

Page 1

THE LDOS QUARTERLY October 1, 1982 Volume 1, Number 6

Table of Contents

INTRODUCTION FROM LSI:

 EDITOR'S NOTES ... Page 2
 VIEW FROM THE BOTTOM FLOOR ... Page 3
 LSI NEWS ... Page 5

FROM OUR USERS:

 EDAS IV for the Model I/III .. Page 9
 The Communicating Micro .. Page 12
 LDOS and BASIC file structure from a beginner's view Page 20
 LISP Language and LDOS ... Page 26
 Use JCL to control those FORTRAN and COBOL compilers Page 32
 LDOS and the Hayes Smart Modem ... Page 34
 Patching for LDOS compatibility - Visicalc Page 38
 Using the LOOS disk I/O routines ... Page 43
 LSCRIPT patches add versatility .. Page 45
 Super-Short Terminal program + new ALIVE command Page 50
 Using NEWSCRIPT 7.0 with Model I double density systems Page 55
 PARITY = ODD - by Tim Daneliuk ... Page 59
 er - Assembly Language Programming by Earle Robinson Page 64

FROM THE LDOS SUPPORT STAFF:

 ITEMS OF GENERAL INTEREST .. Page 66
 Includes TCHRON, TTIMER patch and Assembler code

 RUN "PROGRAM",V - Chain those BASIC programs by Dick Konop Page 69

 THE JCL CORNER - by Chuck .. Page 72
 Patch LSCRIPT to be run with a JCL file

 RTC - Roy talks about - - - .. Page 76
 Information on many different system functions

 LES INFORMATION - by Les Mikesell .. Page 83
 Input from the RS-232 in LBASIC, plus a new *CL filter

 LATE BREAKING NEWS, ETC .. Page 92

 Includes SuperScripsit patch, FIX Disk news, and more

 Copyright (C) 1982 by Logical Systems, Incorporated
 11520 N. Port Washington Rd., Mequon, WI 53092
 (414) 241-3066

Page 2

EDITOR'S NOTES

This is the sixth and final issue of Volume One of the Quarterly. It marks the end of
a year and a half of LDOS support and development. We have made many changes and
improvements in both the Quarterly and the LDOS system in that time, and will continue
to pass on new information in the pages of this publication.

Besides a new cover design, this issue of the Quarterly marks a major happening in its
development - user contribution. Besides the regular user columns from Tim Daneliuk
and Earle Robinson, we have a whole section of user contributed programs and articles.
Maybe it was that offer of free software

Anyway, this issue contains many interesting articles, including a review of the LISP
language and patches for Enhanced Visicalc. The normal staff columns are, as usual,
full of many different things about the workings of LDOS. So, sit back and enjoy.

We are looking for reviews of any languages for our next issue. We currently have or
will be getting reviews on LDOS "C", STSC APL, PASCAL 80, and ALCOR PASCAL. If you are
currently using another language or one of the previously mentioned languages from a
different author, we would be interested in seeing a review.

The LDOS Quarterly policy on the submission and payment for articles is as follows:

Articles sent for consideration should be accompanied by typewritten or lineprinted
copy. An ASCII text file, Scripsit or SUPERScripsit file MUST accompany the printed
copy! Please do not send in printed text without a disk, or send a file that has been
created by routing the printer to a disk file!. No matter what the word processor used
to create the file, it is much easier to format an original file than one that has
been "printed" via a route of *PR. Payment will be made in the form of a product from
LSI, or $25.00 per page ("page" is defined as page in the then current newsletter
format). The size of the article will determine the value of the product, although no
reasonable request will be refused. Please include your name, address, telephone
number and LDOS serial number with your submission. LSI is extremely interested in
seeing submissions from our users, and is open to suggestion on any ideas for the
Quarterly.

Submissions should be sent to:

LDOS Quarterly Editor
11520 N. Port Washington Rd.

Mequon, WI 53092

The LDOS Quarterly is copyrighted in its entirety. No material contained herein may be
duplicated for commercial purposes without the express written consent of Logical
Systems, Inc. or the article's author.

Page 3

V I E W F R O M T H E B O T T O M F L O O R

by Bill Schroeder

In my last column I asked for suggestions for possible new locations for Logical
Systems. Many thanks to the people that responded with very interesting suggestions
for that "perfect place". One person even suggested the North Pole..... for some
reason I don't think he was a totally satisfied LDOS user..... oh well, we try. As of
now, no decision has been made and will probably not be made until early 1983. We will
keep you all informed as to our relocation plans.

As I am sure most of you know, the LDOS operating system (version 5.1.3) has been
chosen by Radio Shack as the operating system that will be provided with their new
Hard Drive system for the Mod I and III (cat. #26-1130). We are very proud that after
seriously considering all of our competitor's products, support and companies behind
those products, Radio Shack selected LDOS and Logical Systems. Also available through
Radio Shack will be LDOS 5.1.3, both Mod I and III, floppy disk based systems, as
catalog #26-2213 and 26-2214, respectively. This system will sell for $129 and will be
virtually identical to the LDOS 5.1.3 available in the LSI packaging. LDOS and
official LDOS support products from LSI will continue to be available through our
worldwide dealer network. The only substantial difference between the LDOS sold by
Radio Shack and the LDOS sold by our dealers is some statements in the manual and the
absence of TWOSIDE/CMD on the Mod I system. The operating system itself is the same.
Any program that is completely LDOS compatible will run just fine on the floppy and
hard drive versions of LDOS provided through Radio Shack.

Many people have asked about how support will be handled for the LDOS product that is
to be sold through Radio Shack. The answer is quite simple. Radio Shack will be
providing support for LDOS as they do for all products they sell. But of course LSI
will always be willing to assist any LEGITIMATE LDOS owner, no matter where that LDOS
was purchased.

Many of our users have TRS-80s that are not quite TRS-80s such as PMC-80, PMC-81,
Video Genie, LNW or Model III computers that have had NON-Radio Shack disk controllers
installed. Unfortunately we do NOT have all these machines and are having a difficult
time supporting these. The main problem is the foreign disk controllers in the Model
III. These controllers, in most cases, do not function exactly the same as the
official Radio Shack controller. The disk drivers in the LDOS system are designed and
written for the TRS-80 and Radio Shack provided controllers. Use of LDOS with other
controllers and/or computers may or may not work and may not always be as reliable as
when used with the hardware that LDOS was written for and tested on. So please
understand these problems.

We would like to help with any problem that an LDOS owner has. However, some problems
are impossible for us to address, because we don't, in some cases, have the same
hardware as the customer. We have only official Radio Shack hardware, all components
(except disk drives) are pure Radio Shack. So when you consider new hardware please
call or write. We will be happy to tell you if the product is supported by LSI or is
known to work well with LDOS. If you don't check with us, you are on your own. When
purchasing new software, make sure that the author or publisher will firmly state that
the program in question IS IN FACT LDOS COMPATIBLE. If not, don't buy it and expect it
to work with LDOS.

There are many LDOS users groups and special interest sub-groups popping up around the
country. If you are involved with an LDOS group of any sort, please let us know where
it is and how other users can get in touch with the group. In the next issue of the
Quarterly we will be publishing a list of these groups. So let us know where they all
are as soon as you can. Include: name of group, name of individual in charge, phone
number, mailing address, meeting address, meeting times and dates and how to become a
member.

Page 4

In my last column, I mentioned our new LSI HOT-LINE (414/241-4100). We had some
trouble with the answering machine that was to answer this line with a 3 minute
message. We still don't have this 3 minute arrangement resolved but we have installed
a machine with about a 1 minute message on that line. If you wish to call the HOT-LINE
you will get this short message. We will have the longer message machine ready
shortly, one way or another.

As of LDOS 5.1.3 there are no longer /FIX files included on the master disks. This is
due to the changes needed in these fixes as the programs they are intended for change.
There also would not be enough room on the disks for all the fixes we would like to
provide. As a solution to this problem we will make available on October 1st, both
hard copy versions and diskette versions of all available /FIX files. The hard copy
set will be available for $5.00 and the diskette version will be $10.00. Postage will
be paid by LSI on either version. (Foreign add $3.00 for Airmail). Either /FIX package
will contain all of the official patches that have been developed to allow non-LSI
products to function with LDOS. Some user contributed patches will also be included
for products that have not been checked by LSI. It should be understood that this will
be an ongoing process of patching programs and that the purchase of a /FIX package is
strictly "AS IS" on the date purchased and no patch is guaranteed to produce any
desired result. We will not offer updates or upgrades to these packages. If you
require a patch that is developed after you purchase your /FIX package you will have
to purchase the package again. With many thousands of users to service with these
products, we must provide them in this way. Please check with us to confirm what
patches are provided. To help you in determining if a particular patch is available we
will publish a directory of the /FIX disk in each issue of this publication along with
any new /FIX files, starting with the January issue.

Those who wish to have back issues of this publication can obtain them through LSI for
$5.00 each postage paid. This is issue #6; we still have some copies of EVERY PREVIOUS
ISSUE on hand for those who want them.

The FILTER concept is very important in the LDOS system and allows LDOS to do many
things that cannot be done with other systems. Last year LSI offered a package called
FILTER PACKAGE #1. It contained over a dozen useful filters WITH COMPLETE SOURCE CODE,
at $60. So that even more of our users can enjoy the benefit of this package, LSI is
permanently reducing the suggested retail price from $60 to $40. This super package
has become even better with a new low price. LSI will provide you with complete info
on this package for the asking. So don't forget the top notch FILTER package from LSI
for just $40. Also check into FILTER PACKAGE #2 containing a whole new batch of handy
filters for just $30. IMPORTANT: If you order both FILTER PACKAGE #1 and #2 at the
same time you receive them both for just $60 (that was the old price of the FILTER #1
alone).

A NEW product that we are very proud of at LSI is The BASIC Answer (TBA). This is our
BASIC program source processor which was a year in the making. BASIC programs can now
be written WITHOUT LINE NUMBERS, use 14 CHARACTER VARIABLES, CONDITIONAL PROCESSING,
GLOBAL AND LOCAL VARIABLES, and FULL CROSS REFERENCING during processor run and more.
Don't miss out on this whole new world of BASIC programming. I'm so confident that
this product will be the BASIC programmers best friend that I am offering a MONEY BACK
GUARANTEE on TBA and a special TBA package. TBA has a retail price of just $69. During
this special offer LSI will provide you with TBA and LED for just $79. That's right -
buy TBA and LED (our text editor) together for just $79 (a $109 value). Don't delay
too long though. This offer is only good for the rest of 1982. If you are not
satisfied with this package for any reason, return it with the original invoice
(postage paid) to LSI within 10 days of receipt and you will receive a FULL REFUND, no
questions asked (But I would appreciate knowing what you did not like about TBA). This
special money back guarantee is available on just TBA for the $69 price or the TBA &
LED special at $79 until December 31, 1982. NOTE: This special offer is available only
when purchasing directly from LSI. The first 50 TBA packages will also have a special
FREE suprise included.

Page 5

Radio Shack has now released the long awaited Super-Scripsit and Extended Visicalc
products. I have spent some time using each and find the new Super Scripsit to be an
excellent product worth much more than the asking price (note: some small bugs have
been found, but should be corrected shortly). Both of these packages will run on LDOS
with little change.

LSI is about to release several new products. Very shortly, we will be releasing TBA,
FILTER PACKAGE #2, UTILITY PACKAGE #1, QUIZ-MASTER, THE LDOS USERS GUIDE, our new LDOS
513 REFERENCE MANUAL (Model I & III combined) and our /FIX products.

Many of our users have asked about our RAM BASED LDOS project and how it is coming.
The answer is simple; it is ALIVE AND WELL. It will be using the LDOS SVC structure as
is optional in 5.1, will reside below 3000H and will be called LDOS 6.0. No upgrades,
exchanges, trade-ins or updates will be offered for this product. LDOS 6.0 should
appear on several Z-80 ram based machines in the first half of 1983, and yes the
TRS-80 Model II is being considered as one of the possible implementations.
Arrangements are being worked out for offering a Microsoft compatible BASIC as well as
an EDITOR ASSEMBLER, a "C" COMPILER, many system utilities and hopefully a PASCAL for
use on LDOS 6.0. So standby - it is going to happen. By the way, this new LDOS will
have FULL DEVICE INDEPENDENCE! You can even filter a file!!!

The popularity of the LDOS 5.1 system has grown to the point that there are books
being written exclusively (or mainly) for the LDOS user audience. One of these is by
Tim Daneliuk, a long standing LDOS user and a prominent author for BYTE, 80-MICRO,
80-US and INFOWORLD. His book will be called "LDOS - A Systems Guide" and should be
available around the turn of the year. I have seen the first two chapters of this book
and they look excellent. We will also see a work from a MAJOR industry author that
will be published by IJG (Harv Pennington) that will be an encyclopedia of using LDOS
& TRSDOS. This one will be a "biggy" so contact IJG in Upland, California if you are
interested or want info on this one.

The Snapp TRIAL PACKAGE has gone over quite well. For just $10, you get complete
documentation and a chance to try out ALL of the SNAPP modules. This is a very
pleasant way to determine which, if any of these extensions to LBASIC will be of value
to you. NOTE: this is a TRIAL package!! It will create only ONE functioning disk, good
for a limited number of uses. When that disk wears out or fails, you will no longer be
able to use the products and the $10 is not refundable. If you are interested in
taking a look at the best BASIC extensions in the TRS-80 world (and their excellent
documentation) contact Bob Snapp, toll free at 800/543-4628. As discussed in the "Late
Breaking News" section at the end of this newsletter, the prices on all the SNAPP
BASIC (LDOS type) products have been reduce by about 50%! The trial package and SNAPP
Extended BASIC are available through LSI as well as through SNAPP Inc.

On September 23rd to 25th LSI hosted a very special TRS-80 industry meeting here in
Mequon. A majority of the successful and innovative individuals providing products to
the TRS-80 industry attended. The official participants were: Bob Snapp (SNAPP INC.),
John Lancione (AEROCOMP), Kim Watt, Dennis Brent, Renato Reyes (POWERSDFT), Roy
Soltoff (MISOSYS), Harv Pennington (I.J.G.), Irv Schmidt, Cameron Brown (80-US
MAGAZINE), John Harding (MOLIMERX England), Tim Daneliuk (TRS-80 Author), John Dunn
(Associated Services), Roger Billings, Kirk Hobart (LOBO DRIVES), Earle Robinson
(SoftERware), Les Mikesell (MODEM-80), Bill Schroeder, Chuck Jensen, Dick Konop, Doug
Kennedy, Rich Hilliard, Sue Dunn & staff (LOGICAL SYSTEMS). This meeting was very
productive (exceptionally so for the non-Mequonites). 80-US magazine was on hand to
cover this event and do interviews with the participants. These interviews will be
published in upcoming issues of 80-US.

Page 6

Speaking of magazines, I am often asked about the publications available to the TRS-80
user. I get all of these publications and find that the best all subject TRS-80
publication is, without a doubt, 80-US followed by TAS (The Alternate Source). Of the
more general publications, EVERY Micro computer user should subscribe to INFOWORLD.
For those wishing to get just one or two magazines my choice would be 80-US and
INFOWORLD. For those of you who are not familiar with 80-US, we have arranged for you
to get one FREE. All you have to do is write or call 80-US and give them your LDOS
serial number. They will send you a FREE copy of 80-US for your review with NO STRINGS
ATTACHED. They are at 3838 5. Warner St. Tacoma, Washington 98409 - (206) 475-2219.
There is a coupon for this offer attached at the end of this newsletter. 80-US is also
actively seeking articles directed towards the LDOS user. So if you are inclined to
write and are an LDOS user, send your works to 80-US. I'm sure they will get prompt
attention, and TIMELY PUBLICATION.

There is a company call Langley St. Clair Instrumentation that is providing both GREEN
and ORANGE replacement video tubes for the TRS-80 Model I and III. We have both a
green and orange tube installed here at LSI and are very pleased with them. We will be
putting them in all of our TRS-80s this month. They are very easy on the eyes and are
a snap to install (I'm not a tech and it only took me about 15 minutes total to put
one in). These new tubes sell for as little as $79 and are worth every penny of it.
For more info on these contact Langley St. Clair Instrumentation at 132 W. 24th
Street, New York, NY 10011 - (212) 989-6876. Tell them Logical Systems sent you.

Last month our industry was shook by the passing of Harold Maush, the founder of
PERCOM DATA in Dallas. Our sincere and heart felt sympathies go out to the Maush
family and Harold's co-workers. The TRS-80 industry has lost a great supporter and
innovator that will most certainly be missed by us all.

Thank you all for your on going support of LSI products. I hope that you and your
families will have a pleasant and safe holiday season. Until next year...... (the
January '83 issue)...... BYE.

LSI NEWS

This section contains a list of products available from LSI either now or in the near
future. It also provides a timetable as to when a product will be available for
shipment. Due to circumstances beyond our control, it is possible that products may
not meet their stated delivery dates. LSI acknowledges this fact, but will make every
effort to provide delivery on the date specified. Some of these products are provided
by outside vendors over whom we have limited control. If a product is announced but is
not available on the specified date, we hope you will have patience as we fully intend
to provide all stated products/services eventually.

The following products have previously been announced and detailed in previous
newsletters, and are either available now from LSI or will be available within the
next 30 days:

 The BASIC Answer (TBA) - $69.00 (see Page 4 for a special offer).
 LDOS "C" - $159.00
 EDAS 4.x Mod I/III - $100.00
 Utility Disk #1 - $50.00
 LDOS 5.1.3 Manual - $59.00 (or $29.00 exchanged)
 LDOS Operator's Guide - $10.00

Page 7

LDOS Operator's Guide

This is a short publication that is intended for the new LDOS user. It describes how
to start using your TRS-80 with LDOS. In the future, it may be included with LDOS
systems sold by LSI. Included are specific instructions on moving programs from other
operating systems onto LDOS, creating working LDOS disks and making backup copies of
them, and other information aimed at the novice user.

LDOS 5.1.3 Combined Manual

This is the LDOS manual that contains all the current changes in Library commands,
Utilities, and the Technical section as relevant for version 5.1.3. The LBASIC section
has been expanded to include descriptions and examples of all disk BASIC commands as
well as the complete disk BASIC error dictionary listing. The JCL section has been
re-written and grouped into beginning and advanced sections, with certain areas
explained in greater detail. The Technical section has been restructured to include
all Model I and Model III information, including a listing of both machines' entry
point addresses and SVC's (where applicable) and all new system vectors and entry
points. The layout is also in a more logical order. For those of you doing development
on both machines, it is definitely a worthwhile investment at $29.00 + $4.00 S&H,
exchanged. To order this manual, you should send in the proper amount along with your
old manual. Be sure to KEEP your binder, tab inserts, and addendum section, as these
will not be provided with the new manual.

UTILITY DISK #1

This disk will contain a multitude of useful programs, some of which have been
requested by our users. As of press time, the contents of the disk are as follows:

COMP/CMD will be a file/diskette compare program. In the file compare mode, it will do
a sector by sector compare of two files and send the differences to either the video
or printer. It will also compare two diskettes sector by sector.

DCT/CMD is a utility primarily useful for those developing disk drivers or using
non-standard disk drives. It provides an easy method to set up a DCT entry.

DIRCHECK/CMD will check a disk's directory, looking for incorrect GAT and HIT entries,
as well as checking for bad file FPDE/FXDE chaining. Certain types of errors may also
be corrected.

FIXGAT/CMD will re-create an unusable directory GAT sector. The user will be prompted
for certain information, such as the number of cylinders, density, and number of sides
on the diskette.

TYPEIN/CMD is a combination of JCL and KSM. It allows the user to have a specified
string of characters or commands fed into the system to control operation. Unlike JCL,
the characters can be fed to any program requesting keyboard input. This means that
even Visicalc, Lscript, LBASIC INKEY$ statements, etc. can be answered. The characters
can be directly typed in from the keyboard or can be picked up from a previously
constructed file. It even can be called in the middle of JCL file, and can convert a
specified number of lines to single character input.

HIGH/CMD will show a display of high memory usage, as long as the modules conform to
the standard LDOS memory header format.

MAKEFILE/CMD is similar to the CREATE Library command in that it allows allocating
space for a file by specified size in K or by the number of records of a given LRL. It
also will allow file to be filled with a specified byte. The file can be marked as
wither CREATEd or normal.

Page 8

MAP/CMD will display a list showing where on the disk a file is stored. It will be
broken down by extents and sector used in each extent. Killed files may also be
mapped, including an indication if any of their previously used allocation is
currently in use by some other file.

RAMTEST/CMD is a memory test utility that tests both high memory and that used by the
resident LDOS system.

READ4080/CMD will allow a 40 track disk to be read in an 80 track drive. This will
allow copying files from a 40 track disk with the COPY command and the BACKUP and CONV
utilities.

READII will display a directory of and copy files from a Model II TRSDOS disk.

RDTEST/CMD will do a non-destructive read test of a diskette, providing a verification
of all tracks and sectors.

RWTEST/CMD will do a write/verify test of a diskette. This will be useful for checking
the operation of a disk drive or diskette media.

UNKILL/CMD will restore a file that has been accidentally KILLed or PURGEd.

LC - The LDOS "C" Language Compiler

 LC is an integer-only implementation of C which provides all C statements except
"struct", "union", "goto", "switch-case", and "typedef". All data types except "float"
and "double" are implemented; "long" and "short" declarations are accepted, but 16-bit
fields are used for all integers. In LC, "char" variables are implicitly unsigned.
Single-precision and double-precision floating point operations are supported via
functions supplied in the FP/LIB library included with the LC compiler. LC accepts
multiple input files, with four levels of nesting for "#include'd" files. The compiler
generates an EDAS Version IV assembler source file which is then assembled with the
standard library and any other libraries needed to resolve function references in
order to generate the executable program. The value in generating assembler source is
twofold. First, you can obtain a complete machine code source listing which could
prove invaluable in debugging complex code. Second, local optimization of assembler
source code can be performed as required by the experienced assembler programmer. The
LC standard library provides such functions as standard I/O redirection, dynamic
memory allocation, automatic standard I/O opening and closing, and program chaining.
In addition, functions specific to LDOS and the Model I/III are supplied in an
installation library, to provide access to such functions as graphics and system entry
points.

 LC supports separate compilation; programs may be compiled in segments, and
frequently used functions can be pre-compiled. You can create your own 1ibrary of
commonly used functions with the Partitioned Data Set utility (PDS is not included
with LC but is available as a separate package). The assembler source code output by
LC is designed to use the extensive SEARCH and conditional assembly support in EDAS
Version IV. The assembler and companion assembler cross-reference utility are supplied
with the LC package. You need nothing more to start writing and running C-language
programs except your LDOS-equipped computer and a copy of the book "THE C PROGRAMMING
LANGUAGE" by Kernighan and Ritchie. A 48K-RAM two-drive Model I (lower case video) or
Model III is required.

 Some highlights of the "elsie" compiler are:

o Integer subset of the C language.
o Access to floating point routines in ROM via function calls.
o All statements supported except STRUCT, UNION, TYPEDEF, SWITCH-CASE, GOTO.
o All operators supported except "->", ".", SIZEOF, and (TYPENAME).
o UNIX-compatible standard I/O library.

Page 9

o Standard I/O redirection with complete device independence.
o Input using FGETS or GETS functions support LDOS Job Control Language.
o Dynamic memory management (ALLOC, FREE, SBRK).
o Sequential files open for READ, WRITE, and APPEND.
o Generates Z-80 EDAS Version IV source code as output.
o User libraries in Z-80 source ISAM-accessed PDS files.
o Compact one-line invocation of the compiler.
o LC's interactive friendly interface provides easy way to learn LC options.
o Supports separate compilation of functions.
o Compiled programs run under both Models I and III without modification.
o Installation library gives access to graphics and LDOS entry points.
o Supplied with example programs and utilities in source form.
o LC/LIB includes: FPRINTF, PRINTF, ALLOC, FREE, SBRK, and String functions.
o The LC package is Model I/III LDOS compatible and includes LC/CMD, LC/LIB, FP/LIB,
 IN/LIB, EDAS-IV, XREF, and more than 200 pages of documentation.

A New Version - EDAS-IV

by Marc Leager

The following is a review of some of the features of the new Model I/III EDAS 4.1.

Some programs are terrific when they are first released, then a new version comes out
which is five times better than the original. LDOS is one of these programs. EDAS is
another. MISOSYS has recently released a new version of its editor/assembler called
EDAS-IV. It is the most exciting piece of software I have seen in a long time. It not
only provides the best editor/assembler around, but combines many of the latest
features of micro-computer program storage into a single working system. Please read
on to discover what the new EDAS can do for you.

First we need an introduction for those who have not yet used EDAS. As its name
implies, EDAS is a program editor and an assembler. The primary use for EDAS is in
maintaining assembly language programs. But wait! As you read further you will see how
the new EDAS can be used for other languages also. The traditional EDAS is a superior
program editor for assembler language programs. It loads the entire program in memory
so there are no disk accesses during an edit session for a single module. Line numbers
are maintained for all program lines, so reference to a printed listing of the program
during the edit session is possible. Best of all, EDAS allows all input to be in lower
case. It automatically converts the actual language instructions to upper case,
leaving comments and strings in their original typed form. At any time, the module in
memory can be assembled by pressing a single key. If the module is a complete program,
then the assembly is done instantaneously without disk access. Some programs are large
and must be stored in several modules. For these, EDAS is able to load modules into
the work space using the *GET operator to assemble the full program.

The first reason for using EDAS is that it works well. Other editors for assembly
programs constantly turn the disks on for reading another 256 bytes of source, and
tend to scramble the code when modules get larger than 0 code lines. EDAS is quiet
and doesn't wipe out your hard fought code lines. Another reason is its speed.
Assembly with EDAS is very fast for single-module programs. Even for multi-module
programs, it is faster than assembling modules separately, then linking them together
with a linkage edit program. A third reason for using EDAS is its friendliness.
Mentioned before was the upper/lower case support. This produces a very readable
program where code is upper case and comments are lower case. The search, insert,
edit, print and display commands are also easy to use. They work quickly and correctly
every time.

If you are wondering whether you would get any use out of this sophisticated
editor/assembler, consider these items. LDOS is a fully documented, wide-open
operating system. We are encouraged to write our own filters and drivers and special
routines. With LDOS you can easily open and read DIR/SYS from any language, and from

Page 10

assembly language you can read or write ANY part of the disk if you want to. Also
using assembly language, you can write filters, drivers, and special routines to fit
your individual needs. LDOS is designed for this type of user enhancement. (Note: LC,
the "C" compiler, will include EDAS-IV as its assembler. "C" is another language which
is well suited for system-type programs.) If you have been thinking of taking full
advantage of the LDOS architecture by writing a few assembly programs for special
effects, EDAS is a good editor/assembler for this purpose.

Now for descriptions of some of the outstanding features of EDAS-IV. I assume you have
a moderate understanding of the basic purpose of the original EDAS. Some of the
features described here are extensions of the original, and some are new. Since the
most exciting features are entirely new, this article should still be informative for
many of its readers without prior EDAS understanding. First is the treatment of line
numbers. EDAS-IV supports line numbers similarly to EDAS 3.5.2, but the default for
EDAS-IV is unnumbered lines. This may be startling to some, but now EDAS-IV can read
any valid source file, numbered or unnumbered, without any specific action by the
operator. Previously, you had to know whether each source file had line numbers, and
also whether it had the standard EDAS 7-byte header. Now all of this is handled
automatically! The reason for preferring unnumbered lines on disk is to save file
space. In a typical source file, the line numbers take up 16% of the space. It also
allows EDAS-IV to process the source for any language which does not require line
numbers in the source file. One more wrinkle with line numbers is that if you want the
numbers, and you intend to use the M-80 assembler, EDAS-IV has an option for using the
M-80 line number format when the file is saved. This is imperative when you are using
M-80 to produce listings of your assembled programs.

Some new commands have been added with EDAS-IV. First is Copy. You may wonder how this
is done since the <C> operator is already in use for string replacement. The answer is
the <C> now does both functions. If you follow the <C> with a number, then EDAS-IV
assumes you are entering line numbers for a copy operation. Otherwise, it processes
your keym as a string replacement operation. Due to popular request, the <Z> operator
has been added. You may wonder what <Z> does, and the answer is that it does anything
you want it to. EDAS-IV has a 50-byte patch area just for users, and <Z> can be used
to jump to this patch area. I have been thinking of using this function for several
things, such as showing the name of the module currently in memory, or changing the
default extension during an edit session, or presetting assembly options, or plugging
in my alternate keyboard routine, or ... Another keyboard feature in EDAS-IV concerns
the BREAK key. In EDAS 3.5.2, if BREAK was the last key pushed before a Write
operation, the BREAK could sometimes reappear during the write, aborting the write and
producing a null file on disk. This was very disturbing, since there was no indication
of this event to the operator. Now in EDAS-IV, all is well with BREAK correctly
handled.

Now we will begin some new features in EDAS-IV. The *GET operator has been enhanced
and a *SEARCH operator has been developed. These operators tell EDAS-IV during an
assembly to read more source code from files on disk. They are a way of expanding the
module in memory to larger than memory size, and of including standard functions into
an application program. The *GET operator just reads the named source file and inserts
it in the current module at the current location. The enhancement to *GET is to allow
nesting of up to five levels. This allows you to collect subroutines or macros (!)
from separate locations into standard sets using a series of *GETS. The sets can be
included en masse by naming the desired collection with a single *GET in your source
module. *GET can appear at any point in your program; in the beginning for declaring
equate names or defining macros, or in the body for loading standard subroutines. The
*SEARCH operator is similar to *GET since it accesses files stored on disk, but what a
difference! *SEARCH doesn't read sequential files. Instead it processes members from a
partitioned data set, PDS. This is an exciting feature since *SEARCH will only load
the members from the PDS which are referenced in your program. This means you can
collect your standard subroutines into a PDS library, then search the library when
assembling any program. Advantages are that the PDS saves space on disk, allows
standardization of your subroutines, encourages centralization into a small number of
subroutine libraries, and makes your application source much cleaner. You can even

Page 11

begin packaging your subroutine libraries for exchange or distribution among other
EDAS-IV users, for mutual benefit. The net effect of the *GET and *SEARCH operators is
to standardize and reduce the effort of writing new code.

The last new feature we will cover here is Macros. Of all the enhancements in EDAS-IV,
this is the most exciting. You may wonder why it is mentioned last. The reason is that
macros are a very complex feature, and I felt that some groundwork was needed before
introducing them. Despite the complexity, the implementation in EDAS-IV is
comprehensive; probably the best you will find in any micro-computer assembler. First,
we will define a macro as an expression in a single line of code that is expanded by
the assembler to produce many lines of code. The LDOS JCL feature is somewhat similar
to assembler macros. Using a macro, you name none, or one or more values which are to
be assigned to variables in the macro. The assembler then takes the values, inserts
them in the necessary lines of code contained in the macro, and produces useable
source code for further assembly. Doing this, you can tailor the effect of any macro
by changing the values you use for parameters. For instance, a macro to move data from
one area to another might be

MOVE MACRO #FR,#TO,#LG
 LD HL,#FR
 LD DE,#TO
 LD BC,#LG
 LDIR
 ENDM

To use this macro you could code ... MOVE FRAREA,(TOPTR),50 This single statement
would be expanded to the four Z-80 instructions needed to perform the move. Notice
that one area was defined by name, one was defined by a pointer, and the length by an
explicit value. This shows the way you can use a standard macro to produce code from a
wide variety of value expressions. The macro processor in EDAS-IV covers all bases in
code expansion by allowing both positional and keyword notation. This means it is very
flexible in the structures it can handle. For example, the above macro call could have
been coded ... MOVE #FR=FRAREA,#LG=50,#TO=(TOPTR). These features alone are
extremely useful to the assembly programmer, but EDAS-IV does more. It has implemented
a full range of tests and comparisons on the macro variables for conditional logic
within the macro expansion. With this you are truly able to generate any code
structure desired. For instance, you can test how many parameters were coded in the
macro statement, you can test the value of any parameter against a string or against
an assembled label. You can test to see if a label named by a parameter is defined
elsewhere in the program, or is referenced elsewhere. The tests can be nested to eight
levels. The ELSE operator is available for either/or constructions. I may have left
out some features, but EDAS-IV seems to have enough strength to handle the most
sophisticated macro construction imaginable. Some macros I have already written do the
following: initialize a program to run on the Model I or III, move data (see above),
create a BASIC dummy program so an assembly program can define arrays in BASIC, read a
line from a disk file similar to the @KEYIN vector for the keyboard, and on and on.

At last, a summary. You should be very excited by EDAS-IV for several reasons. The
macro processor is super. You can plan to use it for simplifying your coding. As in
the MOVE example, it reduced the code lines by 75 percent. You can build a macro
library, again using EDAS, then access it with *GET for each assembly. By putting
*LIST OFF at the head of the macro library, and *LIST ON at the end, you can avoid
having the text of the macros print in your program listings. The *SEARCH feature is
also a terrific addition. You can build one or more subroutine libraries, then let
EDAS select subroutines only as needed from them. (Note that the MISOSYS PDS program
is required if you plan to build your own libraries.) These two features, macros and
*SEARCH, should make assembly language much easier for many of us. Unfortunately,
there is even more in EDAS-IV that could not be included in this review. You can be
sure that the other features not mentioned are just as well implemented as the
superstars we covered here. In closing, let me say that I am really enjoying EDAS-IV
and hope that you will too. Maybe we can share an idea or a subroutine or a macro
sometime as the new EDAS makes us more proficient programmers.

Page 12

THE COMMUNICATING MICRO

Gordon B. Thompson,
Bell-Northern Research, Ottawa, Canada

Even amongst the experts, a communicating personal computer is perceived as being a
small computer that has been programmed to behave as a smart terminal for accessing
large mainframe computers, or other similar services, via a communications link. The
terminal programs that are on the market today stress this "mother and child"
relationship, although most do offer some kind of symmetrical facility for
transferring files.

As small personal systems proliferate, other patterns of intercommunication can begin
to emerge. However, if the models that the users have of the basic communication
processes are too simplistic, they will fail to see the utility of those richer modes
of interaction.

The Shared Space Model of Communications.

The common, familiar telephone creates a common acoustic space that can be shared by
two people, who may be many miles apart. The calling and the called parties can
interrupt, talk simultaneously, and even share a cry, or whatever. As evidenced by
their behavior, this simple property of the familiar telephone, this sharing of a
common acoustic space, is not conceptually understood by most users.

The shared space model of interpersonnal communication recognizes the prime importance
of periods during which both communicants are talking, overlapping each other. The
simple two wire telephone allows both parties to talk simultaneously, should they so
desire. When this happens, we can say both parties are sharing the common acoustic
space that the telephone provides. They are occupying the same space, at the same
time.

Perhaps one of the reasons Picturephone failed to achieve any significant market
acceptance is that it really added very little to the size of the common information
space that was shared between the communicating parties. That the Picturephone doesn't
have a shared visual space can be demonstrated by considering what must be done to
play a simple game of tic-tac-toe. When we start, you have the grid which I can see on
my screen. Where do I put my cross? On the screen? That won't work because you would
not see it. No, I must copy your grid onto a sheet of paper, viewed by my camera, and
place my cross on that grid. Now, you, in turn, must copy my cross which you see on
your screen, onto the grid on your paper. And so it goes. Because the two visual
spaces are different, they can't be shared.

The Shared Visual Space.

A shared visual space is one where the people at both ends see the same thing at all
times, and both have equal access to altering what they both see. In order to initiate
an interrupt, they must be able to input to the common viewing screen simultaneously.
They must share both the seeing and the creating or altering, just as they do on the
telephone, when they can, at the same time, both talk and listen.

