space filling in each field, he wll be able to extract the information
accurately fromthe record when it is read fromthe nagnetic file at a later date. To
do this he will use the string functions LEFT$, R GHT$, and MD$ as in the follow ng
exanpl e.

100 A$ = "TRAN'

110 INPUT B$: |IF LEN(B$) > 15 THEN 110 ' a real

115 I F LENKB$) = 15 THEN 130 ' hassle to
120 B$ = B$ + STRINGH(15 - LEN(B$)," ") ' get record
130 INPUT C IF C > 999 THEN 130 ' set up for
140 C$=STR$(C): C3=RI GHT$(C$, LEN(C$) - 1) ' output to
150 C$=RI GHT$(" 000" + C$,4 - LEN(C$)) ' media

160 R$ = A$ + B$ + C$

170 PRINT #1, R$

180 .. e

790 ...

800 I NPUT #1, R$ ' also a hassle
810 AS = LEFT$(RS, 4) ' toretrieve
820 B$ = M D$(RS, 5, 15) ' data on file
830 CS = RIGHT$(R$,4): C = VAL(C3) ' via string
840 " ... " functions

By far the outstanding feature of LDOS as it pertains to sequential file handling is
the expanded file OPEN Modes provided by LBASIC. In business data processing the data
filed on magnetic nedia represents an alnost priceless asset to an organi zation. The
loss of a significant file could be disastrous for even a healthy firm By providing
for "ON' (open new file at beginning), "OO' (open existing file at beginning), "EN'
(open new file for extension), and "EO' (open existing file for extension), the
programmer and the systens anal yst can help prevent data |oss due to operator errors.
In updating sequential files, the "Father" file should be opened as "OO' insuring
that the file is present where it is expected before processing begins, and that the
file pointer is located at the beginning of the file. Then the "Son" file should be
opened as "EN' or as "ON', |likew se insuring that no other version of the file is pre-
sent. An error returned on these entries would alert the operator to the possibility
that a wong disk was nmounted and that data was about to be over-witten.

Page 21

SEQUENTI AL PROCESSI NG UNDER RANDOM MCDE

For practical purposes, distinctions should be made between the term "Sequential" as a
file mode and "Sequential"” as an access nmethod. On the one hand, the term is used to
signify the file nobde as distinguished from"Randont, (viz; OPEN"O', 1, "FILE'). On
the other hand, "Sequential file access nethod" may reasonably refer nerely to the
procedure of working through a file frombeginning to end. Once this distinction is
under st ood, new doors are opened to the programer for he will understand al so that by
opening his files as "Randonm! node files, ("RO', "R', "RN'), he mmy preserve the
advant ages of sequential access processing and still take advantage of the "Randonf
instruction set, (LSET, RSET, FIELD, MKI$/CVI, etc.).

Sequential processing under the "Random' node is sinple enough to be quite obvious. A
FOR-NEXT loop is designed with the FORNEXT variable as the LRN of the GCET
instruction. Forenbst anong the advantages of the "Randoni node is the sinplicity of
constructing and interpreting the data record. The FIELD statement allows for
identifying fields withinthe file buffer itself, both in terns of field tags and
field lengths. Using the blocked file nmbde of LBASIC, |ogical records can be defined
with sizes from1l to 256 characters wthout the programmer having to distinguish
between the various logical records within one physical record. Only one record is
defined by the FIELD statenent, and LBASIC extends that through the file buffer as
needed. Once a record is accessed, any part of the record may be referenced by sinple
use of the string variable tag assigned by the FIELD statement. Maximumflexibility is
provided by the ability to "re-define" the record through succesive FIELD statenents.
Likewise in formatting the record for output or in making changes to a part of the
record, the FIELD string variables sinplify access to the part of the record under
i mmedi at e consi deration. The LSET and RSET instructions not only assign values to the
FI ELD vari ables, but they also right or left justify the string within the "field",
(including space filling). As for "zero filling" of numeric fields, the process is not
required at all since numeric values are converted to strings representing the Binary
configuration of the nunmeric value by the MI$, MKSS, and MKD$ functions.
Re-conversion is done with CVI, CVS, and CVD functions. The following is an exanple of
the use of these "Randomi features in sequential processing. Conpared to the string
mani pul ation in the previous exanple this is straightforward.

50 OPEN "RO', 1, "FILE", 21 ' Qpen as Random

60 FIELD 1, 4 AS A$, 15 AS B$, 2 AS C$

70

90 ...

100 FOR R 1 TO LOF(1) ' Get one after another
110 GET 1, R ' frombegining to end
260 NEXT R

270 .

540

550 LSET AS = "TRAN' " No fuss assignnent of
560 LSET B$ = B1$ " of fields - Correct
570 LSET C$ = MKI$(O " lengths and justified
580 PUT 1, LOC(1) ' Only one di sk needed
500 ...

Wil e the sequential file mbde may not be frequently used in business applications for
the Mobdel 111, it is certain that "sequential access nethods" are inportant tools to
be under st ood and used, even under "Randoni node.

Page 22

DI RECT ACCESS Fl LE ORGAN ZATI ON

Once the programmer understands the use of the "Randon node instruction set
he will see the facility it offers in manipulating data in files. However, the subject
of "Randomi files is nuch broader than consideration of the FIELD and LSET
instructions. Disk storage devices are considered as "Randonm? or "Direct" access
devi ces, neaning that there is the ability to go directly to the record you want and
read it without having to search sequentially fromthe beginning of the file. W know
that LBASIC will allowus to specify the LRN of any record on file and, using the GET
instruction, to pick out that specific record from the file. But how can WE know what
LRN to specify unless we have the file organized in a way that will allowus to
determine what it ought to be? This is the matter of file organization for direct
access.

It may already be apparent to the reader that there is great confusion of
terns in this subject. It seenms that different nmanufacturers delight in using words in
ways i ntended to distinguish their products rather than to communicate wth a standard

nomencl ature. For purposes of this discussion "Random! will refer only to the LBASIC
file node as specified in OPEN "RO', or "R', or "RN'. "Direct access" wll refer to
the general ability to go directly into a file and retrieve a specified record. \Were
any other meanings are intended for these ternms, it will be clearly expressed.

THE RELATI VE FI LE

There are basically only TW ways to organize a file for direct access,
though certainly there are many variations within each. The first to be considered is
the RELATIVE file, (also sometimes referred to as a "direct" file.) The Relative
file structure is made up of records which are stored in relative locations within the
file. For instance, a file of the states of the Union would contain 50 records and
each state could be assigned a key nunber between 1 and 50 to represent both its order
of statehood and its relative position on the file. Thus the 18th record on the file
woul d al so be the 18th state admtted to the Union.

This plan is sinple only so long as the key val ue does not exceed the nmaxi mum
nunber of records in the file. Wiere the range of key values does exceed the nunber of
records allocated, there nust be some way to convert the key into a relative position
nunber. One nethod for random zing record placement is to divide the key by a prine
nunber and use the renainder as the LRN. In the above exanple 47 would be the |argest
prime less than the file size of 50. For a key of 321, the cal cul ation would be:

321/ 47 = 6 plus a remai nder of 39
Hence the record with key 321 would be placed in relative position 39.

There are many such algorithns, each with its own properties and
characteristics when used with a specific file. No natter what algorithmis chosen, it
should ideally result in deriving LRNs evenly distributed over the range of the file
and with a mninumof duplications. (In the exanple, key nunbers 274 and 368 woul d
al so derive the LRN of 39.)

In case of a duplicate LRN being derived by the randomizing algorithm there
nust be a way to determine an alternate location for the record. Very often it is to
sinply begin searching subsequent |ocations on the file until an open spot is found.
Since the derivation of duplicate LRNs is nore likely to happen as the file approaches
being full, it is helpful to allocate extra positions to mnimze the amunt of
sequenti al searching that needs to be done.

The main advantage of the relative file structure and the random zing
algorithns is that it provides the very fastest access tinmes. Usually only a sinple
calculation and one 1/O to the storage media are needed to retrieve a record.
Therefore this is the method to choose when speed of access is very inportant.
However, trade-offs are necessary to maintain this speed. If there are nmany duplicate

Page 23

LRN derivations, then access tine wll be slowed and the advantages lost. Therefore it
is inportant to be sure that the algorithm used is adequate for the application.
Leaving extra roomon the file may be a necessary overhead, for even though the extra
space will never actually be used, access tinmes will be mnim zed.

The coding to inplenment the search in relative files is very sinple. \Wether
it istofind a place to insert a newrecord or to find a record on file, the process
is the sane, a sinple calculation and a GET instruction.

100 R = KEY - 47 * | NT(KEY/ 47) ' The cal cul ation
110 GET 1, R ' The file access
120 IF U$ = "1" THEN GET 1: ' Check if duplicate

GOrO 120 " If so get another
130 LSET ALL$ = REC$ " Newrec into buffer
140 PUT 1, LOC(1) " Wite to file

150 PRI NT "RECORD | S FI LED'

200 R = KEY - 47 * | NT(KEY/ 47) ' The cal cul ation
210 GeET 1, R ' The access
230 PRINT "RECORD | S FOUND'

| NDEXED SEQUENTI AL FI LES

The second nmethod of file organization for direct access is the Indexed file.
The I ndexed Sequential Access Method or |ISAM file organizationis the nmpbst common
exanple of the structure. Wth ISAM records may be ordered in the file in an
ascendi ng or descendi ng sequence by whatever key is specified. In addition there is an
index to the file containing the LRN of every record along with its key. Mich the sane
as a book index indicates the page where a subject is nmentioned in the book, this
i ndex indicates where in the file a specific record will be found. 8y first looking in
the index for the key being sought, the LRNis found and with only one GET, the record
is in hand. The idea is that searching through the index is much quicker than
searching through the file on the disk. |Indeed using a "Binary Search", a specific
itemcan be found in an index of 1000 itens in an average of only 6 |ooks, while for
an index of 10,000 itens it will take an average of 7 looks. If the index is in menory
(as in a matrix), this will provide fast access, although not as fast as relative file
access.

In updating the ISAMfile, it is only necessary to add new records at the end
of the data file, and insert the appropriate entry into the index. For deletions it is
enough to renove the appropriate itemfromthe index, and for changes no alteration to
the index file is necessary.

Wiile it is easy to understand |SAMfile updating, putting it together is not
quite so sinple, for there are many considerations to conplicate it. First is data
file managenent. If the data file will be maintained in strict sequential order, then
it is necessary to determine how this is to be done. Howwill new records be added
bet ween exi sting ones? O should new records be added to the end of the file, relying
upon the index to give the ordering? Should deletions be renoved altogether fromthe
file or only flagged as being del eted? Each of these questions nust be considered from
standpoint of the programming required as well as of the needs and requirenments of the
speci fic application.

Secondly, it nmust be determined just how to handle the index itself. No
matter how the data file is managed, it is paranount that the index be kept in good
order. After making alterations to the index it may be necessary to resort it. For
this the CMD "O' feature of LBASICis an asset in that an index contained in a string
matri x can be sorted reliably, and quickly. Even a part of the matrix can be sorted if
necessary. Oher questions involve the managenment of the index. Should it be a file
itself, or a part of the Data file, (maybe the first few sectors)?

Page 24

Should it be read into menory for use, or should it be manipulated on disk? O shoul d
the index be "hard wired" into the progran? The alternatives here are all dependent at
least in part by the size of the index file and the requirenments of the application. A
smal | index could be "hard wired" if the data file contents do not change. Regardless
of the variations resulting from these considerations, there are certain basics to
coding the file access. The Binary search is the key to it and mght be like this
exanpl e.

100 A=1 " Lowest LRN

110 Z=50 ' Hi ghest LRN

120 H=50 ' Current high LRN
130 L=1 ' Current |ow LRN
140 M=0 ' Mddl e point

150 ' KY$ is the key being sought.

160 ' K$(x) is the matrix containing the index.
bon by

210 | F LEFT$(K$(H), 2)

iE KYS THEN 500 ' Found if true
220 | F LEFT$(K$(L), 2)

|

F

El

KYS THEN 600 ' Found if true

230 M= INT((HL)/2): ' Md point
IFN=L OR M= HTHEN 600 ' Doesn't exist

240 | F LEFT$(K$(M,2) = KY$ THEN 500 ' Found if true

250 | F LEFT$(K$(M,2) > LEFTS(K$(L),2) ' Make Minto
THENH=M ELSEL = M the next Hor L

260 QOTO 230 " Try again

270 ..

500 PRINT "KEY IS FOUND': STCP
600 PRI NT "RECORD DOES NOT EXI ST": STORP

FROM FI LES TO DATA BASES

Once the wuse of indices is nastered, it is only a short step frommatters of
file organization to nmatters nore resenbling data base structure. By using the sane
principals of indexing by keys and LRNs it is possible to create multiple indices for
one or nore files, (these indices are referred to as "inverted lists"). Each index is
based on a key from a separate field or fields of the record. As the various indices
are sorted in appropriate sequences, several paths through the file are available. By
one it mght be possible to read through in al phabetic order on salesnmen's nanmes, on
another by nmonthly sales totals. Wth a little imagination and the application to make
it meaningful, it would not be difficult to conbine characteristics of nore than one
file in a single index and relate data of one file to data in another

Anot her technique that does not qualify as a file organization but that is
useabl e for relating one record and file to another is that of the linked list, (the
use of pointers). Wth just two characters (using the MI$ function on a given LRL)
it is possible toinclude in one record the information for access to another record
on the sane file or even a different file. Chained files incorporate two such fields,
one to point to the prior |logical record and one to point to the next |ogical record.
Wth such a file, all newrecords are added to the end of the file, but the chaining
pointers are set to locate the record inits proper file sequence according to keys.
Li kewi se, deletions are executed by changing the appropriate pointers to bypass the
del eted record.

Both linked lists and inverted lists offer advantages that are inportant in
mai ntai ning and accessing data files. In business applications, where the storage and
retrieval of large anounts of data is the heart of the processing concern, the success

of application programming wll be largely determined by the effective and
know edgeabl e use of appropriate data structures. Wiether using Relative files or
Inverted lists or Sequential access nethods, the Mddel 11l wth LDOS as an operating

system has a good potential in business applications.

Page 25

LI SP | MPLEMENTATI ONS FOR THE Z80

by Lee C. Rice & Daniel J. Lofy

Lee Rice is an Associate Professor of Philosophy at Marquette University in MIwaukee,
Ws., and Dan Lofy is a former student of his with a degree in conputer science.

I. LISP AS A PROGRAWM NG LANGUAGE

LISP is a LISt Processing |anguage which is based upon John MCarthy's work on
nonnuneri ¢ conputation, first published in 1960. The first LISP system was i npl enented
at MI.T. and described in the LISP 1.5 PROGRAMMER S MANUAL. Since that time LISP has
becorme the | anguage of choice for wvirtually all work in artificial intelligence, and
has been inplenented on a variety of mai nfranes. The host conputer for LISP at
MI.T.

was the DEC PDP-10, but research work there soon led to the production of a new

m ni conputer, "The Lisp Machine", whose hardware took full advantage of LISP's
conput ational advantages. The LISP Machine provides a conplete LISP environnent:
operating system interpreter, editor, conpiler, and utilities, as well as a

machi ne- LI SP i npl enentati on of other programm ng |anguages such as FORTRAN --> all
witten in, and nanaged by, LI SP.

To a considerable extent, LISP remains uni que anong progranmi ng | anguages, possessing
a flavor and feel all of its own. |In 1973 during an invited talk at the University of
Texas at Austin, Jean Sammett said, "Programm ng |anguages can be divided into two
categories. In one category thereis LISP, in the second category, all the other
programm ng | anguages!" Today experienced programers woul d probably want to add APL
to this first rather exclusive category. Many programers argue that both APL and LI SP
provi de ideal operating environments for the mcroconputer. In the past two years no
fewer than two versions of each have beconme avail able for the TRS80.

This transition fromnmainfrane to mni/mcro nmentality is just beginning. In the old
days, nmachines were expensive, CPUtine was equally costly, and disk space was a
precious comodity. Programming |anguages |ike FORTRAN and COBOL were designed to
mnimze on-line programmng. Programrers would spend hours coding flowharts and
pseudo-code, then conpile their source code, pick up a long list of error nessages,
and return to their desks for debugging. But mnis and micros have turned these
priorities upside down: conmputer hardware, CPU tine, and di sk space are now anbong the
cheapest of comodities in data processing, and programer tinme anong the nost
expensive. The use of interpretive and highly wuser-interactive |languages is a first
step in the right direction. More and nore enhancenents are being made to BASIC, and
other interpretive | anguages such as LISP and APL are also conming into their own.

There are still two frequently heard nyths about LISP in the conputer industry: that
it is hard to learn, and slow wi th mathematical calculations. Both have a grain of
truth. For those who are used to programming in highly rigid programming |anguages
such as FORTRAN or PASCAL, LISP takes a lot of getting used to. Wile it is also true
that LISP was originally devoted to nonnuneric synbol manipulation, and handled nath
only haltingly, it is also true that nodern inplenentations of LISP have a
nunber - crunching ability second only to APL (APL, after all, was created to do with
nunbers just what LISP was created to do with synbols in general).

In terms of the mcroconputer environment itself, LISP can't be beat. It is oriented
toward programming at a termnal with rapid response. An extensive literature of
utility progranms is currently available. LISP uniformty also provides a very powerful
programming tool for the mcro user, once you becone acclimated to it. LISP functions
and LI SP data have the same form One LISP function can anal yze another, or even use
another. Indeed, thanks to its use of recursion rather than iteration, and its dynamc
all ocation of variables, LISP functions or prograns can be wused to alter thensel ves.
Most LISP inplenentations, for instance, come equipped with a LISP editor (usually
called EDIT, and witten in LISP). |If the user wi shes to enhance the editor with new
operations, this can be done sinply by typing "EDT EDIT" - i.e., one can use the
editor to edit the editor!

Page 26

Al of these powerful features are bought at a price: the user has to |learn sone new
habits, and unlearn sone old ones. For LISP users, the gains are well worth the price.
In the next section, we'll provide a very brief overview of LISP structures; and, in
the following two, we'll describe the two inplenentations of LISP available for the
TRS80 (both conpatible with LDOS).

I1. ELEMENTS OF LI SP PROGRAMM NG

English structures are nade up of words, and so are LISP structures, except that there
are two kinds of words in LISP: atons and lists. Atons and lists are called,
generically, S-expressions (SEXes). Atons can be English or nonsense words, but shoul d
not BEGN with a nunber; since nost LISP interpreters take any atombeginning with a
nunber as a nunber-atom A list is formed by enclosing any nunber of atons, separated

by spaces, wth parentheses. The null Ilist - "()" - containing no atons is also
identified with the atomN L. Unless told otherwise, the LISP interpreter accepts the
first atom in a list as a FUNCTION, and proceeds to evaluate it in the environnent

specified by the rest of the list.

Sone exanpl es of obvious LISP nuneric functions follow LISP's responses are indented
two spaces to distinguish themfromuser input:

(DI FFERENCE 3. 874 2.161)
1.713

(TIMES 9 3)
27

(PLUS (QUOTIENT 6 3) (TIMES 2 (MAX 2 4 3)))
10

(QUOTI ENT 3 2)
1. 333333

As the | ast exanple makes clear, LISP interpreters capable of handling floating point
arithnetic do all of the conversions for the user. Al functions are prefixed to their
argunments, and the interpreter evaluates innernpst parentheses first; so there are no
rul es of precedence to renenber.

The nost inportant LISP nonnuneric functions are CAR (which delivers the first el enent
of alist), COR (which delivers the list without its first elenent), and QUOTE (which
tells LISP NOT to evaluate a list). So:

(CAR (QUOTE(APPLE PIE)))
APPLE

(CDR (QUOTE(APPLE PI E)))
(PIE)

The function CONS takes two argunents to nmake a new |ist:

(CONS (QUOTE LI SP) (QUOTE (TAKES SOVE GETTI NG USED TO)))
(LI SP TAKES SOME GETTI NG USED TO)

The LAVBDA operator is a neans of binding variables locally to a function, and new
functions may be introduced using the LISP function DEFINE. So we could define the
functions FIRST, SECOND, and THIRD to pick out elenents of a list as follows:

(DEFI NE ((
* (SECOND (LAMBDA (LIST) (FIRST (CDR LIST))))
' (TH RD (LAVBDA (LIST) (SECOND (CDR LIST))))
" (FIRST (LAVBDA (LIST) (CAR LIST))))))
SECOND
TH RD
FI RST
(TH RD ' (KEEP UP W TH YESTERDAY))
W TH

Page 27

(SECOND ' (POP GOES THE WEASEL))
GCES

(FIRST ' (LISP IS FUN))
LI SP

As this exanple also nakes clear the single quote is a nmeans of avoiding too many
parent heses in nost versions of LISP.

To bring out the power of LISP s recursive techniques, we now define the function
FACTORI AL, which delivers the factorial of a given nunber. To do this we also need the
LI SP function COND, which is just the ordinary "I F' function of BASIC or FORTRAN. COND
sinply takes a list of SEXes, evaluates themfromthe beginning until it finds a True
SEX, and then returns the current value of that SEX W add two additional LISP
functions: ZEROP returns T (for "true") if a nunber is zero, otherwise NL (for
"false"); and SUBi nerely subtracts one froma nunber. Now here is our definition:

(DEFI NE ' FACTORI AL (LAVBDA (NUVBER)
(COND ((ZEROP NUVBER) 1)
(T (TIMES NUMBER (FACTORI AL (SUBL NUMBER)))))

To create this definition, all we needed to know was that, for any nunber N, the val ue
of FACTORIAL (N+1) is just (N+l1l) times the value of FACTORIAL (N). So we define the
value of FACTORIAL (0), and then the value of FACTORIAL (N) in ternms of FACTOR AL
(N-1); and let LISP take care of the bookkeeping:

(FACTORI AL (4))
24

(FACTORI AL (PLUS (QUOTI ENT 6 3) (DI FFERENCE 5 1)))
6

If we want to save the value of an operation we can use the LISP function SETQ which
stores the eval uated second argunent as the value of the first (noneval uated) atom

(SETQ CHARLI E (FACTORI AL (PLUS (QUOTIENT 6 3) (PLUS 1 0))))
CHARLI E

CHARLI E
6

Notice that, unlike LAVMBDA (which binds locally), SETQis a gl obal binder:
CHARLIE is now avai l able for |ater use.

For situations where iteration is sinpler or nore easily readable than recursion (or
where the beginning user needs to rely on techniques |earned from FORTRAN or BASI O,
LISP will also provide full iteration facilities via its GO and PROG features. GO
like the BASIC "QOTO', transfers control to another program segnent (which is a
character atom rather than a nunber in LISP). PROGis the LISP program generator,
which enables the creation of a sequertial series of functions, and passing of val ues
fromearlier to |later segnents. For programers who have worked in ALGOL, it is worth
noting that the syntax of LISP PROGrans is the sanme as that of ALGOL. PROG vari abl es
are initialized to NIL, evaluation proceeds fromleft to right and top to bottom and
transfer is acconplished via GO and the insertion of |abels (which are not eval uated).
The function RETURN of one argument forces exit fromPROGwith the val ue being the
value of PROG or (if none exists) NNL. Finally, since LISP itself is a LISP
structure, it can be used to describe and evaluate itself. The standard LI SP debugger
TRACE is witten in LISP, and used to debug user-created LISP PROGs or functions; and
simlarly for the LISP editor.

Lest it be concluded that LISP is all sweetness and light, a few weak points should be
noted. First, LISPis traditionally quite weak in disk 1/Q and it is typically only
capabl e of accessing LISP-created data files or workspaces. Minfranme enhancenments to
m cro versions of LISP have only begun to appear.

Page 28

Secondl y, the abundance of parentheses and the freeformsyntax (no |line nunbers, and
LI SP i gnores bl anks) nake some form of formatting desirable for the CRT (in order for
the user toread and edit |onger prograns), and an absolute necessity for printed
output. Here again, mainfrane versions of LISP are very strong, and mcro versions are
typically quite weak. For the experienced LISP programer, these weaknesses are not so
serious: a prettyprinter for LISP can be witten in LISP. But, for the LISP novice,
t hese shortconings are often painful.

W have only touched upon the bare bones of LISP programming here. A typical LISP

i npl ementation for micros will offer fifty or sixty built-in functions (including
PRI NT, READ, and a host of mathematical tools), debugger, editor, and a variety of
separate utilities. LISP, like APL, is also nmuch nore econonical on nenory usage than

BASIC or FORTRAN. On a 48K TRS80 | have never needed to chain prograns because of
failure to fit theminto a workspace. Further, since LISP nakes no distinction between
data and prograns, tape or disk access is usually quite rapid.

I11. SUPERSOFT LI SP

Supersoft LISP (available from Supersoft Associates, P.O Box 1628, Chanpaign,
Illinois 61820) is designed to be a standard LISP interpreter. Essentially it uses the
original (and now somewhat dated) MI.T. version LISP 1.05 with the followng
enhancenents: full floating point math, disk or tape 1/O and generous nunbers of PROG
features for the novice programmer. Updated nost recently in 1982, it is now known as
LISP 3.71, and is available for TRS80 Model | (tape or disk versions) and TRS80 Model
Il (tape or disk versions), as well as CP/M The Mddel 11l version is not the sane as
the Mbdel | version; and the disk versions of each contain nany di sk enhancenments over
their tape counterparts. The Mddel Il version is fully conpatible with LDOS, and the
Mbdel | version is supposed to be also (the authors have not verified this).

In Supersoft LISP each SEXis evaluated as input, which results in a genuinely
interactive environnent, and a pleasant atnosphere for conputing. The inplenentation
uses an association list (ALIST) to keep track of variable bindings, and an object
list (OBLIST) to keep track of functions currently in the workspace. The user has full
access to the OBLIST (delete or add functions), but the interpreter also does
bookkeepi ng; and an efficient garbage «collection routine is also inplenented. To
prevent catastrophe, there is no wuser access to the ALIST, which is continuously
updated by the interpreter.

Enhancenments to LISP 1.05 are worth noting. CHR PEEK, and POKE (same as the BASIC
functions) are fully inplenented. PRINT, PRINL (sane as PRINT without carriage
return), LPRINT, LPRINL, READ (for user input at termnal: sane as BASIC I NPUT), and
TERPRI (which outputs a single carriage return to CRT or printer) are al so provided.

The disk versions (Mddel | and Model 111) contain a BREAKpoi nt function for debugging,
standard di sk SAVE and LOAD functions, and a special disk-save function (SAVFNS) for
saving multiple functions together in a single disk file. SAVFNS is of particul ar use
where the wuser has created many short functions, since saving these together in a
single disk file saves disk space and disk access time. The author has al so generously
provided a LISP library of sixty additional functions. These include such niceties as
EXPT (exponentiation), RADIX (to change a nunber from base 10 to any other base), and
GENSYM (whi ch enabl es the user to generate new atons). Three larger prograns are al so
included on the disk. TRACE is a LISP debugging aid which enables the wuser to step
through the execution of any user-created function or program EDITis a LISP editor
(with full breakpoint facilities). The programDERIV is a mathematical one which takes
the derivative of an argunent wth respect to a single variable, and (optionally)
allows the wuser to generate a Taylor series for a given function. Al of these are
witten in LISP, and full source code is provided in the manual. The manual also
provides a conplete explanation of the sixty-five error nessages generated by the
interpreter, and (for the advanced programmer) details of the nachine representation
of LI SP.

Page 29

The manual is NOT an introduction to LISP, so it assunes that the user does have sone
introductory materials or text on hand. Al so a weakness is that the manual is not well
organi zed. Apparently, following each update of LISP, the author sinply added
appendices. The result, for instance, is that there are no | ess than three versions of
di sk SAVE given, and only the last is correct. This fact, coupled with a conplete |ack
of index, means that Supersoft would be well advised to prepare a conpletely new
manual from scratch.

The interpreter lacks any provision for prettyprinting output, so |ineprinter output
is alnost unreadable. The editor is also quite nodest and limted. For the novice
these are serious shortcomi ngs, but the manual does indicate procedures for editing
the editor, and a prettyprinter can be witten. On the positive side for the novice
programmer, the interpreter is generally tolerant if too few parentheses are added

and, while only the error nunbers are generated by the interpreter, the error nessages
listed in the manual are clear and explicit. The OBLIST is also unaffected by an error
condition; and, after such a condition occurs, the interpreter returns at once to
input level. H gh nenory cannot be protected when entering LISP, so the use of the
LDOS drivers and filters is also inhibited.

Supersoft LISP is as powerful a micro inplementation of LISP as we are likely to have
for along tine. Full use of it does require honmework for the novice LISP programmer
but one or two introductory books on LISP, coupled with some patience when confronted
with many error messages, will open up a new world of programm ng power.

IV. UCLISP

UOLISP is a recent inplementation of LISP, originating in 1980 and updated three tines
since (nmost recently in April of 1982), first «created at the University of Oegon

Unli ke Supersoft LISP, UOLISP is a subset only of Standard LISP, and does NOT i ncl ude
provision for floating point math. |Its support wutilities are, however, much nore
extensive than its Supersoft counterpart. These include the interpreter, a conpiler
for generating fast-load files or directly executable code, a programto |oad
fast-load files, an optimi zing phase for the conpiler, a function TRACE feature, a
structure editor and prettyprinter, another version of LISP called RLISP, and nany
support packages.

First, the interpreter. |t supports integers (range -4096 to +4095), strings of up to
255 characters in length, fixed point nunbers, and several additional LISP features
not supported by Supersoft LISP (dotted pairs, code pointers). A supporting package
(BIGNUM) inplenments arbitrarily large integers, and yet another package supports
vectors of arbitrary size (including vectors whose conponents are vectors, i.e.,
matrices). In addition to the standard LISP functions and predicates, the UOLI SP
interpreter conmes equipped wth conpiler support functions; and these are of
particular use to experienced assenbl er progranmers.

