
THE LDOS QUARTERLY July 1, 1982 Volume 1, Number 5





THE LDOS QUARTERLY               July 1, 1982             Volume 1, Number 5

Table of Contents

VIEW FROM THE BOTTOM FLOOR ....................................... Page   2

FREE SOFTWARE FROM LSI! .......................................... Page   5

5.1.3 RELEASE .................................................... Page   5

WHAT'S NEW ? - LDOS COMPATIBLE SOFTWARE .......................... Page   6

NEW LSI PRODUCTS ................................................. Page   8

ARTICLES AND REVIEWS FROM OUR USERS:

     REVIEW - Earle Robinson reviews MICROCOMPUTER MATH .......... Page  10

     PARITY = ODD by Tim Daneliuk ................................ Page  11

     ..er.. - Earle Robinson on assembly language programming .... Page  14

     LDOS - IT'S GREEK TO ME by Charles Knight ................... Page  15

     HINTS AND TIPS contributed by our users ..................... Page  18

FROM THE LSI STAFF:

     ITEMS OF GENERAL INTEREST - Includes the "We Surrender" Patch
                      to disable /BAS in LBASIC .................. Page  18

     RTC - Roy describes the LDOS Task Processor ................. Page  20

     THE JCL CORNER by Chuck ..................................... Page  34

     LES INFORMATION by Les Mikesell ............................. Page  40

USER CONTRIBUTED PROGRAMS:

     RENAME - ADD THOSE DEFAULT EXTENSIONS ....................... Page  41

     VC3/FIX - A patch for Model III Visicalc .................... Page  43

FIX512 - KSM and KI/DVR patches for Version 5.1.2 ................ Page  44

LATE BREAKING NEWS AND OTHER RANDOM ITEMS ........................ Page  45

Copyright (C) 1982 by Logical Systems, Incorporated
11520 N. Port Washington Rd.  Mequon  WI  53092

(414) 241-3066

Page - 1



V I E W    F R O M    T H E    B O T T O M    F L O O R

Well, LSI has now  taken over all the available  space in our office  building
and is  still  looking  for  more. Thanks  to our  dedicated  users and  their
promotion  of our  products, LSI  has  grown beyond our wildest  dreams. As we
have grown,  things have changed  (sometimes too often)  and we have tried  to
keep our customers in mind as these changes have occurred. One change of  late
is a  major addition to  our staff, Les Mikesell.  Les will be in  our systems
software group  working on maintenance of our LDOS product line as well as  on
new projects. We are sure Les will be a valuable addition to our staff.

Speaking  of changes,  we  are  considering  relocating our  company  and  are
looking for suggestions. We  are looking  to  move to a friendly climate, with
minimal tax burdens.  If  you or someone you  know  is involved  in your local
Chamber  of Commerce  or  City  Planning  organization,  please  get  us  what
information  you can. You  may be  living in the perfect place. If so,  let us
know where that is.... we are looking for that "perfect" place.

In the  last Newsletter I made reference to our new hot-line service.  This is
a  pilot program and we  will have to  see  how  it works out.  There  are  no
promises  that this  will be a  permanent service. The phone  number is  (414)
241-4100 and will be available  24 hours a day starting the last week of July.
This  Hot-Line  will have 1  to  3  minutes  of  LDOS  announcements  and info
available  to anyone. The Information will change as required,  probably every
week or so.

All  registered  LDOS owners have  received this newsletter,  but  for  owners
whose  support  has expired  or  are new owners  not  on the Extended  Service
Agreement (ESA)  this will be the  last  newsletter  that they receive. If you
wish to  continue  getting the publication and  get  on or remain on MicroNET,
and have forgotten  or misplaced your ESA,  there is  one in the back of  this
issue for your use.

Radio  Shack  has finally released their  double density modification for  the
Model I. It seems to work very well  and we have released the driver as RDUBL,
which is  now  included on  the  Model  I 5.1.3 LDOS. That's right   - a 5.1.3
version of  LDDS  is now  available.  This  5.1.3 update  is available to  5.1
owners (Mod I  and  III) for  just $10.00 or $5.00 if they are on the Extended
Service Agreement plan. The 5.1.3  release  of  LDOS  was required  to provide
additional compatibility  to  upcoming Model  III  type  software and  to  add
several  small  enhancements and corrections  to  LDOS. A new vector was added
called RAMDIR, which  is  in TRSDOS Model III. This is not a patchable  update
as  the  entire system was reassembled,  so  you will have  to send in  for an
update. Complete  information  about  this update  will  be  included when  we
return your updated disk.