Today's technology allows the creation of various forms of shared visual space. We can
share a graphics space wherein we both see the same things, and can both input into
that space. However, should our inputs collide, we must not react as computer purists
and strive to protect the integrity of the individual data streams. NO! We must permit
the streams to collide and produce what they will. An interruption is, after all, a
change in the expected way the world is to unfold.

Page 13

Also, as the shared visual space only makes sense when the two parties are also
connected by telephone, any confusion, loss of synchronization etc., that might
result, can be quickly resolved. Proper simultaneous voice-and-data shared space
communication makes the computer scientist a bit uneasy. It relates to enhancing human
interaction, not computer niceties. As the new technology got cheaper, and our ability
to apply it improved, it became easier and easier to achieve simultaneous shared
acoustic and shared visual spaces. Some spectacular teleconferencing experiences were
generated this way. However, it was soon discovered that most people were not capable
of operating in an unconstrained shared graphic space. Cartoonists had demonstrated
what could be done, but for most people, the results more closely resembled the
graphic outpourings of preschoolers.

The more proscribed visual spaces of word processing and electronic broadsheets were
then examined. This work was started using Radio Shack Model I machines, back in the
VTOS era. Versions of ELECTRIC PENCIL and VISICALC were prepared that exhibited many
of the shared space characteristics. However, with the advent of Radio Shack's TRS-80
Model III, and Logical Systems' LDOS 5.1.2, with its superb communications and device
filtering features, a truly workable and fully practical system could be easily
produced.

The Reflex Connection.

In the course of this work, a new form of interconnection between two stand alone
computers was defined. In deference to the mirror like symmetry that the particular
connection method features, the term "REFLEX" was used to describe it. In operation,
both machines scan their incoming data lines every time they scan the keyboard. If a
locally generated keyboard character is available, they send that character to both
the local CPU and to the outgoing data line. if a character is found in the RS232
incoming register, it is passed only to the ocal processor. In effect, both machines
are fed from both keyboards, and respond equally to keystrokes from either. They are
fully symmetrical, in a reflexive sense. Such a connection produces a shared visual
space when the two machines are similar and are running similar software. If your
TRS-80 is loaded with SCRIPSIT, suitably patched so as to use the LDOS keyboard
driver, and the REFLEX filter is active, and if my machine is similarly configured, we
can connect the two machines together via a data line and, while talking on the
telephone to each other, jointly edit the same contract, or whatever. Whatever you do
to your copy happens instantly to mine, and vice versa. And while this is happening,
we are talking to each other about the changes we are making. We will arrive at a very
powerful, democratically achieved consensus when we do this. With today's modems, this
style of working requires two separate telephone lines, one for the telephone
connection and one for the data connection.

With such an arrangement, two lawyers, separated by perhaps many thousands of miles,
can confidently and very quickly, jointly produce or examine a contract, and so arrive
at a mutually satisfactory one in a mere fraction of the time required if the mail,
either electronic or conventional, were used. Press releases can be jointly perused,
and a strong consensus built about the document, even though many miles may separate
the communicants. It is far more meaningful to be able to see exactly what it is that
is being discussed than to see the face of the person at the far end. Any significant
information contained in the facial clues is also present in the aural clues, already
available over the phone. The labels of Appendix I were composed using a Model I and a
Model III running Scripsit reflexively.

However, our experience to date in demonstrating and eliciting usage of the reflexive
way of working with another person suggests that although this might be the world's
greatest mousetrap, few are trampling down our door. It is much too early to be
certain about the causes of this resistance, but one hypothesis suggests that not only
does our ability to learn new languages diminish significantly during our teens, but
so does our ability to learn new modes of communications. If this is the case, then
the big market for shared space or reflexive word processors must wait for a
generation to come of age that has a different communications background, one that
involves more sharing of information.

Page 14

In the meantime, those who are at the leading edge, the explorers, can be encouraged
to use the technique. Consequently, we have chosen to place the requisite software in
the public domain, and publish in journals that have a readership most likely to apply
the ideas of simultaneous voice and data shared space interaction between
communicating micros. The LDOS operating system is, if not the only viable one, far
and away the most suitable one, to support REFLEX.

Two appropriately programmed communicating personal computers can be so linked over a
simple low speed data line as it is only the key strokes that get transmitted, and not
the screen updates. The resident application package, present at both ends, be it
SCRIPSIT, VISICALC or whatever, handles the demanding chore of updating the screens at
both ends. Consequently, any low speed data facility, such as a 300 baud link, is very
adequate. Perhaps, as familiarity with this shared space mode of working grows, and a
market develops, smart modems specifically designed for this particular way of
communicating may evolve. Such modems would eliminate the need for two telephone lines
by sharing one line for both data and voice. As the data rate requirement of this mode
of communication is extremely variable, ranging from an upper limit set by the need
for speedy file transfer, down to a few keystrokes per second, the development of such
apparatus, and the requisite interfacing drivers for the computers may not be easy.

Since it is only the keystrokes that are sent, non-similar machines using identical
man/machine protocols can communicate. VISICALC, if properly modified, can run between
an Apple and a TRS-80 in a fully reflexive, shared space way. The only difficulty is
that the Apple lacks a full set of cursor positioning arrows, and needs some
interfacing software to make up for this deficiency when connected to other machines
with the full up/down, left-right arrow key complement on the keyboard. A "preloader"
that conditions an Apple II to interpret the standard Apple VISICALC disk in such a
way that VISICALC runs reflexively is now commercially available.

Vast differences in display sizes, such as that between the Apple and the TRS-80 are
insignificant when the subject matter is viewed on a full screen editor that is driven
by cursor position. The interest area is always where the cursor is, and not at the
other side of the screen, where the display disparencies cause different material to
be seen. In the case of the 40x20 display of the Apple and the 64x16 display of the
TRS-80, the discrepancy was essentially unnoticed in operation.

The REFLEX filter, when active, allows any application package that runs on the
TRS-80, and uses the system keyboard driver, to be run reflexively with another
similar machine. Model I machines can work with Model III machines, for LDOS makes
them sufficiently similar. As LBASIC, the LDOS version of BASIC, uses the system
keyboard driver, anything written in BASIC, that does in fact use the system keyboard
driver, can be run reflexively.

Prosoft's current version of NEWSCRIPT, being largely written in BASIC, uses the
system keyboard driver for the majority of its commands, and so can be made to operate
quite well with REFLEX. The BASIC code must be modified somewhat, however. The Prosoft
driver, NS/CMD, must be placed at the top of memory as it is not fully relocatable
code. The various BASIC programs look at the Keyboard DCB to determine the scratch
memory's location.

However, once the LDOS keyboard driver and the REFLEX and MINIDOS filters have been
put in place, the DCB no longer points to where it was expected to point. By setting
the particular variables involved to -1765, the problem is avoided. Once the LDOS
driver is installed, the overflow error message indicates this problem, and identifies
the line that needs fixing. Peeks to &H4016 and 7 are the culprits. The final result
is a very powerful word processor capable of fully communicating with another of its
ilk in full REFLEX, of working alone, or of working into a large IBM mainframe system.
This combination is the essence of a communicating micro!

Page 15

Installing the LDOS keyboard driver somewhat alters the controls for NEWSCRIPT. The
<CLEAR> key, which was used for control, now becomes <SHIFT><CLEAR>, with the <SHIFT>
pushed slightly ahead of the <CLEAR> key. Only the toggle mode of control character
entry remains, the continuous mode having been lost. It doesn't use the system
keyboard call, apparently. If the <CLEAR><SHIFT> keys are depressed, with the <CLEAR>
key being a bit ahead of the <SHIFT> key, then REFLEX and MINIDOS are addressed.
Finally, where the <BREAK> key was previously used to break a line, <SHIFT><DOWN
ARROW><A> now does this. The <BREAK> key returns control to LBASIC. Although it might
seem that the controls are a bit more awkward, only the delete a bunch of characters
is significantly slowed. Other techniques, such as breaking the line, and deleting to
the end of the line make up for it. At the time of writing, a bug was noted in the
printer driver portion of NS that becomes active when any keyboard driver other than
NS/CMD is used. This bug persists even when the DCB path is "bent" so it loops into NS
and then into either the regular or the LDOS keyboard drivers.

The REFLEX filter allows the TRS-80 to run in three modes, the conventional LOCAL
mode, the REFLEX mode, and a simple terminal mode. These modes are chosen by selecting
"I","U" or "Y" respectively, while the <CLEAR><SHIFT> combination is depressed. The
more logical "R" and "T" keys are used by LDOS's MINIDOS, and so were not available.

REFLEX needs an eight bit data word as the LDOS keyboard driver can generate codes
that need this longer word length. Consequently, to use REFLEX, it is necessary to
first install the LDOS keyboard driver with the SET command, and then to install the
proper RS232 driver with the 8 bit word option. The REFLEX filter can then be
installed. The LDOS filter MINIDOS can then be installed, and the machine's
configuration captured. The assembler listing for REFLEX/FLT for the TRS-80, Model III
is in Appendix 1 with the changes noted for Model I.

The Simultaneous Voice and Data, Shared Space way of working together increases the
need for easy ways to toss files back and forth between the communicants. Most
application packages, of the word processing and broadsheet class, do not cater to
sending or receiving the current work space. Two notable exceptions are VISICALC for
the TRS-80 Model I, and Prosoft's NEWSCRIPT. Because the LDOS operating system, in
SYS2, recognizes devspecs, like *SI, *KI etc., and substitutes the appropriate device
for the usual disk drives and a filespec, NEWSCRIPT achieves this desirable feature,
with effort on Prosoft's part. SCRIPSIT, unfortunately, clobbers the * in the Special
Command area, and so can't send the contents of its work space in this easy fashion.
This shouldn't be too hard to fix, and perhaps someone will locate this constraint and
remove it.

VISICALC is rather special with regard to sending and receiving its work space. The
feature is mentioned on the summary card, not in the instruction book. However,
substituting :R for a filename, as is indicated on the instruction card, fails to
produce the desired results. The code is simply incorrect in the Model I version. With
a few fixes, however, it can be made to work. This feature even further enhances the
value of VISICALC. Details of the fix are in Appendix II.

If the principal utility of the serious microcomputer is in the broadsheet and word
processing areas, then Prosoft's NEWSCRIPT and the LDOS patched version of Model I
VISICALC provide a means of doing these important things in a fully reflexive way. The
Model III machine, because of its interrupt driven RS232 interface, does a somewhat
better job than the older Model I. Also, the Model I seems constrained to booting in
single density if NS/CMD is to be at the top of memory.

Interactive games, played in simultaneous voice and data in ways that are perhaps more
complex than simple REFLEX, is a whole new area of possibility. A tic-tac-toe game, in
BASIC, is shown in Appendix III.

Page 16

This game uses the computers to handle the displays while the two players, connected
via telephone and a data line, supply the logic. The computers act as referees and
accept only legal moves. This game requires LDOS with the keyboard driver active, *SI
active, and the REFLEX filter operating on *KI. This is a trivial game, but it does
illustrate the notion of games in silmultaneous voice and data by using two
communicating' micros in REFLEX.

One very popular current management theory suggests that the levels of mutual trust
that exist in North America may be too low for effective human interaction. Enlarging
the size of the common information space that communicants share is one way of
encouraging the building of mutual trust. The trust level and the ease with which we
adapt to more sharing of our information are likely quite symbiotic. Increases in one
feed the other. As the technology gets more and more complex, perhaps we need to
develop means of increasing the intellectual synergy between managers rather than
increasing the competition. Learning to handle simultaneous voice and data shared
space communications with our Communicating Micros is one giant step towards such an
objective.

EDITOR'S NOTE: The EQUate listings below contain the differences between the Model I
and III. Use whichever version is appropriate.

APPENDIX I

00100 ;RELOCATABLE REFLEX.
00110 ;By Jim and Gordon Thompson.June, 1982.
00120 ;
00130 ; MOD 3 MOD 1
00140 ;
00150 @ABORT EQU 4030H
00160 DODCB$ EQU 401DH
00170 @DSPLY EQU 4467H
00180 @EXIT EQU 402DH
00190 @GET EQU 0013H
00200 HIGH$ EQU 4411H
00210 KIDCB$ EQU 4015H
00220 KIJCL$ EQU 42BEH ;43BEH
00230 @PUT EQU 001BH
00240 RFLAG EQU 4413H ;401AH
00250 SFLAG$ EQU 442BH ;430FH
00260 SIDCB$ EQU 42C8H ;43C8H
00270 ;
00275 ORG 5200H
00280 ENTRY: PUSH DE ;SAVE DCB
00290 LD A,(SIDCB$) ;*SI DCB ADRESS
00300 BIT 03H,A ;CHECK OFF/ON
00310 JR Z,GOOD ;*SI HAS DRIVER
00320 LD HL,NOSI ;"DUMMY!"
00330 CALL @DSPLY ;NO *SI MSG TO *DO
00340 JP @ABORT ;BACK TO SYSTEM
00350 GOOD: LD HL,BANNER ;REFLEX TITLE
00360 CALL @DSPLY ;DISPLAY IT.
00370 LD BC,LAST-START ;PROPER LENGTH
00380 LD HL,(HIGH$) ;PUT INTO MOD III
00390 INC BC ;HIGH$.
00400 XOR A
00410 SBC HL,BC
00420 LD (HIGH$),HL ;NEW HIGH$ FOR MOD3
00430 POP IX ;RECALL DCB ADDRESS
00440 INC HL
00450 LD A,(SFLAG$) ;SFLAG$
00460 BIT 5,A ;DO in effect?

Page 17

00470 JR Z,NODO
00480 LD IX,KIJCL$;KIJCL$
00490 NODO: LD A,(IX+1)
00500 LD (START+1),A ;ADDRESS LOADING
00510 LD (RESTRT+1),A
00520 LD A,(IX+2)
00530 LD (START+2),A
00540 LD (RESTRT+2),A
00550 LD (IX+1),L
00560 LD (IX+2),H
00570 EX DE,HL
00580 LD HL,START ;COPY UP UNDER NEW
00590 LDIR ;TOP OF MEMORY
00600 XOR A
00610 LD (RFLAG),A ;SET REFLEX BYTE TO
00620 JP @EXIT ;ZERO.GO TO SYS.
00630 ;XXX
00640 ;XX ACTUAL FILTER
00650 ;XXX
00660 ;
00670 START: CALL 0H ;CALL TO DRIVER
00680 INIT: PUSH AF
00690 OR A ;KEY PUSHED?
00700 JR Z,ABORT ;NO, GO AWAY!
00710 CP 080H ;CHARACTER GTR 80H?
00720 JR C,ABORT ;PASS CHAR CALLER
00730 AND 0FFH
00740 RTEST: CP 0F5H ;TEST FOR "U"
00750 JR NZ,LTEST ; SHTF & CLR.
00760 POP AF
00770 LD A,01H
00780 LD (RFLAG),A ;IN REFLEX,SET FLAG
00790 LD A,52H
00800 LD (3C38H),A ;PUT "R" TO SCREEN
00810 XOR A
00820 JR INIT
00830 LTEST: CP 0E9H ;TEST FOR "I"
00840 JR NZ,TTEST ; SHFT & CLR.
00850 POP AF ;IN LOCAL, SO
00860 LD A,4CH ;WRITE "L" TO
00870 LD (3C38H),A ; SCREEN.
00880 XOR A ;SET A REG TO ZERO.
00890 LD (RFLAG),A ;SET REFLEX FLAG
00900 JR INIT ; TO ZERO
00910 TTEST: CP 0F9H ;TEST FOR "T"
00920 JR NZ,ABORT ;PASS CHAR TO CALLER
00930 POP AF
00940 PUSH DE
00950 PUSH IX
00960 LD A,54H ;WRITE "T" TO
00970 LD (3C38H),A ; SCREEN
00980 REINIT: LD IX,KIDCB$
00990 LD DE,KIDCB$
01000 RESTRT: CALL 0H
01010 OR A
01020 JR Z,SI
01030 CP 0E9H ;IS IT CLR SHFT I?
01040 JR Z,REPAIR
01050 CP 0F5H ;IS IT CLR SHFT U?
01060 JR Z,REPAIR
01070 CP 0F9H ;IS IT CLR SHFT T?
01080 JR NZ,CONT ;YES.

Page 18

01090 JR RESTRT ; GO BACK.
01100 CONT: PUSH AF
01110 LD DE,SIDCB$;*SI DCB ADDRESS
01120 CALL @PUT ;OUTPUT TO SI
01130 POP AF
01140 PUSH AF
01150 LD DE,DODCB$;*DO DCB ADDRESS.
01160 CALL @PUT ;WRITE CHAR TO *DO
01170 POP AF
01180 SI: LD DE,SIDCB$;*SI DCB ADDRESS
01190 CALL @GET ;INPUT FROM *SI
01200 OR A
01210 JR Z,REINIT
01220 LD DE,DODCB$;*DO DCB ADDRESS
01230 CALL @PUT ;WRITE TO *00
01240 JR REINIT ;END OF "T" LOOP
01250 REPAIR: POP IX
01260 POP DE
01270 JR INIT
01280 ABORT: LD A,(RFLAG) ;SEE WHAT MODE WE IN
01290 OR A ; 1 FOR REFLX, 0 LOC.
01300 JR Z,LEAVE ;IT'S LOCAL
01310 POP AF ;IT'S REFLEX
01320 PUSH AF
01330 OR A
01340 JR NZ,TALK ;KEY, GO TO *SI
01350 POP AF ;NO CHARACTER.
01360 LD DE,SIDCB$;*SI DCB ADDRESS.
01370 JP @GET ;GET IT.
01380 TALK: PUSH DE
01390 LD DE,SIDCB$;*SI DCB ADDRESS
01400 CALL @PUT ;OUTPUT *SI.
01410 POP DE
01420 LEAVE: POP AF
01430 LAST: RET ;RETURN TO CALLER WITH CHAR.
01440 NOSI: DB ' ((((((SI DRIVER NOT ACTIVE))))))'
01450 DB 0DH
01460 BANNER: DB '*** REFLEX FILTER *** ',0AH,0AH
01470 OB 'June 1982 Version.',0AH
01480 DB '<CLEAR SHIFT> I LOCAL',0AH
01490 DB '<CLEAR SHIFT> U REFLEX',0AH
01500 DB '<CLEAR SHIFT> Y TERMINAL'
01510 DB 0DH
01520 END ENTRY

This is the BINHEX listing for the REFLEX filter. The checksum is C6.

D5 3A C8 42 CB 5F 28 09 21 F0 52 CD 67 44 C3 30 40 21 14 53 CD 67 44 01 98 00 2A 11 44
03 AF ED 42 22 11 44 DD E1 23 3A 2B 44 CB 6F 28 04 DD 21 BE 42 DD 7E 01 32 58 52 32 9B
52 DD 7E 02 32 59 52 32 9C 52 DD 75 01 DD 74 02 EB 21 57 52 ED B0 AF 32 13 44 C3 2D 40
CD 00 00 F5 B7 28 76 FE 80 38 72 E6 FF FE F5 20 0E F1 3E 01 32 13 44 3E 52 32 38 3C AF
18 E4 FE E9 20 0C F1 3E 4C 32 38 3C AF 32 13 44 18 D4 FE F9 20 4A F1 D5 DD E5 3E 54 32
38 3C DD 21 15 40 11 15 40 CD 00 00 B7 28 1E FE E9 28 2B FE F5 28 27 FE F9 20 02 18 EC
F5 11 C8 42 CD 1B 00 F1 F5 11 1D 40 CD 1B 00 F1 11 C8 42 CD 13 00 B7 28 CC 11 1D 40 CD
1B 00 18 C4 DD E1 D1 18 86 3A 13 44 B7 28 14 F1 F5 B7 20 07 F1 11 C8 42 C3 13 00 D5 11
C8 42 CD 1B 00 D1 F1 C9 20 28 28 28 28 28 28 20 53 49 20 44 52 49 56 45 52 20 4E 4F 54
20 41 43 54 49 56 45 20 29 29 29 29 29 29 0D 2A 2A 2A 20 52 45 46 4C 45 58 20 46 49 4C
54 45 52 20 2A 2A 2A 20 0A 0A 4A 75 6E 65 20 31 39 38 32 20 20 56 65 72 73 69 6F 6E 2E
0A 3C 43 4C 45 41 52 20 53 48 49 46 54 3E 20 49 20 4C 4F 43 41 4C 0A 3C 43 4C 45 41 52
20 53 48 49 46 54 3E 20 55 20 52 45 46 4C 45 58 0A 3C 43 4C 45 41 52 20 53 48 49 46 54
3E 20 59 20 54 45 52 4D 49 4E 41 4C 0D

Page 19

APPENDIX II.

** VISICALC PATCH TO FIX RS232C FUNCTIONS **
MODIFICATIONS TO LDOS PATCHED VISICALC.

.Hardware differences between MODEL I & III force

.the use of calls to 1B & 13 for RS232C in and out.

.RS232C Interface MUST BE PRESET TO DESIRED STATUS.

.

.Code at following address previously set the RS232C

.hardware when a ":R" was detected. This is now much

. reduced as a consequence of using the system calls.
X'9B3C'= 28 05 FE 50 CA 8B 9B B7 C9
.
.This code senses MODEL I OR III and loads DE with
.*SI DCB address. It will be called during both SEND and
.RECEIVE operations.
X'9B45'= F5 3A 25 01 FE 49 28 05 11 C8 43 18 03 11 C8 42 F1 C9
.
.OUTPUT A BYTE TO *SI
X'9B7C'= CD C0 9B D5 CD 45 9B CD 1B 00 D1 B7 C9 00 00
.
.KEYBD SCAN, REPAIRED HANDSHAKE AND RECEIVE A BYTE
X'9751'= FA D5 CD 45 9B CD 13 00 D1 C2 57 9B CD 2B 00 28 F0 3E 60 37 C9 B7 C9 00 00
.
.CHECKS INCOMING BYTE FOR HANSHAKE
X'9B57'= FE 5B 28 02 B7 C9 3E 60 37 C9
. ** NOTICE **
.Although VISICALC expects a &H5B to terminate the RECEIVE
.state, the transmit mode never sends it. Code at 9BC0 is
.never triggered into doing it, as the required &H60 is
.never there, so it never sends the &H5B.
.
.Incidently, in the original code, the send handshake was
.&H5B and the expected receive one &H5E! We chose the &H5B
.for both. They are located at 9BC5, and 9B58 as a result
.of the patch.

.Because the transmit mode doesn't automatically trigger

.the termination of the receive mode, the RECEIVE code has

.been altered to also accept any keyboard entry as a

.request to terminate the reception of incoming data, and

.return to normal VC.

.

.Should someone else be more successful at making the

.transmit send the proper termination signal, the receive

.routine, as it now stands, will terminate properly, as

.it contains the requisite code to terminate the receive

.function upon the receipt of &H5B.

.

APPENDIX III

EDITOR'S NOTE: Due to the length (3 pages) of the Tic Tac Toe listing, it was not
printed in this issue. A copy of the listing may be obtained by sending a large, self
addressed stamped envelope (postage will be approximately 37 cents.)

Page 20

BASIC and File Structure - A Beginner's View

by Wes Goodnough

This article is written by Wes Goodnough, a relatively new "microcomputer" user,
although he has experience on larger machines. It covers the subjects of file
structure and business use of a microcomputer.

Since for a long time microcomputers were marketed principally as a hobby and personal
product, software production had tended to focus on entertainment. More recently,
however, the business world has begun to recognize the advantages of "a computer on my
own desk that will give me the information I need to have." More and more micros are
appearing on management desks, and sometimes in spite of the wishes of professional
people in the "Department of Data Processing". In response to this growth, software
offerings for business usage are also burgeoning. If the TRS-80 Model III is to have a
place in business usage, it is operating systems software of the quality and scope of
LDOS that will make it a contender in this market.

While entertainment programs have tended to focus on getting the most out of a
computer in terms of manipulating its displays and in terms of interacting creatively
with the hobbyist-operator, business oriented software must have other concerns.
Indeed, when you come right down to it, the reasons for the proliferation of computers
in our society in the first place have been business directed. The traditional
rational for computer usage in business organizations is that they contribute to
reducing the "cost of doing business", that they help an organization grow strong by
providing more timely and accurate reports, and that they assist in insuring the basic
satisfaction of customers doing business with the firm. As such, it is the DATA to be
processed itself that is of concern to a business, not the creativity of the display
nor the "elegance" of the programming. Happily, LDOS stands out as providing many
enhancements that complement this concern.

Without a doubt, the VERSATILITY provided by LDOS is a major asset for business usage
of the Model III. The availability and flexibility of drivers and filters as well as
the JCL features within LDOS hold great opportunity for business application as well.
And the device independence features of LDOS allow the use of high capacity storage
devices. Above all, however, business data processing applications must be able to
organize, store, retrieve, and manipulate literally millions of bytes of information,
and an operating system that lends itself to this task is a must. For those who
contemplate using a Model III in their business or for those who are intent on
producing productive business software for the Model III, LDOS with its file friendly
features stands out as a major resource.

It is my intent in this article to outline the basic file structures used in business
data applications and to note some possible ways they may be implemented using the
features of LDOS and LBASIC.

SEQUENTIAL FILE ORGANIZATION

The sequential file structure is the native structure of files on magn0 ic tape where
processing must start at the beginning of the tape and proceed throuqh one record
after another to completion. It is fundamental therefore, that with sequential file
structure, even on direct access media, that the only sure entry point is at the
beginning of the file. In addition, it is not hard to visualize that because new data
cannot be inserted between records already written on the media, it is necessary in
updating sequential files to re-write the entire file. Preferably this will be done on
a separate drive in order to maintain at least two versions of the file. The term
"Father-Son Processing" refers to the practice of maintaining a rotation of separate
disks (usually three) to accomodate the update and security back-up of sequential
files. It is inherent in sequential updating that the processing be batch oriented,
for it is most efficient to make as many changes to the file as possible on any pass
through it.

Page 21

While sequential file structure does not readily lend itself to interactive
applications, it should not be assumed that there is no place for sequential files in
Model III applications. Indeed certain cases are actually improved with sequential
access methods. In the case where all or nearly all of the records on file are used
during processing, it is both efficient and orderly to proceed through the file from
beginning to end. Such is the case in payroll applications where every record is
examined and processing ought to proceed in an orderly fashion so as to provide
adequate controls over the results. The strict order of records in a sequential file
can also serve to control the order of other processing. Such was the case in an
Election Returns System with which I am familiar. In order to produce a periodic
printed report of the progress of precinct returns on election night, a file of
candidates and proposals was prepared. Each pass through this file presented in fixed
order the pertinent information to enable access to other files and tables where the
vote tabulation was stored, and to format and print the desired report.

LBASIC supports the Disk BASIC of TRSDOS and uses the same structure and nomenclature
for sequential files. Output to files is through the PRINT# instruction while input
is through the INPUT# and LINE INPUT# instructions. Using these instructions, record
formatting must be handled entirely by the programmer by the construction of the
string variable argument used with these instructions. Concatenation of separate
strings is one method of building the string arguement. If the programmer is careful
to provide for a constant field length as well as for left or right justification and
zero or space filling in each field, he will be able to extract the information
accurately from the record when it is read from the magnetic file at a later date. To
do this he will use the string functions LEFT$, RIGHT$, and MID$ as in the following
example.

 100 A$ = "TRAN"
 110 INPUT B$: IF LEN(B$) > 15 THEN 110 ' a real
 115 IF LEN(B$) = 15 THEN 130 ' hassle to
 120 B$ = B$ + STRING$(15 - LEN(B$)," ") ' get record
 130 INPUT C: IF C > 999 THEN 130 ' set up for
 140 C$=STR$(C):C$=RIGHT$(C$,LEN(C$) - 1) ' output to
 150 C$=RIGHT$("000" + C$,4 - LEN(C$)) ' media
 160 R$ = A$ + B$ + C$
 170 PRINT #1, R$
 180

 790
 800 INPUT #1, R$ ' also a hassle
 810 AS = LEFT$(R$,4) ' to retrieve
 820 B$ = MID$(R$,5,15) ' data on file
 830 CS = RIGHT$(R$,4): C = VAL(C$) ' via string
 840 '................................ ' functions

By far the outstanding feature of LDOS as it pertains to sequential file handling is
the expanded file OPEN Modes provided by LBASIC. In business data processing the data
filed on magnetic media represents an almost priceless asset to an organization. The
loss of a siqnificant file could be disastrous for even a healthy firm. By providing
for "ON" (open new file at beginning), "OO" (open existing file at beginning), "EN"
(open new file for extension), and "EO" (open existing file for extension), the
programmer and the systems analyst can help prevent data loss due to operator errors.
In updating sequential files, the "Father" file should be opened as "OO" insuring
that the file is present where it is expected before processing begins, and that the
file pointer is located at the beginning of the file. Then the "Son" file should be
opened as "EN" or as "ON", likewise insuring that no other version of the file is pre-
sent. An error returned on these entries would alert the operator to the possibility
that a wrong disk was mounted and that data was about to be over-written.

Page 22

SEQUENTIAL PROCESSING UNDER RANDOM MODE

For practical purposes, distinctions should be made between the term "Sequential" as a
file mode and "Sequential" as an access method. On the one hand, the term is used to
signify the file mode as distinguished from "Random", (viz; OPEN "O", 1, "FILE"). On
the other hand, "Sequential file access method" may reasonably refer merely to the
procedure of working through a file from beginning to end. Once this distinction is
understood, new doors are opened to the programmer for he will understand also that by
opening his files as "Random" mode files, ("RO", "R", "RN"), he may preserve the
advantages of sequential access processing and still take advantage of the "Random"
instruction set, (LSET, RSET, FIELD, MKI$/CVI, etc.).

Sequential processing under the "Random" mode is simple enough to be quite obvious. A
FOR-NEXT loop is designed with the FOR-NEXT variable as the LRN of the GET
instruction. Foremost among the advantages of the "Random" mode is the simplicity of
constructing and interpreting the data record. The FIELD statement allows for
identifying fields within the file buffer itself, both in terms of field tags and
field lengths. Using the blocked file mode of LBASIC, logical records can be defined
with sizes from 1 to 256 characters without the programmer having to distinguish
between the various logical records within one physical record. Only one record is
defined by the FIELD statement, and LBASIC extends that through the file buffer as
needed. Once a record is accessed, any part of the record may be referenced by simple
use of the string variable tag assigned by the FIELD statement. Maximum flexibility is
provided by the ability to "re-define" the record through succesive FIELD statements.
Likewise in formatting the record for output or in making changes to a part of the
record, the FIELD string variables simplify access to the part of the record under
immediate consideration. The LSET and RSET instructions not only assign values to the
FIELD variables, but they also right or left justify the string within the "field",
(including space filling). As for "zero filling" of numeric fields, the process is not
required at all since numeric values are converted to strings representing the Binary
configuration of the numeric value by the MKI$, MKS$, and MKD$ functions.
Re-conversion is done with CVI, CVS, and CVD functions. The following is an example of
the use of these "Random" features in sequential processing. Compared to the string
manipulation in the previous example this is straightforward.

 50 OPEN "RO", 1, "FILE",21 ' Open as Random
 60 FIELD 1, 4 AS A$, 15 AS B$, 2 AS C$
 70
 90
 100 FOR R 1 TO LOF(1) ' Get one after another
 110 GET 1, R ' from begining to end

 260 NEXT R
 270

 540
 550 LSET AS = "TRAN" ' No fuss assignment of
 560 LSET B$ = B1$ ' of fields - Correct
 570 LSET C$ = MKI$(C) ' lengths and justified
 580 PUT 1, LOC(1) ' Only one disk needed
 590

While the sequential file mode may not be frequently used in business applications for
the Model III, it is certain that "sequential access methods" are important tools to
be understood and used, even under "Random" mode.

Page 23

DIRECT ACCESS FILE ORGANIZATION

 Once the programmer understands the use of the "Random" mode instruction set
he will see the facility it offers in manipulating data in files. However, the subject
of "Random" files is much broader than consideration of the FIELD and LSET
instructions. Disk storage devices are considered as "Random" or "Direct" access
devices, meaning that there is the ability to go directly to the record you want and
read it without having to search sequentially from the beginning of the file. We know
that LBASIC will allow us to specify the LRN of any record on file and, using the GET
instruction, to pick out that specific record from the file. But how can WE know what
LRN to specify unless we have the file organized in a way that will allow us to
determine what it ought to be? This is the matter of file organization for direct
access.

 It may already be apparent to the reader that there is great confusion of
terms in this subject. It seems that different manufacturers delight in using words in
ways intended to distinguish their products rather than to communicate with a standard
nomenclature. For purposes of this discussion "Random" will refer only to the LBASIC
file mode as specified in OPEN "RO", or "R", or "RN". "Direct access" will refer to
the general ability to go directly into a file and retrieve a specified record. Where
any other meanings are intended for these terms, it will be clearly expressed.

THE RELATIVE FILE

 There are basically only TWO ways to organize a file for direct access,
though certainly there are many variations within each. The first to be considered is
the RELATIVE file, (also sometimes referred to as a "direct" file.) The Relative
file structure is made up of records which are stored in relative locations within the
file. For instance, a file of the states of the Union would contain 50 records and
each state could be assigned a key number between 1 and 50 to represent both its order
of statehood and its relative position on the file. Thus the 18th record on the file
would also be the 18th state admitted to the Union.

 This plan is simple only so long as the key value does not exceed the maximum
number of records in the file. Where the range of key values does exceed the number of
records allocated, there must be some way to convert the key into a relative position
number. One method for randomizing record placement is to divide the key by a prime
number and use the remainder as the LRN. In the above example 47 would be the largest
prime less than the file size of 50. For a key of 321, the calculation would be:

 321 / 47 = 6 plus a remainder of 39

Hence the record with key 321 would be placed in relative position 39.

 There are many such algorithms, each with its own properties and
characteristics when used with a specific file. No matter what algorithm is chosen, it
should ideally result in deriving LRNs evenly distributed over the range of the file
and with a minimum of duplications. (In the example, key numbers 274 and 368 would
also derive the LRN of 39.)

 In case of a duplicate LRN being derived by the randomizing algorithm, there
must be a way to determine an alternate location for the record. Very often it is to
simply begin searching subsequent locations on the file until an open spot is found.
Since the derivation of duplicate LRNs is more likely to happen as the file approaches
being full, it is helpful to allocate extra positions to minimize the amount of
sequential searching that needs to be done.

 The main advantage of the relative file structure and the randomizing
algorithms is that it provides the very fastest access times. Usually only a simple
calculation and one I/O to the storage media are needed to retrieve a record.
Therefore this is the method to choose when speed of access is very important.
However, trade-offs are necessary to maintain this speed. If there are many duplicate

Page 24

LRN derivations, then access time will be slowed and the advantages lost. Therefore it
is important to be sure that the algorithm used is adequate for the application.
Leaving extra room on the file may be a necessary overhead, for even though the extra
space will never actually be used, access times will be minimized.

 The coding to implement the search in relative files is very simple. Whether
it is to find a place to insert a new record or to find a record on file, the process
is the same, a simple calculation and a GET instruction.