Unli ke Supersoft LISP, UOLISP provides a conplete conpilation process, which is
acconplished in two passes. The first of these translates LISP into a pseudo-assenbly
code called LAP ("LISP Assenbly Progrant), and the second translates LAP into absol ute
machi ne code, placing it into storage (for execution) or into a fast-load file for
later reloading. Optionally, a third pass optimzes the LAP before assenbling it.
Fast-load files are both relocatable and inplenentati on i ndependent. They can al so be
executed directly fromLDOS as standard /CVD files. The debuggi ng process takes place
at the interpretive level, which makes the LISP conpilation procedure faster and nore
efficient than FORTRAN, COBCL, and nost inplenmentati ons of PASCAL

The LISP conpiler is superior to nost other conpilers because of the ability of LISP
to manipulate LISP: the conpiler is witten in LISP, and conpiled LISP functions run
from10 to 50 tines faster than the same functions in the LISP interpreter (which
already run at about 5 times the speed of BASIC). The LAP assenbler is accessible to
the wuser, so fast assenbly | anguage routines and output to nonstandard devices can be
i npl emrented. An adj unct package for the optim zer also displays LAP code in assenbler
format.

Page 30

For new LISP programmers, the Structure Editor and Prettyprinter will be welcone
additions. The forner is a LISP program which permts entry of functions, execution,
and then saving as a disk file. This disk file can be accessed by all LDOCS utilities,
and even read by BASIC prograns. The Prettyprinter interfaces to the Structure Editor
so that LISP structures are automatically displayed in indented and easily readable
format.

There is an added bonus for the non-LISP programer. The | anguage RLISP (which is
witten in LISP, as if you didn't know already!) provides a palatable alternative to
LISP which |ooks sonething |like PASCAL. The |anguage features WH LE | oops, REPEAT
| oops, several different FOR |oops, and infix operators for math. For exanple, in LISP
the function NTH woul d be defi ned:

(DEFI NE ' NTH (LAVBDA (LIST N)
(COND ((EQUAL N 0) (CAR L))
(T (NTH (COR L) (DI FFERENCE N 1))))))

whereas in RLISP we have:

EXPR PROCEDURE NTH (LIST, N);
IF N=0 THEN CAR L
ELSE NTH (CDR L, N-1);

PASCAL users, or devotees of structured progranmng, will followthe RLISP program
flow easily. For those of us (authors included) who are LISP fanatics, the suggestion
that LISP could profit fromthe clunsy structuring of PASCAL anpunts to little |less
than heresy. Since structured programming i s, however, the current fad, RLISP neets
one possi bl e market demand.

If the programmer does not |ike PASCAL or structured progranm ng, there is yet another
alternative to LISP included as a utility. The little META translator is a very big
LI SP program which permts you to create your own progranm ng | anguage, specify its
syntax and howit is to be interpreted, and (optionally) convert it into assenbly
code. The manual contains a short exanple in META of a program which sinmulates a
pocket calculator, but there is in fact nolimt to what META can do. Experienced
programmers can even wite their own FORTRAN conpilers in LISP using META (if this
sounds fantastic, we should note that it has already been done, and the results nmark a
consi derabl e i nprovenent over the outdated M crosoft inplenentation of FORTRAN V).

On the negative side, the absence of floating point math nakes UCLISP seriously
deficient. Unlike its Supersoft counterpart, the UOLI SP manual is well organized and
very concise. It too assumes considerable famliarity wth LISP structures; and it
contains many sections devoted to assenbler programming. It should be noted that
UOLISP files are NOT conpatible with Supersoft LISP files. Because of the great
comrand over file formatting provided by LDOS, the LDOS user may reformat many
Supersoft LISP files for UCLISP input (provided they do not utilize floating point
math!); but the path from Supersoft LISP to UOLISPis a one way street. The UOLISP
package offers a solid inplenentation of LISP for any programmer. |Its conpilation
options wll appeal to the serious programmer, while its prettyprinter and utilities
will be attractive to anyone. UCOLISP runs under Model | or Mdel 111 LDOS, wth a
m ni mum of 32K (48K recommended), and requires at least one disk drive (two are
recommended). It is available fromFar Wst Systens and Software, Box 3301, Eugene,
O egon 97403.

V. CONCLUDI NG NOTES

LISPis an exciting language to learn, and a powerful |anguage to use. It has the
potential for offering a conplete progranm ng environnent, and both versions take full
advant age of both the Z80 and the TRS80.

Page 31

Four books dealing with LISP are particularly noteworthy for the beginning "Ll SPer".
LET'S TALK LI SP, by Laurent Siklossy (NJ: Prentice-Hall, 1976), offers an easy-to-read
introduction to the distinctive and nmost powerful features of LISP programm ng. LISP,
by P. H Wnston and B. Horn (MA: Addi son-Wsl ey, 1981), is a nuch |onger book which
provi des both an introduction to LISP programm ng and information on the
i npl erentation of LISP on nmany conputers. Ken Tracton's PROGRAMMER S GUIDE TO LISP
(PA: Tab Books, 1980) is just what it clains to be, and has nany useful LISP prograns
(as well as many typographical errors). Finally, THE LITTLE LI SPER by Daniel Friedman
(Chicago: Science Research Associates, 1974) provides the nost |ight-hearted and
fun-filled tutorial on LISP programming i magi nabl e.

FORTRAN, COBOL and LDOS JCL

The following article by den Rathke denpbnstrates how to sinplify the conpiling of
FORTRAN and COBOL prograns through the use of LDOS' s JCL.

Wrking with Radio Shack's or Mcrosoft's Fortran can be less painful if wused in
conjunction with the JOB CONTROL LANGUAGE found in LDOS. First use the ED T/ CMD nodul e
to produce a working programsuch as the TEMP/ FOR exanple that is in the front of
Radi o Shack's manual .

Next use the LDOS command BU LD to create a JCL file by issuing a BU LD FORTRAN
comrand at the LDOS Ready pronpt. Then, type in each line and press <ENTER>.

%dF. 1 = COWI LE and check for ERRCRS
2 = COWPI LE, generate code, EXECUTE

//KEYIN - PLEASE | NDI CATE YOUR CHOI CE
111

F80 =#FI LE#

WdF. 3 =QUT

4 = RECOWPI LE generate code EXECUTE
. 5=EDT
/1 KEYI N - PLEASE | NDI CATE YOUR CHO CE
/13
ITEXIT
/14
F80 #FI LE#, #FI LE#=#F| LE#
L80 #FI LE#-G
L80 #FI LE#- N, #FI LE#- E
ITEXIT
/15
/TED'T
ITEXIT
/12
F80 #FI LE#, #FI LE#=#F| LE#
L80 #FI LE#-G
L80 #FI LE#- N, #FI LE#- E
ITEXIT
111
% F. JOB aborted NOT A VALID CHO CE.
ITEXIT

Then use the DO command; DO FORTRAN (FI LEETEMP)

A KEYIN response of 1 will check for errors while conpiling the program TEMP/ FOR whi ch
was created using the EDIT/CMD nodule. If any errors are found at this point you can
still go back and nmake any necessary corrections when pronpted at the second KEYIN
pronpt. If the programis error free, RECOVPILING and EXECUTION are still available as
well as a QU T conmmand.

Page 32

A keyin response of 2 will then take control of the three remai ning nodul es (F80/ CVD,
L80/ CVMD, and FORLIB/ CVD) and process the file TEMP/FOR that was created under the
EDI T/ CVMD. The token in the JCL files #FILE# has to be set equal to TEMP, which is done
in the DO conmand where (FILE=TEMP). Then anytinme the token "FILE" is encountered it

will be replaced with the programnane TEMP. The inportant part here is that whatever
the nane of the Fortran programis given, that sane nanme will have to appear in the DO
comrmand line. In order to get a conplete listing of the TEMP programincluding the

code generated by the conpiler you can BU LD another JCL file which | call "PRI NT".

LBASI C

cLs

LPRI NT CHRS$(140)
cLs

o' s

LI ST #FI LE# FOR (P)
LBASI C

cLs

LPRI NT CHRS$(140)
cLs

o' s

LI ST #FI LE#/ LST (P)
LBASI C

cLs

LPRI NT CHRS$(140)
cLs

o' s

ITEXT

Once again use the DO command but this time execute it as DO PRINT (FlLE=TEMWP).
Al though the JCL file may be a bit cunbersone, the end result wll have a conplete
listing as well as each listing starting on its own sheet due to the LPRI NT CHR$(140)
enbedded under LBASIC.

One nore use for the JCL file can be found when you are sure that your programis bug
free and when you want to clean up your work diskette, a multiple KILL file could be
acti vat ed.

KI LL #FI LE#/ LST
KI LL #FI LE#/ REL

DO KI LL (FI LE=TEMP)

This file will only leave you with the original TEMP/FOR and the TEMP/CVD, so be sure
that you don't need the other two files (especially TEMP/LST which gives you the code
listing generated by the conmpiler.) These JCL files and commands were created using
the 5.1.3 revision.

As shown in a previous exanple with FORTRAN, the JCL function can be used with great
ease when performing multiple or related functions. 1In the next exanple a JCL file is
used to control the COBOL conpiler nmarketed by Radi o Shack, witten by Ryan MFarl and.

The purpose of this application is to let the operator "take control" of the wvarious
options that affect conpiling of a Cobol program

Notice the use of a non nuneric character "E' in answer to a KEYIN (actually any non

nunmeric character or a nuneral >5 will obtain the sane result.) This response wll
bypass all other options or KEYIN(s) and will directly start EXECUTi ng.

Page 33

1 Conpile (list to Video)
2 Conpile (list to Video & Printer)
3 Conpile (list Errors only to Printer)
4 Conpile (X reference to Printer)
5 Conpil e "Debug" source lines
E EXECUTE

/1 KEYIN - YOUR CHO CE

/11

RSCOBOL #FI LE# (T)

WF. 1 QT

. E EXECUTE

/1 KEYIN - YOUR CHO CE

/11

ITEXIT

/12

RSCOBOL #FI LE#
WF. 1 QT
. E EXECUTE
/1 KEYIN - YOUR
/11

[1EXIT

K

RSCOBOL #FI LE#
WF. 1 QIT
. E EXECUTE
/1 KEYIN - YOUR
/11

[1EXIT

/14

RSCOBOL #FI LE#
WF. 1 QT

. E EXECUTE
/T KEYIN - YOUR
/11

ITEXIT

/15

RSCOBOL #FI LE#
WF. 1 QT
. E EXECUTE
/1 KEYIN - YOUR
/11

[1EXIT

111

RUNCOBOL #FI LE#
[1EXIT

(T P)

CHO CE

(P B

CHO CE

(P X)

CHO CE

(D

CHO CE

Use the DO command to execute the above JCL program DO COBOL (FI LE=CALCXMPL)

John Mul i

ns tal ks about

LDOS and a HAYES SMART MODEM

the Hayes Smart Mbdem and LDOS. Fromthe nunber of calls we

get, it appears that the Hayes nodemis pretty popul ar.

LDOS and a HAYES SMART MODEM nmake a very good pair, and with a program to

i ssue conmmands
carrier is received,

nodem wi | |

on the other end - will

fromDOS and a device filter to disable output to the nodemuntil a
and a snall anmount of linking, a host systemis in operation. The

detect the presence of an incomming call, and if it finds a carrier signal

set the carrier detect input of the RS-232.

Page 34

Then if the *DO and *KI have been linked to the Comm Line (*CL), the caller (from
mles away) can issue keyboard commands and see display output. This sinple system
begins with a command sending program MODCVD. Al it will dois allow you to give the

nodem a line of conmmands. It is assunmed at this point that the RS232 driver is in
place at the time MODCMD is wused. For exanple, MODCMD AT T D 555-3344 <enter> will
tell the nbdem to dial (using tones) 555-3344. The format of the line is as follows
(the """ characters are used to mark the separate fields within the comrand):

MODCMVD ' *devi ce name <space>''digit delay <space>' command

"*device name' will default to *CL, and the 'digit delay' will default to 3. The del ay
will allowthe user to see the nodenis responses to the commands. The second program
is afilter so the RS232 driver will be ignored until a carrier is detected. Wthout
this filter, the display will be slowed dowmn to the speed of the driver (probably 300
baud) even if no one is online. The nmodem wll think that anything it receives when
not online is a command, if it receives other characters it can lead to unpredictable
results. The next listing is a small JCL file to inplement these commands in the

correct order. The nodem commands can be any you wi sh, but they nust be issued before
the online filter, and the online filter must be in place before the |inks.

.reset nodemto power-up configuration

MODCVD AT Z

.set up to dial with tones, ignore backspaces
.have a 2 second escape guard, answer on 5 rings
MODCMD 4 AT T S5=138 S12=100 S0=5

FILTER *CL ONLINE send output only if online
LINK *DO *CL copy output to *CL if online

LINK *KI *CL accept input fromnodem as kbd i nput
.ready to answer

00100 TITLE ' <Mbdem Comrand Cut put >'
00110 ;

00120 ; MODCVD will allow the user to send a line
00130 ; of commands to the Hayes Smart Mdem |If
00140 ;desired, it will wait for a response for
00150 ;a variable Ilength of tine.

00160 ;

00170 ;format:

00180 MODCMVD | *dev <sp>| | del ay <sp>| <command> <enter >
00190 ;*dev if not included will default to *CL
00200 ;delay will default to 2

00210 ; if delay is O no wait will occur
00220 ;command is a command to the nodemex. AT Z
00230 ;

00240 ; MODCVD 0 AT Z

00250 ;

00260 ORG 5200H

00270 *GET EQUATEL/ EQU

00280 ;

00300 START LD A (HL) ; check input |ine
00310 CP tox

00320 JR NZ, CL

00330 I NC HL

00340 LD A, (HL)

00341 CP 'z

00342 JR C $+4

00345 AND 5FH

00350 LD (DCB+1), A

00360 I NC HL

Page 35

00370
00371
00372
00375
00380
00390
00395
00400
00410
00420
00430
00435
00440
00450
00451
00460
00470
00480
00490
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00645
00650
00651
00652
00653
00660
00670
00680
00690
00700
00710
00715
00716
00720
00730
00740
00750
00760
00761
00762
00770
00780
00790
00800
00810
00820

OPENS

LOOP1L

LOOP2

TST

TCB

TASK

A (HL) ;different device
o

C $+4

5FH

(DCB+2) , A

HL

HL

AZKHL)

NC, OPENS
H

;adigit?

'0'-1 rnoramize 1..10

@PEN ; open dcb

A, ;task sl ot 8

@ur

ODH

Nz, LOCP1

B, 3

TST

BC

BC, 0000

@AUSE

BC

LOOP2

A8

@RVITSK ; REMOVE TASK
@GXT

TASK

0000, 0000, 0000
DE

I X

AF

Page 36

00830 PONT LD DE, 0000

00840 CALL @=ET
00850 CALL NZ @SP
00860 POP AF

00870 POP I X

00880 POP DE

00890 RET

00900 DCB DEFB ' *CL', ODH
00910 DEFS 32

00920 BUFF EQU $

00930 END START
00100 TI TLE ' <ONLI NE/ FLT>'
00110 ;

00120 ; This will filter the @ut such that the
00130 ;carrier of a distant mbdem nust be present
00140 ;for output through @ut. Note: @tl will

00150 ;still send messages with or without cd set.
00160 ;

00170 ORG 5200H

00180 *GET EQUATEL/ EQU

00190 ;

00200 START PUSH DE

00210 POP | X ; get dcb

00220 LD H, (I X+2) ; high byte of add
00230 LD L, (1 X+1)

00240 LD (GO+1) , HL ;save in routine
00250 LD HL, (4049H)

00260 LD DE, LAST

00270 LD BC, LAST- FI RST

00280 EX DE, HL

00290 LDDR

00300 EX DE, HL

00310 LD (4049H) , HL ; save new nem top
00320 I NC HL

00330 LD (IX+1),L

00340 LD (1 X+2),H and driver add
00350 LD HL, GVBG

00360 CALL @SPLY

00370 JP @XT

00380 GWBG DEFB "Filter now inserted' , ODH
00390 FI RST EQU $

00400 NOP

00410 JR C, 0

00420 JR NZ, GO

00430 PUSH AF

00440 I N A, (OE8H) ;carrier det?
00450 BIT 5A

00460 JR Z, 01

00470 POP AF

00480 RET

00490 POP AF

00500 GO JP 0000

00510 LAST EQU $

00520 END START

Page 37

CONFESSI ONS OF A MACHI NE LANGUAGE ADDI CT
(or, Msery Loves Conpany,)
(or How to Convert Software to Run Under LDOS)

Ray Pel zer wote the Visicalc patches published in the July '82 Quarterly. Here is his
story on how those patches were developed, and instructions on fixing assenbly
| anguage prograns to run with LDOS and to take advantage of its different features.
The actual patches are listed at the end of the article, including those for the new
VC- 160Y0- T83 ver si on.

"H , what did ya do | ast night??"
"Oh, | started disassenbling VisiCalc and..."
"WH A AAAAAT ?2?2?"

Yep, that's the kind of reaction | got when | started working on the patches for Mdel
3 Enhanced Visi Calc (LDOS Quarterly, Vol 1, No. 5). A lot of people would like to try

the sane thing, but are a Ilittle afraid to try their hands at it. | wasn't sure I'd
have the nerve to finish once I'd started but, by applying the little "tricks" that
I"ve picked up as tine passed, it was nuch easier than even | expected. For that
reason, I'd like to pass on sone of those tricks to you, so that you can better

under stand machi ne | anguage progranm ng, and |learn sone of the «classy techniques used
by others, as well as hel p you custom ze nachi ne | anguage prograns on your own.

Since there's no possible way to teach you Assenbler and Machine Language in a
magazine article, I'mgoing to have to assune you are already a "hacker" of sorts (or,
as sone people in Radio Shack prefer, "Billy Bytehead"). You'll have to be able to
conprehend the machi ne | anguage level of programming to a fair degree (preferably,
you'll be able to recognize sonme instructions at a glance of the hex code for speed' s
sake), and be able to run Editor-Assenbl er and Di sassenbl er prograns. O course, |'ve
been extrenmely pleased with both the M sosys products, EDAS 3.5, and D sassenbler 1.0,
but on the latter, one small deficiency in the programis the inability to disassenble
directly froma disk file - only from nachine |anguage in nmenory. Knowi ng what | know
of Roy, though, he'll probably have a new version ready to do just that by the tine
you read this article. In the neantine, | keep an old copy of the Apparat di sassenbl er
(from ny wet-behind-the-ears days) on hand for those special cases. For this article,
I"1'l refer back to the work | did on VisiCalc, and explain HOVI did it.

Probably the nmobst inportant thing you can get froma disassenbly is the location
cross-reference (usually abbreviated to cross-ref or xref). As the disassenbl er does
its thing, it creates a table of menory locations it TH NKS have been referenced by
the program (nore on THAT later) for display or printout. You'll absolutely NEED this
table in a later step if you are nodifying an existing program (to make sure you don't
cause another part of the programto crash due to your changes).

After you get a printout of the cross-ref (the one |I did for VC cane out to 42 pages
for the cross-ref alone!), you should also get a HEX/ ASCII dunmp of the program such
as LDOS's LIST conmmand wusing the (HEX P) parameters. NOW you'll see what | nmeant
about what the disassenbler THINKS are references to nmenory locations in the program
If you ve ever looked at a disassenbly that seens to have a |lot of neaningless
transfers fromone register to another, with a few JR NZ, xxxx junps thrown in, |ook at
those nenory | ocations on your hex dunp. You'll nost likely find that those areas are
| oaded with text, because the disassenbl er mistakenly translates the characters to the
LD r,r' series of op codes that they match. As for the JR NZ stuff, those are the
bl ank spaces between the words! Once you have all this sorted out, you can "whittle
down" the cross-ref list by crossing out the neaningless references |ike those.

Next step - look for the obvious. In VC | wanted to find out something about disk
1/O so | looked for all the standard references relating to disk I/0 (4420H, 4424H,
4436H, 4428H, etc.). A so, take a close ook at anything you don't recognize. This is
how | found that VC was conking out at the RAMDIR call in TRSDOS 1.3, since in LDOS
5.1.2, that call to 4290H (Mbdel I) was atripinto the la-la land of SBUFF$, the
systembuffer, and in the Mbdel [IIl version, the RAMD R call had not been installed

Page 38

until wversion 5.1.3. Wile you're at it, keep a close watch out for funny things |like
ROM calls. If you ve ever tried to use a Mbdel 3 ROMcall that doesn't exist on a

Mbdel 1, you know what |'m talking about. |In sone cases, especially for short
routines, it mght be easier to just duplicate the subroutine directly into the
programin order to nake it transportable, but this will be a try-and-see situation.

Now, for the first fewsteps of the nodification - |ooking for the proper value of
H GH$, and the keyboard input alteration. VC comes with its own keyboard driver, so
once that was disabled, | had a nice chunk of free space for inserting the H GH

check. Here, the old LSl patches for Mddel 1 VC gave ne a hand. The first thing |I had
to look for was a reference to 3801H, the keyboard's menory-napped area. That found, |
backed up to what |ooked like it could be the beginning of the subroutine - the first
byte following a C (RETurn). Looking up THAT address in ny cross-ref, | was pleased
tofind it's reference quickly, and in only one place. Now, | could change THAT call
to a call to 002BH, the ROM keyboard call.

Next came the actual HGH$ check. In the original program the Md 3 H GI$ storage
poi nt of 4411H was referenced twice, both times in the first sector of the file. Those
two references were swapped out for a call to the area where the old keyboard driver
had been. Now, as a short-cut, | |ooked back to LSI's fixes for the basis. Later on, |
had to add sonme extra goodies in this area during the check, because the disk 1/0
vectors | used were in different places on Model 1 and 3, and this was as good a pl ace
as any to do the switching. However, since that stuff was yet to be done, I did a
shorter tenporary patch for now that only did the H G4$ check.

Wth two of the nore critical parts out of the way, we nowreturn to the disk 1/0 |
first tried each and every one of the commands and nmde a checklist of which ones
mal functi oned and which ones didn't. The only two | found that failed were printing to
the RS-232 and doing any disk file work in which | did not specify the fil espec, but
let VClook for me. Well, | didn't worry about the RS-232 problem because it used ROM
calls to the new Mbd 3 system ROM which doesn't even exist on the Md 1 (see what |
was tal king about wearlier?). Besides, anyone using LDOS who needs to print to the
RS- 232 has probably done a SET *PR TO *CL anyway, so why repeat the effort?

The file work then becanme the problem At this point, DEBUGto the rescue! DEBUGis a
vastly underrated utility which can be worth it's weight in gold. If you don't know
how to use it, LEARNI! | can't stress enough how rmuch easier it will rmake your work.
The first thing to do is to set a breakpoint in your program The question is, where
to set it? Here conmes another little hint: VC and many other prograns enploy a clever
little trick - a lookup table for the commands. You can find in your HEX ASCI1 dunp a
bunch of letters, each separated by 2 bytes, and these letters correspond to the VC
comrands. Wat they do is (1) point to the beginning of the table after getting the
command, (2) conpare the command to the character in the table it's pointed to, (3) if
there's a match, put the NEXT TWD bytes of the table into H,, and JP (HL) or, (4) |if
NOT a match, nove ahead THREE bytes in the table to the next command and repeat until
you find a nmatch or hit the end of the table. Owce | found where /L (for file | oading)

jumped to, | set a breakpoint there, and started running. As soon as | typed /L, |
dropped back to DEBUG and single-stepped ny way along. This part can be rather
tedious, but rewardi ng when you finally get results. As | went along, | made witten
notes so that when the program finally D Dcrash, |1 could restart and set ny

breakpoint farther along so | didn't have to repeat all the sane single-stepping that
| already KNEWwas correct.

When | got to the subroutine that crashed the system out canme the disassenbl er again.
| disassenbled the subroutine's general nmenory area (just how nuch YQU disassenble

wi Il depend on the program your nood, and how nuch paper you're willing to use up),
and any other subroutines that were called by it. That done, | had to run back to the
cross-ref to find out if any other portions of the program used parts of that sane
subroutine. Unfortunately, they did. | 1ooked for the entry points, and made notes

that all nmy changes had to stay before those parts of the subroutine so as not to ness
up those other entry points.

Page 39

VC s use of the RAMDIR call presented a problem because LDOS uses @NAME, which
returns whatever is in a particular directory slot, whether it 1is an active slot or
not. TRSDOS's RAMDIR returns 00 bytes if the directory slot is unused. Now, | had to

find a way to tell if the directory slot was used. Also, if | had a doubl e-sided disk
or a hard disk, | had to be sure that | checked all possible directory slots. The
answer was sinple - look at the HT sector in the directory track, and only read

directory slots that had non-zero bytes in the matching H T position!

That, however, created another problem - where to drop the HHT into nenory for fear of
destroying a table already in nenory? Well, VCHAD to have a disk [1/O buffer of it's
own, so why not use that? After all, nothing would go there unless | asked for a file,
and once | did, I wouldn't need the HT anynore, anyway. It was decided. A quick
gl ance back at the cross-ref told me where a file open/close/read operation was, and |
knew that the last LD HL, xxxx conmand before that was to point to the 1/0 buffer.
Buf f er found, back to work.

VC uses a CALL 028DH to see if the BREAK key was hit during scan, so | had to mimc it
by looking at bit 3 of 3840H in the keyboard menory. For some odd reason, VC chose to
save ALL registers when only the AF registers were changed, so | cut out the extra
PUSHes and POPs, thereby saving a few bytes.

Once VC has a drive nunber to search, | had to see if the drive was in the system so
I needed a call to @KDRV. This would be one of the addresses to change between Md 1
and 3, so it would later be nodified in the HHGH testing routine. One other point was
that TRSDOS and LDOS use the B & Cregisters in opposites on @KDRV, D RCYL, and
@NAME, so | had toinclude a a little routine of:

LD A C
LD C B
LD B, A
RET

to do the rotations.

Assuming the drive was in the system (if not, | skipped to the next drive or fell back
out if all drives had been tested), | now wanted the H'T sector. A call to DRCYL to
find the directory, and RDSSEC to read systemsector #1 (the H T sector) into the VC
di sk buffer, and that step was over. Now, | entered a routine to |ook through that
sector for a non-zero byte. Once found, a call to @NAME to get the filespec. Only one
nore stunbling block - what if it was a directory EXTENSION (FXDE) rather than the
PRI MARY entry (FPDE)? Well, if it's an FXDE, @NAME thoughtfully drops back 00 bytes,
so that becane the last test to make. Actually, the second-last test. W finally had
to test to see if the files had the /VC extension (or /D F or /PRF, depending upon
where the call originated) and pass it back for approval if it D D match, but that

step was identical to the original routine already in the program just re-located. |If
I didn't like the nane that was chosen, | returned to ny routine (with the needed
regi sters saved, of course), and continued until all 256 directory entries had been
checked, and then noved on to the next drive for a repeat of all the little fun and

ganes above.

A word of caution... if you don't know what a certain piece of code does, LEAVE IT
IN'T | found a flag being tested that | didn't understand, so | took it out. Bad nove!
It turned out that it was used in another part of the program and the program
hi ccuped when | took it out. Sonetines you CAN take that kind of stuff out, but be
careful! Anyhow, a little nore testing, and the results were successful. Now, back to
the HGH$ routine to add the changes to alter the DOS vectors that varied between
Model 1 and 3.

Page 40

Al nost done except for the /X- screen-refresh. This one was nore trial-and-error than
anything else. | found a sinmlar lookup table with all the characters that could
legally followthe /X, so |l |looked at the 2 bytes after the dash... they pointed
directly to a RETurn instruction. Now, all | had to do was find the point at which the
screen was refreshed nornally, and put THAT address in its place. This turned out to
be easier than | planned. Running back to DEBUG | re-loaded and singl e-stepped from
the beginning of the program past the H G¥ check and the nmenory-clearing routine,
until | got to the point where the screen was first displayed. That found, | patched
that address into the /X- slot of the table for testing. This was sinple enough to do,
since all it needed was to | oad sone data onto the sheet, issue the /X- command, and
check for any change in the data. No change neant | had the right spot (O at |least A
right spot!).

Finally, alittle alteration of the version display to note that it had been patched,
and | was ready for a final conplete assenbly of the changes to get all the addresses
and bytes to put into PATCH format. A quick run through LSCRIPT to create the /FIX
file and I was done.

Wth all this work out of the way, it was i mensely easier to nake the patches for the
newer version of VC (version VC 160Y0-T83 vs. the older VC 150Y0-T8). First, | did a
HEX/ ASCI | dunp of the new file and just |ooked for the novenents of code. Fortunately,
a few bytes of code were added near the begi nning which noved everything down a few
bytes, but none of the critical areas seened to be altered. A re-assenbly of the old
code at a neworigin, and everything worked (Ah, if only EVERYTH NG were that

sinple...).

When vyou're done, be absolutely certain that you nmake notes on what features you' ve
changed, and any inportant features you might have added to the program After all, we
all know how i nportant docunentation can be.

That's how it was done! | realize that not everything |l did wll apply to every
situation or program but the techniques here can be adapted for nmany uses. |If you're
just starting to learn machine |anguage, some of the above may have been over your
head. If you're an old pro, it may have bored you. In either case, | hope |I've passed
on sone little tricks which you may not have known that will nake |life easier when it
cones tine to disassenble a programfor corrections, or just "souping-up". By the way,

you'll find below a reprint of the patches for VC version 150Y0 AND the patches for
version 160Y0 to run on LDOS 5.1.2. If you want to nove it to 5.1.3, just change the
"21 90 42" in the X 5586' (or X' 5591') line into "21 09 42" to nove the @XDRV call.

.Patches to Mddel 3 Enhanced VisiCalc to run on
.LDCSs 5.1.2. By Ray Pel zer, partly based on the
. Model 1/3 patches (c) 1981 by Logical Systens, Inc.

. These patches will neke VisiCalc 3 run on a Mdel 1 or 3.
.*NOTE* FOR VI S| CALC VERSI ON # VC 150Y0- T83 * ONLY*!

Patch in 002B kybd scan for typeahead, etc.

X 557F =CD 2B 00

.Al'l the stuff for proper H GH$ and Mbd 1/ 3 conversi on.

X 521A =CD 86 55

X 52A6' =CD 86 55

.Note: for LDOS 5.1.3, change 90 to 09 in the line bel ow
X 5586' =3A 25 01 FE 49 3E 00 2A 49 40 CO 21 90 42 22 A8 55
X 5597' =21 64 4B 22 4A A7 21 93 42 22 69 A7 2A 11 44

.Part of the @KDRV call to see if a drive is active.
X 55A7' =CD B8 44 C8 CD 51 A4 E1 C3 3F A7

: Add the ever-popul ar "/ X-" screen-refresh comrand.
X 7062' =5E 52

Page 41

. Change the /V version display

X 9235'=28 63 29 20 31 39 37 39 2C 38 31 20 56 69 73 69
X 9245' =43 6F 72 70 20 56 43 2D 31 35 30 59 30 2D 54 38
X 9255' =33 20 20 4C 44 4F 53 20 62 79 20 52 61 79 20 50
X 9265' =65 6C 7A 65 72

.Now, meke the changes to scan fil especs properly in LDOS
W]en using a /S command withQUT an explicit fil espec.