Lobo  Drives  in Goleta,  California  has announced  a new  product called the
MAX-80.  This  is  a  64K  Z-80 computer that  is Model I and  Model  III type
compatible as well as capable of being run in a "full ram" mode. This  machine
has a programable character generator, a full  blown  keyboard, controller for
5 and 8 inch drives, a hard disk host adaptor, and 64 x 16  and 80 x 24 video.
Even dual serial ports are standard, along with  many other exciting features.
A special LDOS system will be provided with  this machine.  The big news about
this computer is the  price...... under $1,000 retail !!! This could easily be

Page - 2



the best  computer buy  available  at this  time.....  If you or a  friend are
considering a new Z-80  machine,  check this  one out. Deliveries are expected
to begin in early  fall (maybe late summer).  I'm  sure  there will be quite a
backlog  for this machine, so get your order in early to get on the list. Call
or  write  LOBO  at  354  5.  Fairview,  Goleta,  Ca.  93117  -  Toll  free  -
800/235-1245 (Calf) 800/322-6103.

Some of our customers may know of Kim Watt,  but  for those who do not, he  is
the author  of  Super Utility. Kim and the  company he works for, POWERSOFT in
Dallas  Texas, are two of the  biggest supporters of  the LDOS system and LSI.
For this, many thanks.  Powersoft offers a  line  of support products designed
to  run  on  LDOS  only.  These  useful  utilities  include  disk  repair  and
reconstruction programs as well as programming tools and utilities. There  are
a  total  of  six  packages offered,  each  containing a  group  of associated
utilities  and  priced  at  just  $29.00.  Most  of  the  programs   are  self
documenting and simple to use; many even have built-in  HELP type features. So
if you need  that  little "special something",  give  Powersoft  a call.  They
probably  have what you need, or you  may just want to get their  catalog  and
browse. I  personally use several  of these high level  utilities on a regular
basis when maintaining and  testing LDDS. So give  one  or two a try. You will
certainly  get  your  money's worth. They can be reached  at  Powersoft, 11500
Stemmons X-way, Dallas, Tx. 75229 - (214) 484-5783.

In the  last  newsletter there was an  offer to  any registered LDOS owner  to
purchase a  smal-LDOS. This  was a special introductory offer and this product
is  no  longer  available  for  retail  sale.  It  is  available  to  hardware
manufacturers and software publishers only.  However, the  smal-LDOS manual is
available for $20 to  any registered LDOS user. This manual is in the  form of
a  paperback  book  (about  160 pages)  and serves as an  excellent "reference
guide" for the day to day LDOS user.

One of our new products for this quarter,  The Basic Answer (TBA),  is one  of
the  biggest  advancements  in BASIC  programming  since Microsoft. This is  a
product  that will allow  a Basic programmer to write  basic code WITHOUT LINE
NUMBERS  and  with  up  to  14   CHARACTER  VARIABLES!!  This  product  should
revolutionize the way that you write your  basic programs. Now the source code
will make sense.

How  TBA works  is very simple. You write basic  code in  the same manner that
you  do  now except that all routines have names instead  of  line numbers and
variables can  be  up to  14 characters in length. You can even have variables
declared  as  local or global  in  nature.  You can write  your code  with  or
without  the  leading line numbers for  each  line,  so  you  can  use a  word
processor  or the TRS-80  basic  itself  to write  programs. Use as many tabs,
spaces,  comments or  linefeeds as needed to make the source self-explanitory.
When you are done you "compile" or process your source code  through  TBA with
listing, cross referrenced variables  and  conditional compilation  supported.
The output of  TBA  is  a compressed, optimised and ready to run BASIC program
that is Microsoft  compatible. Your  source  code  is easy  to follow and self
documenting but  the runtime code is very difficult to understand, so it makes
it very  hard  for  unauthorized  persons  to  "play"  with your  code. Moving
procedures or subroutines around in  your source or  adding new blocks of code
is  never a problem  as line  numbers are meaningless  in the  source. If  you
program in basic, give  this product a try;  you'll never go back  to the  old
way. There is more information on TBA elsewhere in this newsletter.

Page - 3



The official editor  assembler  that is endorsed by  LSI is EDAS from MISOSYS.
This assembler is a  great  product  as  it  is..... but it's  getting better.
Within the next couple months there will be a  new, even more powerful version
of EDAS. This new  version will  have nested  conditionals, nested *GETS and a
partial implementation  of  macros.  Many  other enhancements are being  added
including the ability to automatically deal with  line numbered  or  unumbered
source  files. This package  with  all new  documentation  is  expected  to be
priced at $100.  Contact MISOSYS at 5904 Edgehill Dr  Alexandria, Va.  22303 -
(703) 960-2998 for additional information.