 100 R = KEY - 47 * INT(KEY/47) ' The calculation
 110 GET 1, R ' The file access
 120 IF U$ = "1" THEN GET 1: ' Check if duplicate
 GOTO 120 ' If so get another
 130 LSET ALL$ = REC$ ' New rec into buffer
 140 PUT 1, LOC(1) ' Write to file
 150 PRINT "RECORD IS FILED"

 200 R = KEY - 47 * INT(KEY/47) ' The calculation
 210 GET 1, R ' The access
 230 PRINT "RECORD IS FOUND"

INDEXED SEQUENTIAL FILES

 The second method of file organization for direct access is the Indexed file.
The Indexed Sequential Access Method or ISAM file organization is the most common
example of the structure. With ISAM, records may be ordered in the file in an
ascending or descending sequence by whatever key is specified. In addition there is an
index to the file containing the LRN of every record along with its key. Much the same
as a book index indicates the page where a subject is mentioned in the book, this
index indicates where in the file a specific record will be found. 8y first looking in
the index for the key being sought, the LRN is found and with only one GET, the record
is in hand. The idea is that searching through the index is much quicker than
searching through the file on the disk. Indeed using a "Binary Search", a specific
item can be found in an index of 1000 items in an average of only 6 looks, while for
an index of 10,000 items it will take an average of 7 looks. If the index is in memory
(as in a matrix), this will provide fast access, although not as fast as relative file
access.

 In updating the ISAM file, it is only necessary to add new records at the end
of the data file, and insert the appropriate entry into the index. For deletions it is
enough to remove the appropriate item from the index, and for changes no alteration to
the index file is necessary.

 While it is easy to understand ISAM file updating, putting it together is not
quite so simple, for there are many considerations to complicate it. First is data
file management. If the data file will be maintained in strict sequential order, then
it is necessary to determine how this is to be done. How will new records be added
between existing ones? Or should new records be added to the end of the file, relying
upon the index to give the ordering? Should deletions be removed altogether from the
file or only flagged as being deleted? Each of these questions must be considered from
standpoint of the programming required as well as of the needs and requirements of the
specific application.

 Secondly, it must be determined just how to handle the index itself. No
matter how the data file is managed, it is paramount that the index be kept in good
order. After making alterations to the index it may be necessary to resort it. For
this the CMD "O" feature of LBASIC is an asset in that an index contained in a string
matrix can be sorted reliably, and quickly. Even a part of the matrix can be sorted if
necessary. Other questions involve the management of the index. Should it be a file
itself, or a part of the Data file, (maybe the first few sectors)?

Page 25

Should it be read into memory for use, or should it be manipulated on disk? Or should
the index be "hard wired" into the program? The alternatives here are all dependent at
least in part by the size of the index file and the requirements of the application. A
small index could be "hard wired" if the data file contents do not change. Regardless
of the variations resulting from these considerations, there are certain basics to
coding the file access. The Binary search is the key to it and might be like this
example.

 100 A=1 ' Lowest LRN
 110 Z=50 ' Highest LRN
 120 H=50 ' Current high LRN
 130 L=1 ' Current low LRN
 140 M=0 ' Middle point
 150 ' KY$ is the key being sought.
 160 ' K$(x) is the matrix containing the index.

 200 H=Z : L=A
 210 IF LEFT$(K$(H),2) = KYS THEN 500 ' Found if true
 220 IF LEFT$(K$(L),2) = KYS THEN 600 ' Found if true
 230 M = INT((H-L)/2): ' Mid point
 IF N = L OR M = H THEN 600 ' Doesn't exist
 240 IF LEFT$(K$(M),2) = KY$ THEN 500 ' Found if true
 250 IF LEFT$(K$(M),2) > LEFT$(K$(L),2) ' Make M into
 THEN H = M ELSE L = M ' the next H or L
 260 GOTO 230 ' Try again
 270

 500 PRINT "KEY IS FOUND": STOP
 600 PRINT "RECORD DOES NOT EXIST": STOP

FROM FILES TO DATA BASES

 Once the use of indices is mastered, it is only a short step from matters of
file organization to matters more resembling data base structure. By using the same
principals of indexing by keys and LRNs it is possible to create multiple indices for
one or more files, (these indices are referred to as "inverted lists"). Each index is
based on a key from a separate field or fields of the record. As the various indices
are sorted in appropriate sequences, several paths through the file are available. By
one it might be possible to read through in alphabetic order on salesmen's names, on
another by monthly sales totals. With a little imagination and the application to make
it meaningful, it would not be difficult to combine characteristics of more than one
file in a single index and relate data of one file to data in another.

 Another technique that does not qualify as a file organization but that is
useable for relating one record and file to another is that of the linked list, (the
use of pointers). With just two characters (using the MKI$ function on a given LRL)
it is possible to include in one record the information for access to another record
on the same file or even a different file. Chained files incorporate two such fields,
one to point to the prior logical record and one to point to the next logical record.
With such a file, all new records are added to the end of the file, but the chaining
pointers are set to locate the record in its proper file sequence according to keys.
Likewise, deletions are executed by changing the appropriate pointers to bypass the
deleted record.

 Both linked lists and inverted lists offer advantages that are important in
maintaining and accessing data files. In business applications, where the storage and
retrieval of large amounts of data is the heart of the processing concern, the success
of application programming will be largely determined by the effective and
knowledgeable use of appropriate data structures. Whether using Relative files or
Inverted lists or Sequential access methods, the Model III with LDOS as an operating
system has a good potential in business applications.

Page 26

LISP IMPLEMENTATIONS FOR THE Z80

by Lee C. Rice & Daniel J. Lofy

Lee Rice is an Associate Professor of Philosophy at Marquette University in Milwaukee,
Wis., and Dan Lofy is a former student of his with a degree in computer science.

I. LISP AS A PROGRAMMING LANGUAGE

LISP is a LISt Processing language which is based upon John McCarthy's work on
nonnumeric computation, first published in 1960. The first LISP system was implemented
at M.I.T. and described in the LISP 1.5 PROGRAMMER'S MANUAL. Since that time LISP has
become the language of choice for virtually all work in artificial intelligence, and
has been implemented on a variety of mainframes. The host computer for LISP at
M.I.T.
was the DEC PDP-10, but research work there soon led to the production of a new
minicomputer, "The Lisp Machine", whose hardware took full advantage of LISP's
computational advantages. The LISP Machine provides a complete LISP environment:
operating system, interpreter, editor, compiler, and utilities, as well as a
machine-LISP implementation of other programming languages such as FORTRAN --> all
written in, and managed by, LISP.

To a considerable extent, LISP remains unique among programming languages, possessing
a flavor and feel all of its own. In 1973 during an invited talk at the University of
Texas at Austin, Jean Sammett said, "Programming languages can be divided into two
categories. In one category there is LISP; in the second category, all the other
programming languages!" Today experienced programmers would probably want to add APL
to this first rather exclusive category. Many programmers argue that both APL and LISP
provide ideal operating environments for the microcomputer. In the past two years no
fewer than two versions of each have become available for the TRS80.

This transition from mainframe to mini/micro mentality is just beginning. In the old
days, machines were expensive, CPU time was equally costly, and disk space was a
precious commodity. Programming languages like FORTRAN and COBOL were designed to
minimize on-line programming. Programmers would spend hours coding flowcharts and
pseudo-code, then compile their source code, pick up a long list of error messages,
and return to their desks for debugging. But minis and micros have turned these
priorities upside down: computer hardware, CPU time, and disk space are now among the
cheapest of commodities in data processing, and programmer time among the most
expensive. The use of interpretive and highly user-interactive languages is a first
step in the right direction. More and more enhancements are being made to BASIC, and
other interpretive languages such as LISP and APL are also coming into their own.

There are still two frequently heard myths about LISP in the computer industry: that
it is hard to learn, and slow with mathematical calculations. Both have a grain of
truth. For those who are used to programming in highly rigid programming languages
such as FORTRAN or PASCAL, LISP takes a lot of getting used to. While it is also true
that LISP was originally devoted to nonnumeric symbol manipulation, and handled math
only haltingly, it is also true that modern implementations of LISP have a
number-crunching ability second only to APL (APL, after all, was created to do with
numbers just what LISP was created to do with symbols in general).

In terms of the microcomputer environment itself, LISP can't be beat. It is oriented
toward programming at a terminal with rapid response. An extensive literature of
utility programs is currently available. LISP uniformity also provides a very powerful
programming tool for the micro user, once you become acclimated to it. LISP functions
and LISP data have the same form. One LISP function can analyze another, or even use
another. Indeed, thanks to its use of recursion rather than iteration, and its dynamic
allocation of variables, LISP functions or programs can be used to alter themselves.
Most LISP implementations, for instance, come equipped with a LISP editor (usually
called EDIT, and written in LISP). If the user wishes to enhance the editor with new
operations, this can be done simply by typing "EDIT EDIT" - i.e., one can use the
editor to edit the editor!

Page 27

All of these powerful features are bought at a price: the user has to learn some new
habits, and unlearn some old ones. For LISP users, the gains are well worth the price.
In the next section, we'll provide a very brief overview of LISP structures; and, in
the following two, we'll describe the two implementations of LISP available for the
TRS80 (both compatible with LDOS).

II. ELEMENTS OF LISP PROGRAMMING

English structures are made up of words, and so are LISP structures, except that there
are two kinds of words in LISP: atoms and lists. Atoms and lists are called,
generically, S-expressions (SEXes). Atoms can be English or nonsense words, but should
not BEGIN with a number; since most LISP interpreters take any atom beginning with a
number as a number-atom. A list is formed by enclosing any number of atoms, separated
by spaces, with parentheses. The null list - "()" - containing no atoms is also
identified with the atom NIL. Unless told otherwise, the LISP interpreter accepts the
first atom in a list as a FUNCTION, and proceeds to evaluate it in the environment
specified by the rest of the list.

Some examples of obvious LISP numeric functions follow. LISP's responses are indented
two spaces to distinguish them from user input:

(DIFFERENCE 3.874 2.161)
 1.713
(TIMES 9 3)
 27
(PLUS (QUOTIENT 6 3) (TIMES 2 (MAX 2 4 3)))
 10
(QUOTIENT 3 2)
 1.333333

As the last example makes clear, LISP interpreters capable of handling floating point
arithmetic do all of the conversions for the user. All functions are prefixed to their
arguments, and the interpreter evaluates innermost parentheses first; so there are no
rules of precedence to remember.

The most important LISP nonnumeric functions are CAR (which delivers the first element
of a list), CDR (which delivers the list without its first element), and QUOTE (which
tells LISP NOT to evaluate a list). So:

(CAR (QUOTE(APPLE PIE)))
 APPLE
(CDR (QUOTE(APPLE PIE)))
 (PIE)

The function CONS takes two arguments to make a new list:

(CONS (QUOTE LISP)(QUOTE (TAKES SOME GETTING USED TO)))
 (LISP TAKES SOME GETTING USED TO)

The LAMBDA operator is a means of binding variables locally to a function, and new
functions may be introduced using the LISP function DEFINE. So we could define the
functions FIRST, SECOND, and THIRD to pick out elements of a list as follows:

(DEFINE ((
'(SECOND (LAMBDA (LIST) (FIRST (CDR LIST))))
'(THIRD (LAMBDA (LIST) (SECOND (CDR LIST))))
'(FIRST (LAMBDA (LIST) (CAR LIST))))))
 SECOND
 THIRD
 FIRST
(THIRD '(KEEP UP WITH YESTERDAY))
 WITH

Page 28

(SECOND '(POP GOES THE WEASEL))
 GOES
(FIRST '(LISP IS FUN))
 LISP

As this example also makes clear the single quote is a means of avoiding too many
parentheses in most versions of LISP.

To bring out the power of LISP's recursive techniques, we now define the function
FACTORIAL, which delivers the factorial of a given number. To do this we also need the
LISP function COND, which is just the ordinary "IF" function of BASIC or FORTRAN. COND
simply takes a list of SEXes, evaluates them from the beginning until it finds a True
SEX, and then returns the current value of that SEX. We add two additional LISP
functions: ZEROP returns T (for "true") if a number is zero, otherwise NIL (for
"false"); and SUBi merely subtracts one from a number. Now here is our definition:

(DEFINE 'FACTORIAL (LAMBDA (NUMBER)
 (COND ((ZEROP NUMBER) 1)
 (T (TIMES NUMBER (FACTORIAL (SUB1 NUMBER)))))

To create this definition, all we needed to know was that, for any number N, the value
of FACTORIAL (N+1) is just (N+1) times the value of FACTORIAL (N). So we define the
value of FACTORIAL (0), and then the value of FACTORIAL (N) in terms of FACTORIAL
(N-1); and let LISP take care of the bookkeeping:

(FACTORIAL (4))
 24
(FACTORIAL (PLUS (QUOTIENT 6 3) (DIFFERENCE 5 1)))
 6

If we want to save the value of an operation we can use the LISP function SETQ, which
stores the evaluated second argument as the value of the first (nonevaluated) atom:

(SETQ CHARLIE (FACTORIAL (PLUS (QUOTIENT 6 3) (PLUS 1 0))))
 CHARLIE
CHARLIE
 6

Notice that, unlike LAMBDA (which binds locally), SETQ is a global binder:
CHARLIE is now available for later use.

For situations where iteration is simpler or more easily readable than recursion (or
where the beginning user needs to rely on techniques learned from FORTRAN or BASIC),
LISP will also provide full iteration facilities via its GO and PROG features. GO,
like the BASIC "GOTO", transfers control to another program segment (which is a
character atom rather than a number in LISP). PROG is the LISP program generator,
which enables the creation of a sequertial series of functions, and passing of values
from earlier to later segments. For programmers who have worked in ALGOL, it is worth
noting that the syntax of LISP PROGrams is the same as that of ALGOL. PROG variables
are initialized to NIL, evaluation proceeds from left to right and top to bottom, and
transfer is accomplished via GO and the insertion of labels (which are not evaluated).
The function RETURN of one argument forces exit from PROG with the value being the
value of PROG, or (if none exists) NIL. Finally, since LISP itself is a LISP
structure, it can be used to describe and evaluate itself. The standard LISP debugger
TRACE is written in LISP, and used to debug user-created LISP PROGs or functions; and
similarly for the LISP editor.

Lest it be concluded that LISP is all sweetness and light, a few weak points should be
noted. First, LISP is traditionally quite weak in disk I/O; and it is typically only
capable of accessing LISP-created data files or workspaces. Mainframe enhancements to
micro versions of LISP have only begun to appear.

Page 29

Secondly, the abundance of parentheses and the freeform syntax (no line numbers, and
LISP ignores blanks) make some form of formatting desirable for the CRT (in order for
the user to read and edit longer programs), and an absolute necessity for printed
output. Here again, mainframe versions of LISP are very strong, and micro versions are
typically quite weak. For the experienced LISP programmer, these weaknesses are not so
serious: a prettyprinter for LISP can be written in LISP. But, for the LISP novice,
these shortcomings are often painful.

We have only touched upon the bare bones of LISP programming here. A typical LISP
implementation for micros will offer fifty or sixty built-in functions (including
PRINT, READ, and a host of mathematical tools), debugger, editor, and a variety of
separate utilities. LISP, like APL, is also much more economical on memory usage than
BASIC or FORTRAN. On a 48K TRS80 I have never needed to chain programs because of
failure to fit them into a workspace. Further, since LISP makes no distinction between
data and programs, tape or disk access is usually quite rapid.

III. SUPERSOFT LISP

Supersoft LISP (available from Supersoft Associates, P.O. Box 1628, Champaign,
Illinois 61820) is designed to be a standard LISP interpreter. Essentially it uses the
original (and now somewhat dated) M.I.T. version LISP 1.05, with the following
enhancements: full floating point math, disk or tape I/O, and generous numbers of PROG
features for the novice programmer. Updated most recently in 1982, it is now known as
LISP 3.71, and is available for TRS80 Model I (tape or disk versions) and TRS80 Model
III (tape or disk versions), as well as CP/M. The Model III version is not the same as
the Model I version; and the disk versions of each contain many disk enhancements over
their tape counterparts. The Model III version is fully compatible with LDOS, and the
Model I version is supposed to be also (the authors have not verified this).

In Supersoft LISP each SEX is evaluated as input, which results in a genuinely
interactive environment, and a pleasant atmosphere for computing. The implementation
uses an association list (ALIST) to keep track of variable bindings, and an object
list (OBLIST) to keep track of functions currently in the workspace. The user has full
access to the OBLIST (delete or add functions), but the interpreter also does
bookkeeping; and an efficient garbage collection routine is also implemented. To
prevent catastrophe, there is no user access to the ALIST, which is continuously
updated by the interpreter.

Enhancements to LISP 1.05 are worth noting. CHR, PEEK, and POKE (same as the BASIC
functions) are fully implemented. PRINT, PRIN1 (same as PRINT without carriage
return), LPRINT, LPRIN1, READ (for user input at terminal: same as BASIC INPUT), and
TERPRI (which outputs a single carriage return to CRT or printer) are also provided.

The disk versions (Model I and Model III) contain a BREAKpoint function for debugging,
standard disk SAVE and LOAD functions, and a special disk-save function (SAVFNS) for
saving multiple functions together in a single disk file. SAVFNS is of particular use
where the user has created many short functions, since saving these together in a
single disk file saves disk space and disk access time. The author has also generously
provided a LISP library of sixty additional functions. These include such niceties as
EXPT (exponentiation), RADIX (to change a number from base 10 to any other base), and
GENSYM (which enables the user to generate new atoms). Three larger programs are also
included on the disk. TRACE is a LISP debugging aid which enables the user to step
through the execution of any user-created function or program. EDIT is a LISP editor
(with full breakpoint facilities). The program DERIV is a mathematical one which takes
the derivative of an argument with respect to a single variable, and (optionally)
allows the user to generate a Taylor series for a given function. All of these are
written in LISP, and full source code is provided in the manual. The manual also
provides a complete explanation of the sixty-five error messages generated by the
interpreter, and (for the advanced programmer) details of the machine representation
of LISP.

Page 30

The manual is NOT an introduction to LISP, so it assumes that the user does have some
introductory materials or text on hand. Also a weakness is that the manual is not well
organized. Apparently, following each update of LISP, the author simply added
appendices. The result, for instance, is that there are no less than three versions of
disk SAVE given, and only the last is correct. This fact, coupled with a complete lack
of index, means that Supersoft would be well advised to prepare a completely new
manual from scratch.

The interpreter lacks any provision for prettyprinting output, so lineprinter output
is almost unreadable. The editor is also quite modest and limited. For the novice
these are serious shortcomings, but the manual does indicate procedures for editing
the editor, and a prettyprinter can be written. On the positive side for the novice
programmer, the interpreter is generally tolerant if too few parentheses are added;
and, while only the error numbers are generated by the interpreter, the error messages
listed in the manual are clear and explicit. The OBLIST is also unaffected by an error
condition; and, after such a condition occurs, the interpreter returns at once to
input level. High memory cannot be protected when entering LISP, so the use of the
LDOS drivers and filters is also inhibited.

Supersoft LISP is as powerful a micro implementation of LISP as we are likely to have
for a long time. Full use of it does require homework for the novice LISP programmer,
but one or two introductory books on LISP, coupled with some patience when confronted
with many error messages, will open up a new world of programming power.

IV. UOLISP

UOLISP is a recent implementation of LISP, originating in 1980 and updated three times
since (most recently in April of 1982), first created at the University of Oregon.
Unlike Supersoft LISP, UOLISP is a subset only of Standard LISP, and does NOT include
provision for floating point math. Its support utilities are, however, much more
extensive than its Supersoft counterpart. These include the interpreter, a compiler
for generating fast-load files or directly executable code, a program to load
fast-load files, an optimizing phase for the compiler, a function TRACE feature, a
structure editor and prettyprinter, another version of LISP called RLISP, and many
support packages.

First, the interpreter. It supports integers (range -4096 to +4095), strings of up to
255 characters in length, fixed point numbers, and several additional LISP features
not supported by Supersoft LISP (dotted pairs, code pointers). A supporting package
(BIGNUM) implements arbitrarily large integers, and yet another package supports
vectors of arbitrary size (including vectors whose components are vectors, i.e.,
matrices). In addition to the standard LISP functions and predicates, the UOLISP
interpreter comes equipped with compiler support functions; and these are of
particular use to experienced assembler programmers.

Unlike Supersoft LISP, UOLISP provides a complete compilation process, which is
accomplished in two passes. The first of these translates LISP into a pseudo-assembly
code called LAP ("LISP Assembly Program"), and the second translates LAP into absolute
machine code, placing it into storage (for execution) or into a fast-load file for
later reloading. Optionally, a third pass optimizes the LAP before assembling it.
Fast-load files are both relocatable and implementation independent. They can also be
executed directly from LDOS as standard /CMD files. The debugging process takes place
at the interpretive level, which makes the LISP compilation procedure faster and more
efficient than FORTRAN, COBOL, and most implementations of PASCAL.

The LISP compiler is superior to most other compilers because of the ability of LISP
to manipulate LISP: the compiler is written in LISP, and compiled LISP functions run
from 10 to 50 times faster than the same functions in the LISP interpreter (which
already run at about 5 times the speed of BASIC). The LAP assembler is accessible to
the user, so fast assembly language routines and output to nonstandard devices can be
implemented. An adjunct package for the optimizer also displays LAP code in assembler
format.

Page 31

For new LISP programmers, the Structure Editor and Prettyprinter will be welcome
additions. The former is a LISP program which permits entry of functions, execution,
and then saving as a disk file. This disk file can be accessed by all LDOS utilities,
and even read by BASIC programs. The Prettyprinter interfaces to the Structure Editor
so that LISP structures are automatically displayed in indented and easily readable
format.

There is an added bonus for the non-LISP programmer. The language RLISP (which is
written in LISP, as if you didn't know already!) provides a palatable alternative to
LISP which looks something like PASCAL. The language features WHILE loops, REPEAT
loops, several different FOR loops, and infix operators for math. For example, in LISP
the function NTH would be defined:

(DEFINE 'NTH (LAMBDA (LIST N)
 (COND ((EQUAL N 0)(CAR L))
 (T (NTH (COR L) (DIFFERENCE N 1))))))

whereas in RLISP we have:

EXPR PROCEDURE NTH (LIST, N);
 IF N=0 THEN CAR L
 ELSE NTH (CDR L, N-1);

PASCAL users, or devotees of structured programming, will follow the RLISP program
flow easily. For those of us (authors included) who are LISP fanatics, the suggestion
that LISP could profit from the clumsy structuring of PASCAL amounts to little less
than heresy. Since structured programming is, however, the current fad, RLISP meets
one possible market demand.

If the programmer does not like PASCAL or structured programming, there is yet another
alternative to LISP included as a utility. The little META translator is a very big
LISP program which permits you to create your own programming language, specify its
syntax and how it is to be interpreted, and (optionally) convert it into assembly
code. The manual contains a short example in META of a program which simulates a
pocket calculator, but there is in fact no limit to what META can do. Experienced
programmers can even write their own FORTRAN compilers in LISP using META (if this
sounds fantastic, we should note that it has already been done, and the results mark a
considerable improvement over the outdated Microsoft implementation of FORTRAN IV!).

On the negative side, the absence of floating point math makes UOLISP seriously
deficient. Unlike its Supersoft counterpart, the UOLISP manual is well organized and
very concise. It too assumes considerable familiarity with LISP structures; and it
contains many sections devoted to assembler programming. It should be noted that
UOLISP files are NOT compatible with Supersoft LISP files. Because of the great
command over file formatting provided by LDOS, the LDOS user may reformat many
Supersoft LISP files for UOLISP input (provided they do not utilize floating point
math!); but the path from Supersoft LISP to UOLISP is a one way street. The UOLISP
package offers a solid implementation of LISP for any programmer. Its compilation
options will appeal to the serious programmer, while its prettyprinter and utilities
will be attractive to anyone. UOLISP runs under Model I or Model III LDOS, with a
minimum of 32K (48K recommended), and requires at least one disk drive (two are
recommended). It is available from Far West Systems and Software, Box 3301, Eugene,
Oregon 97403.

V. CONCLUDING NOTES

LISP is an exciting language to learn, and a powerful language to use. It has the
potential for offering a complete programming environment, and both versions take full
advantage of both the Z80 and the TRS80.

Page 32

Four books dealing with LISP are particularly noteworthy for the beginning "LISPer".
LET'S TALK LISP, by Laurent Siklossy (NJ: Prentice-Hall, 1976), offers an easy-to-read
introduction to the distinctive and most powerful features of LISP programming. LISP,
by P. H. Winston and B. Horn (MA: Addison-Wesley, 1981), is a much longer book which
provides both an introduction to LISP programming and information on the
implementation of LISP on many computers. Ken Tracton's PROGRAMMER'S GUIDE TO LISP
(PA: Tab Books, 1980) is just what it claims to be, and has many useful LISP programs
(as well as many typographical errors). Finally, THE LITTLE LISPER, by Daniel Friedman
(Chicago: Science Research Associates, 1974) provides the most light-hearted and
fun-filled tutorial on LISP programming imaginable.

FORTRAN, COBOL and LDOS JCL

The following article by Glen Rathke demonstrates how to simplify the compiling of
FORTRAN and COBOL programs through the use of LDOS's JCL.

Working with Radio Shack's or Microsoft's Fortran can be less painful if used in
conjunction with the JOB CONTROL LANGUAGE found in LDOS. First use the EDIT/CMD module
to produce a working program such as the TEMP/FOR example that is in the front of
Radio Shack's manual.

Next use the LDOS command BUILD to create a JCL file by issuing a BUILD FORTRAN
command at the LDOS Ready prompt. Then, type in each line and press <ENTER>.

 %1F. 1 = COMPILE and check for ERRORS
 . 2 = COMPILE, generate code, EXECUTE
 .
 //KEYIN - PLEASE INDICATE YOUR CHOICE
 //1
 F80 =#FILE#
 %1F. 3 = QUIT
 . 4 = RECOMPILE generate code EXECUTE
 . 5 = EDIT
 //KEYIN - PLEASE INDICATE YOUR CHOICE
 //3
 //EXIT
 //4
 F80 #FILE#,#FILE#=#FILE#
 L80 #FILE#-G
 L80 #FILE#-N,#FILE#-E
 //EXIT
 //5
 //EDIT
 //EXIT
 //2
 F80 #FILE#,#FILE#=#FILE#
 L80 #FILE#-G
 L80 #FILE#-N,#FILE#-E
 //EXIT
 ///
 %1F. JOB aborted NOT A VALID CHOICE.
 //EXIT

Then use the DO command; DO FORTRAN (FILE=TEMP)

A KEYIN response of 1 will check for errors while compiling the program TEMP/FOR which
was created using the EDIT/CMD module. If any errors are found at this point you can
still go back and make any necessary corrections when prompted at the second KEYIN
prompt. If the program is error free, RECOMPILING and EXECUTION are still available as
well as a QUIT command.

Page 33

A keyin response of 2 will then take control of the three remaining modules (F80/CMD,
L80/CMD, and FORLIB/CMD) and process the file TEMP/FOR that was created under the
EDIT/CMD. The token in the JCL files #FILE# has to be set equal to TEMP, which is done
in the DO command where (FILE=TEMP). Then anytime the token "FILE" is encountered it
will be replaced with the program name TEMP. The important part here is that whatever
the name of the Fortran program is given, that same name will have to appear in the DO
command line. In order to get a complete listing of the TEMP program including the
code generated by the compiler you can BUILD another JCL file which I call "PRINT".

 LBASIC
 CLS
 LPRINT CHR$(140)
 CLS
 CMD"S"
 LIST #FILE#/FOR (P)
 LBASIC
 CLS
 LPRINT CHR$(140)
 CLS
 CMD"S"
 LIST #FILE#/LST (P)
 LBASIC
 CLS
 LPRINT CHR$(140)
 CLS
 CMD"S"
 //EXIT

Once again use the DO command but this time execute it as DO PRINT (FILE=TEMP).
Although the JCL file may be a bit cumbersome, the end result will have a complete
listing as well as each listing starting on its own sheet due to the LPRINT CHR$(140)
embedded under LBASIC.

One more use for the JCL file can be found when you are sure that your program is bug
free and when you want to clean up your work diskette, a multiple KILL file could be
activated.

 KILL #FILE#/LST
 KILL #FILE#/REL

 DO KILL (FILE=TEMP)

This file will only leave you with the original TEMP/FOR and the TEMP/CMD, so be sure
that you don't need the other two files (especially TEMP/LST which gives you the code
listing generated by the compiler.) These JCL files and commands were created using
the 5.1.3 revision.

As shown in a previous example with FORTRAN, the JCL function can be used with great
ease when performing multiple or related functions. In the next example a JCL file is
used to control the COBOL compiler marketed by Radio Shack, written by Ryan McFarland.

The purpose of this application is to let the operator "take control" of the various
options that affect compiling of a Cobol program.

Notice the use of a non numeric character "E" in answer to a KEYIN (actually any non
numeric character or a numeral >5 will obtain the same result.) This response will
bypass all other options or KEYIN(s) and will directly start EXECUTing.

Page 34

 %1F...
 . 1 Compile (list to Video)
 . 2 Compile (list to Video & Printer)
 . 3 Compile (list Errors only to Printer)
 . 4 Compile (X reference to Printer)
 . 5 Compile "Debug" source lines
 . E EXECUTE
 ...
 .
 //KEYIN - YOUR CHOICE
 //1
 RSCOBOL #FILE# (T)
 %1F. 1 QUIT
 . E EXECUTE
 //KEYIN - YOUR CHOICE
 //1
 //EXIT
 //2
 RSCOBOL #FILE# (T P)
 %1F. 1 QUIT
 . E EXECUTE
 //KEYIN - YOUR CHOICE
 //1
 //EXIT
 //3
 RSCOBOL #FILE# (P E)
 %1F. 1 QUIT
 . E EXECUTE
 //KEYIN - YOUR CHOICE
 //1
 //EXIT
 //4
 RSCOBOL #FILE# (P X)
 %1F. 1 QUIT
 . E EXECUTE
 //KEYIN - YOUR CHOICE
 //1
 //EXIT
 //5
 RSCOBOL #FILE# (D)
 %1F. 1 QUIT
 . E EXECUTE
 //KEYIN - YOUR CHOICE
 //1
 //EXIT
 ///
 RUNCOBOL #FILE#
 //EXIT

Use the DO command to execute the above JCL program. DO COBOL (FILE=CALCXMPL)

LDOS and a HAYES SMART MODEM

John Mullins talks about the Hayes Smart Modem and LDOS. From the number of calls we
get, it appears that the Hayes modem is pretty popular.

 LDOS and a HAYES SMART MODEM make a very good pair, and with a program to
issue commands from DOS and a device filter to disable output to the modem until a
carrier is received, and a small amount of linking, a host system is in operation. The
modem will detect the presence of an incomming call, and if it finds a carrier signal
on the other end - will set the carrier detect input of the RS-232.

Page 35

Then if the *DO and *KI have been linked to the Comm Line (*CL), the caller (from
miles away) can issue keyboard commands and see display output. This simple system
begins with a command sending program, MODCMD. All it will do is allow you to give the
modem a line of commands. It is assumed at this point that the RS232 driver is in
place at the time MODCMD is used. For example, MODCMD AT T D 555-3344 <enter> will
tell the modem to dial (using tones) 555-3344. The format of the line is as follows
(the "'" characters are used to mark the separate fields within the command):

MODCMD '*device name <space>''digit delay <space>' command

'*device name' will default to *CL, and the 'digit delay' will default to 3. The delay
will allow the user to see the modem's responses to the commands. The second program
is a filter so the RS232 driver will be ignored until a carrier is detected. Without
this filter, the display will be slowed down to the speed of the driver (probably 300
baud) even if no one is online. The modem will think that anything it receives when
not online is a command, if it receives other characters it can lead to unpredictable
results. The next listing is a small JCL file to implement these commands in the
correct order. The modem commands can be any you wish, but they must be issued before
the online filter, and the online filter must be in place before the links.

 .reset modem to power-up configuration
 MODCMD AT Z
 .set up to dial with tones, ignore backspaces
 .have a 2 second escape guard, answer on 5 rings
 MODCMD 4 AT T S5=138 S12=100 S0=5
 FILTER *CL ONLINE send output only if online
 LINK *DO *CL copy output to *CL if online
 LINK *KI *CL accept input from modem as kbd input
 .ready to answer

00100 TITLE '<Modem Command Output>'
00110 ;
00120 ;MODCMD will allow the user to send a line
00130 ;of commands to the Hayes Smart Modem. If
00140 ;desired, it will wait for a response for
00150 ;a variable length of time.
00160 ;
00170 ;format:
00180 MODCMD |*dev <sp>||delay <sp>| <command> <enter>
00190 ;*dev if not included will default to *CL
00200 ;delay will default to 2
00210 ; if delay is 0 no wait will occur
00220 ;command is a command to the modem ex. AT Z
00230 ;
00240 ; MODCMD 0 AT Z
00250 ;
00260 ORG 5200H
00270 *GET EQUATE1/EQU
00280 ;
00300 START LD A,(HL) ;check input line
00310 CP '*'
00320 JR NZ,CL
00330 INC HL
00340 LD A,(HL)
00341 CP 'Z'
00342 JR C,$+4
00345 AND 5FH
00350 LD (DCB+1),A
00360 INC HL

Page 36

00370 LD A,(HL) ;different device
00371 CP 'Z'
00372 JR C,$+4
00375 AND 5FH
00380 LD (DCB+2),A
00390 INC HL
00395 INC HL
00400 LD A,(HL)
00410 CL CP ':' ;a digit?
00420 JR NC,OPENS
00430 INC HL
00435 INC HL
00440 SUB '0'-1 ;noramlize 1..10
00450 LD (CNT+1),A
00451 OPENS PUSH HL
00460 LD B,1
00470 LD DE,DCB
00480 LD HL,BUFF
00490 CALL @OPEN ;open dcb
00510 JP NZ,@ERROR
00520 PUSH DE
00530 POP IX
00540 LD D,(IX+2)
00550 LD A,D
00560 LD (POINT+2),A
00570 LD E,(IX+1)
00580 LD A,E
00590 LD (POINT+1),A
00600 PUSH DE
00610 LD DE,TCB
00620 LD A,8 ;task slot 8
00630 CALL @ADTSK
00640 POP DE
00645 POP HL
00650 LOOP1 LD A,(HL)
00651 CP 'Z'+1
00652 JR C,OK
00653 AND 5FH
00660 OK INC HL
00670 PUSH AF
00680 CALL @PUT
00690 POP AF
00700 CP 0DH
00710 JR NZ,LOOP1
00715 CNT LD B,3
00716 JR TST
00720 LOOP2 PUSH BC
00730 LD BC,0000
00740 CALL @PAUSE
00750 POP BC
00760 TST DJNZ LOOP2
00761 LD A,8
00762 CALL @RMTSK ;REMOVE TASK
00770 JP @EXIT
00780 TCB DEFW TASK
00790 DEFW 0000,0000,0000
00800 TASK PUSH DE
00810 PUSH IX
00820 PUSH AF

Page 37

00830 POINT LD DE,0000
00840 CALL @GET
00850 CALL NZ,@DSP
00860 POP AF
00870 POP IX
00880 POP DE
00890 RET
00900 DCB DEFB '*CL',0DH
00910 DEFS 32
00920 BUFF EQU $
00930 END START

00100 TITLE '<ONLINE/FLT>'
00110 ;
00120 ;This will filter the @put such that the
00130 ;carrier of a distant modem must be present
00140 ;for output through @put. Note: @ctl will
00150 ;still send messages with or without cd set.
00160 ;
00170 ORG 5200H
00180 *GET EQUATE1/EQU
00190 ;
00200 START PUSH DE
00210 POP IX ;get dcb
00220 LD H,(IX+2) ;high byte of add
00230 LD L,(IX+1)
00240 LD (GO+1),HL ;save in routine
00250 LD HL,(4049H)
00260 LD DE,LAST
00270 LD BC,LAST-FIRST
00280 EX DE,HL
00290 LDDR
00300 EX DE,HL
00310 LD (4049H),HL ;save new mem top
00320 INC HL
00330 LD (IX+1),L
00340 LD (IX+2),H ;and driver add
00350 LD HL,GMSG
00360 CALL @DSPLY
00370 JP @EXIT
00380 GMSG DEFB 'Filter now inserted',0DH
00390 FIRST EQU $
00400 NOP
00410 JR C,GO
00420 JR NZ,GO
00430 PUSH AF
00440 IN A,(0E8H) ;carrier det?
00450 BIT 5,A
00460 JR Z,GO-1
00470 POP AF
00480 RET
00490 POP AF
00500 GO JP 0000
00510 LAST EQU $
00520 END START

Page 38

CONFESSIONS OF A MACHINE LANGUAGE ADDICT
(or, Misery Loves Company,)

(or How to Convert Software to Run Under LDOS)

Ray Pelzer wrote the Visicalc patches published in the July '82 Quarterly. Here is his
story on how those patches were developed, and instructions on fixing assembly
language programs to run with LDOS and to take advantage of its different features.
The actual patches are listed at the end of the article, including those for the new
VC-160Y0-T83 version.