' AMA3D =F5 3A 40 38 E6 04 28 06 CD 2D A4 F1 37 C9 CD 35 A4
AAE =F1 B7 C 79 F5 78 4F F1 47 9

A720' =22 88 B5 CD 35 A4 3A 8F B5 FE FF 47 20 02 06 00
A730' =CD 43 A7 DO CD 3D A4 38 06 04 78 FE 08 38 F1 3E 03
A741' =37 C9 CD 51 A4 CD A7 55 CD 65 4B 1E 01 21 D6 B5
A751' =CD 45 4B CD 51 A4 20 55 21 D6 B5 7E E5 B7 C5

A760' =28 3A 11 D6 B6 CD 51 A4 CD BB 44 EB 7E B7 28 3E
A770' =7E FE 3A 28 39 FE 2F 23 20 F6 ED 5B 8A B5

A77E =06 03 1A FE 20 20 05 7E FE 3A 18 07 BE 20 21 13 23
A78F =10 EF 28 0C 3A 91 B5 B7 28 03 AF 18 02 3E 01 BY
A79F =20 OB CD 17 A8 38 03 C1 E1 C9 CD D8 A7 18 03

A7AE =CD C8 A7 Cl 0C E1 23 CA 3F A7 18 A2

. END OF PATCH

. Patches to Mddel 3 Enhanced VisiCalc to run on LDOS

. These patches will neke VisiCalc 3 run on a Mddel 1 or 3.

. **NOTE** THESE PATCHES FOR VI SI CALC # VG- | 60Y0- T83 ONLY**
.Patch in 002B kybd scan for typeahead, etc.

X 558A =CD 28 00

.Al'l the stuff for proper H GH$ and Mbd 1/ 3 conversi on.

X 521A =CD 91 55

X 52B1' =CD 91 55

.Note: For LDCS 5.1.3, change 90 to 09 in the line bel ow
X 5591' =3A 25 01 FE 49 3E 00 2A 49 40 CO 21 90 42 22 B3 55
X 55A2"' =21 64 4B 22 6B A7 21 93 42 22 8A A7 2A 11 44

:Part of the @KDRV call to see if a drive is active.
X 55B2' =CD B8 44 C8 CD 6F A4 E1 C3 60 A7

: add the ever-popular "/ X-" screen-refresh comrand.
X 7075' =69 52

. Change the /V version display

X 924E =28 63 29 20 31 39 37 39 2C 38 31 20 56 69 73 69
X 925E =43 6F 72 70 20 56 43 2D 31 36 30 59 30 2D 54 38
X 926E =33 20 20 4C 44 4F 53 20 62 79 20 52 61 79 20 50
X 927FE =65 6C 7A 65 72

.Now, meke the changes to scan fil especs properly in LDOS
.When using a /S conmand wi thQUT an explicit filespec.

' M5B =F5 3A 40 38 E6 04 28 06 CD 4B A4 F1 37 C9 CD 53 A4
A46C =F1 B7 C 79 48 47 9

A741' =22 A9 B5 CD 53 A4 3A BO B5 FE FF 47 20 02 06 00
A751' =CD 64 A7 DO CD 5B A4 38 06 04 78 FE 08 38 F1 3E 03
A762' =37 C9 CD 6F A4 CD B2 55 CD 65 4B 1E 01 21 F7 B5
A772' =CD 45 4B CD 6F A4 20 55 21 F7 B5 7E E5 B7 C5

A781' =28 3A 11 F7 B6 CD 6F A4 CD BB 44 EB 7E B7 28 3E
A791' =7E FE 3A 28 39 FE 2F 23 20 F6 ED 5B AB B5

A79F =06 03 1A FE 20 20 05 7E FE 3A 18 07 BE 20 21 13 23
A7B0' =10 EF 28 0OC 3A B2 B5 B7 28 03 AF 18 02 3E 01 87
A7CQ0' =20 OB CD 38 A8 38 03 C1 E1 C9 CD F9 A7 18 03

A7CF =CD E9 A7 Cl1 0OC E1 23 CA 60 A7 18 A2

Page 42

LDOS DI SK DRI VE CONTROL LI NKAGES

by Bob Bowker <70250, 306>

One of the main reasons for the portability of so nuch of the CP/Msoftware on the
mar ket today is their use of a systemvector address which is comon to all versions

of CP/M or "CP/MIook-alikes". Systemroutines nmay vary in length or actual nenory
| ocation from one version to the next - in fact, they may be totally different from
each other - yet both systens will be able to handle the same software because of the

singl e systemvector.

Here's how it works in CP/M To display a byte on the CRT, for exanple, the user |oads
the byte into the DE register pair, loads function nunber 02 (Wite to console) into
the Cregister, and CALLs 0005H To send that sane character to the line printer,
function nunber 05 (Wite list) is loaded into the C register, and a CALL O005H is
executed. And so on..... CP/M2.2 and MP/M 1.0 define 36 different functions, including
disk I/Q which are accessed in this way.

Next to programportability, the biggest advantage to using a single systementry
point is device independence. The system vector at 0005H sends the caller into upper
nmenory where the individual device drivers and interface code are |ocated. Whet her
the printer attached to the systemis a high speed dot matrix on a parallel port, or a
tel etype on a serial port, nakes no difference to the caller's program- the byte to
be printed is passed in the sane register pair in both cases, and the C register
contains a 05 in both cases. Sinmilarly, neither type of disk drives, nor the protoco

of the terminal, is of any inportance to the caller's program- in every case, the
needs of the individual ©peripherals are net by the system drivers, freeing the
caller's programof those responsibilities.

The actual routines to which the user's CALL is vectored are at different addresses
dependi ng on system version nunbers, what peripherals are attached, nenory size, etc.,
but the user does not have to know the exact location - the system maintains 0005H as
a vector to the entry point. LDCSs has taken the first steps in this direction by
applying these principles to 16 disk I/O functions (see the Manual, page 6-15). Al 16
functions are accessible by passing a function nunber in a CALL to the driver program
for that particular disk drive, regardl ess of whether the drive is a floppy or hard
di sk, 5" or 8", etc.

Sonme of the 16 functions are also available to assenbly |anguage programmers as
"primtives" - that is, via CALLs to unique RAM addresses. However, each of these
primtives does little nmore than load the function nunber in the B register, |oad the
appropriate driver programaddress in the 1Y register pair, and JUW there. One very
i nportant point: none of these primtives is a "fixed" address as of 5.1.2 - that is,
they may nove in future releases. The location of the Drive Code Table, however, is a
fixed address - DCT$ = 4700H. The prinitives are listed in the follow ng table, along
with their linkage function nunbers:

ADDRESS CODE NANVE OPERATI ON
OOH NOP tests if drive is assigned in DCT
4754H O1H SELECT new drive/return status
02H INIT set cyl 0, RESTOR and set side O
0O3H RESET reset FDC

04H RESTOR nove head to cyl 0O
05H STEPI N nmove head "in" one cylinder

475EH 06H SEEK seek a specified cylinder
44B8H 07H TSTBSY test drive for busy
08H RDHDR read one sector header info
A777H 09H RDSEC read one specified sector into nem
4772H 0AH VERSEC verify that one sector exists
OBH RDCYL read one whol e cyl i nder

Page 43

Let's look at a couple of exanples. The following code wll read a sector from
di skette into a buffer in RAM

00100 READ1 LD A, (DRI VE) ;get drive nunber
00110 LD CA ;into proper register
00120 LD A, (CYLNDR) ;get cylinder nunber
00130 LD D A ;into proper register
00140 LD A (SECTOR) ;get sector nunber
00150 LD E A ;into proper register
00160 LD HL, BUFFER ;point to storage area
00170 CALL A4777H cand read it in.

00180 RET

This routine assunes only that (DRIVE), (CYLNDR), and (SECTOR) are nmintained by the
program whi ch CALLs READ1. The following code will do the job, too:

00200 READ2 LD B, 09H ; i nkage code for RDSEC
00210 LD A, (DRI VE) ;get drive nunber

00220 LD CA ;into proper register
00230 LD A, (CYLNDR) ;get cylinder nunber
00240 LD D A ;into proper register
00250 LD A (SECTOR) ;get sector nunber
00260 LD E A ;into proper register
00270 LD HL, BUFFER ;point to storage area
00280 LD 1Y, 4700H ;point to drive's DCT
00290 JP (ry) ;and read sector in.

Change the nunber | oaded into the B register inline 200 to an ODH, and this sanme code
will WRITE that sector; make it an OAH, and this sane code will VER FY that sector;
and so on through all 16 available functions. Note that the RETurn at the end of the
LDCS routines will send the program back to the code which called READ2. The DCT is a
table residing from4700H to 474FH, each of the 8 possible drives is allocated 10
bytes in which the information about that drive is stored (see the Manual, page 6-11,
for the details). The first three bytes of each drive's DCT forma JUW to the driver
which controls it; if the drive isn't active, a RET is in the 1st byte instead of the
JP (a C9H replaces the C3H - the driver address in relative bytes 1 and 2 is always in
pl ace, whether the drive is active or not).

In the above exanple, relative drive O is assunmed; the vector to its driver programis
|ocated at the start of the table, at 4700H. This nethod of disk [/Ois not
necessarily "better" than wusing the prinmtives, but in many |ong or conpl ex prograns
it could save a lot of bytes. Consider the follow ng subroutine:

00300 SuBl LD A, (DRI VE) ;get drive nunber
00310 LD CA ;into proper register
00320 LD A, (CYLNDR) ;get cylinder nunber
00330 LD D A ;into proper register
00340 LD A (SECTOR) ;get sector nunber
00350 LD E A ;into proper register
00360 CALL GETDCT :load DCT address in |Y
00370 JP (1Y) ;and go do the job.
This code serves as a general disk 1/O routine; it will performthe function defined

by the contents of the B register when it's CALLed. For exanpl e:

00400 PROG LD B, 09H ; i nkage code for RDSEC
00410 LD HL, BUFFER ; point to storage

00420 CALL SUB1 ; and go do it

00430 BACK R ;conti nue on.

Page 44

Here again, the RETurn at the end of the LDOS
your code. Wth regard to the CALL GETDCT i
GETDCT is EQUated to 478FH, LDOS wil |
the drive specified in the C register)
not a "fixed" address

do the work for you
into the 1Y register pair;
as of LDOS 5.1.2 (it may nove

routines will
n line 360,

send the program BACK in
you have two choices: if
- load the DCT address (for
or, since 478FH i s
future rel ease), you can

in a

i ncl ude your own GETUCT subroutine in your program

00500 GETDCT LD 1Y, 4700H

00510 LD A C

00520 R A

00530 RET Z

00540 PUSH BC

00550 LD B, A

00560 XOR A

00570 LOCP ADD A, OAH

00580 DINZ LOCP

00590 LD CA

00600 ADD 1Y, BC

00610 POP BC

00620 RET
This routine sets 1Y=4700H right at the start;
and a RETurn is executed. If it's not, we nust

start of the DCT for the requested drive.

; begi nni ng of DCT$

: check drive nunber
...0s it 0?

;done if it is

;save register for now
;put drive nunber into B
;zero the A register

; bunp the of fset

.. "B' times

:BC==> total offset

;1 Y==> drive's DCT address
;restore BC contents
;and go back.

over
t he

if the drive nunber is 0, it's all
calculate the offset from4700H to

The DINZ instruction bunps the A register offset counter by 10 for each relative drive
position up to the requested drive nunber. By the time it falls through to Iine 590,
the Aregister will contain 10 tinmes the relative drive nunber (10, 20, ..., 70 in
decimal, or OAH, 14H, ..., 46H) which, when added to the start of the table inlY
(4700H) yields the UCT address of the desired drive.

On return fromthe CALL SUBL in line 420, all registers wll reflect the sane
informati on as they would have had the primtive been called (error codes, etc.). The
use of these linkages is not necessary for every programnor for every application;
the nmain advantages lie in the tine and byte savings their use offers, and the

"versi on i ndependence" they afford you. Certainly no tine would be
the above subroutines for only one or two uses - in that case,

serve nicely. On the other hand, if your program uses the LDCS
defined linkages very often, they would be worth trying.

saved by incl udi ng
the primtives wll
routi nes which have

LSCRI PT patches to add versatility

by Scott Loorer

The Quarterly usually does not accept
Uilities. This article is unusual in that
LDCS version of LSCRIPT. 1t's usefullness and
version of Scripsit enough that | (the Editor)

This article
that | use to nmke Scripsit
techniques wll only work under LDCS,
article. Some of the techniques are
w Graftrax or printers that use simlar control

but

Pat ches

First and forenost is, of course, the
patch should be applied per instructions to a
provi des the foll owi ng enhancenents:

articles about nodifying
it

is to describe the variety of
a very powerful

sui tabl e

the LDCS Libraries or

descri bes how to nodify the "standard"
flexability enhance the standard LSCRI PT
felt that it could be included.

t echni ques
pat ches and
reading this
MX-80 printer

patches, filters and
word processor. These

that's why you are
only for the Epson
schenes.

t hen

LSCRI PT patch provided with LDOS. This
virgin copy of Mddel | Scripsit. LSCR PT

Page 45

- use of LDOS keyboard driver allowing full ASCI characters and use of all
m ni dos functions

- re-entrant capability to Scripsit with Scripsit *

- inbedded printer control codes at text boundaries

- keyboard insertion of text at text boundaries

- directories and partial directories are available within Scripsit

- consistent use of <CLEAR> key as control key

- default file extensions

- and lastly, Scripsit no |onger reboots your systemon exit

The LSCRIPT patch is described in greater detail in the LDOS docunentation. |
wi Il assume that you are using this patch as a basic starting point.

The remaining patches that | use are provided as figure 1 in this article.
Sonme of the six patches have appeared before, but they are presented here to bring
themall together. | wote some of the patches while others are nodifications of
patches done originally by Earle Robinson and Les Mkesell who have permtted their
use here. Special thanks also go to Roy Soltoff who supplied the locations of sone
nmenory blocks in Scripsit available for use by patches 4 & 6 (and I used darned near
all the bytes that were available). The comments in the patch file indicate the
authors. Each of the six patches is independent fromthe others; you nay use only
those that appeal to you and delete (or commrent out) the rest. Al of the patches are
direct (D) patches which will not extend the length of Scripsit. Sone of the patches
are for the Model 111 only and the patch lines are commented out so that they won't
affect Mbod 1's. Model |11l users will need to renove the periods at the beginning of
those patch lines they wish to use. Let's exam ne the patches in order:

1. Patch 1 - This patch enables the foll owi ng key functions:
<CLEAR><Up Arrow> - nove to start of text
<CLEAR><Down Arrow> - nove to end of text
<CLEAR><Ri ght Arrow> - tab to next tab stop
<CLEAR><Left Arrow> - nove to start of line

This is a logical extension of the use of the <CLEAR> key as the control key for
Scripsit.

2. Patch 2 - If your printer needs aline feed instead of a carriage return to
advance to the next line, apply this patch.

3. Patch 3 - This patch is purely cosnetic and consists of some recommended patches
to synbols used in Scripsit. Be sure to note that those that are Moddel 11l only are
comrented out. You may substitute your own characters by patching the sane addresses
wi th your choi ce.

4. Patch 4 - Scripsit and PR FLT don't get along well as you may have discovered by
now. The problemis that both are trying to format the printer output. If you nornally
run with PRIFLT installed this patch is for you. On entry to Scripsit, the patched
code checks DFLAGS to see whether or not PRFLT is active. If PR FLT is active, the
current paraneters for left margin, characters per line and lines per page are
| ocated. Since PR FLT could be anywhere in nenory, it has to be found first. A pointer
to PRRFLT is maintained at nenory |ocation 4DFD. This pointer is required by LDOS to
allow it toreuse the menmory if PRFLT is re-installed in the system The pointer
points to the beginning of PR FLT where the paraneter block is |ocated. The patch
pi cks up the values for the paraneters nentioned above and stores theminternally. The
paranmeters in the filter are then set to no left nmargin, 256 character line | ength and
66 |ines per page. Scripsit is then entered. The effect of the above is that while in

Scripsit, the formatting is controlled by Scripsit's format commands. |f you specify a
left margin of 0, the text will not be indented even if you had set the margin
parameter in PR FLT. Likew se, you'll get accurate fornfeeds. Wen you exit Scripsit

with the END command, the above process is reversed and the PR/FLT paraneters are
restored to their original settings. As nmentioned earlier, the patch checks to see if
PR/FLT is active and can therefore be used with or w thout PR/ FLT.

Page 46

5. Patch 5 - This patch is a reworked version of SFILE by Les Mkesell. | have found
SFILE to be the nost useful enhancenent to Scripsit that | use, BUT it was originally
witten as an appendage to Scripsit which caused it to have two undesirable effects.
First, at least on the Mdel IIl, it extended Scripsit by enough to cause it to use an
extra granule (12k instead of 10.5k). Second, and nore inportantly, it defeated the
re-entrant capability added by LSCRIPT. This was caused by the fact that the original
SFILE loads into the text buffer area of Scripsit and then relocates itself to high
nmenory. This obviously has the effect of clobbering a portion of the text buffer and
so the re-entrant capability was disabled. Patch fiveis a direct patch version of
SFILE that resides internally to Scripsit (does not extend it) and is therefore
re-entrant. This new SFILE still uses high nenory for a file buffer and file control
bl ock, but vyou'll have nore buffer space available than you did before. The commands
that SFILE adds are:

P,D- Print tothe display. This command will "print" the fornatted text to the
di spl ay. Pressing keys 0-9 control the scrolling speed. Nne is the slowst and O the
fastest. Pressing any other key will stop the display; pressing another key wll
restart it. To abort the display early, press <BREAK> twice. After the text has
scrolled to the end, you can get your display back by pressing <BREAK>.

P,F - Print (formatted) to a file. This command will first clear the screen and then
pronpt for a "Filespec:". Enter the filespec that you want to save the text to. Note
that during the entry of the filespec, you are not in the extended cursor node. This
neans you can't backspace with out shifting out of ECM (see the KI/DVR docunentation).
The file will then be witten formatted as it would have been sent to the printer.

6. Patch 6 - Corrects a call in LSCRIPT to the @KDRV vector that was changed in Md
Il LDCS 5.1.3. Can be patched on both Mod | & Il with no ill effects.

7. Patch 7 - Actually, | lied earlier when | said that all of the patches were
di rect patches. Patch seven is an X patch for the Mod 111 only. It ensures that if you
are using the Model 111 special paragraph character that you get it and not the
al ternat e kat akana character when you enter Scripsit. This patch extends Scripsit by a
few bytes but it doesn't cause it to use another granule.

Techni ques

Dependi ng on your printer, there are other capabilities readily available in LDCS
that will enhance your use of Scripsit. As nentioned under patches, | routinely use
PR/ FLT. If your printer wll accept a hard fornfeed, be sure to use that paraneter

when vyou install PR'FLT. Since Mnidos now works fromwithin Scripsit, you can get a
fast top of formwi th <CLEAR><SH FT><T>. Note that sonme printers may take a hard form
feed, but not advance the paper any faster that the nornmal series of line feeds.

A second paraneter of PRIFLT that can be very useful is XLATE. If your printer is
capable of multiple print styles and/or pitches, look at the command syntax used to
shift nodes. |If you are in luck, it will be an escape (27 or 11H) letter sequence.
This is the case on the MX-80 with Gaftrax. Now, Scripsit doesn't allow inbedded
control codes (except at text boundaries with LSCRI PT) but you have sone characters
available with KI/DVR that are expendable. The best one is the delete character (127
or 7FH) which is displayed as a plus/mnus (Mdd I11) or a block (Mdd). Many printers
won't respond to this character and, anyway, why do you want to delete a character
that has already been sent to the printer? Instead, XLATE=x'7F1B which will translate
the delete character into the escape character on output to the printer. Thus the
following characters anywhere in Scripsit wll cause ny MX-80 to shift into the
enphasi zed nmode: +/-E (of course you need to create the plus/mnus character wth
<CLEAR><SHI FT><ENTER>) .

Using this nethod, | can change print nodes anywhere in the text. There is one slight

problem if you are using right justified text, Scripsit wll count your printer
control characters even though they don't get printed, and throw the right margin off.

Page 47

The final indispensable feature of LDOS when you are using Scripsit is the
spooler. | am always anmazed to find that people do not routinely use the spooler.
Scripsit is the perfect application for it since word processing (entering and editing
text) is a very lowdemand task for the CPU. This means it spends nost of its tine
waiting for you to press a key (no matter how fast you type). Put it to work. Install
the spool er and have it print one docunent while you edit the next. You can tailor the
size of the spooler's nmenory and disk usage to neet your needs. About 3k of spooler
space is required for one page of text.

Filters

There are several possibilities for using filters to enhance Scripsit. The use of
PR/ FLT had al ready been described. If you want to translate further characters (or not
use PR/FLT), a sinple one byte translate filter can be witten using the exanple
filters in the LDOS docunentation as a guide. Sonme candidates for translation are

using sone of the less commonly wused ASC | characters as printer control codes or to
create a non-expandabl e blank. What is a non-expandable blank? Wll, how often have
you prepared a document in Scripsit that had a proper name such as John Q Doe.
Mirphy's |aw guarantees that the name will be broken at the end of a line and you'll

end up with John

Q Doe which doesn't look very nice. Try this instead; use a translate filter to
convert a character such as @ (anything you don't use much) to a space. In your
docurment you type John@) @oe. Scripsit wll treat this as a single word when
formatting, but it will be printed correctly. The last filter | routinely use is an
underline filter. This filter is available as part of the GRASP package from M SOSYS.
It will allow you to choose an wunderline delimting character (perhaps a tilde) and
will automatically underline any text bracketed by this character. Your printer nust
be capable of non-destructive backspacing. | am sonewhat biased towards the use of
this filter as | wote it.

That about exhausts what | have to say about enhancing Scripsit. | amquite
pleased with the final product and figure that it has saved ne at |east $100 as | see
no maj or advantage in switching to SuperScripsit. Enjoy.

. LSCRI PTX Patch - Enhancenents to LSCRI PT

.The followi ng patches are to be used after applying the
.LSCRI PT patch provided by LSI. Be sure to enable those
.lines that apply to your machine if using a Mod I11.
.Use this patch only with LDOS 5.1 or later as indicated.

.Patch 1 - enabl e <CLEAR><Up, Down, Left and Ri ght Arrow>

Oiginally known as LSCR2/FI X by Earl e Robi nson

Later nodified as LSCR3/FI X by Scott Looner to add the

right and left arrow functions.

This patch creates the follow ng capabilities:
<CLEAR><UP Arrow> - noves to start of text
<CLEAR><Down Arrow> - noves to end of text
<CLEAR><Left Arrow> - noves to start of line
<CLEAR><Ri ght Arrow> - tabs to next tab stop

This is consistent use of the <CLEAR> key as the Scripsit
. control key
DOE, 6A=CD OE 52 1E 17
D00, 12=21 4D 60 57 FE 88 20 04 LE 1A 18 15 FE 82 20 04
D00, 22=1E 92 18 OD FE 84 20 04 LE 09 18 05 FE 81 C0 1E
D00, 32=91 3A 40 38 CB 4F 7A C8 7B 9
.End of patch

Page 48

.Patch 2 - change line feeds to carriage returns
This patch will cause carriage returns instead of |ine
feeds to be sent at end of lines as required by sone

. printers. Patch provided by Roy Soltoff.

D1F, F1=0D

D20, 05=0D

.End of Patch

.Patch 3 - change certain synbols
Each of the follow ng lines change one of the synmbols in
Scripsit. Certain of the replacenent characters will not be
di spl ayed correctly on Mod I's due to different character
set. Locations determ ned by Earle Robinson & Scott Looner.

. Change bl ock narkers to [and] respectively on Md 3.

. D28, 0A=5B

. D28, 0C=5D

. Change par agraph synbol to paragraph character on Mod 3 only

. D28, OE=F1

Change cursor to underline

D00, DD=5F

.Change insert character to smaller graphic block

D04, 8F=B0

. Change bottom border character to underline

D19, A1=5F

. Change end of line marker to small graphic bl ock

D28, 08=84

. Change insert block character to smaller graphic bl ock

D28, D3=5F

.End of Patch

.Patch 4 - resolve conflicts between Scripsit & PR/ FLT
The following patch allows Scripsit to peacefully coexi st
with PR'FLT. The patch will zero the PR FLT paraneters on
entry to Scripsit and restore themon exit. This will only
work for LDOS 5.1.2 and later. This patch was witten by
Scott Loormer.

DOO 48=C3 F5 63

D12, 3D=3A 25 01 FE 49 28 07 21 1F 44 3E

D12, 4C=42 18 05 21 89 42 3E 43 32 32 64 22 Al 62 7E CB

D12, 5C=5F 28 23 DD 2A F6 4D DD 7E 19 32 39 64 DD 36 19

D12, 6C=00 DD 7E 1A 32 3A 64 DD 36 1A 00 3A 2A 40 32 3B

D12, 7C=64 3E 00 32 2A 40 C3 69 63 00 00 00

D13, E4=C3 A0 62

D10, E4=3A 00 00 CB 5F 28 16 DD 2A F6 4D 3A 39 64 DD 77

D10, F4=19 3A 3A 64 DD 77 1A 3A 3B 64 32 2A 40 C3 DD 63

.End of Patch

Patch 5 - adds print to file & display functions

. This patch was originally devel oped as SFILE by Les
M kesell. It was nodified by Scott Loonmer to nake it reside
internally to Scripsit. The re-entrant capability
(Scripsit *) added by LScript now works.
NOTE: It is absolutely necessary after applying this patch
to use CMDFILE to change the transfer address of Scripsit
to 6238H after applying this patch

D06 21=2B 20 46 69 6C 65 20 26 20 44 69 73 70 6C 61 79

D06, 48="Version 1.5"

D00, 0B=DC 60

D00, 6B=21

D1E, DD=C3 70 62

D19, 73=98 62

D06, OE=40

Page 49

If you have any questions concerning this article,

Ear |
TRS- 80.

In

D14, 38=92
D10, 7C=E5
D10, 8C=01
D10, 9C=61
D10, AC=61
D10, BC=CB
D10, CC=FD
D10, DC=3E
DOF, 18=FD
DOF, 28=CD
DOF, 38=5E
DOF, 40=C8
Dof , 50=00
DOF, 60=CD
DOF, 70=00
DOF, 80=CD
DOF, 90=CD
DOF, A0O=38
DOF, B0O=60
DOF, CO=1F

.End of Patch

62
3A
AF
22
22
OE
CB
08
CB
57
(073
F6
9
40
00
49
28
15
00
46

00
44
FE
Cl
69

F1

6C 65

FE

28
61
00
Cl
00
F5
30
cD
65

El
18
CD
32
2B
63

28

77

FD
70

20
02

08
44
44
c9
D5
00
61
B7
OE

49
00
5E
50
0D
00

1F
OE

28
01
F6

3B
FD

00
21
06

11
0D
FF
18

.Patch 6 - fixes LScript for 5.1.3 on the Mdd 3
There is a call

you wil

This patch is only required on the Mdd 3.

. D11, CF=09

.End of Patch

Patch 7 - force the special character set on Mod I11's

This patch wll

synbol

Not e:
. Scripsit.
. X 4210' =38

.End of Patch

addi tion

, he
"Alive" command program

on the Mod |11
and not the Katakana character.

has

Have you ever seen a term nal

ensure that

to @KDRV in the LScript patch and that's
the vector that was changed in 5.1.3. Wthout this patch
| be unable to get a directory in LScript.

if you are using the paragraph

(see patch 3) that you wll
Patch by Scott Looner.
this has to be an X patch as it works externally to

get

it

pl ease refer themto:

Scott A. Loorner
315 Pal om no Lane

Madi son,

Ear |

W 53705
608-233-7739 or M croNet [70075, 1033]

Terwilliger At Large

used Roy's

has witten an interesting article on short and

sinmpl e Term nal

prograns for

article on task processing to create

10 CLS: PRINT @200 "COM BAS WRI TTEN BY EARL TERW LLI GER"
20 QUT232, 0: QUT233, 85: QUT234, 165
30 X=I NP(234): | FX<128THENAOELSE: X=I NP(235) : | FX=10THEN3OEL SE:
PRI NTCHR$(X) ; : GOTGB0
40 X$=I NKEY$: | FX$=""THEN3OELSE: QUT235, ASC(X$) : GOTC80: END

(CONTI NUED ON PAGE 51)

Page 50

program for the TRS80 as short as this ?

t he
a new

BEFORE YOU GET TOO EXCITED ABOUT
LOBO’S NEW COMPUTER, THERE’S
SOMETHING YOU SHOULD KNOW.

There's plenty to be excited about in Lobo's

new MAX-80.™ as you'll see in just a minute

But first we wanl to warm you: you can't
get one right away Already, orders are
coming in faster than we can build systems
However, if you can appreciate an incredi-
ble price/performance bargain, you'll agree
the MAX-80 is well worth waiting for
WHAT'S ALL THE EXCITEMENT
ABOUT?

We're glad you asked. And the answer
is pretty simple. Just look at this list of
standard leatures:
= 5 MHz Z-808 processor. That's 2V: times

the speed of a TRS-80 Model |1l or Soft-
Card/Apple!

* Gdk AAM. 12Bk is a low-cost oplion.

= CPiM included. A few more dollars get you
LDOS, an incredibly powerful operating
system that lets you run standard Radio
Shack software,

*» Softwara-seleciable 25 x BO, 16 x 64, and
16 x 32 screen formals. For full compati-
bility with CP/M and TRS-B0 applications.

= Alf giisk inferfaces builtin. Plug in any
combination of 514" floppies, 8" floppies
and Winchester disk

= Two AS-232 senal ports. Ready to plug in
modems, printers, or whal-have-you

= Cenfronics-lype parallel port. For any
printer using this standard interface,

* Plus: numernic keypad with 4 function keys,
software definable text and graphics char-
acters, built-in clock/calendar with battery
backup, and buffered 110 expander por

Mow for the best part: the factory-direct
price for all this power (s just 3820
including shippvng and Lobo's standard
1-year hardware waranty!

WHAT TO DO NOW.

Call Lobo toll-free. Tell us what hardware
and software configuration you're interested
in (see balow), and we'll give you an
approximate shipping date. A $100 deposit
will hold your place on the waiting list

Then get a good book 10 halp you pass
the time MAX-E0

CPU and Accessories
MAX-80 computer with 64k
RAM and CP/M 5

BG4k expansion RAM
(instal s

12" (diag.) high-resolution
nnti-Flara green phosphor
monitor

LDOS operating system
instead of CP/| Ia

LDOS operating systemin
addition to cpﬁn

Dual 5%" Floppy Disk Systems
4402CM single-sided, 40

820.00

95.00

5 175.00
$§ 39.00
§ E9.00

track; 180 kB per diskette § 690.00
4802CM double-sided,
B0 track; 720 kB per diskette 51,175.00

Dual 8" Floppy Disk Systems
MNOTE: Lobo CR/M permils reading and
writing standard single-sided. single density
CP/M disks with either of these systems
B8202CM alnFMsiM. double

density; kB per diskette £1,185.00
5202CM double-sided, double

density; 1155 kB per diskette $1,485.00
Winchester Disk Systems

950M 5%" system: 4.8 MB

hard disk plus 720 kB floppy ~ $2,405.00

Page A-5@

L

950MX same as 950M above

but no floppy drive 52,100.00
1850M 8" system: 8.0 MB hard
disk plus 1155 kB floppy $3,085.00

The Lobo Warranty

All Lobo hardware products carry 8
limited 1-year parts and labor warranty.
Call or write for complete warranty
statement

€ T2 Lobo Deves internabonal, Goleta, TA
P/M traciemark of Digital Research Corp.

TRS-80 trademads of Tandy Conparation

50 d tradiernark of hMic
Anph demark of Apple C:
LDOS rademark of Logical Sysiems |noorpodaled

ALL PRICES INCLUDE SHIPPING WITHIN THE LL.S.A
Cal 5 add 6% sales lax
credil card, check, or maney order

L
Paya

& Dy

TOLL-FREE ORDER NUMBERS:
U.S. (except California) @ —
_—

800-235-1245
In California: B00-322-6103 or
BOO0-322-6104 rours 740 5PM Pacdic Time
I@B Lobo Drives
International
\ Dept. LDS
dflVE‘S 358 S. Fairview Ave

INTERMATIONAL Goleta, CA 83117

n

o

. ...__.,.%..._. s

,f .,.Fx \
,,,,/% mvmn.numﬁmﬂm%wm%hn
N gv8y xo@ '0d
1HOIN
iy ASOSIW
33S ©4 " "
AWIL sl /,/,,,ﬁ;,,

N\
R

AR

WM

N\ R

Page B-50

Volume 1 No. 1

*

SPECIAL EDITION

* &k

December 1, 1982

You'll think you've made the
DOS strike of the decade
when you turn your micro
on to LDOS. You'll find a
bonanza of features like
full keyboard type-ahead;
a true background spooler;
file backup by date, class,
and between different drive
types; hard disk support;
data transportability
betweaen Model | and III;
and a complete communi-
cations utility including
disk file send and receive.
Support for Radio Shack’s
Doubler and selected
others is also provided.

With our Job Control Lang-
uage, you get true "hands
off” running of your appli-
cation programs — give a
single command and then
walk away. The 400 page
manual includes examples
of all commands and utili-
ties. The Operator's Guide
gives you step by step
instructions on how to use
LDOS with your applica-
tions. Stop running with
only “half" a computer Let
LDOS provide the missing
features to speed up and
simplify your TRS-80 com-
puter system! Visit a dealer
or contact LSI for more
information on the most
popular sophisticated
operating system for your
TRS-80.

LDOS is available world-
wide through thousands of
dealers for just 5129,

The BASIC

The BASIC Answer is a
BASIC text processing util-
ity. It is designed to allow
the BASIC programmer {o
build code in a structured
manner. “Source” code is
written with a word proces-
sor or fext editor which
allows the user o exploit
the powerful editing and
movement features charac-
teristic to those types of
editors. Source code can
aven be created by your
own BASIC interpreter.
The BASIC Answer is then
used to process these files
into normal interprative
BASIC code.

Free Yourself from
Line Numbers

The BASIC Answer allows
substitution of labels for
line numbers! This means
that your BASIC code now
can read like a novel.
Instead of the typically
undescriptive “GOSUB
10007, a label such as
“GOSUB @Search.Nama”
is used, Imagine yourself
reading code filled with
such descriptive branches
and understanding it at a
glance, even years later.
This feature even allows
totally relocatable BASIC
routines without the renum-
bering problems.

A New Concept in
Variable Usage

The BASIC Answer allows
variable names to be as
long as 14 characters and
ALL 14 are significant.
Imagine reading:
“IF ACCNT.OVERDUE #>
0 THEMN GOSUB
@PRINT.DUN"
rather than

“IFAQ#>0THEN
GosuBs2130"

Which would you rather
read? It also introduces

io BASIC the concept of
Global and Local variables.
This feature circumvents
the tedious problem of var-
iable tracking because a
Local variable is only viable
in its own subrouting!

TRS-80 ia a trademark ol Tandy
Corporation. LDOS is available for
the TRS-20 Modekl and Modekil.
Prices and spacilicalions subject o
change withou!l nolice. LDOS and
The BASIC ANSWER are products ol
Logical Systems, Inc

NOW AVAILABLE
LDOS 5.1 Quick
Reference Card

$5.95.

Answer

End the Multiple
Machine Hassle

The BASIC Answer intro-
duces the concept of
“Conditional Translation.”
This feature allows the
programmer to place differ-
ent “machine dependent”
code simultaneously into
the same Source Code.
The BASIC Answer can
be “switched” when pro-
cessing to ignore the
unwanted or include extra
code! No more multiple
master programs o con-
fuse maintenance. All the
masters could now be
rolled into the same pro-
gram. Modify the one
master and you've modi-
fied them all. Process the
same code with differant
switches set, and get two
or more versions from the
same source.

The BASIC Answer com-
bines the self-documenting
power of COBOL with the
relative ease of BASIC
together with the power of
a word processor.

The BASIC Answer is
available tor just $69.00.

OG/ICAL
SYSTEMS
INC.

== [—

11520 N. Port Washington Rd.

Mequon, Wl 53092
(414) 241-3066

Page

C 50

LUTILITY INISkK3S

Fraom

E[IIEHEEF'T

11500 STEMMONS PWY,

— SUITE 125

hm OF BREEZEMSD. INC. DALLAS, TEXAS 75229

PowerSOFT"s Utility Disks for LDOS saves tiss, msoney, and
frustation. These fine utilities are written by Kim Watt,
author of Buper Utility Plus, and are in sachine language.
ALl drive configurations are supported, including single
and double density, double sided, 5%, 8%, and all hard
drives running under LDOS, including Radio Shack and Larsdo.

PMOD/CMD - A sophisticated Disk/File/Mesory Utility.
PCHECK/CHMD— LDO8 Directory Check Utility.

PFIX/CMD — Repairs BAT Tor HIT table, BOOT sector, or files.
PFIND/CMD — Finds strings, bytes, or words. Optional REPLALCE.
PCOMPARE/C— Comspare a File/Ssctor to any other for differsnce
PREFODRM/CM— Reformat without Erase. Fixes CRC errors!
PVU/CHMD = Varifies disk for bad ssctors.

PERABE/CMD— Dimk Bulk Eraser. (for 5" floppy use only)
PCLEAR/CMD— Removes ALL traces of “"KILLED* filean.
PSSTAT/CMD— Sector Staus. Finds what file is where.
PMAP/CHMD - — Disk/File Mapper. Shows all files with extents.
PMOVE/CMD - Super FAST multiple copy utility.

PDIRT/CHD — Read a Mod III TRSDOS(tm) disk from LDOS.
PASSB0/CMD— Remove passwords from a file or a whole disk.

PUN/CMD - UN-Repair an LDOS disk. (Mod I only)
PEX/CHMD = A disk exerciser for head cleaning kits.
PHX/CHD = Screen print graphics on an Epson printer.
PHELP/CMD — A very complete HELFP command for LDOS.

PBDOT/CHMD Customize the way your LDOS boots up'
PFILT/FLT a USER definable printer filter.
IWORAK/FLT— DVORAK/OWERTY keyboard filter.
CODE/JCL - Keyboard sncoding filter. (ENCRYPTES)
DeCODE/JCL~ Keyboard DECODING filter. (DECRYPTES)

COMPLETE WITH MATCHING DOC FOR YOUR LDOS BINDER
a2

Each Disk PMOD/CMD
only (disk/file
$29.95 manory mod.)

Special'!
ALL SEVEN
DISKS for

149,95

Buper Utility
+HLUS+

preconfigured

Buy TWO LDOS
Utility Disks
BET ONE FREE!

PFILT/FLT
(88) DVORAK/FLT
DVORAK /JCL

Page D-50

It is a BASIC program which denonstrates the basic principles needed to communicate
through the RS-232-Cinterface. It can be used to turn the TRS80 MODEL | or IIl into a
dunb terminal. You can wuse it to comunicate with another conputer at a rate of 300
baud. Wdnder how it works ? Here's how! Let's expand the above 4 BASIC statenents
into separate lines and add sone comments. Doing so, here is what the new COM BAS
| ooks Iike:

01 CLS ' CLEAR THE SCREEN

02 PRINT @200, "COM BAS WRI TTEN BY EARL TERW LLI GER'

05 OwWw'T "DON T | NTERRUPT ME

10 QJT 232,0 ' MODEM STATUS REGQ STER RESET
20 QUT 233,85 ' SET BAUD RATE TO O

30 OQUT 234, 165 ' SET RS-232- C STATUS REG STER

31 REM7-BIT WORD, EVEN PARITY, 1 STCP BIT
32 REM TURN ON DATA TERM NAL READ

40 X = I NP(234) ' HAS A CHARACTER ARRI VED

50 IF X < 128 THEN 100 ' FROM THE RS- 232-C?

55 REM "YES = CONTINUE NO = CHECK KEYBQARD
60 X = I NP(235) " GET CHARACTER FROM THE RS- 232-C

65 I|F X = 10 THEN 40 "1 GNORE LI NE FEED CHARACTERS

70 PRINT CHR$(X); ' DI SPLAY CHARACTER ON THE SCREEN

80 @GOTO 40 ' CHECK FOR MORE | NCOM NG CHARACTERS
100 X$ = | NKEY$ "Dl D SOMEONE TYPE | N A CHARACTER ?
110 IF X$ = "" THEN 40 "I F NOT GO CHECK THE RS- 232-C

120 QUT 235, ASC(X$) "I F SO, SEND THE CHARACTER TO THE
121 REM RS-232-C TO SEND QUT

130 GOTO 40 "' BACK TO CHECK FOR | NCOM NG DATA
140 END ' END THE PROGRAM

Since BASIC is sonetines a little too slowto keep up with the baud rate of 300, you
may notice that | added statement 5. If you do not add this statenent, you nay notice
a mssing input character or two. As you can tell, the logic of the programalternates
bet ween checking the RS-232-C and the keyboard for any input characters. |If a full
character is received fromthe RS-232-C, (50 IF X < 128 THEN 100) it is displayed
on the video screen. If a character is typed init is sent as output to the RS 232-C

If you prefer assenbler |anguage (nmachine code) for its speed, take a |ook at
COML/ ASM It is a Z80 assenbler programfor the TRS80 MODEL | or IIl. Its logic is
essentially the sane as COM BAS. COWIL/ ASM however, recogni zes the BREAK key to end
and al so di splays the keyboard characters as they are typed in (half duplex node). If
you would like to try this programand don't have an assenbler, try COWL/BAS. It is a
BASI C program whi ch POKEs t he assenbl ed version of COWL/ ASMinto nenory. Try them on
your TRS80 MODEL | or 111 !!

00010 ; COWIL/ ASM
00020 ; WRI TTEN BY EARL TERWLLI GER

00030 ;

00040 ORG 7DO0H

00050 cow: DI ; DI SABLE | NTERRUPTS

00060 LD

00070 aut (OE8H), A ; RESET MODEM STATUS REQ STER
00080 LD A 85

00090 aut (OE9H), A ; BAUD RATE GENERATE

00100 LD A 165

00110 aut (OEAH), A ; SET RS-232-C SW TCH SETTI NGS
00120 RSI N I'N A, (OEAH) ; CHECK FOR RS- 232-C | NPUT
00130 BIT 7, A ; ANY | NPUT

00140 JP Z, KEYI' N ; NO TEST KEYBOARD

00150 I'N A, (OEBH) ; YES GET CHARACTER

00160 cP O0AH ; LI NE FEED ?

Page 51

00170 JP Z, RSIN ; YES | GNORE

00180 CALL 033H ; NO. DI SPLAY

00190 JP RSI N ; RETURN FOR MORE

00200 KEYIN: CALL 02BH ; ANY | NPUT FROM KEYBQOARD ?
00210 oR A yTEST I T

00220 JP Z, RSIN ; NO. GO TEST RS-232-C

00230 cP 01H ; BREAK ?

00240 JP Z, END ; YES END.

00250 aut (OEBH), A ;NO SEND IT TO THE RS-232-C
00260 CALL 033H ; DI SPLAY THE DEPRESSED KEY
00270 JP RSI N ; GO CHECK RS- 232-C FOR | NPUT
00280 END: El ; ENABLE | NTERRUPTS

00290 RET

00300 END covi

10 C.S

20 PRINT @200, "COWIL/ BAS WRI TTEN BY EARL TERW LLI GER'
30 DEF USRL = &H7DOO

40 FOR X = 32000 TO 32054

50 READ A: PCKE X, A NEXT X

60 CLS

65 PRI NT CHR$(14)

70 REM ADDR OPCCDE LABEL | NSTRUCTI ON

80 A = USRL(0): ' ORG 7DO0OH

90 DATA 243: ' 7D00 F3 COWML: DI

100 DATA 62,0: ' 7D01 3EOO0 LD A0

110 DATA 211, 232: ' 7D03 D3E8 QUT (0E8H), A

120 DATA 62, 85: ' 7D05 3E55 LD A 85

130 DATA 211, 233: ' 7D07 D3E9 QUT (0E9H), A

140 DATA 62, 165: ' 7D09 3EA5 LD A 165

150 DATA 211, 234: ' 7D0B D3EA QUT (OEAH), A

160 DATA 219, 234: ' 7D0D DBEA RSIN. IN A, (OEAH

170 DATA 203, 127: ' 7DOF CB7F BIT 7,A

180 DATA 202, 33, 125: ' 7D11 CA217D JP Z, KEYI N

190 DATA 219, 235: ' 7D14 DBEB IN A (OEBH

200 DATA 254, 10: ' 7D16 FEOA CP OAH

210 DATA 202,13, 125: ' 7D18 CAOD7D JP Z,RSIN

220 DATA 205,51, 0: ' 7D1B CD3300 CALL 033H

230 DATA 195, 13, 125: ' 7D1E C30D7D JP RSIN

240 DATA 205, 43, 0: ' 7D21 CD2B00 KEYIN: CALL 02BH

250 DATA 183: ' 7D24 B7 R A

260 DATA 202,13, 125: ' 7D25 CAOD7D JP Z,RSIN

270 DATA 254, 1: ' 7D28 FEO1 CP 01H

280 DATA 202,53, 125: ' 7D2A CA357D JP Z, END

290 DATA 211, 235: ' 7D2D D3EB QUT (OEBH), A

300 DATA 205,51, 0: ' 7D2F CD3300 CALL 033H

310 DATA 195, 13, 125: ' 7032 C30D7D JP RSIN

320 DATA 251: ' 7D35 FB END: El

330 DATA 201: ' 7D36 C9 RET

340 END

In past issues of the LDOS QUARTERLY you saw sonme very good articles in RIC

(Roy's Technical Corner). |I finally got around to reading nost of them WW! SECRETS
OF THE UNI VERSE! | decided to put to use sone of the interesting things |I learned from
reading Roy's articles. | came up with the following program |It, as the comments tell

you, denonstrates relocatibility, TCB'S and the LDOS command parse routine. (The
equate vectors as shown are for MODEL | LDCS. They need to be changed for the MODEL
I11.) Assenble the program below and call it ALIVE CWD. (I like and use EDAS. G eat
stuff Roy!) To execute it type:

ALI VE (ON)

Page 52

You will see ALIVE appear and di sappear character by character on the top right of the
video screen. The LDOS SYSTEM ALIVE) conmmand does essentially what this program does.
(NOWyou have sone source code!) To turn it off, type:

ALl VE (OFF)

The SYSTEM ALI VE) command uses TCB slot 3, | use the unassigned slot nunber O.
I hope you find this program of value as | have of ROY's Technical Corner.

00100 TITLE <SYSTEM ALI VE | NDI CATOR>
00110 ;

00120 ; ALIVE/ASM SYSTEM ALI VE | NDI CATCR

00130 ; VR TTEN BY EARL C. TERWLLIGER JR
00140 ;

00150 ; DEMONSTRATES

00160 ; PROGRAM RE- LOCATI ON
00170 ; ADDI TI ON OF A TCB
00180 ; COMVAND BUFFER PARSE
00190 ;

00200 ORG 9000H : PROGRAM ORI G N

00210 @DTSK EQU 4410H : TCB ADD ROUTI NE

00220 @PTSK EQU 4416H : TCB REPLACE ROUTI NE
00230 @MISK EQU 4413H - TCB DELETE ROUTI NE
00240 HGHS EQU 4049H . H GH MEMORY POl NTER
00250 @ARAM EQU 4476H . COMMAND BUFFER PARSE
00260 DOS EQU 402DH : LDOS RETURN ADDRESS
00270 DISP EQU 033H : DI SPLAY BYTE ON VI DEO
00280 START EQU $: START ADDRESS OF ALl VE
00290 LD DE, TABLE : PARAVETER TABLE ADDRESS
00300 CALL @ARAM : PARSE COMVAND BUFFER
00310 JP Z, PARMOK . PARSE WAS SUCCESSFUL;
00320 JP DOS : PARSE HAD TROUBLES
00330 PARMK EQU $

00340 LD HL, 0000H - ADDR REPLACED BY PARSE
00350 LD A L : TEST FOR ON

00360 R H

00370 JR NZ, TASKON - PARSE SAI D ON

00380 PARVOF EQU $

00390 LD HL, 0000H - ADDR REPLACED BY PARSE
00400 LD AL : TEST FOR CFF

00410 R H

00420 JR Z, PERRCR - PARM ERRCR

00430 LD A0 :TCB SLOT ==> 0

00440 CALL @MVISK - REMOVE TCB

00450 JP DOS . RETURN TO LAND OF OS
00460 PERROR EQU $

00470 LD HL, PMBG : PARAVETER ERR MSG
00480 LOOP EQU $

00490 LD A (HL) . GET MSG BYTE

00500 R A : TEST FOR END

00510 JP Z, DCS - BACK TO DCS | F END
00520 CALL DiSP : DI SPLAY

00530 INC HL . NEXT MBG BYTE

00540 JR LooP : TEST FOR END

00550 TASKON EQU $

00560 LD HL, (H GHS) T H GH

00570 LD BC, LAST- FI RST ; LENGTH OF TCB

00580 XR A : CLEAR A

00590 SBC HL, BC “HL ==> LENGTH OF TCB
00600 LD (HGH),H. ; PROTECT NEW TCB

00610 INC HL : PO NT TO FI RST FREE BYTE
00620 PUSH HL . SAVE | TS ADDRESS

Page 53

00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
01060
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120

This is the BINHEX |isti

11 9A 90 CD 76
13 44 C3 2D 40
49 40 23 E5 23
C3 2D 40 00 0O
CD 16 44 3E 56
3C 32 3E 3C 32
56 45 20 50 41

BEG N

FI RST
TCB
TASK

LAST
TABLE

PNVBG

44 CA 0OC
21 AB 90
23 22 5A
CD 16 44
32 3E 3C
3F 3C 18
52 41 4D

LD R

EQU
EQU
DEFM
DEFW
DEFM
DEFW
NCP
DEFM
DEFB
END

HL
HL
(TCB), HL
HL

DE, HL
HL, FI RST

DE, (TCB)
DE

DE
A0
@DTSK
DOS

$
0000H
@RPTSK
A A
(3C3BH), A
@RPTSK
AL
(3C3CH), A
@RPTSK
AL
(3C3DH), A
@RPTSK
AV
(3C3EH), A
@RPTSK
A'E
(3C3FH), A
@RPTSK
Al
(3C3BH), A
(3C3CH), A
(3C3DH), A
(3C3EH), A
(3C3FH), A
TASK

$

$

T ON
PARMOK+1
TR
PARMOF+1

1

" SAVE ADDRESS+2 FOR TCB
- RESTORE ORI Gl NAL ADDRESS

; DESTI NATI ON FOR TCB MOVE
; START OF TCB ROUTI NE

; MOVE | T!

; TASK ADDR I N H GH MEMORY

; TCB ADCR IN H GH MEMCRY
; TCB SLOT NUMBER

; ADD TCB

TO CHAI N

; RETURN TO MAG C LAND

; REPLACE

; REPLACE

; REPLACE

; REPLACE

; REPLACE

; REPLACE

TCB

TCB

TCB

TCB

TCB

TCB

; ERASE ALl VE

; START OVER

" ALI VE PARAMETER ERRCR !’

O0OH
START

ng for the ALIVE program The

90 C3
7E B7
90 E1
3E 41
CD 16
C2 4F
45 54

2D 40 21 00 0O
CA 2D 40 CD 33
F3 EB 21 5A 90
32 3B 3C CD 16
44 3E 45 32 3F
4E 20 20 20 20
45 52 20 45 52

7D B4 20
00 23 18
ED BO FB
44 3E 4C
3C CD 16
0D 90 4F
52 4F 52

Page 54

checksumi s

1D 21 00 00
F5 2A 49 40
ED 5B 5A 90
32 3C 3C CD
44 3E 20 32
46 46 20 20
20 21 00

*50

7D B4 28 08 3E 00 CD
01 40 00 AF ED 42 22
1B 1B 3E 00 CD 10 44
16 44 3E 49 32 3D 3C
3B 3C 32 3C 3C 32 3D
20 14 90 00 41 4C 49

M XI NG NEWSCRI PT, ELECTRI C WEBSTER, LDOS, AND SOLE

J.L. Lathanm | 409 Evergreen Gr/Mdwest Cty, OK 73110

| originally wote docunentation simlar to this for ProSoft, and it is at their
suggestion that 1 am passing it on to you through the LDOS Quarterly. If you aren't
famliar wth the name ProSoft, they are the distributors of one of the finest word

processors available for the Mdel | and 11l conputers; NewScript. Wthout any
patching this word processor wll run under all nmjor DOS (of course you are only
concerned with LDOS), and supports nobst popular printers, again, wthout patching. It
contains features found in no other W package as of this witing, including the

ability to be used by persons handicapped to the point of only having one hand, or
even only one digit (finger or thunb) to type wth!

This article is ainmed primarily at Mbdel | owners who desire to nove their NewScri pt
7.x files to a LDOS doubl e density systemdisk. To further limt discussion | am going
to wite this with the thought that those users have the follow ng equipnment and
software available to them LDOS 5.1.x, SOLE by Roy Soltoff, at |least 2 5-1/4" drives
that are capable of accessing at |least 40 tracks, and sone sort of double density
board in their interface. O course it is assunmed that they have a copy of NewScript,
and optionally Electric Webster (a fantastic word spelling checker). Users w thout
SOLE will be told howto use the procedures via a single density "setup" disk, but to
paraphrase Roy in his SOLE docunentation "why ain't you got SOLE?". Ok, on with it.

If you followthese instructions, you wll end up with a disk containing NewScri pt
that will, with SOLE, boot on a double density systemdisk right into the MENU portion
of NewScript. If you have doubl e density wi thout SOLE, then put the quarterly down, go
get a copy of it, and cone back and finish reading this. Seriously, if you don't have
the SOLE program but do have double density, the only difference in the end product
will be that you will have to boot a single density LDOS di sk that has NS/ CVD, NSIN T,
and a STARTUP/ M N file for LDOS from NewScript on it. SOLE is so much easier.

As | stated earlier | am assuming that you have at least two (2) 5-1/4" drives or
their equival ent available. These operations are nore easily acconplished on a 3 drive
system but | realize that not all owners have that many. Actually, with the state of
the art as it is nowin word processing, it is alnost a requirement to have 3 drives
or nore to make use of things like a full blown word processor along with one of the
spel ling checkers and, in the case of NewScript, a conpatible G aphics programsuch as
GE A P., along with any other utilities you want to have on |ine.

Enough gabbing, let's do it!

| MPORTANT NOTE** (Quite often throughout this witing | tell you to copy files froma
di sk such as "your NewScript" or "your Electric Wbster" or even "your LDOS" disk. |
do not nean for you to use your ORIG NAL naster disk. This should be a GCOPY of your
original. This is for your own protection. You should always work froma backup! |If
the software distributor doesn't think the programis val uabl e enough to be backed up
(for YOUR protection and conveni ence) then perhaps you ought to wonder if it was even
worth purchasing in the first place. DEMAND backup ability. You purchase the right to
use a program and if your disk goes crunp in the night (or day) and you have to wait
for the distributor to replace it, then you have been denied the right that you
purchased for the period that it takes to get another copy!

STEP 1. Make a 40 track SINGLE density backup of your LDCS 5.1.x disk.

STEP 2: Put your original copy of LDOS back in its safe place, put the new copy in
drive 0. If you have a switchable |owercase nodification put the switch in the ALL
CAPS position. Now press the reset button to boot the (new) systemdisk. Reply to the
date pronpt as usual .

STEP 3: KILL off all visible files except PDUBL or RDUBL and any RS-232 driver you
need. The naster password is in your LDOS operators manual under general infornmation.

Page 55

STEP 4. Copy the SOLE1/CMD and SOLE2/CMD files fromyour SOLE disk to the LDOS
system di sk. Put away the SOLE di sk.

STEP 5. Copy the following files from the NewScript disk(s) to your LDOS disk:
NS/CMD, PROPPCIM FEDIT/CM NSINIT, and, from side 2, NSINSAL. MAKE SURE THAT YOUR
NEWSCRI PT DI SK(S) HAVE A WRI TE PROTECT TAB ON THEM . '!

STEP 6: CGo to BASIC with the foll owi ng comrand:
LBASI C (F=4, EEN) RUN'NSI NSTAL" <ENTER>
or if you are running LDCS 5.1.1 or earlier (WHY?): LBASIC (F=4) RUN'NSI NSTAL" <ENTER>

STEP 7. Read the NewScript "Release 7.0 Features Supplenment”, page 3, steps 6
through 10 to explain NSINSTAL. Al so read each "page" of video as it is presented to
you. Reply to the installation questions as required for your system Wen you are
done, return to LDOS with the CVMD'S"' command.

| need to say a few words about NS/ CMVD here before proceeding. NSSCMD is a keyboard
driver that has been provided by ProSoft for use with NewScript. NS/CVD is not
rel ocatable, and so we nust be sure it is loaded in and protected before |[|oading any
of LDOS' special functions. It is a good driver and provides nany special functions
including a type ahead buffer. However, when used with LDOS it occasionally | oses one
or two characters during line wap around if being used by a fast typist. It does not
do this with other operating systens, and | don't know why it does with LDOS. For this
reason you nay elect to wuse the KI/DVR provided by LDOS instead of NS/ CVD. There are
conplications with the <CLEAR> key involved in this, but it will work. If you elect to
use KI/DVR then DO NOT set the MEMORY to X nnnn' as directed below, and be sure to SET
and FILTER your keyboard (*KI) as required for your use instead of typing NS - as
instructed later. |If you are going to use KI/DVR then you should nove your |owercase
switch to the lowercase position and boot your systemagain at this tinme. 1 wll
continue to present these installation instructions assuming you are going to use
NS/ CMD as your driver for use with NewScript.

STEP 8. W won't be using NSINSTAL again during these procedures, and we can better
use the space for sonething else. At this point you may give the foll owi ng command:

KI LL NSI NSTAL: O<ENTER>

STEP 9: Next we need to check on how our nmenmory and systemare set up. Type the
fol | owi ng comand:

MEMORY<ENTER>
The response should be: HGEX FFFF . If it is not then type the foll ow ng comrand:
SYSTEM (SYSGEN=NO) <ENTER>

After everything settles down then re-boot the disk. W want no drivers, filters, or
anything else in high nmenory at this point (no, not even R'PDUBL yet). Once you have
hi gh nmenmory cl eared out give the follow ng LDOS comrands:

NS - <ENTER>
MEMORY <ENTER>

The response will probably be in the range of X EBEF to as low as X E700'. This is
the point where NS/ CVD starts living. W nust protect all nenory above this |ocation
before we do any thing else. Wite down the value you just got fromthe MEMORY<ENTER>
comrand. In the next command the 'nnnn' neans to use the value you just wote down to
protect NS/CVMD from further interference. First we nust clear all nenory again. Ht
the RESET key again and check that the MEMORY is now set to X FFFF' . Then give the
fol l owi ng commands from LDOS READY:

Page 56

MEMORY (H GH=X nnnn') <ENTER> *not if using KI/DVR
fol |l oned by

PDUBL<ENTER> *or RDUBL<ENTER>

and finally

MEMORY <ENTER>

The response will probably be in the range or X EBEF to as low as X E700'. Earlier
(or later) versions may give slightly different responses, but should be in this
general nei ghborhood. Mstly it depends on what version of PDUBL or RDUBL you are
using. Using NewScript 7.0 and PDUBL from LDOS 5.1.3 | got a value of H GEX EA2C .

STEP 10: If you previously switched your |owercase to the uppercase only position it
is nowtine to place it in the | owercase position. The next command we will type wll
(probably) be all garbage, so type VERY CAREFULLY until you can read your witing
again. DO NOT do this step if you are going to use KI/DVR If you are going to use
NS/ CMD t hen type:

NS - <ENTER>
followed by (and this should be readabl e):

SYSTEM (SYSGEN) <ENTER>

Note that there was a nandatory single space between the S in NS and the dash (-) that
fol | owed.

From now on anytine this (yes, still single density) disk is booted you wll
automatically have nenory set to protect NS/CVD, PDUBL or RDUBL will be | oaded, nenory
again reset to protect that program and NSSCMD will be activated as your keyboard
driver.