"Hi, what did ya do last night??"
"Oh, I started disassembling VisiCalc and..."

"W-H-A-A-A-A-A-A-T ???"

Yep, that's the kind of reaction I got when I started working on the patches for Model
3 Enhanced VisiCalc (LDOS Quarterly, Vol 1, No. 5). A lot of people would like to try
the same thing, but are a little afraid to try their hands at it. I wasn't sure I'd
have the nerve to finish once I'd started but, by applying the little "tricks" that
I've picked up as time passed, it was much easier than even I expected. For that
reason, I'd like to pass on some of those tricks to you, so that you can better
understand machine language programming, and learn some of the classy techniques used
by others, as well as help you customize machine language programs on your own.

Since there's no possible way to teach you Assembler and Machine Language in a
magazine article, I'm going to have to assume you are already a "hacker" of sorts (or,
as some people in Radio Shack prefer, "Billy Bytehead"). You'll have to be able to
comprehend the machine language level of programming to a fair degree (preferably,
you'll be able to recognize some instructions at a glance of the hex code for speed's
sake), and be able to run Editor-Assembler and Disassembler programs. Of course, I've
been extremely pleased with both the Misosys products, EDAS 3.5, and Disassembler 1.0,
but on the latter, one small deficiency in the program is the inability to disassemble
directly from a disk file - only from machine language in memory. Knowing what I know
of Roy, though, he'll probably have a new version ready to do just that by the time
you read this article. In the meantime, I keep an old copy of the Apparat disassembler
(from my wet-behind-the-ears days) on hand for those special cases. For this article,
I'll refer back to the work I did on VisiCalc, and explain HOW I did it.

Probably the most important thing you can get from a disassembly is the location
cross-reference (usually abbreviated to cross-ref or xref). As the disassembler does
its thing, it creates a table of memory locations it THINKS have been referenced by
the program (more on THAT later) for display or printout. You'll absolutely NEED this
table in a later step if you are modifying an existing program (to make sure you don't
cause another part of the program to crash due to your changes).

After you get a printout of the cross-ref (the one I did for VC came out to 42 pages
for the cross-ref alone!), you should also get a HEX/ASCII dump of the program, such
as LDOS's LIST command using the (HEX,P) parameters. NOW, you'll see what I meant
about what the disassembler THINKS are references to memory locations in the program.
If you've ever looked at a disassembly that seems to have a lot of meaningless
transfers from one register to another, with a few JR NZ,xxxx jumps thrown in, look at
those memory locations on your hex dump. You'll most likely find that those areas are
loaded with text, because the disassembler mistakenly translates the characters to the
LD r,r' series of op codes that they match. As for the JR NZ stuff, those are the
blank spaces between the words! Once you have all this sorted out, you can "whittle
down" the cross-ref list by crossing out the meaningless references like those.

Next step - look for the obvious. In VC, I wanted to find out something about disk
I/O, so I looked for all the standard references relating to disk I/O (4420H, 4424H,
4436H, 4428H, etc.). Also, take a close look at anything you don't recognize. This is
how I found that VC was conking out at the RAMDIR call in TRSDOS 1.3, since in LDOS
5.1.2, that call to 4290H (Model I) was a trip into the la-la land of SBUFF$, the
system buffer, and in the Model III version, the RAMDIR call had not been installed

Page 39

until version 5.1.3. While you're at it, keep a close watch out for funny things like
ROM calls. If you've ever tried to use a Model 3 ROM call that doesn't exist on a
Model 1, you know what I'm talking about. In some cases, especially for short
routines, it might be easier to just duplicate the subroutine directly into the
program in order to make it transportable, but this will be a try-and-see situation.

Now, for the first few steps of the modification - looking for the proper value of
HIGH$, and the keyboard input alteration. VC comes with its own keyboard driver, so
once that was disabled, I had a nice chunk of free space for inserting the HIGH$
check. Here, the old LSI patches for Model 1 VC gave me a hand. The first thing I had
to look for was a reference to 3801H, the keyboard's memory-mapped area. That found, I
backed up to what looked like it could be the beginning of the subroutine - the first
byte following a C9 (RETurn). Looking up THAT address in my cross-ref, I was pleased
to find it's reference quickly, and in only one place. Now, I could change THAT call
to a call to 002BH, the ROM keyboard call.

Next came the actual HIGH$ check. In the original program, the Mod 3 HIGH$ storage
point of 4411H was referenced twice, both times in the first sector of the file. Those
two references were swapped out for a call to the area where the old keyboard driver
had been. Now, as a short-cut, I looked back to LSI's fixes for the basis. Later on, I
had to add some extra goodies in this area during the check, because the disk I/O
vectors I used were in different places on Model 1 and 3, and this was as good a place
as any to do the switching. However, since that stuff was yet to be done, I did a
shorter temporary patch for now that only did the HIGH$ check.

With two of the more critical parts out of the way, we now return to the disk I/O. I
first tried each and every one of the commands and made a checklist of which ones
malfunctioned and which ones didn't. The only two I found that failed were printing to
the RS-232 and doing any disk file work in which I did not specify the filespec, but
let VC look for me. Well, I didn't worry about the RS-232 problem, because it used ROM
calls to the new Mod 3 system ROM, which doesn't even exist on the Mod 1 (see what I
was talking about earlier?). Besides, anyone using LDOS who needs to print to the
RS-232 has probably done a SET *PR TO *CL anyway, so why repeat the effort?

The file work then became the problem. At this point, DEBUG to the rescue! DEBUG is a
vastly underrated utility which can be worth it's weight in gold. If you don't know
how to use it, LEARN!! I can't stress enough how much easier it will make your work.
The first thing to do is to set a breakpoint in your program. The question is, where
to set it? Here comes another little hint: VC and many other programs employ a clever
little trick - a lookup table for the commands. You can find in your HEX/ASCII dump a
bunch of letters, each separated by 2 bytes, and these letters correspond to the VC
commands. What they do is (1) point to the beginning of the table after getting the
command, (2) compare the command to the character in the table it's pointed to, (3) if
there's a match, put the NEXT TWO bytes of the table into HL, and JP (HL) or, (4) if
NOT a match, move ahead THREE bytes in the table to the next command and repeat until
you find a match or hit the end of the table. Once I found where /L (for file loading)
jumped to, I set a breakpoint there, and started running. As soon as I typed /L, I
dropped back to DEBUG and single-stepped my way along. This part can be rather
tedious, but rewarding when you finally get results. As I went along, I made written
notes so that when the program finally DID crash, I could restart and set my
breakpoint farther along so I didn't have to repeat all the same single-stepping that
I already KNEW was correct.

When I got to the subroutine that crashed the system, out came the disassembler again.
I disassembled the subroutine's general memory area (just how much YOU disassemble
will depend on the program, your mood, and how much paper you're willing to use up),
and any other subroutines that were called by it. That done, I had to run back to the
cross-ref to find out if any other portions of the program used parts of that same
subroutine. Unfortunately, they did. I looked for the entry points, and made notes
that all my changes had to stay before those parts of the subroutine so as not to mess
up those other entry points.

Page 40

VC's use of the RAMDIR call presented a problem, because LDOS uses @FNAME, which
returns whatever is in a particular directory slot, whether it is an active slot or
not. TRSDOS's RAMDIR returns 00 bytes if the directory slot is unused. Now, I had to
find a way to tell if the directory slot was used. Also, if I had a double-sided disk
or a hard disk, I had to be sure that I checked all possible directory slots. The
answer was simple - look at the HIT sector in the directory track, and only read
directory slots that had non-zero bytes in the matching HIT position!

That, however, created another problem - where to drop the HIT into memory for fear of
destroying a table already in memory? Well, VC HAD to have a disk I/O buffer of it's
own, so why not use that? After all, nothing would go there unless I asked for a file,
and once I did, I wouldn't need the HIT anymore, anyway. It was decided. A quick
glance back at the cross-ref told me where a file open/close/read operation was, and I
knew that the last LD HL,xxxx command before that was to point to the I/O buffer.
Buffer found, back to work.

VC uses a CALL 028DH to see if the BREAK key was hit during scan, so I had to mimic it
by looking at bit 3 of 3840H in the keyboard memory. For some odd reason, VC chose to
save ALL registers when only the AF registers were changed, so I cut out the extra
PUSHes and POPs, thereby saving a few bytes.

Once VC has a drive number to search, I had to see if the drive was in the system, so
I needed a call to @CKDRV. This would be one of the addresses to change between Mod 1
and 3, so it would later be modified in the HIGH$ testing routine. One other point was
that TRSDOS and LDOS use the B & C registers in opposites on @CKDRV, DIRCYL, and
@FNAME, so I had to include a a little routine of:

 LD A,C
 LD C,B
 LD B,A
 RET

to do the rotations.

Assuming the drive was in the system (if not, I skipped to the next drive or fell back
out if all drives had been tested), I now wanted the HIT sector. A call to DIRCYL to
find the directory, and RDSSEC to read system sector #1 (the HIT sector) into the VC
disk buffer, and that step was over. Now, I entered a routine to look through that
sector for a non-zero byte. Once found, a call to @FNAME to get the filespec. Only one
more stumbling block - what if it was a directory EXTENSION (FXDE) rather than the
PRIMARY entry (FPDE)? Well, if it's an FXDE, @FNAME thoughtfully drops back 00 bytes,
so that became the last test to make. Actually, the second-last test. We finally had
to test to see if the files had the /VC extension (or /DIF or /PRF, depending upon
where the call originated) and pass it back for approval if it DID match, but that
step was identical to the original routine already in the program, just re-located. If
I didn't like the name that was chosen, I returned to my routine (with the needed
registers saved, of course), and continued until all 256 directory entries had been
checked, and then moved on to the next drive for a repeat of all the little fun and
games above.

A word of caution... if you don't know what a certain piece of code does, LEAVE IT
IN!! I found a flag being tested that I didn't understand, so I took it out. Bad move!
It turned out that it was used in another part of the program, and the program
hiccuped when I took it out. Sometimes you CAN take that kind of stuff out, but be
careful! Anyhow, a little more testing, and the results were successful. Now, back to
the HIGH$ routine to add the changes to alter the DOS vectors that varied between
Model 1 and 3.

Page 41

Almost done except for the /X- screen-refresh. This one was more trial-and-error than
anything else. I found a similar lookup table with all the characters that could
legally follow the /X, so I looked at the 2 bytes after the dash... they pointed
directly to a RETurn instruction. Now, all I had to do was find the point at which the
screen was refreshed normally, and put THAT address in its place. This turned out to
be easier than I planned. Running back to DEBUG, I re-loaded and single-stepped from
the beginning of the program, past the HIGH$ check and the memory-clearing routine,
until I got to the point where the screen was first displayed. That found, I patched
that address into the /X- slot of the table for testing. This was simple enough to do,
since all it needed was to load some data onto the sheet, issue the /X- command, and
check for any change in the data. No change meant I had the right spot (Or at least A
right spot!).

Finally, a little alteration of the version display to note that it had been patched,
and I was ready for a final complete assembly of the changes to get all the addresses
and bytes to put into PATCH format. A quick run through LSCRIPT to create the /FIX
file and I was done.

With all this work out of the way, it was immensely easier to make the patches for the
newer version of VC (version VC-160Y0-T83 vs. the older VC-150Y0-T8). First, I did a
HEX/ASCII dump of the new file and just looked for the movements of code. Fortunately,
a few bytes of code were added near the beginning which moved everything down a few
bytes, but none of the critical areas seemed to be altered. A re-assembly of the old
code at a new origin, and everything worked (Ah, if only EVERYTHING were that
simple...).

When you're done, be absolutely certain that you make notes on what features you've
changed, and any important features you might have added to the program. After all, we
all know how important documentation can be.

That's how it was done! I realize that not everything I did will apply to every
situation or program, but the techniques here can be adapted for many uses. If you're
just starting to learn machine language, some of the above may have been over your
head. If you're an old pro, it may have bored you. In either case, I hope I've passed
on some little tricks which you may not have known that will make life easier when it
comes time to disassemble a program for corrections, or just "souping-up". By the way,
you'll find below a reprint of the patches for VC version 150Y0 AND the patches for
version 160Y0 to run on LDOS 5.1.2. If you want to move it to 5.1.3, just change the
"21 90 42" in the X'5586' (or X'5591') line into "21 09 42" to move the @CKDRV call.

.Patches to Model 3 Enhanced VisiCalc to run on

.LDOS 5.1.2. By Ray Pelzer, partly based on the

.Model 1/3 patches (c) 1981 by Logical Systems, Inc.

.

.These patches will make VisiCalc 3 run on a Model 1 or 3.

.*NOTE* FOR VISICALC VERSION # VC-150Y0-T83 *ONLY*!
Patch in 002B kybd scan for typeahead, etc.
X'557F'=CD 2B 00
.
.All the stuff for proper HIGH$ and Mod 1/3 conversion.
X'521A'=CD 86 55
X'52A6'=CD 86 55
.Note: for LDOS 5.1.3, change 90 to 09 in the line below.
X'5586'=3A 25 01 FE 49 3E 00 2A 49 40 C0 21 90 42 22 A8 55
X'5597'=21 64 4B 22 4A A7 21 93 42 22 69 A7 2A 11 44 C9
.
.Part of the @CKDRV call to see if a drive is active.
X'55A7'=CD B8 44 C8 CD 51 A4 E1 C3 3F A7
.
.Add the ever-popular "/X-" screen-refresh command.
X'7062'=5E 52
.

Page 42

.Change the /V version display
X'9235'=28 63 29 20 31 39 37 39 2C 38 31 20 56 69 73 69
X'9245'=43 6F 72 70 20 56 43 2D 31 35 30 59 30 2D 54 38
X'9255'=33 20 20 4C 44 4F 53 20 62 79 20 52 61 79 20 50
X'9265'=65 6C 7A 65 72
.
.Now, make the changes to scan filespecs properly in LDOS
.When using a /S command withOUT an explicit filespec.
X'A43D'=F5 3A 40 38 E6 04 28 06 CD 2D A4 F1 37 C9 CD 35 A4
X'A44E'=F1 B7 C9 79 F5 78 4F F1 47 C9
X'A720'=22 88 B5 CD 35 A4 3A 8F B5 FE FF 47 20 02 06 00
X'A730'=CD 43 A7 D0 CD 3D A4 38 06 04 78 FE 08 38 F1 3E 03
X'A741'=37 C9 CD 51 A4 CD A7 55 CD 65 4B 1E 01 21 D6 B5
X'A751'=CD 45 4B CD 51 A4 20 55 21 D6 B5 7E E5 B7 C5
X'A760'=28 3A 11 D6 B6 CD 51 A4 CD BB 44 EB 7E B7 28 3E
X'A770'=7E FE 3A 28 39 FE 2F 23 20 F6 ED 5B 8A B5
X'A77E'=06 03 1A FE 20 20 05 7E FE 3A 18 07 BE 20 21 13 23
X'A78F'=10 EF 28 0C 3A 91 B5 B7 28 03 AF 18 02 3E 01 B7
X'A79F'=20 0B CD 17 A8 38 03 C1 E1 C9 CD D8 A7 18 03
X'A7AE'=CD C8 A7 C1 0C E1 23 CA 3F A7 18 A2
.END OF PATCH
--

.Patches to Model 3 Enhanced VisiCalc to run on LDOS

.These patches will make VisiCalc 3 run on a Model 1 or 3.

.**NOTE** THESE PATCHES FOR VISICALC # VC-l60Y0-T83 ONLY**

.Patch in 002B kybd scan for typeahead, etc.
X'558A'=CD 28 00

.All the stuff for proper HIGH$ and Mod 1/3 conversion.
X'521A'=CD 91 55
X'52B1'=CD 91 55
.Note: For LDOS 5.1.3, change 90 to 09 in the line below.
X'5591'=3A 25 01 FE 49 3E 00 2A 49 40 C0 21 90 42 22 B3 55
X'55A2'=21 64 4B 22 6B A7 21 93 42 22 8A A7 2A 11 44 C9
.
.Part of the @CKDRV call to see if a drive is active.
X'55B2'=CD B8 44 C8 CD 6F A4 E1 C3 60 A7
.
.add the ever-popular "/X-" screen-refresh command.
X'7075'=69 52
.
.Change the /V version display
X'924E'=28 63 29 20 31 39 37 39 2C 38 31 20 56 69 73 69
X'925E'=43 6F 72 70 20 56 43 2D 31 36 30 59 30 2D 54 38
X'926E'=33 20 20 4C 44 4F 53 20 62 79 20 52 61 79 20 50
X'927E'=65 6C 7A 65 72
.
.Now, make the changes to scan filespecs properly in LDOS
.When using a /S command withOUT an explicit filespec.
X'A45B'=F5 3A 40 38 E6 04 28 06 CD 4B A4 F1 37 C9 CD 53 A4
X'A46C'=F1 B7 C9 79 48 47 C9
X'A741'=22 A9 B5 CD 53 A4 3A B0 B5 FE FF 47 20 02 06 00
X'A751'=CD 64 A7 D0 CD 5B A4 38 06 04 78 FE 08 38 F1 3E 03
X'A762'=37 C9 CD 6F A4 CD B2 55 CD 65 4B 1E 01 21 F7 B5
X'A772'=CD 45 4B CD 6F A4 20 55 21 F7 B5 7E E5 B7 C5
X'A781'=28 3A 11 F7 B6 CD 6F A4 CD BB 44 EB 7E B7 28 3E
X'A791'=7E FE 3A 28 39 FE 2F 23 20 F6 ED 5B AB B5
X'A79F'=06 03 1A FE 20 20 05 7E FE 3A 18 07 BE 20 21 13 23
X'A7B0'=10 EF 28 0C 3A B2 B5 B7 28 03 AF 18 02 3E 01 87
X'A7C0'=20 0B CD 38 A8 38 03 C1 E1 C9 CD F9 A7 18 03
X'A7CF'=CD E9 A7 C1 0C E1 23 CA 60 A7 18 A2

Page 43

LDOS DISK DRIVE CONTROL LINKAGES

by Bob Bowker <70250,306>

One of the main reasons for the portability of so much of the CP/M software on the
market today is their use of a system vector address which is common to all versions
of CP/M or "CP/M look-alikes". System routines may vary in length or actual memory
location from one version to the next - in fact, they may be totally different from
each other - yet both systems will be able to handle the same software because of the
single system vector.

Here's how it works in CP/M. To display a byte on the CRT, for example, the user loads
the byte into the DE register pair, loads function number 02 (Write to console) into
the C register, and CALLs 0005H. To send that same character to the line printer,
function number 05 (Write list) is loaded into the C register, and a CALL 0005H is
executed. And so on.....CP/M 2.2 and MP/M 1.0 define 36 different functions, including
disk I/O, which are accessed in this way.

Next to program portability, the biggest advantage to using a single system entry
point is device independence. The system vector at 0005H sends the caller into upper
memory where the individual device drivers and interface code are located. Whether
the printer attached to the system is a high speed dot matrix on a parallel port, or a
teletype on a serial port, makes no difference to the caller's program - the byte to
be printed is passed in the same register pair in both cases, and the C register
contains a 05 in both cases. Similarly, neither type of disk drives, nor the protocol
of the terminal, is of any importance to the caller's program - in every case, the
needs of the individual peripherals are met by the system drivers, freeing the
caller's program of those responsibilities.

The actual routines to which the user's CALL is vectored are at different addresses
depending on system version numbers, what peripherals are attached, memory size, etc.,
but the user does not have to know the exact location - the system maintains 0005H as
a vector to the entry point. LDOS has taken the first steps in this direction by
applying these principles to 16 disk I/O functions (see the Manual, page 6-15). All 16
functions are accessible by passing a function number in a CALL to the driver program
for that particular disk drive, regardless of whether the drive is a floppy or hard
disk, 5" or 8", etc.

Some of the 16 functions are also available to assembly language programmers as
"primitives" - that is, via CALLs to unique RAM addresses. However, each of these
primitives does little more than load the function number in the B register, load the
appropriate driver program address in the IY register pair, and JUMP there. One very
important point: none of these primitives is a "fixed" address as of 5.1.2 - that is,
they may move in future releases. The location of the Drive Code Table, however, is a
fixed address - DCT$ = 4700H. The primitives are listed in the following table, along
with their linkage function numbers:

 ADDRESS CODE NAME OPERATION
 ===
 00H NOP tests if drive is assigned in DCT
 4754H 01H SELECT new drive/return status
 02H INIT set cyl 0, RESTOR, and set side 0
 03H RESET reset FDC
 04H RESTOR move head to cyl 0
 05H STEPIN move head "in" one cylinder
 475EH 06H SEEK seek a specified cylinder
 44B8H 07H TSTBSY test drive for busy
 08H RDHDR read one sector header info
 4777H 09H RDSEC read one specified sector into mem
 4772H 0AH VERSEC verify that one sector exists
 0BH RDCYL read one whole cylinder

Page 44

Let's look at a couple of examples. The following code will read a sector from
diskette into a buffer in RAM:

 00100 READ1 LD A,(DRIVE) ;get drive number
 00110 LD C,A ;into proper register
 00120 LD A,(CYLNDR) ;get cylinder number
 00130 LD D,A ;into proper register
 00140 LD A,(SECTOR) ;get sector number
 00150 LD E,A ;into proper register
 00160 LD HL,BUFFER ;point to storage area
 00170 CALL 4777H ;and read it in.
 00180 RET

This routine assumes only that (DRIVE), (CYLNDR), and (SECTOR) are maintained by the
program which CALLs READ1. The following code will do the job, too:

 00200 READ2 LD B,09H ;linkage code for RDSEC
 00210 LD A,(DRIVE) ;get drive number
 00220 LD C,A ;into proper register
 00230 LD A,(CYLNDR) ;get cylinder number
 00240 LD D,A ;into proper register
 00250 LD A,(SECTOR) ;get sector number
 00260 LD E,A ;into proper register
 00270 LD HL,BUFFER ;point to storage area
 00280 LD IY,4700H ;point to drive's DCT
 00290 JP (IY) ;and read sector in.

Change the number loaded into the B register in line 200 to an 0DH, and this same code
will WRITE that sector; make it an 0AH, and this same code will VERIFY that sector;
and so on through all 16 available functions. Note that the RETurn at the end of the
LDOS routines will send the program back to the code which called READ2. The DCT is a
table residing from 4700H to 474FH; each of the 8 possible drives is allocated 10
bytes in which the information about that drive is stored (see the Manual, page 6-11,
for the details). The first three bytes of each drive's DCT form a JUMP to the driver
which controls it; if the drive isn't active, a RET is in the 1st byte instead of the
JP (a C9H replaces the C3H - the driver address in relative bytes 1 and 2 is always in
place, whether the drive is active or not).

In the above example, relative drive 0 is assumed; the vector to its driver program is
located at the start of the table, at 4700H. This method of disk I/O is not
necessarily "better" than using the primitives, but in many long or complex programs
it could save a lot of bytes. Consider the following subroutine:

 00300 SUB1 LD A,(DRIVE) ;get drive number
 00310 LD C,A ;into proper register
 00320 LD A,(CYLNDR) ;get cylinder number
 00330 LD D,A ;into proper register
 00340 LD A,(SECTOR) ;get sector number
 00350 LD E,A ;into proper register
 00360 CALL GETDCT ;load DCT address in IY
 00370 JP (IY) ;and go do the job.

This code serves as a general disk I/O routine; it will perform the function defined
by the contents of the B register when it's CALLed. For example:

 00400 PROG LD B,09H ;linkage code for RDSEC
 00410 LD HL,BUFFER ;point to storage
 00420 CALL SUB1 ; and go do it
 00430 BACK ;continue on.

Page 45

Here again, the RETurn at the end of the LDOS routines will send the program BACK in
your code. With regard to the CALL GETDCT in line 360, you have two choices: if
GETDCT is EQUated to 478FH, LDOS will do the work for you - load the DCT address (for
the drive specified in the C register) into the IY register pair; or, since 478FH is
not a "fixed" address as of LDOS 5.1.2 (it may move in a future release), you can
include your own GETUCT subroutine in your program:

 00500 GETDCT LD IY,4700H ;beginning of DCT$
 00510 LD A,C ;check drive number
 00520 OR A ;...0s it 0?
 00530 RET Z ;done if it is
 00540 PUSH BC ;save register for now
 00550 LD B,A ;put drive number into B
 00560 XOR A ;zero the A register
 00570 LOOP ADD A,0AH ;bump the offset
 00580 DJNZ LOOP ;.. "B" times
 00590 LD C,A ;BC==> total offset
 00600 ADD IY,BC ;IY==> drive's DCT address
 00610 POP BC ;restore BC contents
 00620 RET ;and go back.

This routine sets IY=4700H right at the start; if the drive number is 0, it's all over
and a RETurn is executed. If it's not, we must calculate the offset from 4700H to the
start of the DCT for the requested drive.

The DJNZ instruction bumps the A register offset counter by l0 for each relative drive
position up to the requested drive number. By the time it falls through to line 590,
the A register will contain 10 times the relative drive number (l0, 20, ..., 70 in
decimal, or 0AH, 14H, ..., 46H) which, when added to the start of the table in IY
(4700H) yields the UCT address of the desired drive.

On return from the CALL SUB1 in line 420, all registers will reflect the same
information as they would have had the primitive been called (error codes, etc.). The
use of these linkages is not necessary for every program nor for every application;
the main advantages lie in the time and byte savings their use offers, and the
"version independence" they afford you. Certainly no time would be saved by including
the above subroutines for only one or two uses - in that case, the primitives will
serve nicely. On the other hand, if your program uses the LDOS routines which have
defined linkages very often, they would be worth trying.

LSCRIPT patches to add versatility

by Scott Loomer

The Quarterly usually does not accept articles about modifying the LDOS Libraries or
Utilities. This article is unusual in that it describes how to modify the "standard"
LDOS version of LSCRIPT. It's usefullness and flexability enhance the standard LSCRIPT
version of Scripsit enough that I (the Editor) felt that it could be included.

 This article is to describe the variety of patches, filters and techniques
that I use to make Scripsit a very powerful word processor. These patches and
techniques will only work under LDOS, but then that's why you are reading this
article. Some of the techniques are suitable only for the Epson MX-80 printer
w/Graftrax or printers that use similar control schemes.

Patches

 First and foremost is, of course, the LSCRIPT patch provided with LDOS. This
patch should be applied per instructions to a virgin copy of Model I Scripsit. LSCRIPT
provides the following enhancements:

Page 46

 - use of LDOS keyboard driver allowing full ASCII characters and use of all
 minidos functions
 - re-entrant capability to Scripsit with Scripsit *
 - imbedded printer control codes at text boundaries
 - keyboard insertion of text at text boundaries
 - directories and partial directories are available within Scripsit
 - consistent use of <CLEAR> key as control key
 - default file extensions
 - and lastly, Scripsit no longer reboots your system on exit

 The LSCRIPT patch is described in greater detail in the LDOS documentation. I
will assume that you are using this patch as a basic starting point.

 The remaining patches that I use are provided as figure 1 in this article.
Some of the six patches have appeared before, but they are presented here to bring
them all together. I wrote some of the patches while others are modifications of
patches done originally by Earle Robinson and Les Mikesell who have permitted their
use here. Special thanks also go to Roy Soltoff who supplied the locations of some
memory blocks in Scripsit available for use by patches 4 & 6 (and I used darned near
all the bytes that were available). The comments in the patch file indicate the
authors. Each of the six patches is independent from the others; you may use only
those that appeal to you and delete (or comment out) the rest. All of the patches are
direct (D) patches which will not extend the length of Scripsit. Some of the patches
are for the Model III only and the patch lines are commented out so that they won't
affect Mod 1's. Model III users will need to remove the periods at the beginning of
those patch lines they wish to use. Let's examine the patches in order:

1. Patch 1 - This patch enables the following key functions:
 <CLEAR><Up Arrow> - move to start of text
 <CLEAR><Down Arrow> - move to end of text
 <CLEAR><Right Arrow> - tab to next tab stop
 <CLEAR><Left Arrow> - move to start of line

This is a logical extension of the use of the <CLEAR> key as the control key for
Scripsit.

2. Patch 2 - If your printer needs a line feed instead of a carriage return to
advance to the next line, apply this patch.

3. Patch 3 - This patch is purely cosmetic and consists of some recommended patches
to symbols used in Scripsit. Be sure to note that those that are Model III only are
commented out. You may substitute your own characters by patching the same addresses
with your choice.

4. Patch 4 - Scripsit and PR/FLT don't get along well as you may have discovered by
now. The problem is that both are trying to format the printer output. If you normally
run with PR/FLT installed this patch is for you. On entry to Scripsit, the patched
code checks DFLAG$ to see whether or not PR/FLT is active. If PR/FLT is active, the
current parameters for left margin, characters per line and lines per page are
located. Since PR/FLT could be anywhere in memory, it has to be found first. A pointer
to PR/FLT is maintained at memory location 4DFD. This pointer is required by LDOS to
allow it to reuse the memory if PR/FLT is re-installed in the system. The pointer
points to the beginning of PR/FLT where the parameter block is located. The patch
picks up the values for the parameters mentioned above and stores them internally. The
parameters in the filter are then set to no left margin, 256 character line length and
66 lines per page. Scripsit is then entered. The effect of the above is that while in
Scripsit, the formatting is controlled by Scripsit's format commands. If you specify a
left margin of 0, the text will not be indented even if you had set the margin
parameter in PR/FLT. Likewise, you'll get accurate formfeeds. When you exit Scripsit
with the END command, the above process is reversed and the PR/FLT parameters are
restored to their original settings. As mentioned earlier, the patch checks to see if
PR/FLT is active and can therefore be used with or without PR/FLT.

Page 47

5. Patch 5 - This patch is a reworked version of SFILE by Les Mikesell. I have found
SFILE to be the most useful enhancement to Scripsit that I use, BUT it was originally
written as an appendage to Scripsit which caused it to have two undesirable effects.
First, at least on the Model III, it extended Scripsit by enough to cause it to use an
extra granule (12k instead of l0.5k). Second, and more importantly, it defeated the
re-entrant capability added by LSCRIPT. This was caused by the fact that the original
SFILE loads into the text buffer area of Scripsit and then relocates itself to high
memory. This obviously has the effect of clobbering a portion of the text buffer and
so the re-entrant capability was disabled. Patch five is a direct patch version of
SFILE that resides internally to Scripsit (does not extend it) and is therefore
re-entrant. This new SFILE still uses high memory for a file buffer and file control
block, but you'll have more buffer space available than you did before. The commands
that SFILE adds are:

P,D - Print to the display. This command will "print" the formatted text to the
display. Pressing keys 0-9 control the scrolling speed. Nine is the slowest and 0 the
fastest. Pressing any other key will stop the display; pressing another key will
restart it. To abort the display early, press <BREAK> twice. After the text has
scrolled to the end, you can get your display back by pressing <BREAK>.

P,F - Print (formatted) to a file. This command will first clear the screen and then
prompt for a "Filespec:". Enter the filespec that you want to save the text to. Note
that during the entry of the filespec, you are not in the extended cursor mode. This
means you can't backspace with out shifting out of ECM (see the KI/DVR documentation).
The file will then be written formatted as it would have been sent to the printer.

6. Patch 6 - Corrects a call in LSCRIPT to the @CKDRV vector that was changed in Mod
III LDOS 5.1.3. Can be patched on both Mod I & III with no ill effects.

7. Patch 7 - Actually, I lied earlier when I said that all of the patches were
direct patches. Patch seven is an X patch for the Mod III only. It ensures that if you
are using the Model III special paragraph character that you get it and not the
alternate katakana character when you enter Scripsit. This patch extends Scripsit by a
few bytes but it doesn't cause it to use another granule.

Techniques

 Depending on your printer, there are other capabilities readily available in LDOS
that will enhance your use of Scripsit. As mentioned under patches, I routinely use
PR/FLT. If your printer will accept a hard formfeed, be sure to use that parameter
when you install PR/FLT. Since Minidos now works from within Scripsit, you can get a
fast top of form with <CLEAR><SHIFT><T>. Note that some printers may take a hard form
feed, but not advance the paper any faster that the normal series of line feeds.

 A second parameter of PRIFLT that can be very useful is XLATE. If your printer is
capable of multiple print styles and/or pitches, look at the command syntax used to
shift modes. If you are in luck, it will be an escape (27 or 11H) letter sequence.
This is the case on the MX-80 with Graftrax. Now, Scripsit doesn't allow imbedded
control codes (except at text boundaries with LSCRIPT) but you have some characters
available with KI/DVR that are expendable. The best one is the delete character (127
or 7FH) which is displayed as a plus/minus (Mod III) or a block (Mod I). Many printers
won't respond to this character and, anyway, why do you want to delete a character
that has already been sent to the printer? Instead, XLATE=x'7F1B' which will translate
the delete character into the escape character on output to the printer. Thus the
following characters anywhere in Scripsit will cause my MX-80 to shift into the
emphasized mode: +/-E (of course you need to create the plus/minus character with
<CLEAR><SHIFT><ENTER>).

Using this method, I can change print modes anywhere in the text. There is one slight
problem; if you are using right justified text, Scripsit will count your printer
control characters even though they don't get printed, and throw the right margin off.

Page 48

 The final indispensable feature of LDOS when you are using Scripsit is the
spooler. I am always amazed to find that people do not routinely use the spooler.
Scripsit is the perfect application for it since word processing (entering and editing
text) is a very low demand task for the CPU. This means it spends most of its time
waiting for you to press a key (no matter how fast you type). Put it to work. Install
the spooler and have it print one document while you edit the next. You can tailor the
size of the spooler's memory and disk usage to meet your needs. About 3k of spooler
space is required for one page of text.

Filters

 There are several possibilities for using filters to enhance Scripsit. The use of
PR/FLT had already been described. If you want to translate further characters (or not
use PR/FLT), a simple one byte translate filter can be written using the example
filters in the LDOS documentation as a guide. Some candidates for translation are
using some of the less commonly used ASCII characters as printer control codes or to
create a non-expandable blank. What is a non-expandable blank? Well, how often have
you prepared a document in Scripsit that had a proper name such as John Q. Doe.
Murphy's law guarantees that the name will be broken at the end of a line and you'll
end up with John
Q. Doe which doesn't look very nice. Try this instead; use a translate filter to
convert a character such as @ (anything you don't use much) to a space. In your
document you type John@Q.@Doe. Scripsit will treat this as a single word when
formatting, but it will be printed correctly. The last filter I routinely use is an
underline filter. This filter is available as part of the GRASP package from MISOSYS.
It will allow you to choose an underline delimiting character (perhaps a tilde) and
will automatically underline any text bracketed by this character. Your printer must
be capable of non-destructive backspacing. I am somewhat biased towards the use of
this filter as I wrote it.