STEP 11: AT LAST, DOUBLE DENSITY: Place a blank disk in drive 1 and FORMAT it for
doubl e density and (at least) 40 tracks. Al of the following file nanipulations
assume a 40 track disk, and that you have NS/CMD on the disk and are using it for your
keyboard driver. Use whatever parameters you want for the new disk's nane, password,
etc. | recomend using LDOS-51x (where x is your version nunber), and the standard
password since we will be making another BACKUP in just a few m nutes.

Refer to your SOLE program manual and performsteps 3 through 7 found on pages 3, 4,
and 5 of that manual. Wien you do step 5 in the SOLE nmanual you can consider the
system to have already been set up earlier (during our step 10). So, when you get
there you may just type "SYSTEM (SYSGEN)<ENTER>" and all will be well. [If you have
foll owed your SOLE instructions then the double density system disk should now be in
drive 0. Try booting the systemto nake sure that it wll boot in double density and
configure properly. To test if NS/ CVD got installed, press the <SH FT> and <CLEAR>
keys together. A pair of question marks should appear in the |lower right hand corner
of the screen. Press <SH FT> and <CLEAR> again to nake them go away.

You may now KILL the SOLEI/CVD file fromthe system disk. You don't need it anynore.
You might | eave SOLE2/ CVMD on there for future use of your own.

STEP 12: Now we will create an AUTO command that will automatically bring up
NewScri pt when we boot this disk. Type the following line fromthe LDOS Ready pronpt:

AUTO NS<ENTER>
O course <ENTER> refers to that key. Notice that this tine there is no space nor
dash following the filespec NS Invoked in this manner NS/CVMD will initialize

NewScript by "DOng" a file called STARTUPP MN that we will create in a few m nutes.
That file will take you to the main nmenu of NewScript effortlessly. How nice.

Page 57

If vyou inadvertently reset your systemnow it will probably get a file not found
error. Don't worry we will clear all that up when we create the STARTUP/ M N file.

STEP 13: Place side 1 of the NewScript disk into drive #1 and copy the foll ow ng
files to drive 0: EDT, SCRIPT, and (optionally) HELP. Then copy the LDOS/MN file
fromside 2 of the NewScript disk. | amgoing to assume you copied the HELP file.

STEP 14: If you only have NewScript (and not El ectric Wbster) then copy the
following files froma copy of side two of the NewScript disk to drive 0: FITLINE
GENI NDEX, | NDEX, and LABELS (if you have the |abels option).

STEP 15: Owners of LDOS 5.1.1 and earlier may now skip down to step 15a. LDCS 5.1.2
users have another step to do now. LDOS 5.1.3 users who have not changed the default
E=N of LBASIC may al so go to step 15a, but if you have changed it to E=Y then you MJST
do the follow ng steps. Type the followi ng LDOS conmand:

LBASI C (F=4, E=N) RUN'NSI NI T" <ENTER>

Choose option 1 (EDIT) fromthe menu. Reply LDOS/MN to the request for a filenane.
You will be presented a one line file. Change that line to read:

LBASI C (F=4,E=N) RUN'NSINI T"

That format is nandatory for 5.1.2 users, 5.1.3 users nmay just leave the line as it
was if they kept the default E=N paraneter for LBASIC

Use the END option of NewScript's EDIT function to save the file back to disk, and
then choose option 6 (Return to main nenu), and when back at the main nenu, choose
option #8 to get back into LDCS.

STEP 15a: Type the followi ng comrand from LDOS:
RENAVE LDOS/ M N: 0 STARTUP/ M N<ENTER>

If you are not going to install El ectric Wbster then you are done! Your LDOS double
density disk version of NewScript 7.x is nowready for wuse. You can go nerrily on
your way. |If you ARE going to install Electric Wbster, well ... read on.

I NSTALLI NG ELECTRI C WEBSTER: It is assunmed that you wll be working fromreadable
copies of the EWdisk. | will tell you what files to nove when, finding themis up to
you as | don't know how you made your copi es.

STEP 16: Copy M NEWand CORRECT2/NEWto drive O with the foll owi ng conmands:

COPY M NEW 1 M EW O<ENTER>
COPY CORRECT2/ NEW 1 CORRECT2/ EW O<ENTER>

Take note of the fact that the extent changes from NEWto EWwhen noving the files.
This is inportant for proper operation.

Next copy the following files to drive O with the followi ng series of LDOS conmands:

COPY EWCMD: 1 M CPROOF/ CVD: O<ENTER>
COPY CORRECT1/ EW 1 : O<ENTER>
COPY ADDTCODI C/ EW 1 : O<ENTER>
COPY PRI NTDI C/ EW 1 : O<ENTER>

I had you renane EWCVMD to M CPROOF/ CMD because this wll allowit to work wth
NewScript 6.2 and 7.x properly. It is possible for early releases of 7.x to "choke"
on the EWCMD filename when files are being chained in Electric Webster. This takes
care of this problem If you have one of those early releases of 7.x why not update?
ProSoft's updating policies are very liberal!

Page 58

If you check the amount of space left on drive O you will find that there is obviously
not enough roomfor the DICTx/EWfiles to reside on it. Those take a mninmum of 119K!
I say m ni num because DICT3/EWis an expandable file. Now you begin to see what |
neant earlier when | said a three drive systemwas very desirable for word processing.
VW will put the DICIx/EWfiles on the data disk(s) that you will use to hold the text
that you are processing. Here is how (on a two drive system it is nmuch easier with
three):

STEP 17: Place a blank disk in drive #1. FORMAT it for double density with, again
at least, 40 tracks. Gve it whatever NAME and PASSWORD you think appropriate. It
will only be used as a data disk.

STEP 18: Once the disk has been FORMATted give the follow ng commands from LDOS
(this operation takes a lot of time, and several disk swaps, so for your own
protection put wite protect tab(s) on your EWsource disk(s) and follow the pronpts
on the video exactly):

CCPY DI CT1/ EW 1 (X) <ENTER>
CCPY DI CT2/ EW 1 (X) <ENTER>
CCPY DI CT3/ EW 1 (X) <ENTER>

You nay want to FORMAT a couple or three nore disks and use the BACKUP command with

(X) option to nmake copies of this data disk for future use. You will notice that you
have sonmewhere around 57K of space left on a disk that started with over 170K before
the DICTx/EWfiles were placed on it. This space is sufficient for nost users. | did

this entire docunent on a systemthat was generated using these instructions and had
pl enty of roomon the data disk for these files.

I hope that these instructions are useful to you and help you nake better use of both
LDOS and NewScript, with or wthout Electric Wbster. Considered separately they are
two very fine systens, together they provide the user with a very powerful word
processing ability.

*kkk*k PARITY = O:D*****

(c) 1982 Ti m Danel i uk
T&R Conmuni cati ons Associ at es

Hello again, and wel cone to another exciting episode of Review Wars! |'ve been
| ooki ng over lots of new prograns for the next few issues of the Quarterly, and sone
of them are just outstanding! Before | get started though, a quick coment is in
order. After the "soapbox" in ny last colum, | realized | |left sonething out that

needs to be nentioned. If | review a product in these pages, and give it substantially
negative comments, the manufacturer of the product has the right to respond. So |ong

as the response isn't obscene, threatening, or derogatory, | will include all or part
of it inthis colum! You have the right to hear both sides of an issue, so I'll try
to be as fair as possible in doing this. M/ address can be found below should you
desire to do this. By the way, reader opinions are also solicited. If you have

sonething to say about a product | review, feel freeto drop ne aline or |leave a
message on MNET.

I should also nention that | intend to use the last colum as a basis for
reviewing all software. I wll be brutal if necessary! As | said then, there is no
excuse for sloppy applications code when it is being comerically marketed.

The first itemin this issue concerns a piece of hardware that is near and dear
to us all, disk drives. As you all are probably aware, the cost of both bare drives
and packaged systens has dropped dramatically in the last year or so. You have
probably seen the ads in various nmgazines which pronbte conplete 40 track drive
packages selling for between $175 and $200. These packages seemto be well built and
feature the 5" BASF disk drive assenblies.

Page 59

Now for the sad news: O the three people | know who have purchased BASF drives
(either the above packaging or bare drives) every one has had trouble with them The
probl ens have all been of an intermttent nature, and seem to be caused by the drive
electronics. oviously, a half dozen or so drive failures is hardly grounds for

condeming an entire product line. I nention this here only to point out that you
should check around before you buy one of these units. It could well be that the
failure rates here in Chicago are very unusual, and that the BASF products are just
fine. There IS one major design flawin these drives that I have noticed, however. The

drive is very unforgiving if you don't push the nedia in all the way before closing
the door. The door assenbly and nedia guides are poorly designed, and closing a door
when the media is not EXACTLY in place causes massive crunching and mangling of the
disk. My owmn bias is toward Shugart SA400s, but I'm told that the Tandons are also

very good. In the interest of getting a little field data, | hereby announce the first
PARI TY = ODD reader poll! Please send ne a sheet of paper with the information bel ow
If | get enough responses (nore than 50) I'Il publish the results in this colum. You

can also |l eave the info. for ne on the LDCOS board i n MNET.

PARI TY = ODD Pol | #1: 5" Fl oppy Di sk Drives
Nanme, Address, Phone #

Type of Conputer

Model | Users: Type of Interface

Type, age, and nunber of disk drives:

(Pl ease be specific. Don't give the packager's nane, but the actual drive
manufacturer. i.e Shugart SA400, instead of Lobo or Radio Shack. Also,
pl ease give the approxi mate age of each drive.)

Failure Rate for each drive:
1) Never failed
2) Failed after heavy use
3) Failed soon after purchase (less than 1 year of average use)
4) Continuing failure problems (nore than once a year when subjected to
aver age use)

Not e: It is positively NOT a failure if a drive acts "flakey" with heads that you
never have bothered to clean! A "failure" is defined to mean any probl em which caused
the |l oss of use of the drive because it had to be serviced.

Despite all the MIBF (Mean Tine Between Failure) data published by the manufacturers,
this kind of information fromactual field experience is alot nore useful. I hope
you'll all take the tine to fill out a postcard and send it to ne. M address is:

Ti m Danel i uk
4927 N. Rockwel | St.
Chicago, IL 6%$625

MNET# 7$745, 152%
The first product this issue is not really software or hardware, but "brai nware".

I refer, of course, to the best TRS 80 specialty nagazine presently published, THE
ALTERNATE SOURCE (TAS). This little unassuming bi-nmonthly booklet is a "gold mne" of

TRS-80 related (especially Mod. | and I11) information. For those of you who have not
been subscribing, TAS back issues are available in bound form These include rather
thorough treatnents of how the Level Il BASIC Interpreter works, explanations of bugs
in the ROM assenbly |anguage technique, and a host of other subjects. [If you own a

TRS-80, this is the one technical nmagazine you should get. It doesn't have a |ot of
ads, but is chock full of useful "goodies". The address for TAS is:

Page 60

The Alternate Source
704 North Pennsyl vani a Ave.
Lansing, M 48906

(517) 482-8270 or (800) 248-0284
M\ET# 70150, 255 SOURCE# TCH565

TAS al so publishes and distributes software, and this leads us to our first software
product this Quarterly.

MODEM 80 is a program distributed by TAS as well as it's author, our own Les

M kesell (take a bow Les!). It is a general purpose serial conmmunications program
which turns the TRS-80 into a "snmart" terminal. The cost is a nere $39.95 and a
special LX80 version is available for $10 additional. If you only use serial

conmuni cations occasionally, LCOW is probably all you need, but if you do a lot of
it, you should investigate MODEM 80. One of it's biggest features is that it honors
the file transfer protocols used by CP/M bulletin boards. Another feature |
particularly like is that MODEM 80 allows you to naintain sinultaneous file transnmit
and receive buffers. Les has also included several useful utilities wth the package
(some of these won't work with an LX80 so check before vyou buy!). There is a program
simlar to the Mbdel Il HOST utility which allows rempte control of your TRS-80 via
the serial port. XMODEMis a utility to transfer files. SAVE and TYPE are wused to
create and list text files. TEXTFIX is wused to fix downl oaded files so they load into
a word processor. It strips out control characters, extra |Ilinefeeds, and deletes
characters caused by a backspace. TEXTFI X can also add a X 00" to the end of the file.
Finally, HEX is autility used to convert ASCII files to hex characters and
vice-versa. This is a fine programwitten by an excellent TRS-80 progranmer! | have
found it easier to use than LCOMW in nany instances, and you "Fhone Phreaks" wll just
love it.

As nentioned in a previous colum, | intended to do a conparitive review of the
popul ar spelling checker programs for the TRS-80. Unfortunately, they have not all
arrived in time for a sinultaneous review So, | will do themone at a tine, and nake
sone conparisons when they have all been reviewed. Again, the enphasis wll be
primarily on LDOS conpatibility, though 1'Il try to nmake sone judgenents on the
overal | performance of these products. The first of these is HEXSPELL Il from Hexagon

Systens. HEXSPELL is witten in BASIC, but is distributed as an executable file
generated by the Mcrosoft BASCOM BASIC conpiler. Once the programis | oaded and the
file to be checked is naned, the text of that file is displayed on the screen. You nay
select the scrolling rate, and there is also a command which stops the display for
ease of reading. Any time HEXSPELL finds a word it does not recognize, you have three
choices: 1) You can ignore the word, and HEXSPELL will leave it "as-is" w thout
appending it to the dictionary. 2) You can tell HEXSPELL to learn this word as a new
word, and add it to the dictionary file. 3) You can replace the word with the correct
spel ling. HEXSPELL inherently shows words "in context" because a portion of the total
text is always on screen. The word in question is easy to find because it is
highlighted with a flashing graphics block. The programis extrenely easy to use
because it is very interactive. In fact, for nmost of the functions you don't even need
the manual. The nmanual is about 30 pages long, and is very well witten.

There are several things about HEXSPELL Il | don't like. For one thing, because
of the large runtine support package (BRUN) that BASCOM conpiled prograns require,
HEXSPELL is a real "nenory hog". It seens to honor HHGH$ alright, but if it decides
there is not enough nenory available, it forces an error nessage. Now, all this is
fine, except that the error message asks you to press any key to continue. Wen you
do, the programtries to |l oad again and the sane error message occurs. In other words,
once you get an "Insufficient Menory" error, you can't get out of HEXSPELL and back to
LDCs! | solved this problem by always using HEXSPELL with no high nmenory options
installed. This is a real pain though! |[|'ve been using a LOBO hard di sk with ny LX80,
and to access all the hard disk partitions the LDOS drivers have to be in high nmenory.

Page 61

Anytime | want to use HEXSPELL, | have to boot the system and then either use a JCL
procedure or nmanually install the hard disk drivers. This is a problemthat ought to
be corrected because it degrades an otherwi se fine program Another mnor conplaint |
have is that HEXSPELL runs rather slowy. This is a price that is paid by witing a
program in BASIC (even though it is conpiled), and nmeking that program very
interactive and easy to use.

On the positive side, HEXSPELL has several excellent features. It is easy to use,
corrections are sinple, and it runs bug-free (once high nenory has been freed).
Anot her very inportant asset of HEXSPELL is that files to be checked are not limted
by available nmenmory in the system HEXSPELL loads in a portion of the file at a tine
for checking. This allows you to check files created by a disk oriented word processor
or text editor.

At $99, HEXSPELL is priced well below conpeting products. Except for the one
probl em nenti oned above, the product has run perfectly, and it is very well integrated
with LDCS. A new rel ease of the product is presently being worked on which will free
about 2K nore of nenory, so the high nmenory problem should be minimzed. You should
eval uate your needs carefully before deciding for or against HEXSPELL. On the one
hand, it's ease of use nakes it an ideal candidate for an office where non-technical
peopl e need to use a spelling checker. On the other hand, it's slowness will be a real
drawback for someone who wites a great deal. HEXSPELL Il is available from

Hexagon Systens

P. 0. Box 397

Station A

Vancouver, B.C. V6C 2N2
Canada

(604) 682- 7646
M\ET# 70235, 1376

Next on the list of software "goodies", is the set of wutilities for LDOS from
Powersoft. These utilities were all witten by KimWtt of Super Wility fane. There
are seven utility disks available, and all are designed to be specifically LDOS

conpati ble. The docunentation for these wutilities is printed on standard three-hole
punched paper, designed to go into your LDCS binder. Each of the disks costs $29. 95,
though a special price is available if you order the whol e set.

I can't cover all these wutilities here, so I'll just mention the best of the
bunch. PMOD is a general purpose Disk-File-Menmory nodification utility. It allows you
to access the disk absolutely, or to access it on a file by file basis. You can al so
exam ne and nodify nenmory directly with PMOD. PCHECK and PFIX are utilities which
all ow you to check and (if necessary) repair a danaged directory. These two utilities
have saved ne a LOT of time! PFIX attenpts to repair both the HT and GAT sectors, and
you can even copy a new BOOT file onto a bad disk. | have had several unreadabl e disks
which were fixed with PFIX These prograns are definitely not "idiot-proof" though,
and shoul d be used carefully. PREFORM al |l ows you to take a 5" floppy disk and ref ornat
it wthout loosing the data it contains. This procedure can sonetimes help narginal
di sks which have not been formatted in a long tine. PSS and PVAP are utilities which
hel p you identify which sectors on a disk have been allocated, and to which files they

have been assigned. PCLEAR w || erase unassigned sectors on a disk so no trace of the
original data is left. You can also use PCLEAR to erase wunused directory entries.
PHELP is an "on-line" help file. |I found it to be a rather conplete di sappoi ntnent!

When | asked for help with extended DEBUG Al | got was:

DEBUG (swi t ch, EXT
switch ONor OFF. ONis assuned
EXT turns on the extended debugger

Page 62

Not real helpful, eh? PHELP is on Disk #8, and frankly, I can't see nmuch on this disk
that warrants your noney. There are a few specialized filters including a translation
filter for the keyboard and a filter to change the LDOS graphics on boot up. The
prograns on this disk seemto work alright, but they just aren't terribly useful.

On the whol e these prograns seem to work smoothly with LDOS. | did have probl ens
with several progranms including PCHECK, PFIX, PSS, and PMAP. They worked fine on both
5" and 8" floppies, but refused to run on the LOBO 1850 hard disk. A call to Powersoft
indicated that they had no problens on their Laredo system but that they woul d | ook
into this apparent inconmpatibility. One especially nice feature that all these
utilities have, is that they have help built right into them Once the programis
| oaded, all you do is hit <ENTER>, and the screen displays the possible sub-commands,
sonetines with an exanple (if space permts). This is a GREAT idea. | hope everyone
"steals" it fromthem and it beconmes an industry standard!

I doubt any one wuser needs all of these utilities, but there are several you
shouldn't be without. PFIX and PCHECK are w nners (hopefully the hard di sk probl em
will be resolved), as is PMD. Stay awmay from Disk #8. If you need translation
filters, buy the filter disk fromLSlI. It has nore filters which are nore usable than
these from Powersoft. |If you really want to change your boot graphics, use FED to
change themin SYSO. The remaining utilities wll have varying degrees of useful ness
dependi ng on your application. You should study your needs carefully before ordering.
These are, by and large, good products, and you won't be disappointed. These

utilities are available from

PONERSOFT
11500 Stemmons Expressway, Suite 125
Dal |l as, TX 75229

(214) 484-2976
M\ET# 70130, 203

The final product in this colum is the new HELP/ QRC product from M sosys. This
is an "on-line" Help utility for LDOS acconpanied by a Quick Reference Card (QRO).
There are several help files included for the "A" Library, "B" Library, LDOS Syntax,
Uilities, and so on. Each of these uses the Msosys Partitioned Data Set (P0S)
format, and prograns are included to create your owmn Help PDS. One word of warning,
HELP/ QRC requires the Lower Case nodification in a Model 1. This is a fine product,
which I find nyself using all the time. The information for each command is not
exhaustive, but IS useful. The QRCis also quite helpful, and at $25 this package is
reasonably priced. HELP/QRC is available from

M sosys

P. O. Box 4848

Al exandria, VA 22303-0848
(703) 960-2998

Vell that's it for this tine. Don't forget to send in your responses to the disk
drive poll! Happy bit-tw ddling...

Page 63

by Earl e Robi nson

This issue will concentrate on a few of the nmore commonly encountered tinme and space
wasters that | have seen in many assenbly prograns. One of the nost frequently seen
arises frommany authors' ignorance of the use of termnating bytes at the end of a

text to be displayed (or printed). Afriend sent ne the source for a program which
| ooked like this:

LD HL, M5GL
CALL @sPLY
LD HL, M5&
CALL @sPLY
LD HL, M5G3

CALL @SPLY
several nore Loads, and displ ays

And, the screen had several lines of ny friend' s menu displayed. Wiat he did not know
was that he could nerely have termnated each line, not with a carriage return (0D
hex) or with 03, but with whatever text to be displayed, and that the display handl er
would continue, printing out each line as encountered until either ODH or 03 was
encountered. So, the display's source shoul d have | ooked |ike this:

LD HL, M5G
CALL @sPLY

The recently published Super SCRIPSIT contai ns sone code which | ooks |ike this:

LD A (7A01H)
LD (790AH) , A
LD A, (7A02H)
LD (790BH) , A
LD HL, (9322H)

progr am cont i nues

Now, why didn't the author nmerely load the contents of 7A01H into HL, and then | oad
the contents of HL into 790BH, thereby saving 6 bytes? There are several exanples of
this wasteful type of witing in SuperSCRIPSIT, which by the way, is full of other
ghastly exanpl es which | may draw upon in the future.

Anot her typical error commtted by inexperienced assenbly |anguage witers is the

following, illustrated in a patch to Super SCRIPSI T which was recently published:
LD HL, (4514H)
LD (5B14H) , HL
nore code
NOP : This is at 5B14H
NOP
LD DE, (5B14H)
nore code

The witer of that code could have nore economcally |oaded the saved address at 4514H
as follows, saving 3 bytes of available patch space:

LD DE, O ; two bytes where
: address is to be
;. saved.

Page 64

On a nore positive point, I1'd like to briefly discuss the macro capabilities now
available in Roy Soltoff's new version of EDAS, called EDAS IV. Many of you may have
used macros while working with the Mcrosoft MB0. Wth the new EDAS you can save a | ot
of tine, and extra source code by devel oping some sinple routines or blocks of code
which are frequently used. For exanple, it is often necessary to save the registers,
and the code not only must be typed in, but must be renenbered so that they are popped
in the reverse order upon exiting the routine.

Wth the new EDAS | have created two nacros as foll ows:

PUSHREG MACRO #PARML=HL, #PARMR2=DE, #PARNVB=BC
PUSH #PARML ; It is possible to replace
PUSH #PARMP : the default values if

PUSH #PARM3 ; required

ENDM

POPREG MACRO #PARML=BC, #PARM2=DE, #PARVB=HL
POP #PARML

POP #PARM2

POP #PARNB

ENDM

You can al so make up nmany others to save time in looking up the code required, or
avoiding an error in witing it due to faulty nmenory. An exanple of the type of snall
routine which | prefer to invoke with a nacro rather than type it in each tineg,
concerns the checking if the user has used a valid drive nunber, fromO to 7.

DRI VEOX MACRO #GETKEY

cP 38H

JR NC, #GETKEY ; >7, return & ask again
cP 30H

JR C #CGETKEY ; <0, go ask again

ENDM

Since it is also possible to list the source without the macros being expanded, it is
nmuch easier to study source listings to determne if there may be bugs, or to find
themif they do occur. Roy has done a terrific job with his new version of EDAS.
Anyone who wi shes to do serious assenbly |anguage work could do worse than nake the
i nvest nent .

It is not only inportant to well document one's source code when witing assenbly
| anguage prograns, but it is also nbst inportant to keep track of versions of what is
witten. Recently, soneone who acquired ny disk catalog program 'discater', said he
had probl ens in knowi ng which version of a particular program was on disk, and could
"discater' differentiate between them O course, since each entry is shown with its
nunber of bytes, if one is longer or shorter than another, it would show up on a full
listing. However, as | pointed out to nmy correspondent, you should ALWAYS nodi fy nanes
of prograns for different versions. This will save much tine in debugging and in
locating the version which is the one which you really wish to use or work on. You
will also avoid problens by autonatically wupdating the date in the source before
saving it to disk, by the way.

Page 65

| TEMS OF GENERAL | NTEREST

Following are the TCHRON and T-TIMER patches for use wth LDOS 5.1.3. Apply these

pat ches to SYSO/ SYS.

TCHRON1, TRSWATCH, TIMEDATESO - /FIX - 08/19/82 - Copyright by Roy Soltof f
This FIXis to enable use of the above cl ock nodul es
under

LDCs Version 5.1.3 Model 1. Use the H ports.

Fix the tiner interrupt routine

D04, 08=D2
D04, 18=C9
. Fix the
DOD, 58=21
DOD, 68=0F
DOD, 78=29
DOD, 88=78

45 ED 78 OD CD A6 47 ED 78 0D E6 OF 85 12 1B
11 43 40 01 B5 03 CD C3 45 10 FB

date initialization on BOOT

46 40 01 BA 01 CD C3 4E 06 03 CD C3 4E 01 BC
CD C3 4E EB DB BB E6 03 11 45 40 21 48 40 20
CB FE 18 25 ED 78 OD A0 07 57 07 07 82 57 ED
0D E6 OF 82 77 2B O

end of patch

T-TIMER/ FI X - 08/19/82 - Copyright by Roy Soltoff
This FIXis to enable use of the TTI MER cl ock nodul e
under

. Fix the
D04, 08=D2
D04, 18=C9
. Fix the
DOD, 58=21
DOD, 68=0F
DOD, 78=29
DOD, 88=78

LDCs Version 5.1.3 Mddel 1. Use the H ports.

tinmer interrupt routine

45 ED 78 OD CD A6 47 ED 78 OD E6 OF 85 12 1B
11 43 40 01 C5 03 CD C3 45 10 FB

date initialization on BOOT

46 40 01 CA 01 CD C3 4E 06 03 CD C3 4E 01 CC
CD C3 4E EB DB CB E6 03 11 45 40 21 48 40 20
CB FE 18 25 ED 78 0D A0 07 57 07 07 82 57 ED
0D E6 OF 82 77 2B 9

end of patch

For those of you
assenbl er code that

00100

00110 ;
00120 ;

00130 ;

00140
00150
00160
00170
00180

00190 ;
00200 ;
00210 ;

00220
00230
00240
00250
00260
00270
00280
00290

trying to interface different clock boards,

following is the

generated the above patch. The TTIMER port differences are noted
in the comment field surrounded by astersiks.

; Tchron/ ASM - 08/17/82 - Copyright 1981 by Roy Soltoff
* =k —%
; TCHRON nods to LDOS Version 5.1.3 (Mdel 1)
* =k —%
TI ME$ EQU 4041H ;Time string
DATES$ EQU 4044H ;Date string
DCTFLD@ EQU 47A5H ;Mask & multiply by 10
LONG EQU 4047H : Ext ended date
’*:* —%
; Routines for time reading
* =k —%
ORG 45C1H :Normal tiner routine
’ DW TI MER :Set tinmer TCB
GETARG |IN A (O ; Get high byte
DEC C ; Bunp port
CALL DCTFLD@ 1 ;Strip, *10 -> L
IN A (O ; Get | ow byte
DEC C ; Bunp port

Page 66

00300 AND OFH ;Strip

00310 ADD A L ;Add in high * 10

00320 LD (DE), A :Stuff val ue

00330 DEC DE ; Bunp pointer

00340 RET

00350 TIMER LD DE, TI VME$+2 ;Point to end of string
00360 LD BC, 3<8! 0B5H ;Set loop cnt & port ***QC5H***
00370 LCOP CALL GETARG

00380 DINZ LOOP

00390 ; *=*=*

00400 ; Now fall through to RET instruction at TI MK$

00410 ; User nust NOT use SYSTEM (UPDATE)...

00420 ; *=*=*

00430 ; *=*=*

00440 ; Interface to systeminitialization for DATE

00450 ; *=*=*

00460 ORG 4E9EH ; Addr ess of DATE query
00470 PACKIT EQU 4EE8H ; Addr of packing routine
00480 ;

00490 LD HL, DATE$+2 ;Point to end of parm
00500 LD BC, 1<8! OBAH ; Set mask & port ***QCAH**
00510 CALL GETVAL :CGet nonth

00520 LD B, 3 ; Set mask for day

00530 CALL GETVAL ; Get day val ue

00540 LD BC, OFH<8! 0BCH ; Set year nask & port ***QCCH+**
00550 CALL GETVAL ; Get year

00560 EX DE, HL :Point DE to date$-1
00570 IN A, (OBBH) ;Ck on |l eap year ***QCBH**
00580 AND 3

00590 LD DE, DATE$+1 ; Set for pack routine
00600 LD HL, LOAS+1

00610 JR Nz, PACKI T

00620 SET 7, (HL) ; Set | eap year bit
00630 JR PACKI T ;G pack it in

00640 ; *=*=*

00650 ; Routine to input date val ues

00660 ; *=*=*

00670 GETVAL IN A (O ; Get high

00680 DEC C ; Reduce port

00690 AND B ; Mask hi gh

00700 RLCA ;Hgh * 10

00710 LD D, A

00720 RLCA

00730 RLCA

00740 ADD A D

00750 LD D A ; Save high * 10

00760 I N A (O :CGet | ow

00770 DEC C

00780 AND OFH :Mask the bad stuff
00790 ADD A D ;Add in high

00800 LD (H), A ; Stuff in parm

00810 DEC HL

00820 RET

00830 END 4EQO0H

Sonme peopl e have requested a CLS comrand that would work fromthe LDOS Ready | evel

it could be wused in a JCL file. make

CLS/CVMD file as foll ows:

To one,

Page 67

SO

use the BULD command to create the

BUI LD CLS/ CVD: 0 (HEX) <ENTER>

0202C901<ENTER>
<BREAK>

For Model 1,
SPOOL command.
For proper

5.

0.3 users, the following routine wll

speed up printing when using the

operati on,

It does so by inserting another despooling call
this routine MJST be executed after

t he SPOOL

in the @I TSK vector.
conmand has been

given. Following is a source listing plus the BINHEX code. DO NOT use this on Version
5.1!'! To turn off this function, use the short programlisted after the FASTSPL code.

00100 ; Use on Model 1, Version 5.0.3 Only!