 That about exhausts what I have to say about enhancing Scripsit. I am quite
pleased with the final product and figure that it has saved me at least $100 as I see
no major advantage in switching to SuperScripsit. Enjoy.

 .LSCRIPTX Patch - Enhancements to LSCRIPT
 .The following patches are to be used after applying the
 .LSCRIPT patch provided by LSI. Be sure to enable those
 .lines that apply to your machine if using a Mod III.
 .Use this patch only with LDOS 5.1 or later as indicated.
 .
 .Patch 1 - enable <CLEAR><Up, Down, Left and Right Arrow>
 . Originally known as LSCR2/FIX by Earle Robinson
 . Later modified as LSCR3/FIX by Scott Loomer to add the
 . right and left arrow functions.
 . This patch creates the following capabilities:
 . <CLEAR><UP Arrow> - moves to start of text
 . <CLEAR><Down Arrow> - moves to end of text
 . <CLEAR><Left Arrow> - moves to start of line
 . <CLEAR><Right Arrow> - tabs to next tab stop
 . This is consistent use of the <CLEAR> key as the Scripsit
 . control key
 D0E,6A=CD 0E 52 1E 17
 D00,12=21 4D 60 57 FE 88 20 04 LE 1A 18 15 FE 82 20 04
 D00,22=1E 92 18 0D FE 84 20 04 LE 09 18 05 FE 81 C0 1E
 D00,32=91 3A 40 38 CB 4F 7A C8 7B C9
 .End of patch

Page 49

 .Patch 2 - change line feeds to carriage returns
 . This patch will cause carriage returns instead of line
 . feeds to be sent at end of lines as required by some
 . printers. Patch provided by Roy Soltoff.
 D1F,F1=0D
 D20,05=0D
 .End of Patch
 .
 .Patch 3 - change certain symbols
 . Each of the following lines change one of the symbols in
 . Scripsit. Certain of the replacement characters will not be
 . displayed correctly on Mod I's due to different character
 . set. Locations determined by Earle Robinson & Scott Loomer.
 .Change block markers to [and] respectively on Mod 3.
 .D28,0A=5B
 .D28,0C=5D
 .Change paragraph symbol to paragraph character on Mod 3 only
 .D28,0E=F1
 Change cursor to underline
 D00,DD=5F
 .Change insert character to smaller graphic block
 D04,8F=B0
 .Change bottom border character to underline
 D19,A1=5F
 .Change end of line marker to small graphic block
 D28,08=84
 .Change insert block character to smaller graphic block
 D28,D3=5F
 .End of Patch
 .
 .Patch 4 - resolve conflicts between Scripsit & PR/FLT
 . The following patch allows Scripsit to peacefully coexist
 . with PR/FLT. The patch will zero the PR/FLT parameters on
 . entry to Scripsit and restore them on exit. This will only
 . work for LDOS 5.1.2 and later. This patch was written by
 . Scott Loomer.
 D00,48=C3 F5 63
 D12,3D=3A 25 01 FE 49 28 07 21 1F 44 3E
 D12,4C=42 18 05 21 89 42 3E 43 32 32 64 22 A1 62 7E CB
 D12,5C=5F 28 23 DD 2A F6 4D DD 7E 19 32 39 64 DD 36 19
 D12,6C=00 DD 7E 1A 32 3A 64 DD 36 1A 00 3A 2A 40 32 3B
 D12,7C=64 3E 00 32 2A 40 C3 69 63 00 00 00
 D13,E4=C3 A0 62
 D10,E4=3A 00 00 CB 5F 28 16 DD 2A F6 4D 3A 39 64 DD 77
 D10,F4=19 3A 3A 64 DD 77 1A 3A 3B 64 32 2A 40 C3 DD 63
 .End of Patch
 .
 Patch 5 - adds print to file & display functions
 . This patch was originally developed as SFILE by Les
 . Mikesell. It was modified by Scott Loomer to make it reside
 . internally to Scripsit. The re-entrant capability
 . (Scripsit *) added by LScript now works.
 . NOTE: It is absolutely necessary after applying this patch
 . to use CMDFILE to change the transfer address of Scripsit
 . to 6238H after applying this patch
 D06,21=2B 20 46 69 6C 65 20 26 20 44 69 73 70 6C 61 79
 D06,48="Version 1.5"
 D00,0B=DC 60
 D00,6B=21
 D1E,DD=C3 70 62
 D19,73=98 62
 D06,0E=40

Page 50

 D14,38=92 62
 D10,7C=E5 3A 25 01 2A 11 44 FE 49 28 03 2A 49 40 01 20
 D10,8C=01 AF ED 42 22 68 52 23 22 F1 60 22 0C 61 22 26
 D10,9C=61 22 46 61 22 4E 61 3E 08 77 01 20 00 09 22 1E
 D10,AC=61 22 30 61 E1 C3 00 52 FD CB 0E 5E C4 12 61 FD
 D10,BC=CB 0E 66 C4 C9 01 CD C9 70 FD CB 0E 5E C4 4A 61
 D10,CC=FD CB 0E 66 C4 49 00 C3 64 70 49 53 50 46 44 00
 D10,DC=3E 08 32 00 00 C3 D5 65
 D0F,18=FD CB 0E 66 20 09 FD CB 0E 5E 20 08 C3 3B 00 F5
 D0F,28=CD 57 61 F1 11 00 00 FE 0A 20 02 3E 0D FD CB 0E
 D0F,38=5E C4 1B 00
 D0F,40=C8 F6 C0 CD 09 44 CD 28 44 3E 08 32 00 00 CD 49
 D0f,50=00 C9 D5 E5 C5 21 7F 61 CD 67 44 06 1F 21 00 00
 D0F,60=CD 40 00 38 1E 11 00 00 CD 1C 44 20 0E 06 00 21
 D0F,70=00 00 CD 20 44 20 04 C1 E1 D1 C9 F6 C0 CD 09 44
 D0F,80=CD 49 00 3E 08 32 00 00 18 ED D5 E5 C5 11 00 00
 D0F,90=CD 28 44 20 E6 18 EC F5 CD 2B 00 B7 28 0D FE 30
 D0F,A0=38 15 FE 3A 30 11 D6 30 32 6E 61 C5 01 FF 04 CD
 D0F,B0=60 00 C1 F1 C3 33 00 CD 2B 00 B7 20 F6 18 F8 1C
 D0F,C0=1F 46 69 6C 65 73 70 65 63 3A 0E 03
 .End of Patch

 .Patch 6 - fixes LScript for 5.1.3 on the Mod 3
 . There is a call to @CKDRV in the LScript patch and that's
 . the vector that was changed in 5.1.3. Without this patch
 . you will be unable to get a directory in LScript.
 . This patch is only required on the Mod 3.
 .D11,CF=09
 .End of Patch
 .
 Patch 7 - force the special character set on Mod III's
 . This patch will ensure that if you are using the paragraph
 . symbol on the Mod III (see patch 3) that you will get it
 . and not the Katakana character. Patch by Scott Loomer.
 . Note: this has to be an X patch as it works externally to
 . Scripsit.
 .X'4210'=38
 .End of Patch

If you have any questions concerning this article, please refer them to:

Scott A. Loomer
315 Palomino Lane
Madison, WI 53705

608-233-7739 or MicroNet [70075,1033]

Earl Terwilliger At Large

Earl has written an interesting article on short and simple Terminal programs for the
TRS-80. In addition, he has used Roy's article on task processing to create a new
"Alive" command program.

Have you ever seen a terminal program for the TRS80 as short as this ?

 10 CLS:PRINT @ 200 "COM/BAS WRITTEN BY EARL TERWILLIGER"
 20 OUT232,0:OUT233,85:OUT234,165
 30 X=INP(234):IFX<128THEN40ELSE:X=INP(235):IFX=10THEN30ELSE:
 PRINTCHR$(X);:GOTO30
 40 X$=INKEY$:IFX$=""THEN30ELSE:OUT235,ASC(X$):GOTO30:END

(CONTINUED ON PAGE 51)

Page A-50

Page B-50

Page C-50

Page D-50

Page 51

It is a BASIC program which demonstrates the basic principles needed to communicate
through the RS-232-C interface. It can be used to turn the TRS80 MODEL I or III into a
dumb terminal. You can use it to communicate with another computer at a rate of 300
baud. Wonder how it works ? Here's how ! Let's expand the above 4 BASIC statements
into separate lines and add some comments. Doing so, here is what the new COM/BAS
looks like:

 01 CLS 'CLEAR THE SCREEN
 02 PRINT @ 200,"COM/BAS WRITTEN BY EARL TERWILLIGER"
 05 CMD"T 'DON'T INTERRUPT ME
 10 OUT 232,0 'MODEM STATUS REGISTER RESET
 20 OUT 233,85 'SET BAUD RATE TO 0
 30 OUT 234,165 'SET RS-232-C STATUS REGISTER
 31 REM 7-BIT WORD, EVEN PARITY, 1 STOP BIT
 32 REM TURN ON DATA TERMINAL READY
 40 X = INP(234) 'HAS A CHARACTER ARRIVED
 50 IF X < 128 THEN 100 'FROM THE RS-232-C?
 55 REM 'YES = CONTINUE NO = CHECK KEYBOARD
 60 X = INP(235) 'GET CHARACTER FROM THE RS-232-C
 65 IF X = 10 THEN 40 'IGNORE LINE FEED CHARACTERS
 70 PRINT CHR$(x); 'DISPLAY CHARACTER ON THE SCREEN
 80 GOTO 40 'CHECK FOR MORE INCOMING CHARACTERS
 100 X$ = INKEY$ 'DID SOMEONE TYPE IN A CHARACTER ?
 110 IF X$ = "" THEN 40 'IF NOT GO CHECK THE RS-232-C
 120 OUT 235,ASC(X$) 'IF SO, SEND THE CHARACTER TO THE
 121 REM RS-232-C TO SEND OUT
 130 GOTO 40 'BACK TO CHECK FOR INCOMING DATA
 140 END 'END THE PROGRAM

Since BASIC is sometimes a little too slow to keep up with the baud rate of 300, you
may notice that I added statement 5. If you do not add this statement, you may notice
a missing input character or two. As you can tell, the logic of the program alternates
between checking the RS-232-C and the keyboard for any input characters. If a full
character is received from the RS-232-C, (50 IF X < 128 THEN 100) it is displayed
on the video screen. If a character is typed in it is sent as output to the RS-232-C.

If you prefer assembler language (machine code) for its speed, take a look at
COMM1/ASM. It is a Z80 assembler program for the TRS80 MODEL I or III. Its logic is
essentially the same as COM/BAS. COMM1/ASM, however, recognizes the BREAK key to end
and also displays the keyboard characters as they are typed in (half duplex mode). If
you would like to try this program and don't have an assembler, try COMM1/BAS. It is a
BASIC program which POKEs the assembled version of COMM1/ASM into memory. Try them on
your TRS80 MODEL I or III !!

 00010 ;COMM1/ASM
 00020 ; WRITTEN BY EARL TERWILLIGER
 00030 ;
 00040 ORG 7D00H
 00050 COMM1: DI ;DISABLE INTERRUPTS
 00060 LD
 00070 OUT (0E8H),A ;RESET MODEM STATUS REGISTER
 00080 LD A,85
 00090 OUT (0E9H),A ;BAUD RATE GENERATE
 00100 LD A,165
 00110 OUT (0EAH),A ;SET RS-232-C SWITCH SETTINGS
 00120 RSIN: IN A,(0EAH) ;CHECK FOR RS-232-C INPUT
 00130 BIT 7,A ;ANY INPUT
 00140 JP Z,KEYIN ;NO. TEST KEYBOARD
 00150 IN A,(0EBH) ;YES GET CHARACTER
 00160 CP 0AH ;LINE FEED ?

Page 52

 00170 JP Z,RSIN ;YES IGNORE
 00180 CALL 033H ;NO. DISPLAY
 00190 JP RSIN ;RETURN FOR MORE
 00200 KEYIN: CALL 02BH ;ANY INPUT FROM KEYBOARD ?
 00210 OR A ;TEST IT
 00220 JP Z,RSIN ;NO. GO TEST RS-232-C
 00230 CP 01H ;BREAK ?
 00240 JP Z,END ;YES END.
 00250 OUT (0EBH),A ;NO. SEND IT TO THE RS-232-C
 00260 CALL 033H ;DISPLAY THE DEPRESSED KEY
 00270 JP RSIN ;GO CHECK RS-232-C FOR INPUT
 00280 END: EI ;ENABLE INTERRUPTS
 00290 RET
 00300 END COMM1

 10 CLS
 20 PRINT @ 200,"COMM1/BAS WRITTEN BY EARL TERWILLIGER"
 30 DEF USR1 = &H7D00
 40 FOR X = 32000 TO 32054
 50 READ A: POKE X,A: NEXT X
 60 CLS
 65 PRINT CHR$(14)
 70 REM ADDR OPCODE LABEL INSTRUCTION
 80 A = USR1(0): ' ORG 7D00H
 90 DATA 243: ' 7D00 F3 COMM1: DI
 100 DATA 62,0: ' 7D01 3E00 LD A,0
 110 DATA 211,232: ' 7D03 D3E8 OUT (0E8H),A
 120 DATA 62,85: ' 7D05 3E55 LD A,85
 130 DATA 211,233: ' 7D07 D3E9 OUT (0E9H),A
 140 DATA 62,165: ' 7D09 3EA5 LD A,165
 150 DATA 211,234: ' 7D0B D3EA OUT (0EAH),A
 160 DATA 219,234: ' 7D0D DBEA RSIN: IN A,(0EAH)
 170 DATA 203,127: ' 7D0F CB7F BIT 7,A
 180 DATA 202,33,125: ' 7D11 CA217D JP Z,KEYIN
 190 DATA 219,235: ' 7D14 DBEB IN A,(0EBH)
 200 DATA 254,10: ' 7D16 FE0A CP 0AH
 210 DATA 202,13,125: ' 7D18 CA0D7D JP Z,RSIN
 220 DATA 205,51,0: ' 7D1B CD3300 CALL 033H
 230 DATA 195,13,125: ' 7D1E C30D7D JP RSIN
 240 DATA 205,43,0: ' 7D21 CD2B00 KEYIN: CALL 02BH
 250 DATA 183: ' 7D24 B7 OR A
 260 DATA 202,13,125: ' 7D25 CA0D7D JP Z,RSIN
 270 DATA 254,1: ' 7D28 FE01 CP 01H
 280 DATA 202,53,125: ' 7D2A CA357D JP Z,END
 290 DATA 211,235: ' 7D2D D3EB OUT (0EBH),A
 300 DATA 205,51,0: ' 7D2F CD3300 CALL 033H
 310 DATA 195,13,125: ' 7032 C30D7D JP RSIN
 320 DATA 251: ' 7D35 FB END: EI
 330 DATA 201: ' 7D36 C9 RET
 340 END

 In past issues of the LDOS QUARTERLY you saw some very good articles in RTC
(Roy's Technical Corner). I finally got around to reading most of them. WOW ! SECRETS
OF THE UNIVERSE! I decided to put to use some of the interesting things I learned from
reading Roy's articles. I came up with the following program. It, as the comments tell
you, demonstrates relocatibility, TCB'S and the LDOS command parse routine. (The
equate vectors as shown are for MODEL I LDOS. They need to be changed for the MODEL
III.) Assemble the program below and call it ALIVE/CMD. (I like and use EDAS. Great
stuff Roy!) To execute it type:

 ALIVE (ON)

Page 53

You will see ALIVE appear and disappear character by character on the top right of the
video screen. The LDOS SYSTEM(ALIVE) command does essentially what this program does.
(NOW you have some source code!) To turn it off, type:

 ALIVE (OFF)

 The SYSTEM(ALIVE) command uses TCB slot 3, I use the unassigned slot number 0.
I hope you find this program of value as I have of ROY's Technical Corner.

 00100 TITLE <SYSTEM ALIVE INDICATOR>
 00110 ;
 00120 ; ALIVE/ASM SYSTEM ALIVE INDICATOR
 00130 ; WRITTEN BY EARL C. TERWILLIGER JR.
 00140 ;
 00150 ; DEMONSTRATES :
 00160 ; PROGRAM RE-LOCATION
 00170 ; ADDITION OF A TCB
 00180 ; COMMAND BUFFER PARSE
 00190 ;
 00200 ORG 9000H ;PROGRAM ORIGIN
 00210 @ADTSK EQU 4410H ;TCB ADD ROUTINE
 00220 @RPTSK EQU 4416H ;TCB REPLACE ROUTINE
 00230 @RMTSK EQU 4413H ;TCB DELETE ROUTINE
 00240 HIGH$ EQU 4049H ;HIGH MEMORY POINTER
 00250 @PARAM EQU 4476H ;COMMAND BUFFER PARSE
 00260 DOS EQU 402DH ;LDOS RETURN ADDRESS
 00270 DISP EQU 033H ;DISPLAY BYTE ON VIDEO
 00280 START EQU $;START ADDRESS OF ALIVE
 00290 LD DE,TABLE ;PARAMETER TABLE ADDRESS
 00300 CALL @PARAM ;PARSE COMMAND BUFFER
 00310 JP Z,PARMOK ;PARSE WAS SUCCESSFUL;
 00320 JP DOS ;PARSE HAD TROUBLES
 00330 PARMOK EQU $
 00340 LD HL,0000H ;ADDR REPLACED BY PARSE
 00350 LD A,L ;TEST FOR ON
 00360 OR H
 00370 JR NZ,TASKON ;PARSE SAID ON
 00380 PARMOF EQU $
 00390 LD HL,0000H ;ADDR REPLACED BY PARSE
 00400 LD A,L ;TEST FOR OFF
 00410 OR H
 00420 JR Z,PERROR ;PARM ERROR
 00430 LD A,0 ;TCB SLOT ==> 0
 00440 CALL @RMTSK ;REMOVE TCB
 00450 JP DOS ;RETURN TO LAND OF OS
 00460 PERROR EQU $
 00470 LD HL,PMSG ;PARAMETER ERR MSG
 00480 LOOP EQU $
 00490 LD A,(HL) ;GET MSG BYTE
 00500 OR A ;TEST FOR END
 00510 JP Z,DOS ;BACK TO DOS IF END
 00520 CALL DISP ;DISPLAY
 00530 INC HL ;NEXT MSG BYTE
 00540 JR LOOP ;TEST FOR END
 00550 TASKON EQU $
 00560 LD HL,(HIGH$) ;HIGH
 00570 LD BC,LAST-FIRST ;LENGTH OF TCB
 00580 XOR A ;CLEAR A
 00590 SBC HL,BC ;HL ==> LENGTH OF TCB
 00600 LD (HIGH$),HL ;PROTECT NEW TCB
 00610 INC HL ;POINT TO FIRST FREE BYTE
 00620 PUSH HL ;SAVE ITS ADDRESS

Page 54

 00630 INC HL ;
 00640 INC HL ;
 00650 LD (TCB),HL ;SAVE ADDRESS+2 FOR TCB
 00660 POP HL ;RESTORE ORIGINAL ADDRESS
 00670 DI
 00680 EX DE,HL ;DESTINATION FOR TCB MOVE
 00690 LD HL,FIRST ;START OF TCB ROUTINE
 00700 LDIR ;MOVE IT!
 00710 EI
 00720 BEGIN LD DE,(TCB) ;TASK ADDR IN HIGH MEMORY
 00730 DEC DE
 00740 DEC DE ;TCB ADOR IN HIGH MEMORY
 00750 LD A,0 ;TCB SLOT NUMBER
 00760 CALL @ADTSK ;ADD TCB TO CHAIN
 00770 JP DOS ;RETURN TO MAGIC LAND
 00780 FIRST EQU $
 00790 TCB DW 0000H
 00800 TASK CALL @RPTSK ;REPLACE TCB
 00810 LD A, 'A'
 00820 LD (3C3BH),A
 00830 CALL @RPTSK ;REPLACE TCB
 00840 LD A,'L'
 00850 LD (3C3CH),A
 00860 CALL @RPTSK ;REPLACE TCB
 00870 LD A,'I'
 00880 LD (3C3DH),A
 00890 CALL @RPTSK ;REPLACE TCB
 00900 LD A,'V'
 00910 LD (3C3EH),A
 00920 CALL @RPTSK ;REPLACE TCB
 00930 LD A,'E'
 00940 LO (3C3FH),A
 00950 CALL @RPTSK ;REPLACE TCB
 01060 LD A,' '
 00970 LD (3C3BH),A ;ERASE ALIVE
 00980 LD (3C3CH),A
 00990 LD (3C3DH),A
 01000 LD (3C3EH),A
 01010 LD (3C3FH),A
 01020 JR TASK ;START OVER
 01030 LAST EQU $
 01040 TABLE EQU $
 01050 DEFM 'ON '
 01060 DEFW PARMOK+1
 01070 DEFM 'OFF '
 01080 DEFW PARMOF+1
 01090 NOP
 01100 PMSG DEFM 'ALIVE PARAMETER ERROR !'
 01110 DEFB 00H
 01120 END START

This is the BINHEX listing for the ALIVE program. The checksum is *50

11 9A 90 CD 76 44 CA 0C 90 C3 2D 40 21 00 00 7D B4 20 1D 21 00 00 7D B4 28 08 3E 00 CD
13 44 C3 2D 40 21 AB 90 7E B7 CA 2D 40 CD 33 00 23 18 F5 2A 49 40 01 40 00 AF ED 42 22
49 40 23 E5 23 23 22 5A 90 E1 F3 EB 21 5A 90 ED B0 FB ED 5B 5A 90 1B 1B 3E 00 CD 10 44
C3 2D 40 00 00 CD 16 44 3E 41 32 3B 3C CD 16 44 3E 4C 32 3C 3C CD 16 44 3E 49 32 3D 3C
CD 16 44 3E 56 32 3E 3C CD 16 44 3E 45 32 3F 3C CD 16 44 3E 20 32 3B 3C 32 3C 3C 32 3D
3C 32 3E 3C 32 3F 3C 18 C2 4F 4E 20 20 20 20 0D 90 4F 46 46 20 20 20 14 90 00 41 4C 49
56 45 20 50 41 52 41 4D 45 54 45 52 20 45 52 52 4F 52 20 21 00

Page 55

MIXING NEWSCRIPT, ELECTRIC WEBSTER, LDOS, AND SOLE

J.L. Latham/l409 Evergreen Cir/Midwest City, OK 73110

I originally wrote documentation similar to this for ProSoft, and it is at their
suggestion that I am passing it on to you through the LDOS Quarterly. If you aren't
familiar with the name ProSoft, they are the distributors of one of the finest word
processors available for the Model I and III computers; NewScript. Without any
patching this word processor will run under all major DOS' (of course you are only
concerned with LDOS), and supports most popular printers, again, without patching. It
contains features found in no other WP package as of this writing, including the
ability to be used by persons handicapped to the point of only having one hand, or
even only one digit (finger or thumb) to type with!

This article is aimed primarily at Model I owners who desire to move their NewScript
7.x files to a LDOS double density system disk. To further limit discussion I am going
to write this with the thought that those users have the following equipment and
software available to them: LDOS 5.1.x, SOLE by Roy Soltoff, at least 2 5-1/4" drives
that are capable of accessing at least 40 tracks, and some sort of double density
board in their interface. Of course it is assumed that they have a copy of NewScript,
and optionally Electric Webster (a fantastic word spelling checker). Users without
SOLE will be told how to use the procedures via a single density "setup" disk, but to
paraphrase Roy in his SOLE documentation "why ain't you got SOLE?". Ok, on with it.

If you follow these instructions, you will end up with a disk containing NewScript
that will, with SOLE, boot on a double density system disk right into the MENU portion
of NewScript. If you have double density without SOLE, then put the quarterly down, go
get a copy of it, and come back and finish reading this. Seriously, if you don't have
the SOLE program but do have double density, the only difference in the end product
will be that you will have to boot a single density LDOS disk that has NS/CMD, NSINIT,
and a STARTUP/MIN file for LDOS from NewScript on it. SOLE is so much easier.

As I stated earlier I am assuming that you have at least two (2) 5-1/4" drives or
their equivalent available. These operations are more easily accomplished on a 3 drive
system, but I realize that not all owners have that many. Actually, with the state of
the art as it is now in word processing, it is almost a requirement to have 3 drives
or more to make use of things like a full blown word processor along with one of the
spelling checkers and, in the case of NewScript, a compatible Graphics program such as
G.E.A.P., along with any other utilities you want to have on line.

Enough gabbing, let's do it!

IMPORTANT NOTE** Quite often throughout this writing I tell you to copy files from a
disk such as "your NewScript" or "your Electric Webster" or even "your LDOS" disk. I
do not mean for you to use your ORIGINAL master disk. This should be a COPY of your
original. This is for your own protection. You should always work from a backup! If
the software distributor doesn't think the program is valuable enough to be backed up
(for YOUR protection and convenience) then perhaps you ought to wonder if it was even
worth purchasing in the first place. DEMAND backup ability. You purchase the right to
use a program, and if your disk goes crump in the night (or day) and you have to wait
for the distributor to replace it, then you have been denied the right that you
purchased for the period that it takes to get another copy!

STEP 1: Make a 40 track SINGLE density backup of your LDOS 5.1.x disk.

STEP 2: Put your original copy of LDOS back in its safe place, put the new copy in
drive 0. If you have a switchable lowercase modification put the switch in the ALL
CAPS position. Now press the reset button to boot the (new) system disk. Reply to the
date prompt as usual.

STEP 3: KILL off all visible files except PDUBL or RDUBL and any RS-232 driver you
need. The master password is in your LDOS operators manual under general information.

Page 56

STEP 4: Copy the SOLE1/CMD and SOLE2/CMD files from your SOLE disk to the LDOS
system disk. Put away the SOLE disk.

STEP 5: Copy the following files from the NewScript disk(s) to your LDOS disk:
NS/CMD, PROP/CIM, FEDIT/CIM, NSINIT, and, from side 2, NSINSAL. MAKE SURE THAT YOUR
NEWSCRIPT DISK(S) HAVE A WRITE PROTECT TAB ON THEM!.'!

STEP 6: Go to BASIC with the following command:

 LBASIC (F=4,E=N) RUN"NSINSTAL"<ENTER>

or if you are running LDOS 5.1.1 or earlier (WHY?): LBASIC (F=4) RUN"NSINSTAL"<ENTER>

STEP 7: Read the NewScript "Release 7.0 Features Supplement", page 3, steps 6
through l0 to explain NSINSTAL. Also read each "page" of video as it is presented to
you. Reply to the installation questions as required for your system. When you are
done, return to LDOS with the CMD"S" command.

I need to say a few words about NS/CMD here before proceeding. NS/CMD is a keyboard
driver that has been provided by ProSoft for use with NewScript. NS/CMD is not
relocatable, and so we must be sure it is loaded in and protected before loading any
of LDOS' special functions. It is a good driver and provides many special functions
including a type ahead buffer. However, when used with LDOS it occasionally loses one
or two characters during line wrap around if being used by a fast typist. It does not
do this with other operating systems, and I don't know why it does with LDOS. For this
reason you may elect to use the KI/DVR provided by LDOS instead of NS/CMD. There are
complications with the <CLEAR> key involved in this, but it will work. If you elect to
use KI/DVR then DO NOT set the MEMORY to X'nnnn' as directed below, and be sure to SET
and FILTER your keyboard (*KI) as required for your use instead of typing NS - as
instructed later. If you are going to use KI/DVR then you should move your lowercase
switch to the lowercase position and boot your system again at this time. I will
continue to present these installation instructions assuming you are going to use
NS/CMD as your driver for use with NewScript.

STEP 8: We won't be using NSINSTAL again during these procedures, and we can better
use the space for something else. At this point you may give the following command:

 KILL NSINSTAL:0<ENTER>

STEP 9: Next we need to check on how our memory and system are set up. Type the
following command:

 MEMORY<ENTER>

The response should be: HIGH=X'FFFF'. If it is not then type the following command:

 SYSTEM (SYSGEN=NO)<ENTER>

After everything settles down then re-boot the disk. We want no drivers, filters, or
anything else in high memory at this point (no, not even R/PDUBL yet). Once you have
high memory cleared out give the following LDOS commands:

 NS -<ENTER>
 MEMORY <ENTER>

The response will probably be in the range of X'EBEF' to as low as X'E700'. This is
the point where NS/CMD starts living. We must protect all memory above this location
before we do any thing else. Write down the value you just got from the MEMORY<ENTER>
command. In the next command the 'nnnn' means to use the value you just wrote down to
protect NS/CMD from further interference. First we must clear all memory again. Hit
the RESET key again and check that the MEMORY is now set to X'FFFF'. Then give the
following commands from LDOS READY:

Page 57

 MEMORY (HIGH=X'nnnn')<ENTER> *not if using KI/DVR
 followed by
 PDUBL<ENTER> *or RDUBL<ENTER>
 and finally
 MEMORY <ENTER>

The response will probably be in the range or X'EBEF' to as low as X'E700'. Earlier
(or later) versions may give slightly different responses, but should be in this
general neighborhood. Mostly it depends on what version of PDUBL or RDUBL you are
using. Using NewScript 7.0 and PDUBL from LDOS 5.1.3 I got a value of HIGH=X'EA2C'.

STEP 10: If you previously switched your lowercase to the uppercase only position it
is now time to place it in the lowercase position. The next command we will type will
(probably) be all garbage, so type VERY CAREFULLY until you can read your writing
again. DO NOT do this step if you are going to use KI/DVR. If you are going to use
NS/CMD then type:

 NS -<ENTER>

followed by (and this should be readable):

 SYSTEM (SYSGEN)<ENTER>

Note that there was a mandatory single space between the S in NS and the dash (-) that
followed.

From now on anytime this (yes, still single density) disk is booted you will
automatically have memory set to protect NS/CMD, PDUBL or RDUBL will be loaded, memory
again reset to protect that program, and NS/CMD will be activated as your keyboard
driver.

STEP 11: AT LAST, DOUBLE DENSITY: Place a blank disk in drive 1 and FORMAT it for
double density and (at least) 40 tracks. All of the following file manipulations
assume a 40 track disk, and that you have NS/CMD on the disk and are using it for your
keyboard driver. Use whatever parameters you want for the new disk's name, password,
etc. I recommend using LDOS-51x (where x is your version number), and the standard
password since we will be making another BACKUP in just a few minutes.

Refer to your SOLE program manual and perform steps 3 through 7 found on pages 3, 4,
and 5 of that manual. When you do step 5 in the SOLE manual you can consider the
system to have already been set up earlier (during our step l0). So, when you get
there you may just type "SYSTEM (SYSGEN)<ENTER>" and all will be well. If you have
followed your SOLE instructions then the double density system disk should now be in
drive 0. Try booting the system to make sure that it will boot in double density and
configure properly. To test if NS/CMD got installed, press the <SHIFT> and <CLEAR>
keys together. A pair of question marks should appear in the lower right hand corner
of the screen. Press <SHIFT> and <CLEAR> again to make them go away.

You may now KILL the SOLEl/CMD file from the system disk. You don't need it anymore.
You might leave SOLE2/CMD on there for future use of your own.

STEP 12: Now we will create an AUTO command that will automatically bring up
NewScript when we boot this disk. Type the following line from the LDOS Ready prompt:

 AUTO NS<ENTER>

Of course <ENTER> refers to that key. Notice that this time there is no space nor
dash following the filespec NS. Invoked in this manner NS/CMD will initialize
NewScript by "DOing" a file called STARTUP/MIN that we will create in a few minutes.
That file will take you to the main menu of NewScript effortlessly. How nice.

Page 58

If you inadvertently reset your system now it will probably get a file not found
error. Don't worry we will clear all that up when we create the STARTUP/MIN file.

STEP 13: Place side 1 of the NewScript disk into drive #1 and copy the following
files to drive 0: EDIT, SCRIPT, and (optionally) HELP. Then copy the LDOS/MIN file
from side 2 of the NewScript disk. I am going to assume you copied the HELP file.

STEP 14: If you only have NewScript (and not Electric Webster) then copy the
following files from a copy of side two of the NewScript disk to drive 0: FITLINE,
GENINDEX, INDEX, and LABELS (if you have the labels option).

STEP 15: Owners of LDOS 5.1.1 and earlier may now skip down to step 15a. LDOS 5.1.2
users have another step to do now. LDOS 5.1.3 users who have not changed the default
E=N of LBASIC may also go to step 15a, but if you have changed it to E=Y then you MUST
do the following steps. Type the following LDOS command:

 LBASIC (F=4,E=N) RUN"NSINIT"<ENTER>

Choose option 1 (EDIT) from the menu. Reply LDOS/MIN to the request for a filename.
You will be presented a one line file. Change that line to read:

 LBASIC (F=4,E=N) RUN"NSINIT"

That format is mandatory for 5.1.2 users, 5.1.3 users may just leave the line as it
was if they kept the default E=N parameter for LBASIC.

Use the END option of NewScript's EDIT function to save the file back to disk, and
then choose option 6 (Return to main menu), and when back at the main menu, choose
option #8 to get back into LDOS.

STEP 15a: Type the following command from LDOS:

 RENAME LDOS/MIN:0 STARTUP/MIN<ENTER>

If you are not going to install Electric Webster then you are done! Your LDOS double
density disk version of NewScript 7.x is now ready for use. You can go merrily on
your way. If you ARE going to install Electric Webster, well ... read on.

INSTALLING ELECTRIC WEBSTER: It is assumed that you will be working from readable
copies of the EW disk. I will tell you what files to move when, finding them is up to
you as I don't know how you made your copies.

STEP 16: Copy M/NEW and CORRECT2/NEW to drive 0 with the following commands:

 COPY M/NEW:1 M/EW:0<ENTER>
 COPY CORRECT2/NEW:1 CORRECT2/EW:0<ENTER>

Take note of the fact that the extent changes from NEW to EW when moving the files.
This is important for proper operation.

Next copy the following files to drive 0 with the following series of LDOS commands:

 COPY EW/CMD:1 MICPROOF/CMD:0<ENTER>
 COPY CORRECT1/EW:1 :0<ENTER>
 COPY ADDTODIC/EW:1 :0<ENTER>
 COPY PRINTDIC/EW:1 :0<ENTER>

I had you rename EW/CMD to MICPROOF/CMD because this will allow it to work with
NewScript 6.2 and 7.x properly. It is possible for early releases of 7.x to "choke"
on the EW/CMD filename when files are being chained in Electric Webster. This takes
care of this problem. If you have one of those early releases of 7.x why not update?
ProSoft's updating policies are very liberal!

Page 59

If you check the amount of space left on drive 0 you will find that there is obviously
not enough room for the DICTx/EW files to reside on it. Those take a minimum of 119K!
I say minimum because DICT3/EW is an expandable file. Now you begin to see what I
meant earlier when I said a three drive system was very desirable for word processing.
We will put the DICTx/EW files on the data disk(s) that you will use to hold the text
that you are processing. Here is how (on a two drive system, it is much easier with
three):

STEP 17: Place a blank disk in drive #1. FORMAT it for double density with, again
at least, 40 tracks. Give it whatever NAME and PASSWORD you think appropriate. It
will only be used as a data disk.

STEP 18: Once the disk has been FORMATted give the following commands from LDOS
(this operation takes a lot of time, and several disk swaps, so for your own
protection put write protect tab(s) on your EW source disk(s) and follow the prompts
on the video exactly):

 COPY DICT1/EW:1 (X)<ENTER>
 COPY DICT2/EW:1 (X)<ENTER>
 COPY DICT3/EW:1 (X)<ENTER>

You may want to FORMAT a couple or three more disks and use the BACKUP command with
(X) option to make copies of this data disk for future use. You will notice that you
have somewhere around 57K of space left on a disk that started with over 170K before
the DICTx/EW files were placed on it. This space is sufficient for most users. I did
this entire document on a system that was generated using these instructions and had
plenty of room on the data disk for these files.

I hope that these instructions are useful to you and help you make better use of both
LDOS and NewScript, with or without Electric Webster. Considered separately they are
two very fine systems, together they provide the user with a very powerful word
processing ability.

***** PARITY = ODD *****

(c) 1982 Tim Daneliuk
T&R Communications Associates

 Hello again, and welcome to another exciting episode of Review Wars! I've been
looking over lots of new programs for the next few issues of the Quarterly, and some
of them are just outstanding! Before I get started though, a quick comment is in
order. After the "soapbox" in my last column, I realized I left something out that
needs to be mentioned. If I review a product in these pages, and give it substantially
negative comments, the manufacturer of the product has the right to respond. So long
as the response isn't obscene, threatening, or derogatory, I will include all or part
of it in this column! You have the right to hear both sides of an issue, so I'll try
to be as fair as possible in doing this. My address can be found below should you
desire to do this. By the way, reader opinions are also solicited. If you have
something to say about a product I review, feel free to drop me a line or leave a
message on MNET.

 I should also mention that I intend to use the last column as a basis for
reviewing all software. I will be brutal if necessary! As I said then, there is no
excuse for sloppy applications code when it is being commerically marketed.

 The first item in this issue concerns a piece of hardware that is near and dear
to us all, disk drives. As you all are probably aware, the cost of both bare drives
and packaged systems has dropped dramatically in the last year or so. You have
probably seen the ads in various magazines which promote complete 40 track drive
packages selling for between $175 and $200. These packages seem to be well built and
feature the 5" BASF disk drive assemblies.

Page 60

Now for the sad news: Of the three people I know who have purchased BASF drives
(either the above packaging or bare drives) every one has had trouble with them. The
problems have all been of an intermittent nature, and seem to be caused by the drive
electronics. Obviously, a half dozen or so drive failures is hardly grounds for
condemning an entire product line. I mention this here only to point out that you
should check around before you buy one of these units. It could well be that the
failure rates here in Chicago are very unusual, and that the BASF products are just
fine. There IS one major design flaw in these drives that I have noticed, however. The
drive is very unforgiving if you don't push the media in all the way before closing
the door. The door assembly and media guides are poorly designed, and closing a door
when the media is not EXACTLY in place causes massive crunching and mangling of the
disk. My own bias is toward Shugart SA400s, but I'm told that the Tandons are also
very good. In the interest of getting a little field data, I hereby announce the first
PARITY = ODD reader poll! Please send me a sheet of paper with the information below.
If I get enough responses (more than 50) I'll publish the results in this column. You
can also leave the info. for me on the LDOS board in MNET.

 PARITY = ODD Poll #1: 5" Floppy Disk Drives

 Name, Address, Phone #

 Type of Computer

 Model I Users: Type of Interface

 Type, age, and number of disk drives:
 (Please be specific. Don't give the packager's name, but the actual drive
 manufacturer. i.e Shugart SA400, instead of Lobo or Radio Shack. Also,
 please give the approximate age of each drive.)

 Failure Rate for each drive:
 1) Never failed
 2) Failed after heavy use
 3) Failed soon after purchase (less than 1 year of average use)
 4) Continuing failure problems (more than once a year when subjected to
 average use)

Note: It is positively NOT a failure if a drive acts "flakey" with heads that you
never have bothered to clean! A "failure" is defined to mean any problem which caused
the loss of use of the drive because it had to be serviced.

Despite all the MTBF (Mean Time Between Failure) data published by the manufacturers,
this kind of information from actual field experience is a lot more useful. I hope
you'll all take the time to fill out a postcard and send it to me. My address is:

 Tim Daneliuk
 4927 N. Rockwell St.
 Chicago, IL 6$625

 MNET# 7$745,152$

 The first product this issue is not really software or hardware, but "brainware".
I refer, of course, to the best TRS-80 specialty magazine presently published, THE
ALTERNATE SOURCE (TAS). This little unassuming bi-monthly booklet is a "gold mine" of
TRS-80 related (especially Mod. I and III) information. For those of you who have not
been subscribing, TAS back issues are available in bound form. These include rather
thorough treatments of how the Level II BASIC Interpreter works, explanations of bugs
in the ROM, assembly language technique, and a host of other subjects. If you own a
TRS-80, this is the one technical magazine you should get. It doesn't have a lot of
ads, but is chock full of useful "goodies". The address for TAS is:

Page 61

 The Alternate Source
 704 North Pennsylvania Ave.
 Lansing, MI 48906

 (517) 482-8270 or (800) 248-0284
 MNET# 70150,255 SOURCE# TCH565

TAS also publishes and distributes software, and this leads us to our first software
product this Quarterly.

 MODEM 80 is a program distributed by TAS as well as it's author, our own Les
Mikesell (take a bow Les!). It is a general purpose serial communications program,
which turns the TRS-80 into a "smart" terminal. The cost is a mere $39.95, and a
special LX80 version is available for $10 additional. If you only use serial
communications occasionally, LCOMM is probably all you need, but if you do a lot of
it, you should investigate MODEM 80. One of it's biggest features is that it honors
the file transfer protocols used by CP/M bulletin boards. Another feature I
particularly like is that MODEM 80 allows you to maintain simultaneous file transmit
and receive buffers. Les has also included several useful utilities with the package
(some of these won't work with an LX80 so check before you buy!). There is a program
similar to the Model II HOST utility which allows remote control of your TRS-80 via
the serial port. XMODEM is a utility to transfer files. SAVE and TYPE are used to
create and list text files. TEXTFIX is used to fix downloaded files so they load into
a word processor. It strips out control characters, extra linefeeds, and deletes
characters caused by a backspace. TEXTFIX can also add a X'00' to the end of the file.
Finally, HEX is a utility used to convert ASCII files to hex characters and
vice-versa. This is a fine program written by an excellent TRS-80 programmer! I have
found it easier to use than LCOMM in many instances, and you "Fhone Phreaks" will just
love it.

 As mentioned in a previous column, I intended to do a comparitive review of the
popular spelling checker programs for the TRS-80. Unfortunately, they have not all
arrived in time for a simultaneous review. So, I will do them one at a time, and make
some comparisons when they have all been reviewed. Again, the emphasis will be
primarily on LDOS compatibility, though I'll try to make some judgements on the
overall performance of these products. The first of these is HEXSPELL II from Hexagon
Systems. HEXSPELL is written in BASIC, but is distributed as an executable file
generated by the Microsoft BASCOM BASIC compiler. Once the program is loaded and the
file to be checked is named, the text of that file is displayed on the screen. You may
select the scrolling rate, and there is also a command which stops the display for
ease of reading. Any time HEXSPELL finds a word it does not recognize, you have three
choices: 1) You can ignore the word, and HEXSPELL will leave it "as-is" without
appending it to the dictionary. 2) You can tell HEXSPELL to learn this word as a new
word, and add it to the dictionary file. 3) You can replace the word with the correct
spelling. HEXSPELL inherently shows words "in context" because a portion of the total
text is always on screen. The word in question is easy to find because it is
highlighted with a flashing graphics block. The program is extremely easy to use
because it is very interactive. In fact, for most of the functions you don't even need
the manual. The manual is about 30 pages long, and is very well written.

 There are several things about HEXSPELL II I don't like. For one thing, because
of the large runtime support package (BRUN) that BASCOM compiled programs require,
HEXSPELL is a real "memory hog". It seems to honor HIGH$ alright, but if it decides
there is not enough memory available, it forces an error message. Now, all this is
fine, except that the error message asks you to press any key to continue. When you
do, the program tries to load again and the same error message occurs. In other words,
once you get an "Insufficient Memory" error, you can't get out of HEXSPELL and back to
LDOS! I solved this problem by always using HEXSPELL with no high memory options
installed. This is a real pain though! I've been using a LOBO hard disk with my LX80,
and to access all the hard disk partitions the LDOS drivers have to be in high memory.

Page 62

Anytime I want to use HEXSPELL, I have to boot the system, and then either use a JCL
procedure or manually install the hard disk drivers. This is a problem that ought to
be corrected because it degrades an otherwise fine program. Another minor complaint I
have is that HEXSPELL runs rather slowly. This is a price that is paid by writing a
program in BASIC (even though it is compiled), and making that program very
interactive and easy to use.

 On the positive side, HEXSPELL has several excellent features. It is easy to use,
corrections are simple, and it runs bug-free (once high memory has been freed).
Another very important asset of HEXSPELL is that files to be checked are not limited
by available memory in the system. HEXSPELL loads in a portion of the file at a time
for checking. This allows you to check files created by a disk oriented word processor
or text editor.

 At $99, HEXSPELL is priced well below competing products. Except for the one
problem mentioned above, the product has run perfectly, and it is very well integrated
with LDOS. A new release of the product is presently being worked on which will free
about 2K more of memory, so the high memory problem should be minimized. You should
evaluate your needs carefully before deciding for or against HEXSPELL. On the one
hand, it's ease of use makes it an ideal candidate for an office where non-technical
people need to use a spelling checker. On the other hand, it's slowness will be a real
drawback for someone who writes a great deal. HEXSPELL II is available from:

 Hexagon Systems
 P.O. Box 397
 Station A
 Vancouver, B.C. V6C 2N2
 Canada

 (604) 682-7646
 MNET# 70235,1376

 Next on the list of software "goodies", is the set of utilities for LDOS from
Powersoft. These utilities were all written by Kim Watt of Super Utility fame. There
are seven utility disks available, and all are designed to be specifically LDOS
compatible. The documentation for these utilities is printed on standard three-hole
punched paper, designed to go into your LDOS binder. Each of the disks costs $29.95,
though a special price is available if you order the whole set.

 I can't cover all these utilities here, so I'll just mention the best of the
bunch. PMOD is a general purpose Disk-File-Memory modification utility. It allows you
to access the disk absolutely, or to access it on a file by file basis. You can also
examine and modify memory directly with PMOD. PCHECK and PFIX are utilities which
allow you to check and (if necessary) repair a damaged directory. These two utilities
have saved me a LOT of time! PFIX attempts to repair both the HIT and GAT sectors, and
you can even copy a new BOOT file onto a bad disk. I have had several unreadable disks
which were fixed with PFIX. These programs are definitely not "idiot-proof" though,
and should be used carefully. PREFORM allows you to take a 5" floppy disk and reformat
it without loosing the data it contains. This procedure can sometimes help marginal
disks which have not been formatted in a long time. PSS and PMAP are utilities which
help you identify which sectors on a disk have been allocated, and to which files they
have been assigned. PCLEAR will erase unassigned sectors on a disk so no trace of the
original data is left. You can also use PCLEAR to erase unused directory entries.
PHELP is an "on-line" help file. I found it to be a rather complete disappointment!
When I asked for help with extended DEBUG. All I got was:

 DEBUG (switch,EXT
 switch ON or OFF. ON is assumed
 EXT turns on the extended debugger

Page 63

Not real helpful, eh? PHELP is on Disk #8, and frankly, I can't see much on this disk
that warrants your money. There are a few specialized filters including a translation
filter for the keyboard and a filter to change the LDOS graphics on boot up. The
programs on this disk seem to work alright, but they just aren't terribly useful.

 On the whole these programs seem to work smoothly with LDOS. I did have problems
with several programs including PCHECK, PFIX, PSS, and PMAP. They worked fine on both
5" and 8" floppies, but refused to run on the LOBO 1850 hard disk. A call to Powersoft
indicated that they had no problems on their Laredo system, but that they would look
into this apparent incompatibility. One especially nice feature that all these
utilities have, is that they have help built right into them. Once the program is
loaded, all you do is hit <ENTER>, and the screen displays the possible sub-commands,
sometimes with an example (if space permits). This is a GREAT idea. I hope everyone
"steals" it from them, and it becomes an industry standard!

 I doubt any one user needs all of these utilities, but there are several you
shouldn't be without. PFIX and PCHECK are winners (hopefully the hard disk problem
will be resolved), as is PMOD. Stay away from Disk #8. If you need translation
filters, buy the filter disk from LSI. It has more filters which are more usable than
these from Powersoft. If you really want to change your boot graphics, use FED to
change them in SYS0. The remaining utilities will have varying degrees of usefulness
depending on your application. You should study your needs carefully before ordering.
These are, by and large, good products, and you won't be disappointed. These
utilities are available from:

 POWERSOFT
 11500 Stemmons Expressway, Suite 125
 Dallas, TX 75229

 (214) 484-2976
 MNET# 70130,203

 The final product in this column is the new HELP/QRC product from Misosys. This
is an "on-line" Help utility for LDOS accompanied by a Quick Reference Card (QRC).
There are several help files included for the "A" Library, "B" Library, LDOS Syntax,
Utilities, and so on. Each of these uses the Misosys Partitioned Data Set (P0S)
format, and programs are included to create your own Help PDS. One word of warning,
HELP/QRC requires the Lower Case modification in a Model I. This is a fine product,
which I find myself using all the time. The information for each command is not
exhaustive, but IS useful. The QRC is also quite helpful, and at $25 this package is
reasonably priced. HELP/QRC is available from:

 Misosys
 P.O. Box 4848
 Alexandria, VA 22303-0848

 (703) 960-2998

 Well that's it for this time. Don't forget to send in your responses to the disk
drive poll! Happy bit-twiddling...

Page 64

....................er....................

by Earle Robinson

This issue will concentrate on a few of the more commonly encountered time and space
wasters that I have seen in many assembly programs. One of the most frequently seen
arises from many authors' ignorance of the use of terminating bytes at the end of a
text to be displayed (or printed). A friend sent me the source for a program which
looked like this:

 LD HL,MSG1
 CALL @DSPLY
 LD HL,MSG2
 CALL @DSPLY
 LD HL,MSG3
 CALL @DSPLY
 several more Loads, and displays

And, the screen had several lines of my friend's menu displayed. What he did not know
was that he could merely have terminated each line, not with a carriage return (0D
hex) or with 03, but with whatever text to be displayed, and that the display handler
would continue, printing out each line as encountered until either 0DH or 03 was
encountered. So, the display's source should have looked like this:

 LD HL,MSG
 CALL @DSPLY

The recently published SuperSCRIPSIT contains some code which looks like this:

 LD A,(7A01H)
 LD (790AH),A
 LD A,(7A02H)
 LD (790BH),A
 LD HL,(9322H)
 program continues

Now, why didn't the author merely load the contents of 7A01H into HL, and then load
the contents of HL into 790BH, thereby saving 6 bytes? There are several examples of
this wasteful type of writing in SuperSCRIPSIT, which by the way, is full of other
ghastly examples which I may draw upon in the future.

Another typical error committed by inexperienced assembly language writers is the
following, illustrated in a patch to SuperSCRIPSIT which was recently published:

 LD HL,(4514H)
 LD (5B14H),HL
 more code
 NOP ; This is at 5B14H
 NOP
 LD DE,(5B14H)
 more code

The writer of that code could have more economically loaded the saved address at 4514H
as follows, saving 3 bytes of available patch space:

 LD DE,0 ; two bytes where
 ; address is to be
 ; saved.

Page 65

On a more positive point, I'd like to briefly discuss the macro capabilities now
available in Roy Soltoff's new version of EDAS, called EDAS IV. Many of you may have
used macros while working with the Microsoft M80. With the new EDAS you can save a lot
of time, and extra source code by developing some simple routines or blocks of code
which are frequently used. For example, it is often necessary to save the registers,
and the code not only must be typed in, but must be remembered so that they are popped
in the reverse order upon exiting the routine.

With the new EDAS I have created two macros as follows:

 PUSHREG MACRO #PARM1=HL,#PARM2=DE,#PARM3=BC
 PUSH #PARM1 ; It is possible to replace
 PUSH #PARM2 ; the default values if
 PUSH #PARM3 ; required
 ENDM

 POPREG MACRO #PARM1=BC,#PARM2=DE,#PARM3=HL
 POP #PARM1
 POP #PARM2
 POP #PARM3
 ENDM

You can also make up many others to save time in looking up the code required, or
avoiding an error in writing it due to faulty memory. An example of the type of small
routine which I prefer to invoke with a macro rather than type it in each time,
concerns the checking if the user has used a valid drive number, from 0 to 7.

 DRIVEOK MACRO #GETKEY
 CP 38H
 JR NC,#GETKEY ; >7, return & ask again
 CP 30H
 JR C,#GETKEY ; <0, go ask again
 ENDM

Since it is also possible to list the source without the macros being expanded, it is
much easier to study source listings to determine if there may be bugs, or to find
them if they do occur. Roy has done a terrific job with his new version of EDAS.
Anyone who wishes to do serious assembly language work could do worse than make the
investment.

It is not only important to well document one's source code when writing assembly
language programs, but it is also most important to keep track of versions of what is
written. Recently, someone who acquired my disk catalog program, 'discater', said he
had problems in knowing which version of a particular program was on disk, and could
'discater' differentiate between them. Of course, since each entry is shown with its
number of bytes, if one is longer or shorter than another, it would show up on a full
listing. However, as I pointed out to my correspondent, you should ALWAYS modify names
of programs for different versions. This will save much time in debugging and in
locating the version which is the one which you really wish to use or work on. You
will also avoid problems by automatically updating the date in the source before
saving it to disk, by the way.

Page 66

ITEMS OF GENERAL INTEREST

Following are the TCHRON and T-TIMER patches for use with LDOS 5.1.3. Apply these
patches to SYS0/SYS.

 . TCHRON1, TRSWATCH, TIMEDATE80 - /FIX - 08/19/82 - Copyright by Roy Soltoff
 . This FIX is to enable use of the above clock modules
 . under LDOS Version 5.1.3 Model I. Use the HI ports.
 .
 . Fix the timer interrupt routine
 D04,08=D2 45 ED 78 0D CD A6 47 ED 78 0D E6 0F 85 12 1B
 D04,18=C9 11 43 40 01 B5 03 CD C3 45 10 FB
 . Fix the date initialization on BOOT
 D0D,58=21 46 40 01 BA 01 CD C3 4E 06 03 CD C3 4E 01 BC
 D0D,68=0F CD C3 4E EB DB BB E6 03 11 45 40 21 48 40 20
 D0D,78=29 CB FE 18 25 ED 78 0D A0 07 57 07 07 82 57 ED
 D0D,88=78 0D E6 0F 82 77 2B C9
 . end of patch

 . T-TIMER/FIX - 08/19/82 - Copyright by Roy Soltoff
 . This FIX is to enable use of the TTIMER clock module
 . under LDOS Version 5.1.3 Model I. Use the HI ports.
 .
 . Fix the timer interrupt routine
 D04,08=D2 45 ED 78 0D CD A6 47 ED 78 0D E6 0F 85 12 1B
 D04,18=C9 11 43 40 01 C5 03 CD C3 45 10 FB
 . Fix the date initialization on BOOT
 D0D,58=21 46 40 01 CA 01 CD C3 4E 06 03 CD C3 4E 01 CC
 D0D,68=0F CD C3 4E EB DB CB E6 03 11 45 40 21 48 40 20
 D0D,78=29 CB FE 18 25 ED 78 0D A0 07 57 07 07 82 57 ED
 D0D,88=78 0D E6 0F 82 77 2B C9
 . end of patch

For those of you trying to interface different clock boards, following is the
assembler code that generated the above patch. The TTIMER port differences are noted
in the comment field surrounded by astersiks.

 00100 ;Tchron/ASM - 08/17/82 - Copyright 1981 by Roy Soltoff
 00110 ;*=*=*
 00120 ; TCHRON mods to LDOS Version 5.1.3 (Model I)
 00130 ;*=*=*
 00140 TIME$ EQU 4041H ;Time string
 00150 DATE$ EQU 4044H ;Date string
 00160 DCTFLD@ EQU 47A5H ;Mask & multiply by 10
 00170 LOW$ EQU 4047H ;Extended date
 00180 ;
 00190 ;*=*=*
 00200 ; Routines for time reading
 00210 ;*=*=*
 00220 ORG 45C1H ;Normal timer routine
 00230 ;
 00240 DW TIMER ;Set timer TCB
 00250 GETARG IN A,(C) ;Get high byte
 00260 DEC C ;Bump port
 00270 CALL DCTFLD@+1 ;Strip, *10 -> L
 00280 IN A,(C) ;Get low byte
 00290 DEC C ;Bump port

Page 67

 00300 AND 0FH ;Strip
 00310 ADD A,L ;Add in high * 10
 00320 LD (DE),A ;Stuff value
 00330 DEC DE ;Bump pointer
 00340 RET
 00350 TIMER LD DE,TIME$+2 ;Point to end of string
 00360 LD BC,3<8!0B5H ;Set loop cnt & port ***0C5H***
 00370 LOOP CALL GETARG
 00380 DJNZ LOOP
 00390 ;*=*=*
 00400 ; Now fall through to RET instruction at TIMHK$
 00410 ; User must NOT use SYSTEM (UPDATE)...
 00420 ;*=*=*
 00430 ;*=*=*
 00440 ; Interface to system initialization for DATE
 00450 ;*=*=*
 00460 ORG 4E9EH ;Address of DATE query
 00470 PACKIT EQU 4EE8H ;Addr of packing routine
 00480 ;
 00490 LD HL,DATE$+2 ;Point to end of parm
 00500 LD BC,1<8!0BAH ;Set mask & port ***0CAH***
 00510 CALL GETVAL ;Get month
 00520 LD B,3 ;Set mask for day
 00530 CALL GETVAL ;Get day value
 00540 LD BC,0FH<8!0BCH ;Set year mask & port ***0CCH***
 00550 CALL GETVAL ;Get year
 00560 EX DE,HL ;Point DE to date$-1
 00570 IN A,(0BBH) ;Ck on leap year ***0CBH***
 00580 AND 3
 00590 LD DE,DATE$+1 ;Set for pack routine
 00600 LD HL,LOW$+1
 00610 JR NZ,PACKIT
 00620 SET 7,(HL) ;Set leap year bit
 00630 JR PACKIT ;Go pack it in
 00640 ;*=*=*
 00650 ; Routine to input date values
 00660 ;*=*=*
 00670 GETVAL IN A,(C) ;Get high
 00680 DEC C ;Reduce port
 00690 AND B ;Mask high
 00700 RLCA ;High * 10
 00710 LD D,A
 00720 RLCA
 00730 RLCA
 00740 ADD A,D
 00750 LD D,A ;Save high * 10
 00760 IN A,(C) ;Get low
 00770 DEC C
 00780 AND 0FH ;Mask the bad stuff
 00790 ADD A,D ;Add in high
 00800 LD (HL),A ;Stuff in parm
 00810 DEC HL
 00820 RET
 00830 END 4E00H

Some people have requested a CLS command that would work from the LDOS Ready level so
it could be used in a JCL file. To make one, use the BUILD command to create the
CLS/CMD file as follows:

Page 68

 BUILD CLS/CMD:0 (HEX)<ENTER>

 0202C901<ENTER>
 <BREAK>

For Model I, 5.0.3 users, the following routine will speed up printing when using the
SPOOL command. It does so by inserting another despooling call in the @KITSK vector.
For proper operation, this routine MUST be executed after the SPOOL command has been
given. Following is a source listing plus the BINHEX code. DO NOT use this on Version
5.1!! To turn off this function, use the short program listed after the FASTSPL code.

 00100 ; Use on Model I, Version 5.0.3 Only!
 00110 ; FASTSPL - Fast despooling 5.0 Utility
 00120 ;
 00130 TCB$ EQU 4500H
 00140 HIGHS EQU 4049H
 00150 @EXIT EQU 4020H
 00160 @KITSK EQU 4300H
 00170 ;
 00180 ORG 5200H
 00190 START LD HL,(HIGH$) ;Get current HIGHS
 00200 LD BC,LENGTH ;Length of new code
 00210 OR A
 00220 SBC HL,BC ;Sub needed space
 00230 LD (HIGH$),HL ;Store new HIGH$
 00240 INC HL ;Loc. new code
 00250 PUSH HL
 00260 LD HL,(TCB$+18) ;SPOOL TCB addr.
 00270 LD (NWTCB1),HL ;Insert TCB in new code
 00280 INC HL
 00290 INC HL ;P/U despool addr
 00300 LD (NWTCB2),HL ;Insert despool in new code
 00310 POP DE ;Where new code goes
 00320 PUSH DE ;Save for later
 00330 LD HL,NEWCOD ;Actual new code start
 00340 LDIR ;Move to High Mem.
 00350 LD HL,@KITSK+2 ;Put new despool into KITSK
 00360 POP DE ; vector, so get entry point
 00370 LD A,0C3H ;C3 = JUMP opcode
 00380 ; Now install the new KITSK vector Backwards to avoid system crash
 00390 LD (HL),D ;MSB of entry pt
 00400 DEC HL
 00410 LD (HL),E ;LSB of entry pt
 00420 DEC HL
 00430 LD (HL),A ;Insert JP vs. RET
 00440 JP @EXIT ;All done!
 00450 ;
 00460 ; New Code to be moved into high memory
 00470 ;
 00480 NEWCOD DI
 00490 LD IX,$-$;This will be new TCB
 00500 NWTCB1 EQU $-2 ;Stuff TCB into opcode
 00510 CALL $-$;Call despool
 00520 NWTCB2 EQU $-2 ;Stuff despool task addr.
 00530 EI
 00540 RET
 00550 LENGTH EQU $-NEWCOD
 00560 END START

Page 69

 This is the code to turn off the FASTSPL function

 00100 ; Turn off FASTSPL
 00110 ;
 00120 @KITSK EQU 4300H
 00130 @EXIT EQU 402DH
 00140 ;
 00150 ORG 5200H
 00160 START LD A,0C9H ;RET Instruction
 00170 LD (@KITSK),A ; to disable KITSK
 00180 JP @EXIT ;Back to LDOS Ready
 00190 END START

This is the BINHEX code for the FASTSPL and the turn off program. If you are using the
/CMD version of BINHEX, the checksum for the FASTSPL program is *9C. These programs
may also be created by using the BUILD (HEX) command.

01 3A 00 52 2A 49 40 01 0A 00 B7 ED 42 22 49 40 23 E5 2A 12 45 22 31 52 23 23 22 34 52
D1 D5 21 2E 52 ED B0 2A 02 43 D1 3E C3 72 23 73 23 77 C3 2D 40 F3 DD 21 00 00 CD 00 00
FB C9 02 02 00 52

01 0A 00 52 3E C9 3A 00 43 C3 2D 40 02 02 00 52

When using the SPOOL Library command with a serial printer, it is important that the
PR/FLT be installed. The following commands show how to establish the serial driver
and the spooler.

 SET *PR RS232x (any parameters)
 FILTER *PR PR/FLT
 SPOOL *PR (any parameters)

BASIC Concepts - The RUN,V Command
by Dick Konop

LBASIC introduces many new features to programming in disk BASIC. Among the
enhancements that have been incorporated is the ability to chain programs together and
allow for having variables common to more than one program. This is accomplished by
using the "V" parameter of the RUN command. This article will detail the use of this
parameter and will touch upon some of its possible uses.

Before we explore the specifics involved in using the "V" parameter, let us consider
the general syntax used to execute an LBASIC program. The following is the syntax that
is required.

 RUN"filespec",file/variable parameter,line number

Filespec represents the name of the program that you wish to run, and can be
represented as either a string constant or string expression.

The file/variable parameter is optional, and is used primarily to perform chaining of
programs. One of two different parameters is available. If the parameter R is used,
any files which are currently open will remain open when the new program is loaded and
executed. If the V parameter is used, all open files will remain open, and all
variable assignments will be maintained. If this parameter is used, it must be
represented as a letter (R or V), and cannot appear within quotes or cannot be
represented as a string expression.

Page 70

The line number parameter is also optional, and is used to specify a line number in
the "chained" program where execution is to start. It must be represented as a numeric
constant. If both the file/variable parameter (R or V) and the line number parameter
are specified, the file/variable parameter must appear physically before the line
number parameter.

When using the RUN command with the V parameter, there are several points that need to
be noted. In addition to all files remaining open, the fielding of the buffer
associated with the open file will remain intact. Hence, refielding is not required.
(NOTE: Earlier versions of LDOS 5.1 did not allow for the saving of fielded
variables.)

If DEFinition statements are to be used (such as DEFINT, DEFSTR, etc.) they must be
established in the first program which is run, and must be re-established in any
subsequently chained programs. The CLEAR statement, if encountered in any chained
program, will close any open files and destroy established variables.

If the program to be chained is longer than the calling program, or uses more
variables than the calling program, an OUT OF MEMORY or OUT OF STRING SPACE error
could result. It should be noted that any and all variables that have been established
in the calling program will be maintained in the chained program. For this reason,
forethought must be used in determining variable names that will be used when chaining
programs together.

Before considering some of the uses for the V parameter, an example which illustrates
its implementation is in order. Listed below are two programs that reference each
other (PROG1/BAS and PROG2/BAS). The sequence can be started by issuing either of the
commands RUN"PROG1/BAS" or RUN"PROG2/BAS".

 5 'PROGi/BAS
 10 CLEAR 2000
 20 DEFINT A-Z:DEFSTR S
 30 IF A=0 THEN S="PROG1/BAS"
 40 CLS
 50 A=A+5
 60 PRINT"THIS IS ";S,"A=";A
 70 IF A>100 THEN END
 80 S="PROG2/BAS"
 90 INPUT"PRESS <ENTER> TO RUN PROG2/BAS";S1
 100 RUN"PROG2/BAS",V,20

 5 'PROG2/BAS
 10 CLEAR 2000
 20 DEFINT A-Z:DEFSTR S
 30 IF A=0 THEN S="PROG2/BAS"
 40 CLS
 50 A=A+3
 60 PRINT"THIS IS ";S,"A=";A
 70 IF A>100 THEN END
 80 S="PROG1/BAS"
 90 INPUT"PRESS <ENTER> TO RUN PROG1/BAS";S1
 100 RUN"PROG1/BAS",V,20

Although simplistic in nature, the above example will illustrate the proper method of
implementing the V parameter of the RUN command. There are two variables that are
passed between the programs (A and S). Each program displays the values which are
currently represented by the variables. In each program, the variable A is
incremented. The chaining of the programs will continue until the variable A is
assigned a value greater than or equal to 100.

Page 71

There are several points that should be noted concerning the implementation of the RUN
command in these two programs. The line number parameter in the RUN commands plays a
key role in the chaining of these two programs. If it were not included, the CLEAR
statement in each of the programs would be executed. This would cause any existing
variable values to be destroyed, and would nullify the results of the chaining
process. Also, execution of the chained program starts with line 20 in both instances.
It is important that the DEFinition statements contained in line 20 are executed.
Having DEF statements in one program and NOT in a program to be chained will lead to
unpredictable results, and the values stored in chained variables will not be the
same.

Now that we have discussed how to implement the V parameter of the RUN command, let us
consider some practical uses of it. Chaining programs together while retaining
variable values can prove to be very useful when running (or writing) an integrated
applications package. A very common practice when writing interactive programs which
comprise a software package is to utilize some type of index file as a means to access
information in a pre-defined order. If these index files are stored in RAM, then it
should be obvious that each module of the software package would have to load in the
index files from disk prior to performing its operation. Similarily, each module would
have to write the index files back out to disk to reflect any changes that may have
occurred in the index files.

By using the V parameter of the RUN command, it is now possible to run a menu driven
application in which any index files that need to be loaded can be done so at the main
menu only, and then passed along to all of the supporting program modules. Likewise,
these index files need only be saved back to the disk at the end of the session.
Programming in this manner can save several minutes when running EACH module (not to
mention that the code required to load/save the index files does not need to be
duplicated in all of the modules).

Another example of why the V parameter would be desirable to use follows a similar
train of thought. Many programs are written in such a manner that all functions
performed are done so by one all-encompassing module. Due to machine limits in terms
of the amount of available memory, this may definitely become a factor regarding the
amount of items that the program can handle (particularily if index files are stored
in RAM). Also, if the program is designed to take advantage of various LDOS features
(such as the SPOOLER), memory constraints may become a problem. By chaining programs
together, the problem of running out of memory is alleviated greatly. Since LBASIC
incorporates a high speed load of programs, the time it takes to chain programs
together is minimal. Writing a program that could normally fit into memory as a series
of very small program modules (each designed to perform a specific task) allows for
many memory related features to be incorporated, as memory constraints are virtually
done away with. It is also the perfect way to increase the amount of items that your
program will handle, as the size of your index array may be increased (this assumes
that your media storage capabilities will allow for the additional data).

The reasons listed above for why and when to use the V parameter of the RUN command
are by no means exhaustive. Many other situations and circumstances could dictate that
program chaining be performed. This is also not to say that program chaining should be
done in all instances. Depending on your application, program chaining is a viable
alternative for writing programs that would normally be cumbersome to deal with. The
basic premise behind writing interactive chained programs is that you have the
capability of writing program modules which, if written as one program, would greatly
exceed the limits of available memory. Also, in many instances, the time that it takes
to run interactive programs can be diminished, as temporary files do not need to be
created to pass information to/from various program modules. It may be well worth your
while to investigate the inherent capabilities found by chaining program modules.

Page 72

THE JCL CORNER

by Chuck

This month's column looks like it will be a collection of random bits and pieces about
JCL. Since I've received only one suggestion for information to cover, I'm not sure
whether anyone is using JCL, anyone reads this column, or everyone already knows
everything they need to about JCL. Any way, to start it off . . .

As you all know (?), the JCL logical operators & (AND), + (OR), and - (NOT) can be
used in //IF statements to test the logic truth of a token or series of tokens.
Consider the case where you are using four tokens for some purpose, perhaps in a
system initialization routine to set up the number of floppy drives in a system. The
tokens Fl, F2, F3, and F4 represent a system with one to four drives, respectively. To
be sure the operator has declared the number of drives, you could use a test such as:

 //IF -f1&-f2&-f3&-f4
 //. You must enter number of floppy drives!
 //QUIT
 //END floppy test

In English, the //IF reads "If not f1 and not f2 and not f3 and not f4". In other
words, in the case where none of the tokens was entered, the //IF would be true and
the warning message would be printed and the compiling would //QUIT. This is a
perfectly valid and workable JCL logical evaluation method.

The other case to check would be if the operator entered more than one token. This
next example, although it looks correct, shows how -NOT- to do it!

 (the underlines are only to show the different possible combinations)

 //IF fl&f2+fl&f3+fl&f4+f2&f3+f2&f4+f3&f4
 //. Enter only one floppy number
 //QUIT
 //END multiple floppy test

By the way, the order of the two tokens in the AND group makes no difference in the
LOGICAL evaluation; fl&f2 is the same as f2&fl. The logic of the //IF is valid; all
multiple combinations of the four tokens are tested for. The problem lies with the
method JCL uses to evaluate the & AND operator. When evaluating a conditional line,
the JCL processor will stop when it finds a false token followed by an AND symbol.
Thus, the //IF line in the preceding example would correctly pick up all cases where
f1 and another f token were entered together, but would miss multiple combinations of
the f2, f3, or f4 tokens. For example, suppose that both f1 and f3 were entered. The
processing would test f1 and find it true, then test f2, making the first group false.
However, it would continue and find that the next group of f1 and f3 would be true,
making the //IF true. The end result would be that the //IF would be true and the job
would abort as expected. If f2 and f3 were entered, the processor evaluate the first
f1, find it false, and then find the & AND operator following the f1. At this point,
the rest of the line would be ignored and the //IF would be false, allowing the
multiple tokens to create havoc later in the JCL. The answer to this problem is the
use of multiple //IF lines.