00110 ; FASTSPL - Fast despooling 5.0 Wility

00120 ;

00130 TCB$ EQU 4500H

00140 HGHS EQU 4049H

00150 @XIT EQU 4020H

00160 @I TSK EQJ 4300H

00170 ;

00180 ORG 5200H

00190 START LD HL, (H GH$) ;CGet current H GHS

00200 LD BC, LENGTH ; Lengt h of new code

00210 R A

00220 SBC HL, BC ; Sub needed space

00230 LD (H GH$) , HL :Store new H GH$

00240 I NC HL :Loc. new code

00250 PUSH HL

00260 LD HL, (TCB$+18) ; SPOOL TCB addr.

00270 LD (NWICB1) , HL :Insert TCB i n new code

00280 I NC HL

00290 I NC HL ; P/'U despool addr

00300 LD (NWICB2) , HL ;I nsert despool in new code

00310 POP DE ; Wher e new code goes

00320 PUSH DE :Save for later

00330 LD HL, NEWCCD :Actual new code start

00340 LD R ; Move to H gh Mem

00350 LD HL, @I TSK+2 ; Put new despool into Kl TSK

00360 POP DE ; vector, so get entry point

00370 LD A, OC3H ; C3 = JUWP opcode

00380 ; Now install the new KI TSK vector Backwards to avoid system crash

00390 LD (HL), D ; MBB of entry pt

00400 DEC HL

00410 LD (H), E ; LSB of entry pt

00420 DEC HL

00430 LD (HL), A lnsert JP vs. RET

00440 JP @EXT :Al'l done!

00450 ;

00460 ; New Code to be nmoved into high nenory

00470 ;

00480 NEWCCOD DI

00490 LD IX $-$:This will be new TCB

00500 NWICB1 EQU $-2 ; Stuff TCB into opcode

00510 CALL $-$; Call despool

00520 NWICB2 EQU $-2 ; Stuff despool task addr.

00530 El

00540 RET

00550 LENGTH EQU $- NEWCOD

00560 END START

Page 68

This is the code to turn off the FASTSPL function

00100 ; Turn off FASTSPL

00110 ;

00120 @I TSK EQJ 4300H

00130 @XI T EQU 402DH

00140 ;

00150 ORG 5200H

00160 START LD A, 0COH :RET Instruction
00170 LD (&XITSK), A : to disable KITSK
00180 JP @EXT ; Back to LDOS Ready
00190 END START

This is the BINHEX code for the FASTSPL and the turn off program I|f you are using the
/ CVD version of BINHEX, the checksumfor the FASTSPL programis *9C. These prograns
may al so be created by using the BU LD (HEX) conmmand.

01 3A 00 52 2A 49 40 01 OA 00 B7 ED 42 22 49 40 23 E5 2A 12 45 22 31 52 23 2
DL D5 21 2E 52 ED BO 2A 02 43 D1 3E C3 72 23 73 23 77 C3 2D 40 F3 DD 21 00 O
FB C9 02 02 00 52

22 34 52

3
0 CD 00 00

01 OA 00 52 3E C9 3A 00 43 C3 2D 40 02 02 00 52

When using the SPOOL Library command with a serial printer, it is inportant that the
PR/ FLT be installed. The following comrands show howto establish the serial driver
and the spool er.

SET *PR RS232x (any paraneters)
FILTER *PR PR/ FLT
SPOOL *PR (any paraneters)

BASI C Concepts - The RUN, V Command
by D ck Konop

LBASIC introduces nmany new features to programmng in disk BASIC. Anong the
enhancenents that have been incorporated is the ability to chain prograns together and
allow for having variables common to nore than one program This is acconplished by
using the "V' paraneter of the RUN cormand. This article will detail the use of this
paranmeter and will touch upon sone of its possible uses.

Before we explore the specifics involved in using the "V' paraneter, let us consider
the general syntax used to execute an LBASIC program The following is the syntax that
is required.

RUN'fil espec",file/variable paraneter,|ine nunber

Fil espec represents the name of the programthat you wish to run, and can be
represented as either a string constant or string expression.

The file/variable paraneter is optional, and is used prinarily to perform chaining of
prograns. One of two different paraneters is available. If the parameter Ris used,

any files which are currently open will remain open when the new programis | oaded and
executed. If the V paranmeter is used, all open files wll remain open, and all
variable assignments will be nmintained. If this parameter is used, it nust be

represented as a letter (R or V), and cannot appear wthin quotes or cannot be
represented as a string expression.

Page 69

The line nunber paranmeter is also optional, and is wused to specify a line nunber in
the "chai ned" program where execution is to start. It nust be represented as a nuneric
constant. If both the file/variable paraneter (R or V) and the |ine nunber paraneter
are specified, the file/variable paraneter nmust appear physically before the line
nunber paraneter.

When using the RUN command with the V paraneter, there are several points that need to
be noted. In addition to all files remaining open, the fielding of the buffer
associated with the open file wll remain intact. Hence, refielding is not required.
(NOTE: Earlier versions of LDOS 5.1 did not allow for the saving of fielded
vari abl es.)

If DEFinition statenents are to be used (such as DEFINT, DEFSTR, etc.) they nust be
established in the first programwhich is run, and nust be re-established in any
subsequently chained prograns. The CLEAR statenent, if encountered in any chained
program will close any open files and destroy established vari abl es.

If the program to be chained is longer than the <calling program or uses nore
variables than the calling program an OQUT OF MEMORY or QOUT OF STRING SPACE error
could result. It should be noted that any and all variables that have been established
in the calling programw |l be maintained in the chained program For this reason,
foret hought nust be used in determining variable names that will be used when chai ni ng
prograns together.

Bef ore considering sone of the uses for the V paraneter, an exanple which illustrates
its inplenentation is in order. Listed below are two prograns that reference each
ot her (PROGL/BAS and PROX/BAS). The sequence can be started by issuing either of the
commands RUN'PROGL/ BAS" or RUN'PROX2/ BAS'.

5 ' PROG / BAS

10 CLEAR 2000

20 DEFINT A-Z: DEFSTR S

30 I F A=0 THEN S="PROGL/ BAS"
40 CLS

50 A=A+5

60 PRRNT"THIS IS "; S, "A="; A
70 | F A>100 THEN END

80 S="PROX2/ BAS"

90 | NPUT" PRESS <ENTER> TO RUN PROX2/ BAS'; S1
100 RUN'PROX2/ BAS", V, 20

5 ' PROX/ BAS

10 CLEAR 2000

20 DEFINT A-Z: DEFSTR S

30 I F A=0 THEN S="PROX/ BAS"
40 CLS

50 A=A+3

60 PRRNT"THIS IS "; S, "A="; A
70 | F A>100 THEN END

80 S="PROGL/ BAS"

90 | NPUT" PRESS <ENTER> TO RUN PROGL/ BAS'; S1
100 RUN'PROGL/ BAS', V, 20

Al though sinplistic in nature, the above exanple will illustrate the proper nethod of
inplenmenting the V parameter of the RUN command. There are two variables that are
passed between the programs (A and S). Each programdisplays the values which are
currently represented by the variables. In each program the wvariable A is
incremented. The chaining of the prograns wll continue until the variable Ais
assi gned a value greater than or equal to 100.

Page 70

There are several points that should be noted concerning the inplenentation of the RUN
command in these two prograns. The line nunber paraneter in the RUN commands plays a
key role in the chaining of these two programs. If it were not included, the CLEAR
statenent in each of the prograns would be executed. This would cause any existing
variable values to be destroyed, and would nullify the results of the chaining
process. Al so, execution of the chained program starts with line 20 in both instances.
It is inmportant that the DEFinition statenents contained in line 20 are executed

Havi ng DEF statenents in one program and NOT in a programto be chained will lead to
unpredictable results, and the values stored in chained variables wll not be the
sane.

Now t hat we have di scussed how to inplement the V paraneter of the RUN command, |et us
consi der sone practical uses of it. Chaining prograns together while retaining
variabl e values can prove to be very useful when running (or witing) an integrated
appl i cations package. A very common practice when witing interactive progranms which
conprise a software package is to utilize sonme type of index file as a neans to access
information in a pre-defined order. If these index files are stored in RAM then it
shoul d be obvious that each nmodul e of the software package would have to load in the
index files fromdisk prior to performng its operation. Simlarily, each nodul e woul d
have to wite the index files back out to disk to reflect any changes that may have
occurred in the index files.

By using the V paraneter of the RUN command, it is now possible to run a nenu driven
application in which any index files that need to be | oaded can be done so at the main
nmenu only, and then passed along to all of the supporting program nodul es. Likew se,
these index files need only be saved back to the disk at the end of the session

Programming in this manner can save several mnutes when running EACH nodul e (not to
nention that the code required to |oad/save the index files does not need to be
duplicated in all of the nodul es).

Anot her exanple of why the V paraneter would be desirable to use follows a simlar
train of thought. Many programs are witten in such a nanner that all functions
perforned are done so by one all-enconpassing nodule. Due to nachine linmts in terns
of the anount of available nenory, this may definitely becone a factor regarding the
amount of itenms that the programcan handle (particularily if index files are stored
in RAM. Also, if the program is designed to take advantage of various LDOS features
(such as the SPOOLER), nenory constraints nay become a problem By chaining prograns
together, the problem of running out of nmenory is alleviated greatly. Since LBASIC
incorporates a high speed load of prograns, the tine it takes to chain prograns
together is mninmal. Witing a programthat could normally fit into menory as a series
of very small program nodul es (each designed to performa specific task) allows for
many nenory related features to be incorporated, as nenory constraints are virtually

done away with. It is also the perfect way to increase the anobunt of itens that your
program will handle, as the size of your index array nmay be increased (this assunes
that your nedia storage capabilities will allow for the additional data).

The reasons |isted above for why and when to use the V paraneter of the RUN command

are by no neans exhaustive. Many other situations and circunstances could dictate that
program chai ning be performed. This is also not to say that program chai ning shoul d be
done in all instances. Depending on vyour application, programchaining is a viable
alternative for witing prograns that would normally be cunbersone to deal with. The
basic premse behind witing interactive chained progranms is that you have the
capability of witing programnodules which, if witten as one program would greatly
exceed the limts of available nenory. Also, in nmany instances, the tine that it takes
torun interactive prograns can be dimnished, as tenporary files do not need to be
created to pass information to/fromvarious programnodules. It may be well worth your
while to investigate the inherent capabilities found by chai ni ng program nodul es.

Page 71

THE JCL CORNER

by Chuck
This nonth's colum looks like it will be a collection of randombits and pi eces about
JCL. Since |I've received only one suggestion for information to cover, |'mnot sure

whet her anyone is using JCL, anyone reads this colum, or everyone already knows
everything they need to about JCL. Any way, to start it off

As you all know (?), the JCL logical operators & (AND), + (OR), and - (NOT) can be
used in //IF statenents to test the logic truth of a token or series of tokens.
Consi der the case where you are using four tokens for sone purpose, perhaps in a
systeminitialization routine to set up the nunber of floppy drives in a system The
tokens FI, F2, F3, and F4 represent a systemw th one to four drives, respectively. To
be sure the operator has declared the nunber of drives, you could use a test such as:

[IF -f1& f2& f3& f4
//. You nmust enter nunber of floppy drives!

[TQUT
/1 END f | oppy test

In English, the //IF reads "If not f1 and not f2 and not f3 and not f4". In other
words, in the case where none of the tokens was entered, the //IF would be true and
the warning nessage would be printed and the compiling would //QUT. This is a
perfectly valid and workabl e JCL | ogical evaluation nethod.

The other case to check would be if the operator entered nore than one token. This
next exanple, although it |ooks correct, shows how -NOT- to do it!

(the underlines are only to show the different possible conbinations)

[TTF f1&F 2+f 1 &F 3+f | &F 4+f 2&f 3+f 2&f 4+f 3&f 4
//. Enter only one floppy nunber

[TQUT
//END mul tiple floppy test

By the way, the order of the two tokens in the AND group nakes no difference in the
LOG CAL evaluation; fl& 2 is the sane as f2& 1. The logic of the //IFis wvalid; all
multiple conbinations of the four tokens are tested for. The problemlies with the

nethod JCL uses to evaluate the & AND operator. Wien evaluating a conditional 1ine,
the JCL processor will stop when it finds a false token followed by an AND synbol .
Thus, the //IF line in the preceding exanple would correctly pick up all cases where

f1 and another f token were entered together, but would mss nultiple conbinations of
the f2, f3, or f4 tokens. For exanple, suppose that both f1 and f3 were entered. The
processing would test f1 and find it true, then test f2, nmaking the first group fal se.
However, it would continue and find that the next group of f1 and f3 would be true,
making the //1F true. The end result would be that the //IF would be true and the job
woul d abort as expected. If f2 and f3 were entered, the processor evaluate the first
fi1, find it false, and then find the & AND operator following the f1. At this point,
the rest of the line would be ignored and the //IF would be false, allowing the
multiple tokens to create havoc later in the JCL. The answer to this problemis the
use of multiple //1F lines.

[TTVF f1&F 2+f 1&f 3+f 1&f 4

[11TF f2&f 3+f2&f 4

I11F f3& 4

* represents the three |ine sequence of //. error message, //QU T, and //END.

Page 72

Using this nethod assures that all possible conbinations of nultiple tokens can be
caught. It makes the JCL file longer, but it also makes it work properly! You may ask
why the AND evaluation is done in this nmanner, and why sonething is not done about it.
Just to get sone ideas for future colums, I'mnot going to tell you. If you really
want to know, wite in and ask, including at |east one idea/suggestion for future JCL
Cor ner col ums.

Continuing on, | am happy to announce that we have tracked down a bug introduced
somewhere between 5.1.1 and 5.1.2 that caused the follow ng problem Have KI/DVR set,
and have TYPE, JKL or the SPOOL function active. Do a JCL file to enter LBASIC and run
a program Have the first keyboard request in the program be an |INKEY$ request.
Pressing any key (except <BREAK>) has no effect, as if LBASICwas ignoring the
keyboard. Press <BREAK> to break the program then RUN the program and everything
works fine. This same sequence of commands, if typed in by hand rather than executed
froma JCL file, also works fine. Therefore - a BUGin JCL.

WRONG The bug was fixed in the JCL overlay, but was caused by the changes nmade to the
Kl /DVR program Renmenber the KI/DVR patches in the last Quarterly to make the //1NPUT
macro work properly? The need for them resulted fromthe fact that KI/DVR was given
the ability to handle @TL calls to flush the type ahead buffer when exiting a JCL
procedure. As it turns out, the same change to KI/DVR caused the problens in this
case. W re-assenbled SYS11 to fix the problem and now everything runs snmoothly. As
M. Mirphy put it - nake a change here and I'Il get you there.

On a brighter note, Les and nyself worked out a patch to LSCRIPT to allowit to be
controlled (with certain restrictions) by a JCL file. The nethod used was to force
LSCRIPT to initialize in the "SPECIAL COWAND ?" node. Additionally, everytime a
command line is entered and an <ENTER> is detected, the command is executed and a
return to the "SPECIAL COWAND ?" node is forced. Wien using this patch, the screen
format may appear to be scranbled. Don't worry - the actual text is still OK \Wat
you are seeing is an interaction between Lscript's cursor positioning and the cursor
posi tioning used by the @EYIN routine to feed in a JCL |line.

Fromthis point on, | wll use the name JLS/CMD to represent an LSCRIPT patched to

enabl e the use of JCL.

The sinplest use for this patch is to print a series of files whose nanes are
contained in a JCL file. The proper sequence woul d be:

JLS/ C\VD
L filel
P

L file2
P

etc.

This set of commands is feeding in the load file (L filenane) and print file (P) to
LSCRIPT. It can be repeated for as many files as desired. Many applications also
require that a header or footer be changed as each new file is printed. For ease of
expl anati on, consider an exanpl e where the header text line is:

LDOS Hex code dunp - File --> SYSO

For purposes of this exanple, | will assune that there are 13 files to be printed by
this JCL, hex dunps of SYSO through SYS12. Also, this header block is saved as a
SEPARATE file naned HDR/ SCR for purposes of flexibility when printing. To print the
files and change the header for each file, you could construct a JCL file as follows
(the comments in parentheses are for explanation only):

Page 73

JLS/ C\VD (execut e patched Lscript)

L HDR/ SCR (l oad the header, no change needed)
L, C SYSO/ SCR (Load the first file)

P (print it!)

L HDR/ SCR (rel oad header)

R>SYS0>SYS1 (change header fil ename)

L, C SYS1/ SCR (chain in next file)

P (print file)

etc. (do as many tinmes as necessary)

The sequence of events for the first four lines should be self explanatory, but 'l
detail it anyway. The patched Lscript is executed and starts looking for input. The
header is |oaded, and no change is needed since SYSO is the first file to be printed.
The SYSO file is |oaded and chained to the header. The resultant file is printed. For

the remaining files, it will be necessary to nodify the header nessage to reflect the
proper filenanme. Since the R (replace) command is executed fromthe "SPECI AL COWAND
?" node of Lscript, it <can be entered into the JCL file. Thus the renaining sequence

of lines reloads the header (and renoves the old text fromnmenory), updates the header
to the proper file name, chains in the text to be printed, and then does the print
conmand.

Those are the basics needed to use the JCL patched Lscript. 1In conclusion, any line in
the controlling JCL file nust be a valid "SPECCAL COWAND ?" reply. No direct
nodi fication of text is allowed.

Following is the patch for Lscript, both Mddel | and IIl. Be sure to apply this to a
"virgin" Lscript - it may interfere with patches devel oped by yourself or other users.

JCS Patch to allow JCL control of LSCRIPT
By Les & Chuck 09/01/82
This patch is for Mddels | and |11

D00, 12=3A 3C 52 B7 20 1A 06 3F 21 6A 63 CD 40 00 78 DA
D00, 22=30 40 B7 28 EB 3C 3C 32 3C 52 2B 36 1D 22 3D 52
D00, 32=3D 32 3C 52 2A 3D 52 7E 23 22 3D 52 B7 C9 00 00 00
DOE, 66=0E 52

ECP

For a final subject | amgoing to touch on using JCL to install keyboard filters or
drivers. This may only be of interest to those of you who wite your own assenbly
| anguage routines, but it is inportant enough to warrant a nention here. Al though the
following discussion will center on keyboard filters, the sanme principles wll hold
true for drivers as well. Unlike filters for devices other than the keyboard, *Kl
filters MJST know whether or not JCL is active when installing thenselves. To
under stand why, picture the chain of events that occur when a DO command is issued and
a JCL file starts executing:

1) Pick up the current KlI driver address fromthe DCB and save it away in the KIJCL$
storage area.

2) Check where a keyboard request cones from If a LINE request, use a JCL file line;
if a single KEY request, use the saved KI driver address to get it.

Step nunber 1 is the inportant point to understand. Wien DOis executing a JCL file,
the driver address in the DCBis -NOI- the normal driver address; that address is
temporarily stored away in the KIJCL$ area. Thus a filter programnust do the
fol | ow ng:

Page 74

1) Check SFLAGS, bit 5 to seeif DOis ineffect. If it is not, proceed as normal and
di sregard steps 2 and 3.

2) Oherwise, pick up the real KI driver address fromthe KIJCL$ area for use by the
filter program

3) Store the newentry point for the KI device (taking into account the filter being
installed) in the KIJCL$ area rather than in the DCB.

For those of you who have the 1st filter package, the source code for the CALC FLT and
the XLATE/ FLT prograns show actual exanples of the test for an active DO during filter
installation. Also, it is inportant that you disable the interrupts during the tine
the new address is actually being stuffed into the KI DCB area. It's not nice when
soneone presses a key when only 1 byte of the new address has been changed but not the
ot her!

This nonth's colum closes with a question. The first 3 people answering it correctly
and have entries postmarked on the -correct date- will win copies of the FED, LED, the
Uility disk, or one of the FILTER disks. (LSl enployees and regular Quarterly
contributors are excluded fromthis contest). Since this publication is nailed 3rd

class, the -correct date- will be set at Novenber 15th to give everyone a chance. To
enter, wite your solution on a postcard, ina letter, or on any other mail-able
substance. In the event that more than 3 w nning answers are received with the sane
postmark, a drawing wll be held to determine the winners. Wnners will be announced

in next issue's JCL corner, along with the correct solution (the correct solution
being the nost fatal error that the following JCL file has IN My OPINI QN).

JCL Question of the Quarter

QUESTION: What is the MOST fatal error of the following JCL exanple, and why:

/1. This exanple will BACKUP a disk in drive ##1
//. To a disk in drive ##2
//. Tokens to be entered are:

/1. Enter the drive 1 disk as S= (source).
/l. Enter the drive 2 disk as D= (destination).

/1.
/1. Evaluation of paraneters starting .
I1NF'S

//. Source drive = #S#
//END i f source drive
//1F D

//. Destination drive = #D#
//END i f destination drive
/11 F S&D

/1. BACKING UP #S# to #D#
Backup : #S# : #D#

/1 END

This one is relatively easy. The next one will be a bit harder hopefully. If you can

think of a good JCL puzzle, send it inin care of the LDOS Quarterly Editor. Until
then, keep on DG ng!

Page 75

Roy's Technical Corner - 482 - by Roy Soltoff

This issue's colum will take a slightly different posture. In lieu of one ngjor
t opi ¢ enconpassi ng several pages of technical discussion, I wll shed sone |ight on
the techniques for interfacing with a few systemfunctions. This divergence is due in
part to the tremendous anount of tinme spent during the past nmonths in getting the LC
conpiler from M SOSYS ready for rel ease. That and the work done to prepare LDCS 5.1.3
for Radi o Shack has certainly inpacted ny tinme for authoring. | have also been busy
getting the MSP-01 package rel eased. This package has a few unique prograns. |f you
ever use Job Control Language (JCL), you ought to look at the PARVDIR program which
is part of MSP-01. The other mmjor piece of MSP-01 is DOCONFIG - simlar to Les's
SYSGEN program however, DOCONFI G functions while running JCL without interference.

There have been a few queries concerning the issues to be discussed in this
colum - so | really am NOT straying too far. | wll address assenbly |anguage
handling of BYTE /O for error detection, interfacing to the @CNFG vector,
interfacing to the @I TSK vector, testing for 5.1.3 vs < 5.1.3 (i.e. 5.1.2, 5.1.1,
5.1.0), handling the KFLAGS scanner for <BREAK> and <PAUSE> detection, and possibly
sone other itens to look out for if you are doi ng some advanced codi ng.

Before | go any further in this issue's colum, | nust correct an error that
appeared last tine. The article on the Task Processor that appeared in the July 1982
i ssue needs a correction on page 32. The code that reads:

LD DE, MYTASK shoul d LD DE, M\YTCB
LD A 2 be LD A 2
CALL @\DTSK CALL @\DTSK

Let me begin this issue with error handling during byte I1/QO LDOS has a great
degree of device independence. However, due to inconplete device driver design
consi derations when the TRS-80 ROM was first done on the Mdel | (and further
m shandl ed on the Model 111), one big problemis inherent with byte 1/0 handling. Any
device or file may be accessed for input or output on a byte 1/0O basis using the @¥ET
and @UT vectors (see "Device I/O and Independence” by Roy Soltoff in THE LDOS
QUARTERLY, Vol une |, Nunber 3).

If 1/Othrough @ET/@UT is coupled to a disk file, then the flag state on
return is the Z-flag set if no error occurred while the Z-flag is reset if there was
an error detected and the accunulator will contain the error return code. The byte
1/0 device drivers do NOT maintain this concept. Thus, if you @UT to the *PR device,
the state of the Z-flag is indetermnate. Also, if you @¥ET fromthe *KI device, the
Z flag is indicative of a returned character.

LDOs permits a redirection of device |/O via the ROUTE comrand. LDOS al so
permts the OPEN routine to open a device or a file. Thus, if a device/file is opened
or a device is routed, the application programinvoking the byte 1/0 does not know if
the physical I/O is fromto a device driver that does not use the Z-flag for error
reporting or a disk file which does. This illustrates the age old problem of
detecting a disk full condition when you have routed the *PR device to a file and
proceed to "LPRINT" data. The application that is calling @RT (the systemvector to
print a byte of data) is not expecting the output to go toa disk file and thus
woul dn't nornally be checking for errors. In fact, if it did check the Z-flag while
@RT was directed to a PRINTER, it would probably detect an error on every character
dependi ng on what state the Z-flag was left in.

This is unfortunate! Wen we get beyond the ROMbased LDOS, | will correct this
deficiency by ensuring that all byte [/O handlers naintain the state of the Z-flag
purely for error feedback. But what can you do now? Well, thereis an interim

solution to handle the error feedback if you place a particular routine wthin your
assenbl er application. Let's ook at the follow ng portion of the "PUTQUT" routine.

Page 76

PUTOUT EQU $

LD DE, FCBOUT : QUTPUT control bl ock
CALL @uT :To devicel/file
RET Z :Back if no "error"
VW will assune that FCBOUT contains the control block data for sone Qutput
device/file. Any place in our programthat we need to wite a byte of data to this
device/file, we will call PUTQUT. The first three instructions are very

straightforward. The first loads the control block address into register pair DE
Next we call the @UT routine which wites the byte that is in the accunmulator
register. So far, so good. Next we return to whatever called PUTQUT, but only if the
Z-flag was set (i.e. no error during disk 1/O. If the Z-flag was reset, we know t hat
either we got a disk I/O error ORthe output was to a byte device which does not
properly maintain the Z-flag. How can we isolate one or the other?

Renmenbering that bit-7 of the control block is only a "one" if we have an open
file, we will test that bit. Let's take a peek at some nore of the PUTQUT routine:

RET z :... from above
TSTDEV EX DE, HL :Ck if device or file
BIT 7, (HL) ;. Bit-7 is set in
EX DE, HL ; FCB' s only!
RET Z :Ret if device
|OCERR OR 40H ; Short message, abort
JP @FRROR ;or your error handler

By exchanging registers HL and DE, we nonentarily transfer the control bl ock
address to register pair HL. and use a BIT instruction to test whether bit-7 is a
"one" or a "zero". Nowif the control block is really for a byte device, bit-7 is
reset and the test will SET the Z-flag. Therefore, a byte 1/O device will be detected
and we return to the calling routine with a "no error" indication - both done at the
same tine.

On the other hand, if the control block was for a disk file, bit-7 is set
providing an "NZ" indication - whichis the same result as a disk error. Thus, we
fall through to the error routine.

I prefer to treat input slightly different because | would like to support a

neans of passing an end-of-file condition to the calling routine. In sone of the
system nodul es, a <BREAK> is used to denote ECF from the keyboard device. 1In the
PARMDIR program | chose to use <CONTROL-SLASH>. The reason for this is that
<CONTRCOL- SLASH> generates an ASCIlI Field Separator (FS) which just happens to be
X 1C - the sane as the EOF error code for disk files. Nowlet's |look at ny input
routine.
CETIT LD DE, FCBI N ; I nput control bl ock

CALL @ET

RET Z :Ret if no error

cpP 1CH ; EOF?

JR NzZ, TSTDEV :Ck device if not ECF

R A ;Set NZ flag

RET

W are fetching the byte of data in the first two instructions in a normal
manner. As with PUTQUT, we return if no error is detected. Here, | then |ook for an
EOF error. If | detect some other error (or we are fetching froma byte device which
m suses the Z-flag), then the routine junps to the TSTDEV routine which nakes the
determ nation of device or file and acts accordingly.

Page 77

If on the other hand, the EOF error code was in the accunulator, GETIT will
return with the Z-flag reset. That neans that we return to the calling routine always
with the Z-flag SET if there has been a byte validly fetched; we return with the
Z-flag reset and EOF error code on an end-of-file. Since the EOF error code is really
useful to indicate when we are at the end of a file and generally does not represent
an "error", to speak of, we have the routines that call GETIT check the Z-flag result
for EOF indication.

Wth these routines, | can have a programobtain input based on a command-Iline
or pronpted input devspec/filespec. Then, if the devspec was used and the *Kl device
was referenced, a <CONTROL-SLASH> indicates the "end of the file". In PARMDIR this

exact set of routines is used to support paraneter input fromeither a file
(P="filespec") or the keyboard device (P="*KI").

@KDRV 5.1.2/5.1.3 Handl i ng

The next mni-topic will cover the method to deternmine if the machine is running
LDOs 5.1.3 or 5.1.2. This is specifically inmportant if you want to use the @KDRV
vector which changed in location on the Model 111 under release 5.1.3. Since OSVER$
contains X 51' under all releases of LDOS 5.1.x, it is necessary to ascertain which
rel ease a programis runni ng under so that the proper @XDRV address will be used.

Al prograns currently released by M SOSYS, deternine the machine nodel (Mdel |
or IIl) by checking the byte at address X 125'. Wiere vector references exist that
are different on each machine nodel, the reference is updated at the start of the
program M SCOSYS prograns use the Mddel | vector inline and switch to the Model 11
vector if the machine check byte is indicative of a Model 111 (Note: not all of ny
prograns have been updated to reflect this 5.1.3 test).

The following routine is abbreviated and only illustrates the @XDRV vector
nmodi fi cati on.

@KDRV1 EQU 44B8H :Model | all rel eases
@CKDRV3 EQU 4290H ;Model 11 to 5.1.2
@KDRVZ EQU 4209H ;Model 11 5.1.3
BEGAN EQ $;Start of ny program
PUSH HL
LD A (125H) :Mbdel | or 111
CcP e ; Il has "I’
JR Nz, MODEL 1
LD HL, @CKDRV3 ;Try "to 5.1.2" first
LD A, (@KDRV3+1) :P/u handl er SVC #
CcP 0C4H s it CKDRV or RAMDI R?
JR Z, $+4 G if 5.1.2 or earlier
LD L, @CKDRVZ&OFFH ; else use 5.1.3's
LD (CKDRV+1) , HL ; Update vector within pgm
MODELI POP HL

The routine is sinplistic. The inportant test is the "CP OC4H' instruction.
Since the @KDRV and RAMDIR vectors need to recover a systemoverlay request nunber,
the contents of X 4291' will be different under 5.1.2 and 5.1.3 only on the Model
Il'l. Thisis the test for determination. The "L, @KDRVZ&OFFH' is a mnimal code
nethod to update the Iloworder byte of a 16-bit register pair when the high order
byte remai ns the sane.

KFLAG Scanner interfacing

The KFLAG scanner was introduced in version 5.1.0. Since the scanner has not
been docunented too well, and rigorous nethods of its wuse have not been disclosed, |
thought | would reveal an exanple of its integration into an application.

Page 78

A little background is in order. Many applications have the need to detect a
PAUSE or BREAK condition while they are running. BASIC does this after every | ogical
statenent is executed (i.e. end of line or ":"). That's how, in BASIC, you can stop a
programwith the <BREAK> key or pause a listing. The classical way to detect the
condition was to call @KBD checking for <BREAK> or <PAUSE> (SH FT-@ ignoring all
other keys. Unfortunately, if you were trying to nake use of type-ahead, the @BD
call would flush out the type-ahead buffer if any keys were stacked up; thus, type
ahead woul d be ineffective.

Anot her nmethod actually used in 5.0.x was to scan the keyboard by physically
exam ning the keyboard matrix. Again, a detrinental side effect resulted wth
type-ahead also storing up the keyboard depression for sone future unexpected input
request. Exam ning the keyboard directly also inhibits renote terminals from passing
t he <BREAK> or <PAUSE> conditi on.

The KFLAG scanner grew fromthese deficiencies. The scanner is part of the
interrupt processor and exam nes the keyboard for three functions, <BREAK>, <PAUSE>,
and <ENTER>. If any of theses conditions are detected, appropriate bits in the KFLAGH
are set (bits 0, 1, and 2 respectively). 1t is IMPORTANT to note that the interrupt
KFLAG scanner does NOT reset the bits - it only sets them Thus, it is up to the
application using these flag conditions to reset the bits as required. Now, you nay
ask, why wasn't the scanner coded so that it resets the bits? Wl now if that was
the case, you would never sense the "events" as they would occur too fast. Think of
the KFLAGS bits as a latch. Wth this little introduction, let's look at a routine I
desi gned to use the <BREAK> and <PAUSE> conditi ons.

CKPAWS LD A, (KFLAGS) ;Plu the flag
RRCA ;Bit 0 to carry
JP C, GOTBRK : Go on BREAK
RRCA ;Bit 1 to carry
RET NC ;Return if no pause
CALL RESKFL ; Reset the flag
PUSH DE
LD DE, KDCB$
XOR A
CALL @TL ; Flush the type-ahead
POP DE
PROVPT PUSH DE
CALL @XEY ; &wait for key entry
POP DE
cP 1
JP Z, GOTBRK
cP 60H
JR Z, PROWPT
RESKFL PUSH HL
PUSH AF
LD HL, (CKPAWGH|) ; Plu KFLAG poi nt er
RESKFL1 LD A (H) ;Plu the flag
AND OF8H ; Strip ENTER, PAUSE, BRK
RESKFL2 OR 40H ; Set ECM
LD (H), A
PUSH BC
LD B, 16
CALL @AUSE :Pause a bit
POP BC
LD A (HL) ;1 f got set again...
AND 3
JR NZ, RESKFL1 ; then reset it again
POP AF ; Restore possi bl e pronpt
POP HL : char & exit
RET

Page 79

I think that the

best thing to do would be to take apart this entire routine and

expl ai n each sub-routine. The first piece:

CKPAWS LD
RRCA
JP
RRCA
RET

reads the KFLAGP contents. The first rotate instruction places the
Thus, if a <BREAK> condition was in
whi ch is your break handling routine.

carry flag.
to "GOIBRK" -

second rotate places what was originally in the
isin

a higher priority to <BREAK> (i.e.
t he <BREAK> condition
to clear the

<PAUSE> condi ti on
code gives
pendi ng,

GOTBRK routine

needs

A, (KFLAGS) ;Plu the flag
;Bit 0 to carry
C, GOTBRK : Go on BREAK
;Bit 1 to carry
NC ;Return if no pause

BREAK bit into the
effect, the sub-routine would branch
If there is no pending BREAK, the
PAUSE bit into the carry flag. If no
effect, the routine returns to the caller. This sequence of
i f both BREAK and PAUSE conditions are

is inportant to note that the
after it services the <BREAK>

has precedence). It
KFLAGS bits

condition. This is sinply done via a call to RESKFL.

The next part of the routine is executed on a <PAUSE> conditi on.

CALL
PUSH
LD
XOR
CALL
POP

First
possibility that

to flush

the @CTL call
with 5.1.2).

(i.e.

Now t hat we are

to wait for a key input.

PROVPT PUSH
CALL
POP
cP
JP
cP
JR

The PROVPT routine wll
i gnore repeated <PAUSE> (the 60H). Any other character will cause it to fal

It will

the KFLAGS bits are reset via
type-ahead is
detected by the type-ahead
(renmove all
ways of doing this. W could repeatedly cal
W coul d al so use the undocunented scheme of witing a
a @TL-0 witten

stored characters) out the typeahead buffer.

RESKFL
DE

DE, KDCB$
A

@cTL

DE

; Reset the flag

; Flush the type-ahead

the call to RESKFL. Next, we take care of the
active. If it is, the PAUSE key was nost likely

and thus the PAUSE is stacked there al so. W want
There are a few
@BD until no characters were renaining
zero to the *KI device through
clears the type-ahead buffer commencing

routine

to *Kl

in a PAUSEd state and the type-ahead buffer is cleared, we need
The follow ng routine does this:
DE
@XEY ; &wait for key entry
DE
1
Z, GOTBRK
60H
Z, PROVPT
accept a <BREAK> and branch to your BREAK handling routine

through to the follow ng routine which clears the KFLAGS.

RESKFL PUSH
PUSH
LD

RESKFL1 LD
AND

RESKFL2 CR
LD
PUSH
LD
CALL
POP

HL

AF

HL, (CKPAWGH|) ; Plu KFLAG poi nt er
A (H) ;Plu the flag
OF8H ; Strip ENTER, PAUSE, BRK
40H ; Set ECM

(H), A

BC

B, 16

@AUSE :Pause a bit

BC

Page 80

LD A (HL) ;1 f got set again...

AND 3

JR NZ, RESKFL1 ; then reset it again
POP AF ; Restore possi bl e pronpt
POP HL : char & exit

RET

The RESKFL subroutine needs to be called when you first enter your application.
This is necessary to clear the flag bits that were probably in a "set" condition.
This "primes" the detection. The routine also needs to be called once a BREAK, PAUSE,
or ENTER condition is detected and handled (its only necessary to deal with the flag
bits for the conditions you are using).

Notice that throughout the entire CKPAWS routine, "KFLAGS" was referred to in
only one instruction. This was done so that the Model check (I or [II1l) need only
update one address in nmenory. Now you can cl ean-up your "paws".

Interfacing to @CNFG

Many years ago in a galaxy far far away... Actually, it's probably been between
one and two years ago. Wth the capability of SYSGEN, nany of our users preferred to
SYSGEN the RS-232 driver. Wen that was attenpted, it worked okay as |ong as you did

not power down your nachine. This particular Iimtation was certainly sonething we
all could not live with. The problemwas that the RS-232 hardware (UART, Baud Rate
Generator, etc.) needs to be initialized before it can be used. It wasn't good enough

to just configure wth the RS-232 driver resident, sonme initialization routine was
necessary. Thus, the need to be able to invoke, at BOOT, a routine to initialize the
RS-232 driver, becane evident. Qut of this came the @CNFG vector (which is an
acronymfor "initialization configuration").

The @CNFG vector is always called by the SYSO initialization stub after any
configuration file is |loaded. Thus, any initialization routine that is part of a
hi gh-nmermory configuration, can be invoked by chaining into @OCNFG The follow ng
procedure may be examined to illustrate this link. The first thing to do is to nove
the contents of the @CNFG vector into your initialization routine. The subroutine:

LD A (@ CNFQ ; Get opcode
LD (LINK), A

LD HL, (@ CNFGt1) : Get address
LD (LI NK+1) , H

does this by transferring the three byte vector to your routine. You then need to
relocate your routine to its execution nenory address. Once this is done, transfer
the initialization entry point to the @CNFG vector as a junp instruction wth:

LD H,INT ; Get (rel ocated)

LD (@CNFGHL) , HL : init address

LD A, OC3H :Set JP instruction
LD (@CONFG), A

If you need to invoke the initialization routine at this point, then you can:
CALL @ CNFG lnitialize routine

Your initialization routine would obviously be unique to the function it was to
perform A tenplate for such a routine would appear as:

INT EQU $;Start of mt
your initialization routine

LI NK DB 'LSI ;continue on

Page 81

Don't forget to SYSGEN after linking in your routine. By follow ng these
procedures, you can effect the invocation of your routine every time you boot LDCS.

Interfacing to @I TSK

Consider for a nonent that disk 1/0O can not take place during an interrupt task.
How then can we wite "background" routines that performdisk I/0? The systemprinter
spool er does its despooling function as a background task. If we cannot perform disk
I1/O during interrupt tasks, how can we despool? W achieve this by being able to
i nvoke background tasks in one of two ways. W can use the RTC interrupt (or other
external interrupt). Thus, type cannot be used to performdisk I/O W can al so use
t he keyboard task.

At the beginning of the LDOS keyboard driver is a call to @I TSK This neans
that any time @BD is called, the @I TSK vector is |likewise called (actually, the
type-ahead interrupt task bypasses this entry to inhibit calling @ITSK fromthe
interrupt routine). Therefore, if you want to interface a background routine that
does disk 1/Q you nust chain into @l TSK

The interfacing procedure to @I TSKis virtually identical to that shown above
for @CNFG and will not be repeated here. For the sake of clarity, you may want to
wite your background routine to start wth:

START CALL ROUTI NE ;I nvoke task
LI NK DB "LSI ; Space for KITSK hook
ROUTI NE EQU $;Start of the task

Now that | have denonstrated the procedure) let ne point out one major pitfall.
The @XBD routine is invoked from @MD which is in SYS1. This invocation is fromthe
@KEYIN call which fetches the next command Iline after issuing the "LDOS Ready"
nessage. |f your background task executes and opens or closes a file (or does
anything to cause the execution of a systemoverlay other than SYS1l), then SYS1 wll
be overwitten by SYS2 or SYS3 respectively). Wen your routine finishes, the @EYI N
handl er returns to what called it which was SYS1. Unfortunately, SYS1 is no |onger
resident. Thus crash city is upon you.

ANY TASK CHAI NED TO @I TSK WHI CH CAUSES
A RESI DENT SYS1 TO BE OVERWRI TTEN MJST
RELOAD SYS1 PRI OR TO RETURNI NG

kay, how do you acconmplish this wthout knowing system code (point of

information: if you are witing background tasks, you are witing system support
code!)? You wll be able touse the followng code to reload SYS1 if SYS1 was
resident prior to your task's execution. Don't forget to correct any Model 1/111

vectors if your code is to run on either nachine.
ROUTI NE LD A (OVRLYS) ; Plu resident overlay
AND 8FH ; and renove entry
LD (OLDSYS+1), A

Rest of your task

EXT EQU $

OLDSYS LD A0 ;Plu ol d overl ay$
CcP 83H Was it SYS1?
CALL Z, GETSYS1 ;Get sysl back if it was
RET

GETSYS1 RST 28H ; Fetch SYS per reg A

Page 82

M scel | aneous Tidbits

If you have a program that relocates to high nmenory, here is a caution to
observe. Note that any command can be executed from LBASIC via the <CWVD'comrand
string> LBASIC acconplishes this by shifting the BASIC program and variables to
avail able high menory and lowering HGH. That's why we inhibit the execution of
certain library commands that effect changes to H GH$ (ever see the "Can't - Valid
only at LDOS" nmesage?). Your programshould do |ikew se. Therefore, if your program
behaves in the above manner, have it check the contents of @XIT. If the @M request
canme fromLBASIC, then @XIT wll contain the start of a junp instruction (X C3').
Thus, if it's a C3H, then inhibit your programfromexecuting. If it's not a C3H, your
programis okay for execution.

Vvell, that's it for this issue. If you have specific requests for the next
i ssue's "Roy's Technical Corner", drop a line to ne at LSI. Good codi ng!

LES | NFORVATI ON

by Les M kesel |

This colum will deal with the technical aspects of the LDOS RS232 drivers and sone
general information about using device 1/Ofrom within prograns. The principle is
quite sinple: any programcan substitute a device nane for a filespec in the routine
to OPEN a file, then wuse calls to @ET (013H or @WUT (01BH) to input or output
characters through the device. OPENng a device actually creates a device control
block that is ROUTEd to the DCB that is known to the system An LBASIC program can use
this function to QUTPUT to a device (such as *CL) by wusing statement OPEN "O',1,"*CL",
followed by PRI NT#1,"string", where "string" can be one or nore characters. As in the
sequential file access node, a sem -colon nust be used after the string if a carriage
return should not automatically be added at the end of the string. INPUT from devices
is also allowed, but is somewhat restricted by the lack of a single character input
(corresponding to INKEY$) that is usable with files or devices. Also, INPUT and
LINEINPUT require a linefeed following the carriage return to termnate the input when
used with devices, due to the nethod that is used to skip the linefeeds if encountered
when the input is done froma file. This problemw || be addressed later. First, a
|l ook at how it is done in machine code. The follow ng programcould be used as a dunb
terminal or to test input and output with any device. It is used by passing the device
name on the command line (like LCOW) .

; Sinple termnal program usi ng RS232/ DVR

@XBD EQU 02BH ; get key press
@sP EQU 033H ; display single character
@sSPLY EQU 4467H ; display line
@SPEC EQU 441CH : nmove filel/device nane
@PEN EQU 4424H ; open existing file/device
@RROR EQU 4409H ; get system error nessage
@=ET EQU 013H ; input character fmfileldevice
@uT EQU 01BH ; output character to file/device
@EXT EQU 402DH : normal exit to LDOS
@BORT EQU 4030H oerror exit
CRG 5200H
;programis entered with HL pointing one space past file nanme
START: PUSH HL ;save pointer to command |ine
LD HL, LOGON ;point to | og on nessage
CALL @SPLY ; di spl ay nessage
POP HL ;restore conmmand |ine pointer
LD A (HL) :check character there
CP LR cis it an * ?

Page 83

JP NZ, NOTDEV ;if not, quit!

LD DE, DCB ;try to OPEN it
CALL @FSPEC :first nove nane to DCB
JP NZ, NOTDEV ;quit if error
CALL @PEN ;open devi ce now
JR Z, TERM N call's well ..
R 0COH ;else set bits 6 & 7 of error
CALL @ERROR ;get system error nessage
JP NOTDEV ;then ours, and quit
TERM N. LD DE, DCB ; point to device
TERVR: CALL @=ET ;test for input from R5232
JR Z, KEYCHK ;none, try keyboard
CALL @SP ; di spl ay received character
KEYCHK: CALL @xBD ;check for keypress
JR Z, TERM N ;no key press, try R5232
CP 1 ; "BREAK' pressed?
JP Z, @GEXT :back to LDOS if so..
LD DE, DCB ;point to R5232 device
CALL @uT :send character
JP TERMR ;continue till break pressed
DCB: DS 32 ; space for device control block
NOTDEV: LD HL, ERRVBG ;point to error message
CALL @SPLY ;display it
JP @\BORT ;quit
ERRVMSG DEFM ' Devi ce Spec Required!’
DB ODH ; carriage return
LOGON: DEFM ' LDOS dunb term nal program
DB 0AH : line feed
DB ODH ; carriage return
END START

The program can, of course be expanded to include any additional functions that are
desired. It denonstrates the use of @XET and @UT, but the device drivers may al so
allowusing the @TL call (023H) to pass various control information between the
program and driver. The control functions are accessed by |oading DE with the address
of the DCB, A wth the control function nunber, and calling @TL. |If the driver
returns a value to the program it will be passed in the A register or the status flag
register. The functions currently provided by the LDOS drivers are:

Wth the printer and RS232 drivers, sending a zero through @TL wi |l cause the driver
to test the output status of the device (can it accept a character now?) and set the Z
flag accordingly (Z set neans READY). This is the nmethod used by the LDCS spooler to
quickly determine if it can output any characters during an interrupt cycle.

Kl /DVR accepts a zero through @TL as a conmand to clear out the type-ahead buffer.
(5.1.2 and 5.1.3)

The RS232T/DVR (for the Mddel 3) also includes two additional functions that are
related to its abiltity to receive and buffer characters using the hardware interrupt
fromthe RS232 interface. Passing a "W (57H) through @CTL tells the driver that an
address is being passed in the 1Y register. This will be installed as a CALL address
in the interrupt processing routine. After each character is received and put in the
RS232T buffer, a CALL will be made to the specified address (the "wakeup" function).

Page 84

The subroutine at that address would typically call @ET to get the input character
and store it in a dedicated buffer for the program (Maintaining the buffer pointers
can be tricky, since characters can be added at any tinme). Passing an ASCIlI X (58H)
through @TL will disable the CALL set up by the "W function, and obviously nust be
used before exiting fromany programthat has used "wakeup".

Now, for those who prefer to programin BASIC, | will show a couple of ways to access
the @ET routine to input froma device wthin a BASIC program The nost conmon need
for this ability would be to input characters fromthe RS232, but the principles would
apply to any device that can supply input.

The first method is a quick and dirty approach that only requires a few PEEKs and
POKEs to tenporarily ROUTE the keyboard input requests to the desired device driver,
so that I NKEY$, INPUT or LINEINPUT statements may be used to access the device. It may
only be used in the Mdel 1, due to a difference in the way ROUTEs are handled in the
Mbdel 3. First, set up the *SI device by SETing it to the appropriate driver at LDOS
command level (e.g. SET *SI to RS232R), or ROUTE it to the desired device if it
already exists in your system(e.g. ROUTE *SI to *CL). Note that the ROUTE command for
an input device seens backwards - it actually neans "ROUTE the input requests for
<source device> to <destination device>". The inportant point here is to get one of
the "known" extra DCBs set wup for input from the desired device. This configuration
may be saved with SYSTEM (SYSGEN). Since the *KI and *SI DCBs are in fixed nmenory
| ocations, a BASIC program can use PEEKs and POKEs to simulate the ROUTE command at
any tine. Now, PEEK the first three bytes fromthe *K DCB (4015H - 4017H) and store
the values, then POKE a 16 (hex 10 - to indicate a ROUTE) into 4015H, followed by the
address of the *SI DCB in least significant, nost significant format (this is
different on the Mbdel 3, so this technique cannot be wused). For the Mbdel 1, this
would be POKE (&H4016), (&HC8): POKE (&H4017), (&H43) to set up the keyboard device
control block in a ROUTEd condition, so that any input requests that would normally go
to the keyboard driver wll tenporarily be satisfied by the *SlI device instead. To
restore the normal keyboard, sinply POKE back the saved original values. | f
type-ahead is active, any keys that were pressed while the DCB was ROUTEd will still
be available when the DCB is restored to the KI/DVR

A few precautions nust be taken to make this nethod safe. save the current *KI DCB
contents EVERY TIME before POKEing in the ROUTE. Then you can be sure that you are
restoring the correct driver when you PCOKE these val ues back. Renenber that JCL al so
uses the *KI DCB, and if the /JCL file terminates in the BASIC program the contents
of the DCB will be altered. This can only happen when the "real"” keyboard is enabl ed,
so saving/restoring the values each tine will avoid nost problens. A so, the "real™
keyboard driver should be active whenever possible and the BREAK key | ocked out while
the *KI is ROUTEd. The system BREAK bit is set during interrupt processing, and it
woul d be possible to break a BASIC programw th NO access to the keyboard if the ROUTE
is still in place, or even worse, the break could occur in the nmiddle of PCKEi ng the
DCB, whi ch woul d crash the systen

Sanpl e LBASI C terminal programfor Mddel 1 OWLY
at LDOS Ready, SET *SI R5232R

5 CLEAR 5000: DI M | % 3)

10 OPEN "O', 1,"*SI" 'same devi ce can be used for output
20 @GOsuUB 100 'get input fromKB

30 IF IN$<>"" THEN PRI NT#1, I N$; 'send any key pressed
40 GOSUB 200 " RQUTE input to *Sl

50 GOSUB 100 "now i nput routine will check RS232
60 GOSUB 300 "restore keyboard

70 IF IN$<>"" THEN PRI NT I N$; 'display anything received
80 GOTO 20 'continue forever

90 ' subroutines
100 | N$=I NKEY$: RETURN 'note there is no wait for input here
200 FOR 190 TO 2 ' get three bytes

Page 85

210 KI 9% | % =PEEK(&H4015+1 % 'from the *KI DCB

220 NEXT : CWD'B", "OFF" 'can't BREAK now

230 PCKE (&H4015), (&H10) "indi cate ROUTE

240 PCKE (&H4016), (&HCB): POKE (&H4017), (&H42) '<=43 for Mdd 1
250 RETURN

300 FOR 19%0 TO 2 "three bytes

310 PCKE (&H4015+1 %, KI% 1% 'restore previous KB driver

320 NEXT: CvD'B*, " ON' 'K to BREAK again

330 RETURN

This programwould work at 110 baud or less as a dunb termnal, or the techni que could
be used where there is some form of handshaking to prevent dropped characters. The
restrictions on this type of device access are: 1) it is slowif the swap is done for
every character, 2) it is not possible to input a zero character value, so it would
not work for binary data transfers where the null character is valid, 3) one of the
"known" spare DCBs nust be wused for the alternate input device, and 4) it only works
in the Mdel 1.

A USR routine called from BASIC can avoid these problens, but this approach is
slightly nore conplicated, since the machine |anguage routine nmust be installed. It
is still possible to let BASIC do nost of the work, by OPEN ng the device for output
to create the device control block and allocate sone buffer space that can be wused for
the USR code. First OPEN the device in the "randont node and FIELD a dummy string
vari abl e so the VARPTR val ue can be used to | ocate the buffer address. Then CLOSE the
device and re-open for sequential output using the same buffer nunber. Random access
to a device is not allowed, but the dummy FIELD allows the BASIC program to find the
file buffer, which wll remain in the same location when the file is re-opened for
output. The DCB will be 32 bytes lower in nmenory. Then, a machine code routine can
be POKEd into the buffer space to load DE wth the DCB, CALL @ET, and return the
value to BASIC as an integer nunber. Since integers are two byte values, the value in
excess of 255 can be used as an indication of whether a valid character was avail abl e
or not, so that all possible character values including 0 can be detected.

10 CLEAR 5000: DEFI NT A-Z: GOSUB 120 'initialize 1/0

20 'put loop first for speed - also del ete remarks

30 'sanple term nal program

40 | N$=I NKEY$ ' Check keyboard

50 IF IN$<>"" THEN PRI NT#1, I N$; 'send any characters

60 IN = USRL(1) 'check device input - the (1) is a dumy

70 IF IN THEN PRINT CHR$(IN-256); 'print rcvd chars

80 GOTO 40 "do it forever...

90

100

110 '"initialization

120 OPEN "R', 1,"*CL"' 'this nethod can use any devi ce nane
130 FIELD 1,1 AS DU$ "a dummy string just to find address
140 VP=VARPTR (DU$) 'String pointer address

150 BF=PEEK(VP+1) +256* PEEK(VP+2)' BF i s address of file buffer
160 CLCSE 1 'end random node

170 OPEN "O', 1,"*CL" ' open again for sequential output

180 DCB=BF-32 : LB=DCB AND (&HOOFF) 'l ow byte of DCB address
190 HB=(DCB AND (&HFF00))/256 ' high byte of DCB address

200 PCKE BF, (&H11) "LD DE,... (start of USR code)
210 POKE BF+1, LB "l ow byte of DCB address
220 PCKE BF+2, HB "high byte of DCB

230 POKE BF+3, (&HCD) ' CALL...

240 POKE BF+4, (&H13): POKE BF+5,0 ' @&ET (13H)
250 POKE BF+6, (&H21) 'LD HL, ...

260 POKE BF+7,0 : POKE BF+8,0 ' 0000

270 POKE BF+9, (&28) 'JR Z, ...

Page 86

280 PCKE BF+10, (&H02) ' $+2 (return zero if no character)
290 PCKE BF+11, (&H24) 'else INC H (set H=01)

300 PCKE BF+12, (&H6F) 'LD L,A (put character in L)

310 PCKE BF+13, (&HC3) 'JP... re-enter BASIC and pass val ue
320 PCKE BF+14, (&HOA): POKE BF+15, (&HOA) ' O0A9A address

340 '..... any other initialization, etc.....

350 DEFUSRL1=BF ' USR routine entry point

360 RETURN

This nethod may still be too slow for dependabl e 300 baud operation but shoul d keep up
on a nodel 3. Renenber that string handling is slowin BASIC and there is a danger of
losing data if string space nust be conmpressed (BASIC s i nf anous "gar bage
collection"). It could receive MJH faster if blocks of data can be received and
stored in an integer array, then unpacked and stored between bl ocks. The val ue
returned by the USR function will be O if no character has come in, otherwise it wll
be 256 + the character value. This allows detecting a zero as a valid character when
it is received. If the sending device is using parity, it wll be necessary to AND
127 with the nunber to accept only the valid seven bits. After the nmachine code

routine is POKEd into the file buffer, it is inportant not to CLOSE the device until
the programis done with the USR function since that would clear the buffer and DCB.
This would occur if the program contains a gl obal CLCSE statenent.

The following CLFLT/FLT is a general purpose comunications filter. It includes
features to add nulls after carriage returns, a delay between characters, and a
linefeed after every carriage return. It also provides a nmask paraneter to renove

parity bits during ASCIl file reception.

00100 ; Communi cations filter for LDOS RS232 drivers to provide
00110 ;testing for mbdemcarrier, delay between characters,
00120 ;and linefeeds and nulls after carriage returns.

00130 ; Enter with paraneters:

00140 ; CARRIER = ON or Y /default is COFF

00150 ; Setting ON will cause all input or output requests
00160 ; to be ignored unless the nodemis receiving a
00170 ; carrier signal

00180 ; ADDLF = ONor Y /default is OFF

00190 ; Setting ONwill add a linefeed after each carri age
00200 ; return.

00210 ; NULLS = 0 to 256 /default is O

00220 ; Number of nulls to send after each carriage return
00230 ; DELAY = 0 to X FFFF' /default is O

00240 ; Variabl e timng del ay between output characters to

00250 ; all ow sending to systens that cannot accept full
00260 ; speed transm ssi on.

00270 ; MASK = ON or OFF ldefault is OFF

00280 ; Setting ONwi |l strip the high bit fromreceived
00290 ; characters, renoving parity bits that nmay have been
00300 ; added by the sender. Use only for transmissions in
00310 ; the ASCI| character range, not for 8-bit binary data.
00320 ; Al paraneters may be abbreviated with the first letter
00330 ;

00340 ; Hardware dependant EQUates.. Mdd 1 addresses used

00350 RSHACK EQU -1 ;a logical TRUE for assenbly

00360 LX80 EQU 0 ;| ogi cal FALSE (reverse for LX80)
00370 H G EQU 4411H ; <=change to 4049H for Md 1

00380 @ARAM EQU 4454H ;<= 4476H for Md 1

00390 @OGOr EQU 428AH ;<= 447BH for Md 1

00400 ;

00410 ; Ceneral EQuates...
00420 @&EXIT EQU 402DH

Page 87

00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700

00710 ;

00720
00730
00740
00750
00760
00770
00780
00790

00800

00810
00820
00830
00840
00850
00860
00870

@\BORT
@SPLY
@ELAY
LF
CR

;. LDCS

ENTRY:

;test paraneter

ADDLF

NXTST:
CARRY

00880

00890
00900
00910
00920
00930
00940
00950

d(l\/SK:
MASK

00960

00970
00980
00990
01000
01010
01020
01030
01040

GETDVR

"FILTER

ORG
PUSH
PCP
PUSH

JP
POP
LD
CALL
JP

LD
EQU
LD
R
LD
JR
LD

LD
EQU
LD
R
JR
LD
LD

LD

EQU
LD

4030H

446/ H

60H

10 ;i nef eed character
13 ;carriage return

command handl er

5200H

DE

I X

HL

A, (DE)

AF

HL, SI GNON
@SPLY

AF

3,A

NZ, 1 SNI L
4, A

NZ, ROUTED
7

7

NZ, DEVERR
H

DE, PRMIBL
@ARAM

NZ, PRVERR

; save DCB poi nter
;into | X register
;save cnd |ine pointer
; Pick up DCB type byte

; =>Si gnon nessage
yprint it

;restore type byte
:Device routed to NIL?
G if so

: Rout ed?

;G if so (error)

:does driver handle 1/0O
: and @CTL?

;G if not

;restore cnd line pointer
; Scan paraneters

;quit if error

values and initialize filter

BC $-$
$-2

A C

B

A LF

Z, NXTST
(LFFLO), A

BC $-$
$-2

A B

C

Z, CKVBK
A, OFFH
(CFLAG , A

BC, $-$
$-2

A B

C

Z, GETDVR
A

(NVBK) , A

H, (1 X+2)

L, (1 X+1)

(DVRADD) , HL
(DVR2) , HL
(DVR3) , HL
(DVR4) , HL
HL, (H GH$)
(OLDVEM , HL

;val ue set by @PARAM cal |
: <=here

;set flag
:load a line feed
;go if not specified
;stuff byte if wanted

;<=setting for CARRI ER

;no checking if zero
:Stuff FFH if check want ed
;for input request

; MASK par am
; set by @ARAM

;zero?

; no maski ng want ed

. set zero

: set NOP instd of RET

;pull driver address from

: DCB of device
; put where needed in filter

;find top of available nenory
;save in filter header

Page 88

01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330

01340 ;*

01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660

=% =%

EXIT

* =k —%

I
| SNI L:
DEVERR:
ROUTED:
PRVERR:

* =k —%

SI GNON:

PRVERS:
| SNI L$:
DEVERS:
ROUTDS:

PRMIBL:

PUSH
LD
PUSH
XCOR
SBC
EX
LD
ADD
LD
LD
ADD
LD
LD
ADD
LD
LD
ADD
LD
LD
ADD
LD
POP
POP
LD
LDDR
LD
I NC
LD
LD

JP

HL
BC, LAST
BC

A

HL, BC

DE, HL

HL, (REL1)
HL, DE
(REL1), HL
HL, (REL2)
HL, DE
(REL2) , HL
HL, (REL3)
HL, DE
(REL3), HL
HL, (REL4)
HL, DE
(REL4) , HL
HL, (REL5)
HL, DE
(REL5) , HL
HL

DE

) save
;end of relocated code

) save

;clear carry

:find of fset of nove

;put into DE

;rel ocate absol ute nenory
: references used in the
:nmoved code. .