 //IF f1&f2+f1&f3+f1&f4
 *
 //IF f2&f3+f2&f4
 *
 //IF f3&f4
 *

 * represents the three line sequence of //. error message, //QUIT, and //END.

Page 73

Using this method assures that all possible combinations of multiple tokens can be
caught. It makes the JCL file longer, but it also makes it work properly! You may ask
why the AND evaluation is done in this manner, and why something is not done about it.
Just to get some ideas for future columns, I'm not going to tell you. If you really
want to know, write in and ask, including at least one idea/suggestion for future JCL
Corner columns.

Continuing on, I am happy to announce that we have tracked down a bug introduced
somewhere between 5.1.1 and 5.1.2 that caused the following problem. Have KI/DVR set,
and have TYPE, JKL or the SPOOL function active. Do a JCL file to enter LBASIC and run
a program. Have the first keyboard request in the program be an INKEY$ request.
Pressing any key (except <BREAK>) has no effect, as if LBASIC was ignoring the
keyboard. Press <BREAK> to break the program, then RUN the program and everything
works fine. This same sequence of commands, if typed in by hand rather than executed
from a JCL file, also works fine. Therefore - a BUG in JCL.

WRONG! The bug was fixed in the JCL overlay, but was caused by the changes made to the
KI/DVR program! Remember the KI/DVR patches in the last Quarterly to make the //INPUT
macro work properly? The need for them resulted from the fact that KI/DVR was given
the ability to handle @CTL calls to flush the type ahead buffer when exiting a JCL
procedure. As it turns out, the same change to KI/DVR caused the problems in this
case. We re-assembled SYS11 to fix the problem, and now everything runs smoothly. As
Mr. Murphy put it - make a change here and I'll get you there.

On a brighter note, Les and myself worked out a patch to LSCRIPT to allow it to be
controlled (with certain restrictions) by a JCL file. The method used was to force
LSCRIPT to initialize in the "SPECIAL COMMAND ?" mode. Additionally, everytime a
command line is entered and an <ENTER> is detected, the command is executed and a
return to the "SPECIAL COMMAND ?" mode is forced. When using this patch, the screen
format may appear to be scrambled. Don't worry - the actual text is still O.K. What
you are seeing is an interaction between Lscript's cursor positioning and the cursor
positioning used by the @KEYIN routine to feed in a JCL line.

From this point on, I will use the name JLS/CMD to represent an LSCRIPT patched to
enable the use of JCL.

The simplest use for this patch is to print a series of files whose names are
contained in a JCL file. The proper sequence would be:

 JLS/CMD
 L file1
 P
 L file2
 P
 etc.

This set of commands is feeding in the load file (L filename) and print file (P) to
LSCRIPT. It can be repeated for as many files as desired. Many applications also
require that a header or footer be changed as each new file is printed. For ease of
explanation, consider an example where the header text line is:

 LDOS Hex code dump - File --> SYS0

For purposes of this example, I will assume that there are 13 files to be printed by
this JCL, hex dumps of SYS0 through SYS12. Also, this header block is saved as a
SEPARATE file named HDR/SCR for purposes of flexibility when printing. To print the
files and change the header for each file, you could construct a JCL file as follows
(the comments in parentheses are for explanation only):

Page 74

 JLS/CMD (execute patched Lscript)
 L HDR/SCR (load the header, no change needed)
 L,C SYS0/SCR (Load the first file)
 P (print it!)
 L HDR/SCR (reload header)
 R>SYS0>SYS1 (change header filename)
 L,C SYS1/SCR (chain in next file)
 P (print file)
 etc. (do as many times as necessary)

The sequence of events for the first four lines should be self explanatory, but I'll
detail it anyway. The patched Lscript is executed and starts looking for input. The
header is loaded, and no change is needed since SYS0 is the first file to be printed.
The SYS0 file is loaded and chained to the header. The resultant file is printed. For
the remaining files, it will be necessary to modify the header message to reflect the
proper filename. Since the R (replace) command is executed from the "SPECIAL COMMAND
?" mode of Lscript, it can be entered into the JCL file. Thus the remaining sequence
of lines reloads the header (and removes the old text from memory), updates the header
to the proper file name, chains in the text to be printed, and then does the print
command.

Those are the basics needed to use the JCL patched Lscript. In conclusion, any line in
the controlling JCL file must be a valid "SPECIAL COMMAND ?" reply. No direct
modification of text is allowed.

Following is the patch for Lscript, both Model I and III. Be sure to apply this to a
"virgin" Lscript - it may interfere with patches developed by yourself or other users.

 . JCS Patch to allow JCL control of LSCRIPT
 . By Les & Chuck 09/01/82
 . This patch is for Models I and III
 .
 D00,12=3A 3C 52 B7 20 1A 06 3F 21 6A 63 CD 40 00 78 DA
 D00,22=30 40 B7 28 EB 3C 3C 32 3C 52 2B 36 1D 22 3D 52
 D00,32=3D 32 3C 52 2A 3D 52 7E 23 22 3D 52 B7 C9 00 00 00
 D0E,66=0E 52
 . EOP

For a final subject I am going to touch on using JCL to install keyboard filters or
drivers. This may only be of interest to those of you who write your own assembly
language routines, but it is important enough to warrant a mention here. Although the
following discussion will center on keyboard filters, the same principles will hold
true for drivers as well. Unlike filters for devices other than the keyboard, *KI
filters MUST know whether or not JCL is active when installing themselves. To
understand why, picture the chain of events that occur when a DO command is issued and
a JCL file starts executing:

1) Pick up the current KI driver address from the DCB and save it away in the KIJCL$
storage area.

2) Check where a keyboard request comes from. If a LINE request, use a JCL file line;
if a single KEY request, use the saved KI driver address to get it.

Step number 1 is the important point to understand. When DO is executing a JCL file,
the driver address in the DCB is -NOT- the normal driver address; that address is
temporarily stored away in the KIJCL$ area. Thus a filter program must do the
following:

Page 75

1) Check SFLAG$, bit 5, to see if DO is in effect. If it is not, proceed as normal and
disregard steps 2 and 3.

2) Otherwise, pick up the real KI driver address from the KIJCL$ area for use by the
filter program.

3) Store the new entry point for the KI device (taking into account the filter being
installed) in the KIJCL$ area rather than in the DCB.

For those of you who have the 1st filter package, the source code for the CALC/FLT and
the XLATE/FLT programs show actual examples of the test for an active DO during filter
installation. Also, it is important that you disable the interrupts during the time
the new address is actually being stuffed into the KI DCB area. It's not nice when
someone presses a key when only 1 byte of the new address has been changed but not the
other!

This month's column closes with a question. The first 3 people answering it correctly
and have entries postmarked on the -correct date- will win copies of the FED, LED, the
Utility disk, or one of the FILTER disks. (LSI employees and regular Quarterly
contributors are excluded from this contest). Since this publication is mailed 3rd
class, the -correct date- will be set at November 15th to give everyone a chance. To
enter, write your solution on a postcard, in a letter, or on any other mail-able
substance. In the event that more than 3 winning answers are received with the same
postmark, a drawing will be held to determine the winners. Winners will be announced
in next issue's JCL corner, along with the correct solution (the correct solution
being the most fatal error that the following JCL file has IN MY OPINION).

JCL Question of the Quarter

QUESTION: What is the MOST fatal error of the following JCL example, and why:

//. This example will BACKUP a disk in drive ##1
//. To a disk in drive ##2
//. Tokens to be entered are:
//.
//. Enter the drive 1 disk as S= (source).
//. Enter the drive 2 disk as D= (destination).
//.
//. Evaluation of parameters starting . . .
//IF S
//. Source drive = #S#
//END if source drive
//IF D
//. Destination drive = #D#
//END if destination drive
//IF S&D
//. BACKING UP #S# to #D#
Backup :#S# :#D#
//END

This one is relatively easy. The next one will be a bit harder hopefully. If you can
think of a good JCL puzzle, send it in in care of the LDOS Quarterly Editor. Until
then, keep on DOing!

Page 76

Roy's Technical Corner - 4Q82 - by Roy Soltoff

 This issue's column will take a slightly different posture. In lieu of one major
topic encompassing several pages of technical discussion, I will shed some light on
the techniques for interfacing with a few system functions. This divergence is due in
part to the tremendous amount of time spent during the past months in getting the LC
compiler from MISOSYS ready for release. That and the work done to prepare LDOS 5.1.3
for Radio Shack has certainly impacted my time for authoring. I have also been busy
getting the MSP-01 package released. This package has a few unique programs. If you
ever use Job Control Language (JCL), you ought to look at the PARMDIR program which
is part of MSP-01. The other major piece of MSP-01 is DOCONFIG - similar to Les's
SYSGEN program; however, DOCONFIG functions while running JCL without interference.

 There have been a few queries concerning the issues to be discussed in this
column - so I really am NOT straying too far. I will address assembly language
handling of BYTE I/O for error detection, interfacing to the @ICNFG vector,
interfacing to the @KITSK vector, testing for 5.1.3 vs < 5.1.3 (i.e. 5.1.2, 5.1.1,
5.1.0), handling the KFLAG$ scanner for <BREAK> and <PAUSE> detection, and possibly
some other items to look out for if you are doing some advanced coding.

 Before I go any further in this issue's column, I must correct an error that
appeared last time. The article on the Task Processor that appeared in the July 1982
issue needs a correction on page 32. The code that reads:

 LD DE,MYTASK should LD DE,MYTCB
 LD A,2 be LD A,2
 CALL @ADTSK CALL @ADTSK

 Let me begin this issue with error handling during byte I/O. LDOS has a great
degree of device independence. However, due to incomplete device driver design
considerations when the TRS-80 ROM was first done on the Model I (and further
mishandled on the Model III), one big problem is inherent with byte I/O handling. Any
device or file may be accessed for input or output on a byte I/O basis using the @GET
and @PUT vectors (see "Device I/O and Independence" by Roy Soltoff in THE LDOS
QUARTERLY, Volume I, Number 3).

 If I/O through @GET/@PUT is coupled to a disk file, then the flag state on
return is the Z-flag set if no error occurred while the Z-flag is reset if there was
an error detected and the accumulator will contain the error return code. The byte
I/O device drivers do NOT maintain this concept. Thus, if you @PUT to the *PR device,
the state of the Z-flag is indeterminate. Also, if you @GET from the *KI device, the
Z flag is indicative of a returned character.

 LDOS permits a redirection of device I/O via the ROUTE command. LDOS also
permits the OPEN routine to open a device or a file. Thus, if a device/file is opened
or a device is routed, the application program invoking the byte I/O does not know if
the physical I/O is from/to a device driver that does not use the Z-flag for error
reporting or a disk file which does. This illustrates the age old problem of
detecting a disk full condition when you have routed the *PR device to a file and
proceed to "LPRINT" data. The application that is calling @PRT (the system vector to
print a byte of data) is not expecting the output to go to a disk file and thus
wouldn't normally be checking for errors. In fact, if it did check the Z-flag while
@PRT was directed to a PRINTER, it would probably detect an error on every character
depending on what state the Z-flag was left in.

 This is unfortunate! When we get beyond the ROM-based LDOS, I will correct this
deficiency by ensuring that all byte I/O handlers maintain the state of the Z-flag
purely for error feedback. But what can you do now? Well, there is an interim
solution to handle the error feedback if you place a particular routine within your
assembler application. Let's look at the following portion of the "PUTOUT" routine.

Page 77

 PUTOUT EQU $
 LD DE,FCBOUT ;OUTPUT control block
 CALL @PUT ;To device/file
 RET Z ;Back if no "error"

 We will assume that FCBOUT contains the control block data for some Output
device/file. Any place in our program that we need to write a byte of data to this
device/file, we will call PUTOUT. The first three instructions are very
straightforward. The first loads the control block address into register pair DE.
Next we call the @PUT routine which writes the byte that is in the accumulator
register. So far, so good. Next we return to whatever called PUTOUT, but only if the
Z-flag was set (i.e. no error during disk I/O). If the Z-flag was reset, we know that
either we got a disk I/O error OR the output was to a byte device which does not
properly maintain the Z-flag. How can we isolate one or the other?

 Remembering that bit-7 of the control block is only a "one" if we have an open
file, we will test that bit. Let's take a peek at some more of the PUTOUT routine:

 RET Z ;... from above
 TSTDEV EX DE,HL ;Ck if device or file
 BIT 7,(HL) ; Bit-7 is set in
 EX DE,HL ; FCB's only!
 RET Z ;Ret if device
 IOERR OR 40H ;Short message, abort
 JP @ERROR ; or your error handler

 By exchanging registers HL and DE, we momentarily transfer the control block
address to register pair HL and use a BIT instruction to test whether bit-7 is a
"one" or a "zero". Now if the control block is really for a byte device, bit-7 is
reset and the test will SET the Z-flag. Therefore, a byte I/O device will be detected
and we return to the calling routine with a "no error" indication - both done at the
same time.

 On the other hand, if the control block was for a disk file, bit-7 is set
providing an "NZ" indication - which is the same result as a disk error. Thus, we
fall through to the error routine.

 I prefer to treat input slightly different because I would like to support a
means of passing an end-of-file condition to the calling routine. In some of the
system modules, a <BREAK> is used to denote EOF from the keyboard device. In the
PARMDIR program, I chose to use <CONTROL-SLASH>. The reason for this is that
<CONTROL-SLASH> generates an ASCII Field Separator (FS) which just happens to be
X'1C' - the same as the EOF error code for disk files. Now let's look at my input
routine.

 GETIT LD DE,FCBIN ;Input control block
 CALL @GET
 RET Z ;Ret if no error
 CP 1CH ;EOF?
 JR NZ,TSTDEV ;Ck device if not EOF
 OR A ;Set NZ flag
 RET

 We are fetching the byte of data in the first two instructions in a normal
manner. As with PUTOUT, we return if no error is detected. Here, I then look for an
EOF error. If I detect some other error (or we are fetching from a byte device which
misuses the Z-flag), then the routine jumps to the TSTDEV routine which makes the
determination of device or file and acts accordingly.

Page 78

 If on the other hand, the EOF error code was in the accumulator, GETIT will
return with the Z-flag reset. That means that we return to the calling routine always
with the Z-flag SET if there has been a byte validly fetched; we return with the
Z-flag reset and EOF error code on an end-of-file. Since the EOF error code is really
useful to indicate when we are at the end of a file and generally does not represent
an "error", to speak of, we have the routines that call GETIT check the Z-flag result
for EOF indication.

 With these routines, I can have a program obtain input based on a command-line
or prompted input devspec/filespec. Then, if the devspec was used and the *KI device
was referenced, a <CONTROL-SLASH> indicates the "end of the file". In PARMDIR, this
exact set of routines is used to support parameter input from either a file
(P="filespec") or the keyboard device (P="*KI").

@CKDRV 5.1.2/5.1.3 Handling

 The next mini-topic will cover the method to determine if the machine is running
LDOS 5.1.3 or 5.1.2. This is specifically important if you want to use the @CKDRV
vector which changed in location on the Model III under release 5.1.3. Since OSVER$
contains X'51' under all releases of LDOS 5.1.x, it is necessary to ascertain which
release a program is running under so that the proper @CKDRV address will be used.

 All programs currently released by MISOSYS, determine the machine model (Model I
or III) by checking the byte at address X'125'. Where vector references exist that
are different on each machine model, the reference is updated at the start of the
program. MISOSYS programs use the Model I vector inline and switch to the Model III
vector if the machine check byte is indicative of a Model III (Note: not all of my
programs have been updated to reflect this 5.1.3 test).

 The following routine is abbreviated and only illustrates the @CKDRV vector
modification.

 @CKDRV1 EQU 44B8H ;Model I all releases
 @CKDRV3 EQU 4290H ;Model III to 5.1.2
 @CKDRVZ EQU 4209H ;Model III 5.1.3
 BEGIN EQU $;Start of my program
 PUSH HL
 LD A,(125H) ;Model I or III
 CP 'I' ; III has 'I'
 JR NZ,MODEL1
 LD HL,@CKDRV3 ;Try "to 5.1.2" first
 LD A,(@CKDRV3+1) ;P/u handler SVC #
 CP 0C4H ;Is it CKDRV or RAMDIR?
 JR Z,$+4 ;Go if 5.1.2 or earlier
 LD L,@CKDRVZ&0FFH ; else use 5.1.3's
 LD (CKDRV+1),HL ;Update vector within pgm
 MODELl POP HL

 The routine is simplistic. The important test is the "CP 0C4H" instruction.
Since the @CKDRV and RAMDIR vectors need to recover a system overlay request number,
the contents of X'4291' will be different under 5.1.2 and 5.1.3 only on the Model
III. This is the test for determination. The "L,@CKDRVZ&0FFH" is a minimal code
method to update the low-order byte of a 16-bit register pair when the high order
byte remains the same.

KFLAG Scanner interfacing

 The KFLAG scanner was introduced in version 5.1.0. Since the scanner has not
been documented too well, and rigorous methods of its use have not been disclosed, I
thought I would reveal an example of its integration into an application.

Page 79

 A little background is in order. Many applications have the need to detect a
PAUSE or BREAK condition while they are running. BASIC does this after every logical
statement is executed (i.e. end of line or ":"). That's how, in BASIC, you can stop a
program with the <BREAK> key or pause a listing. The classical way to detect the
condition was to call @KBD checking for <BREAK> or <PAUSE> (SHIFT-@) ignoring all
other keys. Unfortunately, if you were trying to make use of type-ahead, the @KBD
call would flush out the type-ahead buffer if any keys were stacked up; thus, type
ahead would be ineffective.

 Another method actually used in 5.0.x was to scan the keyboard by physically
examining the keyboard matrix. Again, a detrimental side effect resulted with
type-ahead also storing up the keyboard depression for some future unexpected input
request. Examining the keyboard directly also inhibits remote terminals from passing
the <BREAK> or <PAUSE> condition.

 The KFLAG scanner grew from these deficiencies. The scanner is part of the
interrupt processor and examines the keyboard for three functions, <BREAK>, <PAUSE>,
and <ENTER>. If any of theses conditions are detected, appropriate bits in the KFLAG$
are set (bits 0, 1, and 2 respectively). It is IMPORTANT to note that the interrupt
KFLAG scanner does NOT reset the bits - it only sets them. Thus, it is up to the
application using these flag conditions to reset the bits as required. Now, you may
ask, why wasn't the scanner coded so that it resets the bits? Well now, if that was
the case, you would never sense the "events" as they would occur too fast. Think of
the KFLAG$ bits as a latch. With this little introduction, let's look at a routine I
designed to use the <BREAK> and <PAUSE> conditions.

 CKPAWS LD A,(KFLAG$) ;P/u the flag
 RRCA ;Bit 0 to carry
 JP C,GOTBRK ;Go on BREAK
 RRCA ;Bit 1 to carry
 RET NC ;Return if no pause
 CALL RESKFL ;Reset the flag
 PUSH DE
 LD DE,KDCB$
 XOR A
 CALL @CTL ;Flush the type-ahead
 POP DE
 PROMPT PUSH DE
 CALL @KEY ; & wait for key entry
 POP DE
 CP 1
 JP Z,GOTBRK
 CP 60H
 JR Z,PROMPT
 RESKFL PUSH HL
 PUSH AF
 LD HL,(CKPAWS+l) ;P/u KFLAG pointer
 RESKFL1 LD A,(HL) ;P/u the flag
 AND 0F8H ;Strip ENTER, PAUSE, BRK
 RESKFL2 OR 40H ;Set ECM
 LD (HL),A
 PUSH BC
 LD B,16
 CALL @PAUSE ;Pause a bit
 POP BC
 LD A,(HL) ;If got set again...
 AND 3
 JR NZ,RESKFL1 ; then reset it again
 POP AF ;Restore possible prompt
 POP HL ; char & exit
 RET

Page 80

 I think that the best thing to do would be to take apart this entire routine and
explain each sub-routine. The first piece:

 CKPAWS LD A,(KFLAG$) ;P/u the flag
 RRCA ;Bit 0 to carry
 JP C,GOTBRK ;Go on BREAK
 RRCA ;Bit 1 to carry
 RET NC ;Return if no pause

reads the KFLAG$ contents. The first rotate instruction places the BREAK bit into the
carry flag. Thus, if a <BREAK> condition was in effect, the sub-routine would branch
to "GOTBRK" - which is your break handling routine. If there is no pending BREAK, the
second rotate places what was originally in the PAUSE bit into the carry flag. If no
<PAUSE> condition is in effect, the routine returns to the caller. This sequence of
code gives a higher priority to <BREAK> (i.e. if both BREAK and PAUSE conditions are
pending, the <BREAK> condition has precedence). It is important to note that the
GOTBRK routine needs to clear the KFLAG$ bits after it services the <BREAK>
condition. This is simply done via a call to RESKFL.

 The next part of the routine is executed on a <PAUSE> condition.

 CALL RESKFL ;Reset the flag
 PUSH DE
 LD DE,KDCB$
 XOR A
 CALL @CTL ;Flush the type-ahead
 POP DE

First the KFLAG$ bits are reset via the call to RESKFL. Next, we take care of the
possibility that type-ahead is active. If it is, the PAUSE key was most likely
detected by the type-ahead routine and thus the PAUSE is stacked there also. We want
to flush (remove all stored characters) out the typeahead buffer. There are a few
ways of doing this. We could repeatedly call @KBD until no characters were remaining.
We could also use the undocumented scheme of writing a zero to the *KI device through
the @CTL call (i.e. a @CTL-0 written to *KI clears the type-ahead buffer commencing
with 5.1.2).

 Now that we are in a PAUSEd state and the type-ahead buffer is cleared, we need
to wait for a key input. The following routine does this:

 PROMPT PUSH DE
 CALL @KEY ; & wait for key entry
 POP DE
 CP 1
 JP Z,GOTBRK
 CP 60H
 JR Z,PROMPT

The PROMPT routine will accept a <BREAK> and branch to your BREAK handling routine.
It will ignore repeated <PAUSE> (the 60H). Any other character will cause it to fall
through to the following routine which clears the KFLAG$.

 RESKFL PUSH HL
 PUSH AF
 LD HL,(CKPAWS+l) ;P/u KFLAG pointer
 RESKFL1 LD A,(HL) ;P/u the flag
 AND 0F8H ;Strip ENTER, PAUSE, BRK
 RESKFL2 OR 40H ;Set ECM
 LD (HL),A
 PUSH BC
 LD B,16
 CALL @PAUSE ;Pause a bit
 POP BC

Page 81

 LD A,(HL) ;If got set again...
 AND 3
 JR NZ,RESKFL1 ; then reset it again
 POP AF ;Restore possible prompt
 POP HL ; char & exit
 RET

 The RESKFL subroutine needs to be called when you first enter your application.
This is necessary to clear the flag bits that were probably in a "set" condition.
This "primes" the detection. The routine also needs to be called once a BREAK, PAUSE,
or ENTER condition is detected and handled (its only necessary to deal with the flag
bits for the conditions you are using).

 Notice that throughout the entire CKPAWS routine, "KFLAG$" was referred to in
only one instruction. This was done so that the Model check (I or III) need only
update one address in memory. Now you can clean-up your "paws".

Interfacing to @ICNFG

 Many years ago in a galaxy far far away... Actually, it's probably been between
one and two years ago. With the capability of SYSGEN, many of our users preferred to
SYSGEN the RS-232 driver. When that was attempted, it worked okay as long as you did
not power down your machine. This particular limitation was certainly something we
all could not live with. The problem was that the RS-232 hardware (UART, Baud Rate
Generator, etc.) needs to be initialized before it can be used. It wasn't good enough
to just configure with the RS-232 driver resident, some initialization routine was
necessary. Thus, the need to be able to invoke, at BOOT, a routine to initialize the
RS-232 driver, became evident. Out of this came the @ICNFG vector (which is an
acronym for "initialization configuration").

 The @ICNFG vector is always called by the SYS0 initialization stub after any
configuration file is loaded. Thus, any initialization routine that is part of a
high-memory configuration, can be invoked by chaining into @ICNFG. The following
procedure may be examined to illustrate this link. The first thing to do is to move
the contents of the @ICNFG vector into your initialization routine. The subroutine:

 LD A,(@ICNFG) ;Get opcode
 LD (LINK),A
 LD HL,(@ICNFG+1) ;Get address
 LD (LINK+1),HL

does this by transferring the three byte vector to your routine. You then need to
relocate your routine to its execution memory address. Once this is done, transfer
the initialization entry point to the @ICNFG vector as a jump instruction with:

 LD HL,INIT ;Get (relocated)
 LD (@ICNFG+1),HL ; init address
 LD A,0C3H ;Set JP instruction
 LD (@ICNFG),A

 If you need to invoke the initialization routine at this point, then you can:

 CALL @ICNFG ;Initialize routine

 Your initialization routine would obviously be unique to the function it was to
perform. A template for such a routine would appear as:

 INIT EQU $;Start of mit
 .
 your initialization routine
 .
 LINK DB 'LSI' ;continue on

Page 82

 Don't forget to SYSGEN after linking in your routine. By following these
procedures, you can effect the invocation of your routine every time you boot LDOS.

Interfacing to @KITSK

 Consider for a moment that disk I/O can not take place during an interrupt task.
How then can we write "background" routines that perform disk I/O? The system printer
spooler does its despooling function as a background task. If we cannot perform disk
I/O during interrupt tasks, how can we despool? We achieve this by being able to
invoke background tasks in one of two ways. We can use the RTC interrupt (or other
external interrupt). Thus, type cannot be used to perform disk I/O. We can also use
the keyboard task.

 At the beginning of the LDOS keyboard driver is a call to @KITSK. This means
that any time @KBD is called, the @KITSK vector is likewise called (actually, the
type-ahead interrupt task bypasses this entry to inhibit calling @KITSK from the
interrupt routine). Therefore, if you want to interface a background routine that
does disk I/O, you must chain into @KITSK

 The interfacing procedure to @KITSK is virtually identical to that shown above
for @ICNFG and will not be repeated here. For the sake of clarity, you may want to
write your background routine to start with:

 START CALL ROUTINE ;Invoke task
 LINK DB 'LSI' ;Space for KITSK hook
 ROUTINE EQU $;Start of the task

 Now that I have demonstrated the procedure) let me point out one major pitfall.
The @KBD routine is invoked from @CMD which is in SYS1. This invocation is from the
@KEYIN call which fetches the next command line after issuing the "LDOS Ready"
message. If your background task executes and opens or closes a file (or does
anything to cause the execution of a system overlay other than SYS1), then SYS1 will
be overwritten by SYS2 or SYS3 respectively). When your routine finishes, the @KEYIN
handler returns to what called it which was SYS1. Unfortunately, SYS1 is no longer
resident. Thus crash city is upon you.

 ANY TASK CHAINED TO @KITSK WHICH CAUSES
 A RESIDENT SYS1 TO BE OVERWRITTEN MUST
 RELOAD SYS1 PRIOR TO RETURNING.

 Okay, how do you accomplish this without knowing system code (point of
information: if you are writing background tasks, you are writing system support
code!)? You will be able to use the following code to reload SYS1 if SYS1 was
resident prior to your task's execution. Don't forget to correct any Model I/III
vectors if your code is to run on either machine.

 ROUTINE LD A,(OVRLY$) ;P/u resident overlay
 AND 8FH ; and remove entry
 LD (OLDSYS+1),A
 .
 Rest of your task
 .
 EXIT EQU $
 OLDSYS LD A,0 ;P/u old overlay$
 CP 83H ;Was it SYS1?
 CALL Z,GETSYS1 ;Get sys1 back if it was
 RET
 GETSYS1 RST 28H ;Fetch SYS per reg A

Page 83

Miscellaneous Tidbits

 If you have a program that relocates to high memory, here is a caution to
observe. Note that any command can be executed from LBASIC via the <CMD"command
string>. LBASIC accomplishes this by shifting the BASIC program and variables to
available high memory and lowering HIGH$. That's why we inhibit the execution of
certain library commands that effect changes to HIGH$ (ever see the "Can't - Valid
only at LDOS" mesage?). Your program should do likewise. Therefore, if your program
behaves in the above manner, have it check the contents of @EXIT. If the @CMD request
came from LBASIC, then @EXIT will contain the start of a jump instruction (X'C3').
Thus, if it's a C3H, then inhibit your program from executing. If it's not a C3H, your
program is okay for execution.

 Well, that's it for this issue. If you have specific requests for the next
issue's "Roy's Technical Corner", drop a line to me at LSI. Good coding!

LES INFORMATION

by Les Mikesell

This column will deal with the technical aspects of the LDOS RS232 drivers and some
general information about using device I/O from within programs. The principle is
quite simple: any program can substitute a device name for a filespec in the routine
to OPEN a file, then use calls to @GET (013H) or @PUT (01BH) to input or output
characters through the device. OPENing a device actually creates a device control
block that is ROUTEd to the DCB that is known to the system. An LBASIC program can use
this function to OUTPUT to a device (such as *CL) by using statement OPEN "O",1,"*CL",
followed by PRINT#1,"string", where "string" can be one or more characters. As in the
sequential file access mode, a semi-colon must be used after the string if a carriage
return should not automatically be added at the end of the string. INPUT from devices
is also allowed, but is somewhat restricted by the lack of a single character input
(corresponding to INKEY$) that is usable with files or devices. Also, INPUT and
LINEINPUT require a linefeed following the carriage return to terminate the input when
used with devices, due to the method that is used to skip the linefeeds if encountered
when the input is done from a file. This problem will be addressed later. First, a
look at how it is done in machine code. The following program could be used as a dumb
terminal or to test input and output with any device. It is used by passing the device
name on the command line (like LCOMM).

; Simple terminal program using RS232/DVR
;
@KBD EQU 02BH ; get key press
@DSP EQU 033H ; display single character
@DSPLY EQU 4467H ; display line
@FSPEC EQU 441CH ; move file/device name
@OPEN EQU 4424H ; open existing file/device
@ERROR EQU 4409H ; get system error message
@GET EQU 013H ; input character fm fileldevice
@PUT EQU 01BH ; output character to file/device
@EXIT EQU 402DH ; normal exit to LDOS
@ABORT EQU 4030H ; error exit
;
 ORG 5200H
;program is entered with HL pointing one space past file name
START: PUSH HL ;save pointer to command line
 LD HL,LOGON ;point to log on message
 CALL @DSPLY ;display message
 POP HL ;restore command line pointer
 LD A,(HL) ;check character there
 CP '*' ;is it an * ?

Page 84

 JP NZ,NOTDEV ;if not, quit!
 LD DE,DCB ;try to OPEN it
 CALL @FSPEC ;first move name to DCB
 JP NZ,NOTDEV ;quit if error
 CALL @OPEN ;open device now
 JR Z,TERMIN ;all's well..
 OR 0C0H ;else set bits 6 & 7 of error
 CALL @ERROR ;get system error message
 JP NOTDEV ;then ours, and quit
;
TERMIN: LD DE,DCB ;point to device
TERM2: CALL @GET ;test for input from R5232
 JR Z,KEYCHK ;none, try keyboard
 CALL @DSP ;display received character
KEYCHK: CALL @KBD ;check for keypress
 JR Z,TERMIN ;no key press, try R5232
 CP 1 ; "BREAK" pressed?
 JP Z,@EXIT ;back to LDOS if so..
 LD DE,DCB ;point to R5232 device
 CALL @PUT ;send character
 JP TERM2 ;continue till break pressed
;
DCB: DS 32 ;space for device control block
;
NOTDEV: LD HL,ERRMSG ;point to error message
 CALL @DSPLY ;display it
 JP @ABORT ;quit
;
ERRMSG: DEFM 'Device Spec Required!'
 DB 0DH ; carriage return
;
LOGON: DEFM 'LDOS dumb terminal program'
 DB 0AH ; line feed
 DB 0DH ; carriage return
 ;
 END START

The program can, of course be expanded to include any additional functions that are
desired. It demonstrates the use of @GET and @PUT, but the device drivers may also
allow using the @CTL call (023H) to pass various control information between the
program and driver. The control functions are accessed by loading DE with the address
of the DCB, A with the control function number, and calling @CTL. If the driver
returns a value to the program, it will be passed in the A register or the status flag
register. The functions currently provided by the LDOS drivers are:

With the printer and RS232 drivers, sending a zero through @CTL will cause the driver
to test the output status of the device (can it accept a character now?) and set the Z
flag accordingly (Z set means READY). This is the method used by the LDOS spooler to
quickly determine if it can output any characters during an interrupt cycle.

KI/DVR accepts a zero through @CTL as a command to clear out the type-ahead buffer.
(5.1.2 and 5.1.3)

The RS232T/DVR (for the Model 3) also includes two additional functions that are
related to its abiltity to receive and buffer characters using the hardware interrupt
from the RS232 interface. Passing a "W" (57H) through @CTL tells the driver that an
address is being passed in the IY register. This will be installed as a CALL address
in the interrupt processing routine. After each character is received and put in the
RS232T buffer, a CALL will be made to the specified address (the "wakeup" function).

Page 85

The subroutine at that address would typically call @GET to get the input character
and store it in a dedicated buffer for the program (Maintaining the buffer pointers
can be tricky, since characters can be added at any time). Passing an ASCII X (58H)
through @CTL will disable the CALL set up by the "W" function, and obviously must be
used before exiting from any program that has used "wakeup".

Now, for those who prefer to program in BASIC, I will show a couple of ways to access
the @GET routine to input from a device within a BASIC program. The most common need
for this ability would be to input characters from the RS232, but the principles would
apply to any device that can supply input.

The first method is a quick and dirty approach that only requires a few PEEKs and
POKEs to temporarily ROUTE the keyboard input requests to the desired device driver,
so that INKEY$, INPUT or LINEINPUT statements may be used to access the device. It may
only be used in the Model 1, due to a difference in the way ROUTEs are handled in the
Model 3. First, set up the *SI device by SETing it to the appropriate driver at LDOS
command level (e.g. SET *SI to RS232R), or ROUTE it to the desired device if it
already exists in your system (e.g. ROUTE *SI to *CL). Note that the ROUTE command for
an input device seems backwards - it actually means "ROUTE the input requests for
<source device> to <destination device>". The important point here is to get one of
the "known" extra DCBs set up for input from the desired device. This configuration
may be saved with SYSTEM (SYSGEN). Since the *KI and *SI DCBs are in fixed memory
locations, a BASIC program can use PEEKs and POKEs to simulate the ROUTE command at
any time. Now, PEEK the first three bytes from the *KI DCB (4015H - 4017H) and store
the values, then POKE a 16 (hex 10 - to indicate a ROUTE) into 4015H, followed by the
address of the *SI DCB in least significant, most significant format (this is
different on the Model 3, so this technique cannot be used). For the Model 1, this
would be POKE (&H4016),(&HC8): POKE (&H4017),(&H43) to set up the keyboard device
control block in a ROUTEd condition, so that any input requests that would normally go
to the keyboard driver will temporarily be satisfied by the *SI device instead. To
restore the normal keyboard, simply POKE back the saved original values. If
type-ahead is active, any keys that were pressed while the DCB was ROUTEd will still
be available when the DCB is restored to the KI/DVR.

A few precautions must be taken to make this method safe. save the current *KI DCB
contents EVERY TIME before POKEing in the ROUTE. Then you can be sure that you are
restoring the correct driver when you POKE these values back. Remember that JCL also
uses the *KI DCB, and if the /JCL file terminates in the BASIC program, the contents
of the DCB will be altered. This can only happen when the "real" keyboard is enabled,
so saving/restoring the values each time will avoid most problems. Also, the "real"
keyboard driver should be active whenever possible and the BREAK key locked out while
the *KI is ROUTEd. The system BREAK bit is set during interrupt processing, and it
would be possible to break a BASIC program with NO access to the keyboard if the ROUTE
is still in place, or even worse, the break could occur in the middle of POKEing the
DCB, which would crash the system!