; by. .

;addi ng of fset of nove

;end of filter (now)
cold H GH$

BC, LAST- FENTRY+1 ;| ength of rel ocated code

(H GH8), DE
DE

(I X+1), E
(1X+2), D

@EXT

Error handling

LD
JR
LD
JR

"A

'C

EEFEFEFERCEEEEE

3
3
Z

'CL/FLT -
LF, CR
'Paraneter error!',CR
'Device not active!',CR
"Incorrect device type!',CR
"Device is routed!',CR

HL, | SNI L$
ERRQUT
HL, DEVERS$
ERRQUT
HL, ROUTDS$

" ADDLF
ADDLF
ADDLF
' CARRI E
CARRY

CARRY

cmove it

;set new H GHO

;point to filter entry point
:Shove it in the DCB

: Done

;' Paranmeter error’
; Display and | og
yQuit

LDOS communi cations Filter'

Page 89

01670 DW DELAY

01680 DB 'D '

01690 DW DELAY

01700 DB ' NULLS '

01710 DW NULLS

01720 DB 'N '

01730 DW NULLS

01740 DB ' MASK

01750 DW MNASK

01760 DB 'M

01770 DW MNASK

01780 DwW 0 ;end of |ist

01790 ;

01800 ; *=*=*

01810 ; Actual filter noved to high menory
01820 ; LDCs styl e header. ..

01830 ; *=*=*

01840 FENTRY: JR START ; Branch around |inkage
01850 DW $-3 ; Last byte used
01860 OLDVEM EQU $-2 ; <=previ ous H GH$ val ue
01870 ;

01880 DB 5 'CLFLT

01890 ;

01900 ; actual filter routine

01910 the initialization code sets the flag byte to FFH i f

01920 ; the test for carrier is wanted, 0 if not

01930 START: LD A $-$;get flag for carrier test
01940 CFLAG EQU $-1 ; set according to parans
01950 JR C,INPUT ;an input request

01960 JR Z, QUTPUT ; out put request from program
01970 ; fall through if programcalled @CTL

01980 GSTAT: OR OFFH :reset Cand Z so filter can...
01990 ;call driver for status

02000 DRI VER JP $-3 ;go to old driver

02010 DVRADD EQU $-2 ;stuff driver address here
02020 ;

02030 ;

02040 ; use a test that will set NZ if going directly to the driver
02050 I NPUT: | NC A ;set Zif flag was FF for carrier
02060 ;

02070 CALL Z, STAT :check for carrier if wanted
02080 REL1 EQU $-2 ;call address is rel ocated
02090 JR Z,IGNORE ; no carrier, skipit

02100 SCF ; input wanted

02110 CALL $-3 ;driver address

02120 DVR2 EQU $-2 ;stuffed by | oader

02130 MBK: RET ;replaced w NOP i f MASK specified
02140 AND 7FH ;strip parity bit

02150 RET

02160 ;

02170 ; no carrier, so call driver to clear UART and buffer
02180 ; then ignore any received characters

02190 ;

02200 | GNORE: OR OFFH ;be sure Z flag is off

02210 SCF ;carry flag on

02220 CALL $-$;get input fromdriver

02230 DVR3 EQU $-2 ;driver address

02240 XOR A ; throw character away

02250 RET

02260 ;

02270 QUTPUT: PUSH BC :save @UT char act er

02280 I NC A ; Test flag (zero to skip)

Page 90

02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610

REL2

REL3

LFFLG

NULLS

NLOOP

SEND:
REL4

02620

02630
02640
02650
02660
02670
02680
02690
02700
02710

SLOW

DELAY

DVR4

02720

02730
02740
02750
02760
02770

02780

FI NAL

FAKEI T

02790

02800
02810
02820

STAT:

REL5

02830 ;
;the status call returns the nmodem status byte fromthe UART
;or SIOchip in register A, as well as the output status
;inthe Z flag, but the bit val ues depend on the hardware

02840
02850
02860
02870
02880
02890
02900

CALL
EQU
POP
JR

PUSH
CALL
EQU
POP
LD
cP
JR

LD
EQU
LD
EQU
PUSH
LD
R
JR

POP
LD
OoR
JR
DEC
PUSH
CALL
EQU
LD
POP
JR

PUSH
LD
EQU
LD
R
CALL
POP
CALL

EQU

LD
LD

cP
RET

LD
CALL

EQU

Z, STAT

$-2
BC

;test carrier if flag was FF

;restore character

Z,FAKEIT ;no carrier, dunp output character

BC
SLOW
$-2
BC

A CR
C

:save character
; del ay/ send
;address is rel ocated

;check for carriage return
; bei ng out put

NZ, FAKEI T ; done if not

ogeger

MG

'
&

CLERRLTZR B>

RO
e

;A 0 or LF (set when | oaded)
;stuff byte according to paraneter
; pi ck up NULL count
; set by @ARAM
; save count
;the @UT char (0 or LF)

: LF needed?

, SEND ; output if so

;else restore NULL count

:test if done

FINAL ;go if finished

;el se count down nulls

; save count

; pause/ send charact er

; address goes here

:load null to send

:restore count of nulls wanted
:send until done

:save @PUT char
;get DELAY val ue (1l oaded by @PARAM
;val ue stuffed by @ARAM

;check for zero (default)

NZ, @ELAY ; (always sets Z flag)

| F RSHACK

CPL
BIT

5A

;restore character
;driver, to output character

; Load the original @WUT char
:into C and A in case other
:filters are active

;set Z flag for good return
; done with out put

:for status check
:call driver for status
:rel ocat ed when | oaded

; this test applies to std Mod 1 or 3
; O=ON in UART, so flip bits
;check for carrier signal bit

Page 91

02910 ENDI F

02920 ;

02930 I F LX80

02940 NOP ; patch space to nodify
02950 BIT 3, A ccarrier bit fromLX80 SIO
02960 ENDI F

02970 ; Z=no carrier, NZ=carrier on...

02980 RET

02990 LAST EQU $-1 ;used for length calculation
03000 ;

03010 END ENTRY

LATE BREAKI NG NEWS AND OTHER ASSORTED | TEMS

The following is a series of patches for Radio Shack's new SuperScripsit. They were
done by Tom Price and the people at Powersoft. Any questions on this article should be
addressed to them

Pat chi ng SUPER SCRIPSIT(tn) For Use Wth The LDOS 5.1.3 Operating System
By: Dennis A Brent and Renato Reyes Ph.D

Radi o Shack's new entry in the word processing jungle is out and it sure | ooks
like a winner! SUPER SCRIPSIT is everything that Tandy has been promi sing and nore. It
i ncor porates many features which have been lacking in other WP prograns, notably the
ability to deal with files larger than available nenory, and the ability to interface
to a wide variety of printers. This new systemhas so nuch flexibility and so nany

neat features, that we wll save the review for another article. Take our word,
though, it is some of the nicest software to come out of Texas, outside of SUPER
UTI LI TY!

Wuldn't it be nice to conbine all this new word processing power, and use it
under LDCS too! That is what we thought, and we decided to do sonething about it. On
top of modifying SUPER SCRIPSIT for use wth LDOS, we wanted to run SuperScripsit on
our Laredo Hard Drive. Al of the above is now possible, and has been well-tested.
This information is available below, and also in the Power SOFT XTRA-80 Sig and LDOS
Si g Database on M croNET for your down-|oading pl easure. W do not have the new Radio
Shack Hard Disk yet, but we assune that these patches wll work just fine on THAT
system runni ng under LDOS 5.1.3. W have included a JCL file for easy application.

W al so have devel oped printer drivers for the EPSON MX-series printers equi pped
wi th GRAFTRAX-80 or GRAFTRAX-Plus. These drivers interface directly with SuperScripsit
and allow you to nake use of the many printing nodes and special features of your
EPSON printer. The driver prograns will permit you to print properly-justified text in
any one of the four print sizes the EPSON is capable of: expanded print, double-w de
conpressed print, standard 10-chars.-per-inch print, and conpressed print. The print
sizes are selected by supplying the correct pitch value to SuperScripsit at docunent
OPEN ti ne.

Al EPSON drivers support underlining, boldface, and italics using SuperScripsit
control codes. In addition the Gaftrax-Plus drivers (two are supplied) support
superscripting and subscripting. Wen enphasized print node is switched in, the

drivers will automatically switch it off when printing superscripts and subscripts
(otherwise the EPSON would refuse to do super/subscripts). The Gaftrax-Plus drivers
will also trap illegal conditions such as swi tching enphasized print node on while in

conpressed print size (the GRAFTRAX-Plus ROVs sonetines respond to this by switching
conpressed print OFF, which is undesirable).

The EPSON printer drivers are available on disk for $29.95. Ask for the Power SOFT
drivers for SuperScript(tm. Included as a free bonus are all the patch files
necessary to get SuperScripsit running under LDOS 5.1.3 on your disk. This way, you do
not have to type themin!

Page 92

VW will develop SuperScripsit printer driver software for other printers and
release themin the near future. In the works are a printer driver for the excellent
C. Itoh PROARI TER which w | support proportional printing, as well as a driver for
the new ANADEX series of printers. W would like to thank Tom Price for his inval uable
help and guidance in getting these patches in the "bug-free" state that they are in.
W would also like to thank Earl e Robinson for his testing and suggestions.

8/ 26/ 82

These are the patches necessary to make SuperScripsit fromRadio Shack work correctly
under LDOS 5.1.3. These patches permt the creation and mai ntenance of files which are
an even nmultiple of 256K (B-1-G files!).

.SCRIPITT/FIX

.LDOS Patch to SuperScripsit by TomPrice and Renato Reyes
.Permts operation under LDOS 5.1.3 Mod I1I1

.This patch conplinents of Power SOFT

:PATCH SCRI PSI T/ CVD USI NG SCRIPI 11/ FI X

D00, 08=3A 89 42 32 20 5B CD 01 5B
D05, 2E=C3 16 5B
D09, OD=E5 CD 90
D09, 10=42 E1 CO 23 23 46 23 7E B7 3E FF 20 03 00 00 78
D09, 29=CB 8F 32 89 42 E5 2A 14 45 22 14 5B 3E OA CD 40 40 E1 C9 00 00
D09, 3E=ED 5B 14 5B 3E 0A CD 3D 40 3E 00 32 89 42 C3 2D 40
End of patch SCRIPIII/FIX

.SCR17111]FI X

.LDOS Patch to SuperScripsit by TomPrice and Renato Reyes
.Permts operation under LDOS 5.1.3 Mo |11

.This patch conplinents of Power SOFT

. PATCH SCR17/CTL USI NG SCR17111/FI X
D02, 40=38
D02, 46=D6 30 4F 06 00
D02, DA=37
D04, 69=4C 44 4F 53 20 20
End of patch SCR17I11/FI X

.For MODEL | SuperScripsit. Apply the patch to Mddel | SCRIPSI T/ CVD

.SCRIPI/FI X

.LDCS patch to Model | SuperScripsit by TomPrice & RB Reyes
.Permts operation under LDCS 5.1.3 Md |

.This patch conplinents (f Power SOFT

. PATCH SCRI PSI T/ CMD USI NG SCRI Pl / FI X
D00, 08=3A 1F 44 32 20 5B CD 01 5B 00

D05, 2E=C3 16 5B
D09, 07=47 OE FF 21 9B AC E5 CD 96

Page 93

D09, 10=43 E1 CO 23 23 46 23 7E B7 3E FF 20 03 00 00 78
D09, 20=32 22 7E AF

D09, 28=C9 CB 8F 32 1F 44 E5 2A

D09, 30=14 45 22 14 5B 3E OA CD 13 44 E1 C9 00 00 ED 5B
D09, 40=14 5B 3E OA CD 10 44 3E 00 32 1F 44 C3 2D 40 00
...End of patch SCRIPI/FIX

If you are running a doubl e-density Mdel | system under
LDCS 5.1.3 you can al so get directory display capability under
Mbdel | SuperScripsit by followi ng these steps:

1) Copy the Model 11 SCR17/CTL to your Model | Super
Scripsit disk. Aso copy the Mbdel 11l HELP/CTL nodule to
your Model | system

2) Patch the SCR17/CTL nodul e which you just copied as
foll ows:

. SCR17HY/ FI X

.Patch to Mddel 111 SCR17/CTL nodul e for use under Model |
. Super Scripsit running doubl e-density LDOS 5.1.3/1.

.This patch conplinments of Power SOFT

D02, 40=38

D02, 46=D6 30 4F 06 00 CD 63 44

D02, DA=37

D04, 69=4C 44 4F 53 20 20

... END OF PATCH.

The use of this nodule will also permt you to use the Md
Il dictionary and proofreader in place of the Mod I's. Just
copy over the Mod 111 PROOF/ CTL to your nodel | SuperScripsit
disk along with the rest of the dictionary files for Mod I11.

No pat ching of PROOF/ CTL needed. Be careful not to mx
dictionaries as they use different encoding schenes.

JCL File for automatic applicaton:

. SCRLDCS/ JCL - Autonatic Applicator for SuperScripsit Patches
.for use with LDOS 5.1.3 - Conplinents of Power SOFT

.This file will nodify Radi o Shack's SuperScripsit to run
.under LDOS 5.1.3. The SuperScripsit files nust have al ready
.been transferred onto an LDOS 5. 1. 3-readabl e di sk.

.Has this been done?

//Keyin 1 if yes, 2 if no ==>

/12
Pl ease do this now.
/1Exit
/11
. Wi ch systemdo you wish to inplenent:
(1) Model 111
(2) Model |
(3) Hybrid Model | with directory
di spl ay

)/Keyin your choice (1, 2, or 3) ==>
/11

Patch Scripsit/Crd using SCRIPII1/FIX
Pat ch SCR17/CTL using SCR17I11/FIX

Page 94

. Your SuperScripsit is now usable under LDOS 5.1.3-111
/lexit

/12

Patch Scripsit/cmd using SCRIPI/FI X

. Your SuperScripsit is now usable under LDCS 5.1.3-1.
/lexit

/13

.This requires that you copy the following MODEL IIIl files
.onto your Mdel | SuperScripsit disk.

. (1) SCR17/CTL

. (2) HELP/CTL

.Has this been done?

//Keyin 1 for yes, 2 for No ==>

/12

.Please do this now and rerun this JCL.

/lexit

/11

Patch Scripsit/cmd using SCRIPI/FIX

Pat ch SCR17/ CTL using SCR17HY/ FI X

.You now have a hybrid Mddel | SuperScripsit systemwth
.directory display inplenented. You may al so use the Model 111
.Proofreader with this inplenentation. Copy the Mdel 111
.Proof /Ctl nodul e onto your Model | systemand use the Mdel
111 Scripsit dictionary.

)/exit
SuperScripsit(tm is a registered tradenark of the Tandy Corp.

| TEMS AT RANDOM

The foll owi ng pieces of news and other information were received too |late to be pl aced
in the regular part of the newsletter, so they are here at the end.

First, available from SoftERware is an MX-80/100 printer driver for the new
Super Scripsit program It handles different functions for the Epson printers that have
the Gaftrax option installed. The price is $18.95, and the driver and information on
it can be obtained from Soft ERmare at 16007 M am Wy, Pacific Palicades, CA 90272.

Bob Snapp has reduced the prices of his SNAPPWARE products for the LDOS system These
products, as well as his trial package, are available fromLogical Systens or direct
from Snapp at 3719 Mantell Ave., G ncinatti, OH 45236. The new prices are:

SNAPP- | 1 $39. 00
SNAPP- [| | $35. 00
SNAPP- | V $35. 00
SNAPP- V $29. 00
SNAPP- VI $35. 00

SNAPP- VI | $19. 00
TRI AL PACK $10. 00

An upper case version of LED will soon be available for those Mddel | owners who do
not have a lower case nodification in their CPU It wll conme standard on the LED
mast er di sk.

Page 95

The LDOS Quick Reference card listed in our price list under catal og # L-40-060 should
be available by the end of Cctober. This will be a typeset, 3 color, glossy card with
10 panels per side. It wll detail the LDOS Library comands, filters, drivers,
utilities, LBASIC statenents and errors, and several other charts. The price is $5.95
whi ch incl udes shi ppi ng.

The following is a series of patches by Rchard Deglin for the Mcrosoft Macro-80
Edi tor Assenbl er package. For a conplete explanation, refer to the comrents in the
patch files. The patches from the OCctober Quarterly that are referrenced in this
article can be found on the fix disk, as explained at the end of this section.

MBOTI TLE/ FI X

Patch to Mcrosoft MBO 3.43

Witten by Richard N. Deglin 08/10/82

(1) Extracts systemdate and places it in MBO title

(2) Prints MBO title as | ogon nessage

Requi res previous patch MBO/FI X, LDOS Quarterly, Oct 1981, page 17!
5216'=C3 @2 97

97C2' =E5 CD 5D 96 20 06 21 33 30 22 D2 97 21 25 98

97D1' =CD 70 44 2A 28 98 22 1C 6B 2A 2B 98 22 23 6B

97EQ0' =2A 25 98 7D D6 30 06 00 28 02 06 OA 7C D6 30 80 3D 47 87 80
97F4' =21 2D 98 16 00 5F 19 11 1F 6B 01 03 00 ED BO 3E 0D

9805' =32 25 6B 3E 20 32 1B 6B 21 0D 6B CD 67 44 3E 09

9815'=32 25 6B 32 1B 6B 21 DB 92 22 17 52 E1 C3 DB 92

9820 ="JanFebMar Apr MayJunJul AugSepCct NovDec"

ECP

pat ch MACROBO/ CMD Version 3.34 - 02/ 24/ 82
. allow | owercase listing output (strings, titles, coments, etc)
X 914B' =00

ECP

pat ch MACROBO/ CMD Version 3.43 - 06/ 20/ 82
. allow |l owercase listing output (strings, titles, coments, etc)
X' 965B' =00

ECP

patches to EDI T80/CVMD | .0 - 02/ 24/ 82
. (1) change P<CR> command to scroll only 15 |ines
X 69BF' =15
.(2) change all listing fornfeeds to carriage returns
' 66FD =0D
' 6C35' =0D
' 878D =0D
(3) enabl e | onercase comrands
' 624C =38 03 DE 20 77 F1 7E 23 30 15
ECP

X XXX

pat ch CREF80/ CMD Version 3.43 - 07/31/82
. allow |l owercase listing output (strings, titles, coments, etc)
X 5C37' =00

ECP

FI XES and the FI X D SK

Logi cal Systens has a disk available that contains the najor patches that we and our
users have assenbled to date. This disk is available for 0 fromLSlI. A hardcopy
only versionis also available for 0 The current contents of the disk are as

foll ows:

Page 96

The date of this release is 10/01/82.

**xxx F| X/ TXT - Contains instructions for the SCRI PT, LSCRIPT, and VC patches.

**x*%x SCRI PT1/ FI X - Makes Mbdel 1 SCRIPTSIT, Version 1.0, work with Mdel | LDCS.

**x*xx SCRI PT3/FI X - Makes Mbdel 1 SCRIPSIT, Version |.0, work with Mdel 11 LDGCS.
**xx*x SCRI PT32/ FI X - Makes Model Il Scripsit Version 3.2 work with Mdel [11
LDCS.

Unlike the Script3 fix, no additional features such as a directory query or use of the
spool er are supported.

**x*%*x | SCRI PT/ FI X - Enhances Mddel 1 SCRIPSIT, Version |.0, for use on either MNbdel |
or Il LDCS.

**x%* PENCIL/FI X - Lets ELECTRIC PENCIL, Version 1, work with Mdel | LDCS.
**xx*x \/C/FI X - Makes Model | Visicalc, Version 1.20Z, work on Mdel | or |1l LDCS.

*Fxxx RSCOBOL/ FI X, RUNCOBOL/FI X, CEDIT/FI X - Mkes Radio Shack COBOL work on either
Model | or |11 LDGCS.

**xxx RSBASI C/ FI X, BEDI T/FI X - Makes Radi o Shack BASIC Conpiler work with Mdel | or
11l LDCS.

**x*xx ED| T80/ FI X, LI NK8O/ FI X, CREF80/ FI X, MBO/ FI X - NMakes Mobdel | Mcrosoft MACRO 80
Assenbl er run on either Mddel | or Il LDGCS.

**xxx BASCOM FI X, BRUN FI X, LINK8OB/FI X - Makes Model | Mcrosoft BASIC conpiler run
on either Mddel | or |11 LDGCS.

**xxx ECORLI B/ FI X, F80/FI X, LI NK8O0/FI X, EDI T80/ FI X - Nakes Model | Mcrosoft FORTRAN
run on either Mddel | or 1l LDGCS.

**xxx DTPLAN MRG - A series of fixes for the BASIC Desktop Planner program from Radi o
Shack.

**xxx M.S/MRG - Fixes the M.S program of Radi o Shack's Busi ness Mailing List program

**x*x% \JC31/FI X - Fixes Mdel |1l Visicaic Version 3.1Z for use with Mdel |11 LDGCS.
**x*%x% \JC3| 5/ FI X and VC316/FI X - Fixes Mdel Il Enhanced Visicalc Version 150Y0
and

160Y0 for use with Mddel | or 11 LDGCS.

**xxx SCRIPI/FIX, SCRIPIII/FIX SCRL7/FI X, SCRL7HY/FIX - Patches for SuperScripsit to
run on the Model | and Il with LDGCS.

**xxx EDITIII - Fixes Model 111 FORTRAN editor EDI T/CVD fil e | oadi ng.

Page 97

QuizMaster

Qui zMaster is an educational/informational question and answer program and
can also be used as a gane. Its basic operation is to display a question and
four possible answers. It scores the operator's response based upon the speed
as well as correctness fromone of three possible skill Ievels.

Qui zMast er random zes the order of the answers to prevent nenorization. The
question sequence is never the sanme. Extended play provides a "sudden death”
feature for the skillful user.

Qui zMaster comes with three subject files of 100 questions each, U S
Information, General trivia as well as Fantasy and Science Fiction trivia.
These files can be increased or edited, or the user's own specialty files can
be <created and utilized. Each file can hold up to 255 question/answer sets
and the only limt to the nunber of files is the nunber of diskettes you
possess.

Qui zMaster is educational, interesting and addictive. QuizMster runs under
the LDOS operating system to utilize maximum efficiency. The QuizMaster
system includes all the facilities necessary to establish and maintain a
series of multiple choice questions on any subject whatsoever. The systemis
conprised of several machine |anguage nodules for fast and accurate access
and response tines.

Word Processor-Li ke | nput Editor

For ease of entry an "input editor"” allows full transparent cursor notion
along with insert and del ete nodes, type over and fast cursor positioning.
This feature is found in both the "Add" and "Edit" nodes.

Fi ve Support Prograns |ncl uded

Five support prograns are provided to create, extend, edit, print and
mai ntai n question/answer files. Also included is a programto reconstruct a
file that has been damaged by disk I/Oerrors or faulty disk nedia. A packing
nodul e allows files that have been heavily edited to be conpressed and use
di sk space nore efficiently.

Al features are easy to use and easy to operate. Everybody 1loves trivia and
now you can control it. Qher uses include

*** classroomtesting

*** procedure quizzes OG’CAL
* ok k duct know ed

Bnd R SYSTEMS
*** group entertainment ’”C

COroore

Qui zMaster can be ordered now for just $39.00 11520 N. Port Washington Rd.

Meguon, W, 53062
(414 241-3066

Page 98

The BASIC Answer

The BASIC Answer is a BASIC text processing utility. It is designed to allow
the BASIC progranmer to build code in a structured manner. "Source" code is
witten with a word processor or text editor which allows the user to exploit
the powerful editing and novenent features characteristic to those types of
editors. Source code can even be created by your own BASIC interpreter.
The BASIC Answer is then used to process these files into normal interpretive
BASI C code.

Free yourself fromline nunbers

The BASIC Answer allows substitution of labels for line nunbers! This neans
that your BASIC code now can read like a novel. Instead of the typically
undescriptive "QGOSUB 1000", a |abel such as "GOSUB @earch. Nane" is used.
I magi ne yourself reading code filled with such descriptive branches and
understanding it at a glance, even years later. This feature even allows
totally relocatable BASIC routines w thout the renunbering probl ens.

A New Concept in Variable Usage

The BASI C Answer allows variable names to be as long as 14 characters and ALL
14 are significant. |nmagine reading

"1 F ACCNT. OVERDUE# > 0 THEN GOSUB @PRI NT. DUN'
or
" | FAG#>0THENGOSUB52130"

Whi ch woul d you rather read? It also introduces to BASIC the concept of
d obal and Local variables. This feature circunvents the tedious problem of
variable tracking because a Local variable is only viable in its own
subrouti ne!

End the Multiple Machine Hassle

The BASIC Answer introduces the concept of "Conditional Translation." This
feature allows the programmer to place different "nmachine dependent" code
simul taneously into the sane Source Code. The BASIC Answer can be "swi tched"”
when processing to ignore the unwanted or include extra code! No nore
multiple naster prograns to confuse mai ntenance. Al the nmasters could now be
rolled into the same program Modify the one naster and you've nodified them
all. Process the sane code with different swtches set, and get two or nore
versions fromthe sane source.

The BASIC Answer conbines the self-docunenting power of COBOL wth the
rel ative ease of BASIC together with the power of a word processor.

The BASIC Answer is available for just S69.00

Page 99

9902-1%2 (#1%)
2E0eg TM uonbap
PH UoFIIUSEM WOJ W OBGTT

T)
OM/,
SWILSAS,
TVvoroo

HHEnL3d

Yan BWLdd 5 4l

GrOLO9: " uuLdd 300 4

I SEOLOIEHAND

TR0 AT ORI SN

£=%Hd" Rd1LK 3N

ZP0L09: T=5UdNIHL (X4 1/X0T) AN =247/ %07 41
LIHDY (92)ESd=Xd4 T804

L ERIRE

ZPOLO9: T=XHdNIHL (B4 ESH/E0T) LNT =(%d 1) 854 %0741
T=d3LS00L0Z =X 47804

(B0} INT =% IH

R iR I

FEBNSO0D

FNSdIISENI0LE LS =R0THOS
ATANSOONIHLODT %15 4]

LANS09

T+L1S=%1SUayl (2/X1S) INT=2/X154]
£=BN5357132-=¥NSHIHLELS> XN 4]

(SN THA=ENIIS T 0L 28w XN INAHL L9/ ZEC (TN) TR 4]
ENITL{L0LFE » JB3UT) SA[RA 1P PUTLLNANT
RIS AN BN JB JARIS, ANdNI:E

WUDLIDSTA] JBQENN BWLA4L(52 MYEET5TD
N1 3

TOT=X15- 3071

1 ne FWldd ¥ .

R0V ESA b T INISNL S $2030 =20 TH04
Nl 3d

63ISTIGTNEHL P =EYW 41

E00={EWR) 254 THEVW=2W - Z0TLE N

ENIHL (X0 500) INT=%07/2024]

{2/ 8021 INTOLZ =E0TH04

ot
iv
St
ir
Fa]
Of
6E
BE
LE
9
SE
vE
2
|13
Ot
B
Be
L2
92
5
¥2
£
id
0g
61
a1
L1
51
£l
w.

_3

2+200=200 &

E=(T)%8d:2=(0)85d =¥ £ =500 55> BULZL RLIIUT <<,] &

ZZ0L09: (S2T)IESWI0 S

sxyerey J10ERS 3007 3030Q0 - - - J3MSUY DISVE L sreeses

HEnL3Y
ETUER]

“uw BULAL 5 Wl
S3é

IN¥IP OLOA ¢ 'uBuldg JON Wl
oNg

S48 0NG 0LOD %ewidd NO

TATADDNC L AHE CE4.ONTSNE

Aepdsiga
Z=Rlldd SEZ4000 LXIN
Ae|d=i03 0LOS :T«¥auldd NIHL (¥2400707XT4007) LWD = ¥24000/%14007 41
EH0LIV4"IH 03 (#Z)¥saWldd =X74007 04
24007 LYW
Aelds 0@ 0109
PT=RAW A NIML ((%240071%59WLId/ETA00T) INT={%24007)Es30 44/ 414007 41
T-4315 0 0L v2 =%24007 H0d
(27514007 INI =X 4000w 4" TH
PG X2 00T EHOLIVA" IH=3WIHd " 404" 1SAL8
N3 :XT4007 1X3K
IWTHd 804" 1538 Bnsos
¥da15 4315 XPuUI 0L %I4PIS =3T4007 HO4
007 AW14ST08 ANS09 NIHL 0O0T>EILEIS 4]
SHOSTAID LINI@ 8NS09
T+ %34P1C «X14P15 UBYL (Z/%34015)IN] =2/%14015 4]
2 =¥da5 3573 Z-=%0a35 NIML ¥I4PI5 > ¥PU3 4]
($Pu3) WA =%Pul 3573 {9426 = WPUT NIML L9LZE <(Pu3) WA 41
$Pu3 Y {/94ZE > 4B3u3) anivp 3¢ PUI.LNdN]
XJdeIS LLERRA 3R JARIS ANAN] :L
qUDL3IBYE(] JBqEny Bwidd, (52)AYLE (ST

T0T=%34215 XT4007 LX3N
“un LA 5 Wl
SO0 RSBWLLA 8T EELONISNE (B2 03 O=XTJO0T WO
00T " AY 45108

W4 35808 3513 LITONIS NIHL bZ=%a-W 41
LJ4IIUN0D ={EAJEW) XSAW|Ad : [+EASBW=XAARN SXT400T LXIN
Swidd* 352l NIHL (X1d007/%4aquno]) ikl = E14007/%493un0) 4]
(Z/%483UN07} [N OL 2= %XT4007 404
2 * HLmu._:._uu _-u._.._.m.._..__..n_u
dWldg 15818
Ex{T)%SaWLA Z=(()ESAMLLS [=EYJON C=%JBTUN0NZ, 553 BULZLQRLILUT <<,
AT 00T LY 4B 24BIUN0D=CHOST A" LINT
HID[¥0E 0LO9:(G2)asamlad WIQ
14007 %d235 gpu3 ypul iyl els ‘gsauLl =

safued ynduy paLjioads wouy sawpdd s32839Q,
@ULINOY LOL}IBYE JequnN Bwidd,

wruppny 7(0URS IPOJ BTINOG - - - JIMSUY JISYE ML wwwwess

Page 100