Sample LBASIC terminal program for Model 1 ONLY
 at LDOS Ready, SET *SI R5232R

5 CLEAR 5000: DIM I%(3)
10 OPEN "O",1,"*SI" 'same device can be used for output
20 GOSUB 100 'get input from KB
30 IF IN$<>"" THEN PRINT#1,IN$; 'send any key pressed
40 GOSUB 200 'ROUTE input to *SI
50 GOSUB 100 'now input routine will check RS232
60 GOSUB 300 'restore keyboard
70 IF IN$<>"" THEN PRINT IN$; 'display anything received
80 GOTO 20 'continue forever
90 ' subroutines
100 IN$=INKEY$:RETURN 'note there is no wait for input here
200 FOR I%=0 TO 2 ' get three bytes

Page 86

210 KI%(I%)=PEEK(&H4015+I%) 'from the *KI DCB
220 NEXT : CMD"B","OFF" 'can't BREAK now!
230 POKE (&H4015),(&H10) 'indicate ROUTE
240 POKE (&H4016),(&HC8):POKE (&H4017),(&H42) '<=43 for Mod 1
250 RETURN
300 FOR I%=0 TO 2 'three bytes
310 POKE (&H4015+I%),KI%(I%) 'restore previous KB driver
320 NEXT: CMD"B","ON" 'OK to BREAK again
330 RETURN

This program would work at 110 baud or less as a dumb terminal, or the technique could
be used where there is some form of handshaking to prevent dropped characters. The
restrictions on this type of device access are: 1) it is slow if the swap is done for
every character, 2) it is not possible to input a zero character value, so it would
not work for binary data transfers where the null character is valid, 3) one of the
"known" spare DCBs must be used for the alternate input device, and 4) it only works
in the Model 1.

A USR routine called from BASIC can avoid these problems, but this approach is
slightly more complicated, since the machine language routine must be installed. It
is still possible to let BASIC do most of the work, by OPENing the device for output
to create the device control block and allocate some buffer space that can be used for
the USR code. First OPEN the device in the "random" mode and FIELD a dummy string
variable so the VARPTR value can be used to locate the buffer address. Then CLOSE the
device and re-open for sequential output using the same buffer number. Random access
to a device is not allowed, but the dummy FIELD allows the BASIC program to find the
file buffer, which will remain in the same location when the file is re-opened for
output. The DCB will be 32 bytes lower in memory. Then, a machine code routine can
be POKEd into the buffer space to load DE with the DCB, CALL @GET, and return the
value to BASIC as an integer number. Since integers are two byte values, the value in
excess of 255 can be used as an indication of whether a valid character was available
or not, so that all possible character values including 0 can be detected.

10 CLEAR 5000:DEFINT A-Z:GOSUB 120 'initialize I/O
20 'put loop first for speed - also delete remarks
30 'sample terminal program
40 IN$=INKEY$ 'Check keyboard
50 IF IN$<>"" THEN PRINT#1,IN$; 'send any characters
60 IN = USR1(1) 'check device input - the (1) is a dummy
70 IF IN THEN PRINT CHR$(IN-256); 'print rcvd chars
80 GOTO 40 'do it forever...
90 '
100 '
110 'initialization
120 OPEN "R",1,"*CL' 'this method can use any device name
130 FIELD 1,1 AS DU$ 'a dummy string just to find address
140 VP=VARPTR (DU$) 'String pointer address
150 BF=PEEK(VP+1)+256*PEEK(VP+2)'BF is address of file buffer
160 CLOSE 1 'end random mode
170 OPEN "O",1,"*CL" ' open again for sequential output
180 DCB=BF-32 : LB=DCB AND (&H00FF) 'low byte of DCB address
190 HB=(DCB AND (&HFF00))/256 'high byte of DCB address
200 POKE BF,(&H11) 'LD DE,... (start of USR code)
210 POKE BF+1,LB 'low byte of DCB address
220 POKE BF+2,HB 'high byte of DCB
230 POKE BF+3,(&HCD) 'CALL...
240 POKE BF+4,(&H13): POKE BF+5,0 ' @GET (13H)
250 POKE BF+6,(&H21) 'LD HL,...
260 POKE BF+7,0 : POKE BF+8,0 ' 0000
270 POKE BF+9,(&H28) 'JR Z,...

Page 87

280 POKE BF+10,(&H02) ' $+2 (return zero if no character)
290 POKE BF+11,(&H24) 'else INC H (set H=01)
300 POKE BF+12,(&H6F) 'LD L,A (put character in L)
310 POKE BF+13,(&HC3) 'JP... re-enter BASIC and pass value
320 POKE BF+14,(&H9A): POKE BF+15,(&H0A) ' 0A9A address
340 '..... any other initialization, etc.....
350 DEFUSR1=BF 'USR routine entry point
360 RETURN

This method may still be too slow for dependable 300 baud operation but should keep up
on a model 3. Remember that string handling is slow in BASIC and there is a danger of
losing data if string space must be compressed (BASIC's infamous "garbage
collection"). It could receive MUCH faster if blocks of data can be received and
stored in an integer array, then unpacked and stored between blocks. The value
returned by the USR function will be 0 if no character has come in, otherwise it will
be 256 + the character value. This allows detecting a zero as a valid character when
it is received. If the sending device is using parity, it will be necessary to AND
127 with the number to accept only the valid seven bits. After the machine code
routine is POKEd into the file buffer, it is important not to CLOSE the device until
the program is done with the USR function since that would clear the buffer and DCB.
This would occur if the program contains a global CLOSE statement.

The following CLFLT/FLT is a general purpose communications filter. It includes
features to add nulls after carriage returns, a delay between characters, and a
linefeed after every carriage return. It also provides a mask parameter to remove
parity bits during ASCII file reception.

00100 ;Communications filter for LDOS RS232 drivers to provide
00110 ;testing for modem carrier, delay between characters,
00120 ;and linefeeds and nulls after carriage returns.
00130 ; Enter with parameters:
00140 ; CARRIER = ON or Y /default is OFF
00150 ; Setting ON will cause all input or output requests
00160 ; to be ignored unless the modem is receiving a
00170 ; carrier signal
00180 ; ADDLF = ON or Y /default is OFF
00190 ; Setting ON will add a linefeed after each carriage
00200 ; return.
00210 ; NULLS = 0 to 256 /default is 0
00220 ; Number of nulls to send after each carriage return
00230 ; DELAY = 0 to X'FFFF' /default is 0
00240 ; Variable timing delay between output characters to
00250 ; allow sending to systems that cannot accept full
00260 ; speed transmission.
00270 ; MASK = ON or OFF Idefault is OFF
00280 ; Setting ON will strip the high bit from received
00290 ; characters, removing parity bits that may have been
00300 ; added by the sender. Use only for transmissions in
00310 ; the ASCII character range, not for 8-bit binary data.
00320 ; All parameters may be abbreviated with the first letter
00330 ;
00340 ; Hardware dependant EQUates.. Mod 1 addresses used
00350 RSHACK EQU -1 ;a logical TRUE for assembly
00360 LX80 EQU 0 ;logical FALSE (reverse for LX80)
00370 HIGH$ EQU 4411H ;<=change to 4049H for Mod 1
00380 @PARAM EQU 4454H ;<= 4476H for Mod 1
00390 @LOGOT EQU 428AH ;<= 447BH for Mod 1
00400 ;
00410 ; General EQUates...
00420 @EXIT EQU 402DH

Page 88

00430 @ABORT EQU 4030H
00440 @DSPLY EQU 446/H
00450 @DELAY EQU 60H
00460 LF EQU 10 ;linefeed character
00470 CR EQU 13 ;carriage return
00480 ;
00490 ; LDOS 'FILTER' command handler
00500 ;
00510 ORG 5200H
00520 ENTRY: PUSH DE ;save DCB pointer
00530 POP IX ;into IX register
00540 PUSH HL ;save cmd line pointer
00550 LD A,(DE) ;Pick up DCB type byte
00560 PUSH AF
00570 LD HL,SIGNON ;=>Signon message
00580 CALL @DSPLY ;print it
00590 POP AF ;restore type byte
00600 BIT 3,A ;Device routed to NIL?
00610 JP NZ,ISNIL ;Go if so
00620 BIT 4,A ;Routed?
00630 JP NZ,ROUTED ;Go if so (error)
00640 AND 7 ;does driver handle I/O
00650 CP 7 ; and @CTL?
00660 JP NZ,DEVERR ;Go if not
00670 POP HL ;restore cmd line pointer
00680 LD DE,PRMTBL ;Scan parameters
00690 CALL @PARAM
00700 JP NZ,PRMERR ;quit if error
00710 ;
00720 ;test parameter values and initialize filter
00730 LD BC,$-$;value set by @PARAM call
00740 ADDLF EQU $-2 ;<=here
00750 LD A,C
00760 OR B ;set flag
00770 LD A,LF ;load a line feed
00780 JR Z,NXTST ;go if not specified
00790 LD (LFFLG),A ;stuff byte if wanted
00800 ;
00810 NXTST: LD BC,$-$
00820 CARRY EQU $-2 ;<=setting for CARRIER
00830 LD A,B
00840 OR C
00850 JR Z,CKMSK ;no checking if zero
00860 LD A,0FFH ;Stuff FFH if check wanted
00870 LD (CFLAG),A ;for input request
00880 ;
00890 CKMSK: LD BC,$-$;MASK param
00900 MASK EQU $-2 ;set by @PARAM
00910 LD A,B
00920 OR C ;zero?
00930 JR Z,GETDVR ; no masking wanted
00940 XOR A ; set zero
00950 LD (MSK),A ; set NOP instd of RET
00960 ;
00970 GETDVR: LD H,(IX+2) ;pull driver address from
00980 LD L,(IX+1) ;DCB of device
00990 LD (DVRADD),HL ;put where needed in filter
01000 LD (DVR2),HL
01010 LD (DVR3),HL
01020 LD (DVR4),HL
01030 LO HL,(HIGH$) ;find top of available memory
01040 LD (OLDMEM),HL ;save in filter header

Page 89

01050 PUSH HL ;save
01060 LD BC,LAST ;end of relocated code
01070 PUSH BC ;save
01080 XOR A ;clear carry
01090 SBC HL,BC ;find offset of move
01100 EX DE,HL ;put into DE
01110 LD HL,(REL1) ;relocate absolute memory
01120 ADD HL,DE ; references used in the
01130 LD (REL1),HL ;moved code...
01140 LD HL,(REL2) ;by..
01150 ADD HL,DE ;adding offset of move
01160 LD (REL2),HL
01170 LD HL,(REL3)
01180 ADD HL,DE
01190 LD (REL3),HL
01200 LD HL,(REL4)
01210 ADD HL,DE
01220 LD (REL4),HL
01230 LD HL,(REL5)
01240 ADD HL,DE
01250 LD (REL5),HL
01260 POP HL ;end of filter (now)
01270 POP DE ;old HIGH$
01280 LD BC,LAST-FENTRY+1 ;length of relocated code
01290 LDDR ;move it
01300 LD (HIGH$),DE ;set new HIGH0
01310 INC DE ;point to filter entry point
01320 LD (IX+1),E ;Shove it in the DCB
01330 LD (IX+2),D
01340 ;*=*=*
01350 EXIT: JP @EXIT ;Done
01360 ;*=*=*
01370 ; Error handling
01380 ;*=*=*
01390 ISNIL: LD HL,ISNIL$
01400 JR ERROUT
01410 DEVERR: LD HL,DEVER$
01420 JR ERROUT
01430 ROUTED: LD HL,ROUTD$
01440 JR ERROUT
01450 PRMERR: LD HL,PRMER$;'Parameter error'
01460 ERROUT: CALL @LOGOT ;Display and log
01470 JP @ABORT ;Quit
01480 ;*=*=*
01490 ; Data area
01500 ;*=*=*
01510 SIGNON: DB 'CL/FLT - LDOS communications Filter'
01520 DB LF,CR
01530 PRMER$: DB 'Parameter error!',CR
01540 ISNIL$: DB 'Device not active!',CR
01550 DEVER$: DB 'Incorrect device type!',CR
01560 ROUTD$: DB 'Device is routed!',CR
01570 ;
01580 PRMTBL: DB 'ADDLF '
01590 DW ADDLF
01600 DB 'A '
01610 DW ADDLF
01620 DB 'CARRIE'
01630 DW CARRY
01640 DB 'C '
01650 DW CARRY
01660 DB 'DELAY '

Page 90

01670 DW DELAY
01680 DB 'D '
01690 DW DELAY
01700 DB 'NULLS '
01710 DW NULLS
01720 DB 'N '
01730 DW NULLS
01740 DB 'MASK '
01750 DW MASK
01760 DB 'M '
01770 DW MASK
01780 DW 0 ;end of list
01790 ;
01800 ;*=*=*
01810 ; Actual filter moved to high memory
01820 ; LDOS style header...
01830 ;*=*=*
01840 FENTRY: JR START ;Branch around linkage
01850 DW $-$;Last byte used
01860 OLDMEM EQU $-2 ;<=previous HIGH$ value
01870 ;
01880 DB 5,'CLFLT'
01890 ;
01900 ; actual filter routine
01910 ; the initialization code sets the flag byte to FFH if
01920 ; the test for carrier is wanted, 0 if not
01930 START: LD A,$-$;get flag for carrier test
01940 CFLAG EQU $-1 ;set according to params
01950 JR C,INPUT ;an input request
01960 JR Z,OUTPUT ;output request from program
01970 ; fall through if program called @CTL
01980 GSTAT: OR 0FFH ;reset C and Z so filter can...
01990 ;call driver for status
02000 DRIVER: JP $-$;go to old driver
02010 DVRADD EQU $-2 ;stuff driver address here
02020 ;
02030 ;
02040 ; use a test that will set NZ if going directly to the driver
02050 INPUT: INC A ;set Z if flag was FF for carrier
02060 ;
02070 CALL Z,STAT ;check for carrier if wanted
02080 REL1 EQU $-2 ;call address is relocated
02090 JR Z,IGNORE ; no carrier, skip it
02100 SCF ; input wanted
02110 CALL $-$;driver address
02120 DVR2 EQU $-2 ;stuffed by loader
02130 MSK: RET ;replaced w/NOP if MASK specified
02140 AND 7FH ;strip parity bit
02150 RET
02160 ;
02170 ; no carrier, so call driver to clear UART and buffer
02180 ; then ignore any received characters
02190 ;
02200 IGNORE: OR 0FFH ;be sure Z flag is off
02210 SCF ;carry flag on
02220 CALL $-$;get input from driver
02230 DVR3 EQU $-2 ;driver address
02240 XOR A ;throw character away
02250 RET
02260 ;
02270 OUTPUT: PUSH BC ;save @PUT character
02280 INC A ;Test flag (zero to skip)

Page 91

02290 CALL Z,STAT ;test carrier if flag was FF
02300 REL2 EQU $-2
02310 POP BC ;restore character
02320 JR Z,FAKEIT ;no carrier, dump output character
02330 ;
02340 PUSH BC ;save character
02350 CALL SLOW ;delay/send
02360 REL3 EQU $-2 ;address is relocated
02370 POP BC
02380 LD A,CR ;check for carriage return
02390 CP C ;being output
02400 JR NZ,FAKEIT ;done if not
02410 ;
02420 LD A,$-$;A 0 or LF (set when loaded)
02430 LFFLG EQU $-1 ;stuff byte according to parameter
02440 LD DE,$-$;pick up NULL count
02450 NULLS EQU $-2 ;set by @PARAM
02460 PUSH DE ;save count
02470 LD C,A ;the @PUT char (0 or LF)
02480 OR A ;LF needed?
02490 JR NZ,SEND ;output if so
02500 ;
02510 POP DE ;else restore NULL count
02520 NLOOP: LD A,D
02530 OR E ;test if done
02540 JR Z,FINAL ;go if finished
02550 DEC DE ;else count down nulls
02560 PUSH DE ;save count
02570 SEND: CALL SLOW ;pause/send character
02580 REL4 EQU $-2 ;address goes here
02590 LD C,0 ;load null to send
02600 POP DE ;restore count of nulls wanted
02610 JR NLOOP ;send until done
02620 ;
02630 SLOW: PUSH BC ;save @PUT char
02640 LD BC,$-$;get DELAY value (loaded by @PARAM)
02650 DELAY EQU $-2 ;value stuffed by @PARAM
02660 LD A,B
02670 OR C ;check for zero (default)
02680 CALL NZ,@DELAY ;(always sets Z flag)
02690 POP BC ;restore character
02700 CALL $-$;driver, to output character
02710 DVR4 EQU $-2
02720 ;
02730 FINAL: LD A,CR ;Load the original @PUT char
02740 LD C,A ;into C and A in case other
02750 ;filters are active
02760 FAKEIT: CP A ;set Z flag for good return
02770 RET ;done with output
02780 ;
02790 ;
02800 STAT: LD C,0 ;for status check
02810 CALL GSTAT ;call driver for status
02820 REL5 EQU $-2 ;relocated when loaded
02830 ;
02840 ;the status call returns the modem status byte from the UART
02850 ;or SIO chip in register A, as well as the output status
02860 ;in the Z flag, but the bit values depend on the hardware
02870 ;
02880 IF RSHACK ; this test applies to std Mod 1 or 3
02890 CPL ; 0=ON in UART, so flip bits
02900 BIT 5,A ;check for carrier signal bit

Page 92

02910 ENDIF
02920 ;
02930 IF LX80
02940 NOP ;patch space to modify
02950 BIT 3,A ;carrier bit from LX80 SIO
02960 ENDIF
02970 ; Z=no carrier, NZ=carrier on...
02980 RET
02990 LAST EQU $-1 ;used for length calculation
03000 ;
03010 END ENTRY

LATE BREAKING NEWS AND OTHER ASSORTED ITEMS

The following is a series of patches for Radio Shack's new SuperScripsit. They were
done by Tom Price and the people at Powersoft. Any questions on this article should be
addressed to them.

Patching SUPER SCRIPSIT(tm) For Use With The LDOS 5.1.3 Operating System
By: Dennis A. Brent and Renato Reyes Ph.D

 Radio Shack's new entry in the word processing jungle is out and it sure looks
like a winner! SUPER SCRIPSIT is everything that Tandy has been promising and more. It
incorporates many features which have been lacking in other WP programs, notably the
ability to deal with files larger than available memory, and the ability to interface
to a wide variety of printers. This new system has so much flexibility and so many
neat features, that we will save the review for another article. Take our word,
though, it is some of the nicest software to come out of Texas, outside of SUPER
UTILITY!

 Wouldn't it be nice to combine all this new word processing power, and use it
under LDOS too! That is what we thought, and we decided to do something about it. On
top of modifying SUPER SCRIPSIT for use with LDOS, we wanted to run SuperScripsit on
our Laredo Hard Drive. All of the above is now possible, and has been well-tested.
This information is available below, and also in the PowerSOFT XTRA-80 Sig and LDOS
Sig Database on MicroNET for your down-loading pleasure. We do not have the new Radio
Shack Hard Disk yet, but we assume that these patches will work just fine on THAT
system running under LDOS 5.1.3. We have included a JCL file for easy application.

 We also have developed printer drivers for the EPSON MX-series printers equipped
with GRAFTRAX-80 or GRAFTRAX-Plus. These drivers interface directly with SuperScripsit
and allow you to make use of the many printing modes and special features of your
EPSON printer. The driver programs will permit you to print properly-justified text in
any one of the four print sizes the EPSON is capable of: expanded print, double-wide
compressed print, standard 10-chars.-per-inch print, and compressed print. The print
sizes are selected by supplying the correct pitch value to SuperScripsit at document
OPEN time.

 All EPSON drivers support underlining, boldface, and italics using SuperScripsit
control codes. In addition the Graftrax-Plus drivers (two are supplied) support
superscripting and subscripting. When emphasized print mode is switched in, the
drivers will automatically switch it off when printing superscripts and subscripts
(otherwise the EPSON would refuse to do super/subscripts). The Graftrax-Plus drivers
will also trap illegal conditions such as switching emphasized print mode on while in
compressed print size (the GRAFTRAX-Plus ROMs sometimes respond to this by switching
compressed print OFF, which is undesirable).

 The EPSON printer drivers are available on disk for $29.95. Ask for the PowerSOFT
drivers for SuperScript(tm). Included as a free bonus are all the patch files
necessary to get SuperScripsit running under LDOS 5.1.3 on your disk. This way, you do
not have to type them in!

Page 93

 We will develop SuperScripsit printer driver software for other printers and
release them in the near future. In the works are a printer driver for the excellent
C. Itoh PROWRITER which will support proportional printing, as well as a driver for
the new ANADEX series of printers. We would like to thank Tom Price for his invaluable
help and guidance in getting these patches in the "bug-free" state that they are in.
We would also like to thank Earle Robinson for his testing and suggestions.

8/26/82

These are the patches necessary to make SuperScripsit from Radio Shack work correctly
under LDOS 5.1.3. These patches permit the creation and maintenance of files which are
an even multiple of 256K (B-I-G files!).

Model III

.SCRIPIII/FIX

.LDOS Patch to SuperScripsit by Tom Price and Renato Reyes

.Permits operation under LDOS 5.1.3 Mod III

.This patch compliments of PowerSOFT

.

.PATCH SCRIPSIT/CMD USING SCRIPIII/FIX

.
D00,08=3A 89 42 32 20 5B CD 01 5B
D05,2E=C3 16 5B
D09,0D=E5 CD 90
D09,10=42 E1 C0 23 23 46 23 7E B7 3E FF 20 03 00 00 78
D09,29=CB 8F 32 89 42 E5 2A 14 45 22 14 5B 3E 0A CD 40 40 E1 C9 00 00
D09,3E=ED 5B 14 5B 3E 0A CD 3D 40 3E 00 32 89 42 C3 2D 40
.. End of patch SCRIPIII/FIX.

.SCR17III/FIX

.LDOS Patch to SuperScripsit by Tom Price and Renato Reyes

.Permits operation under LDOS 5.1.3 Mod III

.This patch compliments of PowerSOFT

.

.PATCH SCR17/CTL USING SCR17III/FIX
D02,40=38
D02,46=D6 30 4F 06 00
D02,DA=37
D04,69=4C 44 4F 53 20 20
... End of patch SCR17III/FIX.

Model I

.For MODEL I SuperScripsit. Apply the patch to Model I SCRIPSIT/CMD

.

.SCRIPI/FIX

.LDOS patch to Model I SuperScripsit by Tom Price & RB Reyes

.Permits operation under LDOS 5.1.3 Mod I

.This patch compliments (f PowerSOFT

.

.PATCH SCRIPSIT/CMD USING SCRIPI/FIX

.
D00,08=3A 1F 44 32 20 5B CD 01 5B 00
D05,2E=C3 16 5B
D09,07=47 0E FF 21 9B AC E5 CD 96

Page 94

D09,10=43 E1 C0 23 23 46 23 7E B7 3E FF 20 03 00 00 78
D09,20=32 22 7E AF
D09,28=C9 CB 8F 32 1F 44 E5 2A
D09,30=14 45 22 14 5B 3E 0A CD 13 44 E1 C9 00 00 ED 5B
D09,40=14 5B 3E 0A CD 10 44 3E 00 32 1F 44 C3 2D 40 00
...End of patch SCRIPI/FIX

 If you are running a double-density Model I system under
LDOS 5.1.3 you can also get directory display capability under
Model I SuperScripsit by following these steps:

1) Copy the Model III SCR17/CTL to your Model I Super
 Scripsit disk. Also copy the Model III HELP/CTL module to
 your Model I system.

2) Patch the SCR17/CTL module which you just copied as
 follows:

.SCR17HY/FIX

.Patch to Model III SCR17/CTL module for use under Model I

.SuperScripsit running double-density LDOS 5.1.3/I.

.This patch compliments of PowerSOFT
D02,40=38
D02,46=D6 30 4F 06 00 CD 63 44
D02,DA=37
D04,69=4C 44 4F 53 20 20
...END OF PATCH.

 The use of this module will also permit you to use the Mod
III dictionary and proofreader in place of the Mod I's. Just
copy over the Mod III PROOF/CTL to your model I SuperScripsit
disk along with the rest of the dictionary files for Mod III.

 No patching of PROOF/CTL needed. Be careful not to mix
dictionaries as they use different encoding schemes.

JCL File for automatic applicaton:

.SCRLDOS/JCL - Automatic Applicator for SuperScripsit Patches

.for use with LDOS 5.1.3 - Compliments of PowerSOFT

.This file will modify Radio Shack's SuperScripsit to run

.under LDOS 5.1.3. The SuperScripsit files must have already

.been transferred onto an LDOS 5.1.3-readable disk.

.Has this been done?
//Keyin 1 if yes, 2 if no ==>
//2
Please do this now.
//Exit
//1
.Which system do you wish to implement:
.
. (1) Model III
. (2) Model I
. (3) Hybrid Model I with directory
. display
.
//Keyin your choice (1, 2, or 3) ==>
//1
Patch Scripsit/Cmd using SCRIPIII/FIX
Patch SCR17/CTL using SCR17III/FIX

Page 95

.Your SuperScripsit is now usable under LDOS 5.1.3-III
//exit
//2
Patch Scripsit/cmd using SCRIPI/FIX
.Your SuperScripsit is now usable under LDOS 5.1.3-I.
//exit
//3
.This requires that you copy the following MODEL III files
.onto your Model I SuperScripsit disk.
. (1) SCR17/CTL
. (2) HELP/CTL
.Has this been done?
//Keyin 1 for yes, 2 for No ==>
//2
.Please do this now and rerun this JCL.
//exit
//1
Patch Scripsit/cmd using SCRIPI/FIX
Patch SCR17/CTL using SCR17HY/FIX
.
.You now have a hybrid Model I SuperScripsit system with
.directory display implemented. You may also use the Model III
.Proofreader with this implementation. Copy the Model III
.Proof/Ctl module onto your Model I system and use the Model
.III Scripsit dictionary.
.
//exit

SuperScripsit(tm) is a registered trademark of the Tandy Corp.

ITEMS AT RANDOM

The following pieces of news and other information were received too late to be placed
in the regular part of the newsletter, so they are here at the end.

First, available from SoftERware is an MX-80/100 printer driver for the new
SuperScripsit program. It handles different functions for the Epson printers that have
the Graftrax option installed. The price is $18.95, and the driver and information on
it can be obtained from SoftERware at 16007 Miami Way, Pacific Palicades, CA 90272.

Bob Snapp has reduced the prices of his SNAPPWARE products for the LDOS system. These
products, as well as his trial package, are available from Logical Systems or direct
from Snapp at 3719 Mantell Ave., Cincinatti, OH 45236. The new prices are:

 SNAPP-II $39.00
 SNAPP-III $35.00
 SNAPP-IV $35.00
 SNAPP-V $29.00
 SNAPP-VI $35.00
 SNAPP-VII $19.00
 TRIAL PACK $10.00

An upper case version of LED will soon be available for those Model I owners who do
not have a lower case modification in their CPU. It will come standard on the LED
master disk.

Page 96

The LDOS Quick Reference card listed in our price list under catalog # L-40-060 should
be available by the end of October. This will be a typeset, 3 color, glossy card with
10 panels per side. It will detail the LDOS Library comands, filters, drivers,
utilities, LBASIC statements and errors, and several other charts. The price is $5.95
which includes shipping.

The following is a series of patches by Richard Deglin for the Microsoft Macro-80
Editor Assembler package. For a complete explanation, refer to the comments in the
patch files. The patches from the October Quarterly that are referrenced in this
article can be found on the fix disk, as explained at the end of this section.

. M80TITLE/FIX

. Patch to Microsoft M80 3.43

. Written by Richard N. Deglin 08/l0/82

. (1) Extracts system date and places it in M80 title

. (2) Prints M80 title as logon message

. Requires previous patch M80/FIX, LDOS Quarterly, Oct 1981, page 17!
X'5216'=C3 C2 97
X'97C2'=E5 CD 5D 96 20 06 21 33 30 22 D2 97 21 25 98
X'97D1'=CD 70 44 2A 28 98 22 1C 6B 2A 2B 98 22 23 6B
X'97E0'=2A 25 98 7D D6 30 06 00 28 02 06 0A 7C D6 30 80 3D 47 87 80
X'97F4'=21 2D 98 16 00 5F 19 11 1F 6B 01 03 00 ED B0 3E 0D
X'9805'=32 25 6B 3E 20 32 1B 6B 21 0D 6B CD 67 44 3E 09
X'9815'=32 25 6B 32 1B 6B 21 DB 92 22 17 52 E1 C3 DB 92
X'982D'="JanFebMarAprMayJunJulAugSepOctNovDec"
. EOP

. patch MACRO80/CMD Version 3.34 - 02/24/82

. allow lowercase listing output (strings, titles, comments, etc)
X'914B'=00
. EOP

. patch MACROB0/CMD Version 3.43 - 06/20/82

. allow lowercase listing output (strings, titles, comments, etc)
X'965B'=00
. EOP

. patches to EDIT80/CMD l.0 - 02/24/82

. (1) change P<CR> command to scroll only 15 lines
X'69BF'=15
.(2) change all listing formfeeds to carriage returns
X'66FD'=0D
X'6C35'=0D
X'878D'=0D
. (3) enable lowercase commands
X'624C'=38 03 DE 20 77 F1 7E 23 30 15
. EOP

. patch CREF80/CMD Version 3.43 - 07/31/82

. allow lowercase listing output (strings, titles, comments, etc)
X'5C37'=00
. EOP

FIXES and the FIX DISK

Logical Systems has a disk available that contains the major patches that we and our
users have assembled to date. This disk is available for 0 from LSI. A hardcopy
only version is also available for 0 The current contents of the disk are as
follows:

Page 97

The date of this release is 10/01/82.

***** FIX/TXT - Contains instructions for the SCRIPT, LSCRIPT, and VC patches.

***** SCRIPT1/FIX - Makes Model 1 SCRIPTSIT, Version 1.0, work with Model I LDOS.

***** SCRIPT3/FIX - Makes Model 1 SCRIPSIT, Version l.0, work with Model III LDOS.

***** SCRIPT32/FIX - Makes Model III Scripsit Version 3.2 work with Model III
LDOS.
Unlike the Script3 fix, no additional features such as a directory query or use of the
spooler are supported.

***** LSCRIPT/FIX - Enhances Model 1 SCRIPSIT, Version l.0, for use on either Model I
or III LDOS.

***** PENCIL/FIX - Lets ELECTRIC PENCIL, Version 1, work with Model I LDOS.

***** VC/FIX - Makes Model I Visicalc, Version 1.20Z, work on Model I or III LDOS.

***** RSCOBOL/FIX, RUNCOBOL/FIX, CEDIT/FIX - Makes Radio Shack COBOL work on either
Model I or III LDOS.

***** RSBASIC/FIX, BEDIT/FIX - Makes Radio Shack BASIC Compiler work with Model I or
III LDOS.

***** EDIT80/FIX, LINK80/FIX, CREF80/FIX, M80/FIX - Makes Model I Microsoft MACRO-80
Assembler run on either Model I or III LDOS.

***** BASCOM/FIX, BRUN/FIX, LINK80B/FIX - Makes Model I Microsoft BASIC compiler run
on either Model I or III LDOS.

***** FORLIB/FIX, F80/FIX, LINK80/FIX, EDIT80/FIX - Makes Model I Microsoft FORTRAN
run on either Model I or III LDOS.

***** DTPLAN/MRG - A series of fixes for the BASIC Desktop Planner program from Radio
Shack.

***** MLS/MRG - Fixes the MLS program of Radio Shack's Business Mailing List program.

***** VC31/FIX - Fixes Model III Visicaic Version 3.1Z for use with Model III LDOS.

***** VC3l5/FIX and VC316/FIX - Fixes Model III Enhanced Visicalc Version 150Y0
and
160Y0 for use with Model I or III LDOS.

***** SCRIPI/FIX, SCRIPIII/FIX, SCR17/FIX, SCR17HY/FIX - Patches for SuperScripsit to
run on the Model I and III with LDOS.

***** EDITIII - Fixes Model III FORTRAN editor EDIT/CMD file loading.

Page 98

QuizMaster is an educational/informational question and answer program and
can also be used as a game. Its basic operation is to display a question and
four possible answers. It scores the operator's response based upon the speed
as well as correctness from one of three possible skill levels.

QuizMaster randomizes the order of the answers to prevent memorization. The
question sequence is never the same. Extended play provides a "sudden death"
feature for the skillful user.

QuizMaster comes with three subject files of 100 questions each, U. S.
Information, General trivia as well as Fantasy and Science Fiction trivia.
These files can be increased or edited, or the user's own specialty files can
be created and utilized. Each file can hold up to 255 question/answer sets
and the only limit to the number of files is the number of diskettes you
possess.

QuizMaster is educational, interesting and addictive. QuizMaster runs under
the LDOS operating system to utilize maximum efficiency. The QuizMaster
system includes all the facilities necessary to establish and maintain a
series of multiple choice questions on any subject whatsoever. The system is
comprised of several machine language modules for fast and accurate access
and response times.

Word Processor-Like Input Editor

For ease of entry an "input editor" allows full transparent cursor motion
along with insert and delete modes, type over and fast cursor positioning.
This feature is found in both the "Add" and "Edit" modes.

Five Support Programs Included

Five support programs are provided to create, extend, edit, print and
maintain question/answer files. Also included is a program to reconstruct a
file that has been damaged by disk I/O errors or faulty disk media. A packing
module allows files that have been heavily edited to be compressed and use
disk space more efficiently.

All features are easy to use and easy to operate. Everybody loves trivia and
now you can control it. Other uses include

 *** classroom testing
 *** procedure quizzes
 *** product knowledge
 and
 *** group entertainment

QuizMaster can be ordered now for just $39.00

Page 99

The BASIC Answer is a BASIC text processing utility. It is designed to allow
the BASIC programmer to build code in a structured manner. "Source" code is
written with a word processor or text editor which allows the user to exploit
the powerful editing and movement features characteristic to those types of
editors. Source code can even be created by your own BASIC interpreter.
The BASIC Answer is then used to process these files into normal interpretive
BASIC code.

Free yourself from line numbers

The BASIC Answer allows substitution of labels for line numbers! This means
that your BASIC code now can read like a novel. Instead of the typically
undescriptive "GOSUB 1000", a label such as "GOSUB @Search.Name" is used.
Imagine yourself reading code filled with such descriptive branches and
understanding it at a glance, even years later. This feature even allows
totally relocatable BASIC routines without the renumbering problems.

A New Concept in Variable Usage

The BASIC Answer allows variable names to be as long as 14 characters and ALL
14 are significant. Imagine reading

"IF ACCNT.OVERDUE# > 0 THEN GOSUB @PRINT.DUN"
or

"IFAO#>0THENGOSUB52130"

Which would you rather read? It also introduces to BASIC the concept of
Global and Local variables. This feature circumvents the tedious problem of
variable tracking because a Local variable is only viable in its own
subroutine!

End the Multiple Machine Hassle

The BASIC Answer introduces the concept of "Conditional Translation." This
feature allows the programmer to place different "machine dependent" code
simultaneously into the same Source Code. The BASIC Answer can be "switched"
when processing to ignore the unwanted or include extra code! No more
multiple master programs to confuse maintenance. All the masters could now be
rolled into the same program. Modify the one master and you've modified them
all. Process the same code with different switches set, and get two or more
versions from the same source.

The BASIC Answer combines the self-documenting power of COBOL with the
relative ease of BASIC together with the power of a word processor.

The BASIC Answer is available for just S69.00

Page 100