We have several active  LDOS users submiting articles to this newsletter,  but
we need many more.  Why  not try your hand at authoring and article or two. If
we accept a  submission for  publication you may have  your  choice of $25 per
printed  page or, depending on the  size of the article, any  LSI  product  as
payment. Send any submissions in hardcopy and  on disk in Scriptsit compatible
format directly to  LSI,  attn: Quarterly Editor.  If  any program  listing is
involved  it must be included on the disk. Any subject matter is acceptable as
long as it has some connection to the LSI product line.

LSI  is proud  to announce the  aquisition of Galactic  Software.  Due  to the
heavy  interaction between LSI and Galactic in  the past year  it became  more
and more evident that LSI should  aquire  Galactic rather than contract  their
services. Effective on May 1,  1982, LSI became the owner of Galactic Software
Ltd.  This  aquistition  is  being  treated  as a  merger  with  some  of  the
Galactic's resources  being directed towards  application software. We hope to
bring sophisticated  applications out under  the LSI name by the  end  of this
year. The  next  newsletter will  contain  announcements regarding  our  first
major application products.

One thing  about our support of controllers,  printers, drives, speed-up kits,
memory mods, and  the  like. Please, if you  are thinking of getting  into any
non-Radio Shack  items that we have not stated official support for, give us a
call. We may not be able to  give you a positive yes or no that something will
work, but  we will try and  will pass along what other  users may have told us
about the product  involved. We want to help and we  try to have  very few (if
any) secrets at LSI. Also if you do  get  an item  that we do not "officially"
support  (usually  because we don't have one) and you find  it works fine with
LDOS or you have found a way to make it  work, LET US  KNOW. This  information
can be of great value other LDOS users.

Thank you all again for your active support of  our products and  our company.
I  sincerely  hope  that  you  and  your family   have  a  safe  and  pleasant
summer....

Page - 4



*****************************************************************************
*                                                                           *
*                                                                           *
*                   ATTENTION!! FREE SOFTWARE FROM LSI!!                    *
*                                                                           *
*                                                                           *
*****************************************************************************

Want a FED or a LED? How about a  Filter package or an EDAS? You name it, it's
yours, as long as . . .

Well,  almost free. The  LDOS Quarterly  is  always  on  the lookout  for well
written articles about almost anything having to with  LDOS and  any other LSI
products.  To get your free  software, all you have to do is submit an article
and have  it accepted for publication.  Upon acceptance,  you will be notified
and  will be allowed to select  from a group of software packages.  You  won't
even have to wait for the  article to be  published - we'll send  the software
as soon as you  make  your  choice. If you already have  all the software  you
want, we'll give you a choice of $25 per page instead.

When  submitting  articles,  you  should send  double  spaced  typewritten  or
lineprinted copy.  An ASCII  text file, a Scripsit  file,  or  a SuperScripsit
(when  available) file MUST accompany the printed copy! As an alternative, you
can leave the  file  on MNET, and we  will  pick it  up there. So  all of  you
authors (and that's almost  anyone out there), get those articles coming! Send
all correspondence to:

                    LDOS Quarterly Editor
                    11520 N. Port Washington Rd.
                    Mequon, WI  53092

5.1.3 UPDATE FOR MODEL I AND III

Several new programs and a new doubler  for the Model I have made it necessary
to release LDOS  Version 5.1.3. While we  were at  it, we added and/or changed
parameter defaults in a  couple of areas. A new system  vector,  @RAMDIR,  was
also added. For  those of you  who sent in for updates near the  end  of June,
your disks  were  returned  with  the 5.1.3 version so  you already  have  the
update  sheets. Model  I  owners  should send in both  disks,  as  substantial
changes were made in  the  program layout on the disks. For the  rest  of you,
here is a brief explanation of the changes.

NEW OR CHANGED PARAMETERS

   COPY  - The CLONE parameter  now defaults to ON,  meaning that the password
   status,  mod  flag,  and date  will now be carried  automatically  during a
   COPY.

   DEVICE - Three  new parameters allow the disabling of certain  parts of the
   disk drive, device, and options displayed.

   LIST - A  new parameter was added to allow  all 8 bits of a character to be
   displayed during an ASCII list.

Page - 5



   PURGE  - To  standardize using the command  with  and  without  parameters,
   PURGE now requires the use of a drivespec.

NEW OR IMPROVED PROGRAMS

   BASIC  -  A  short  program  to  translate  the  command "BASIC"  into  the
   appropriate "LBASIC" command.  It  also forces  an  EXT=OFF parameter to be
   executed.

   RDUBL - A Model I driver for the new Radio Shack doubler.

   PDUBL - A revised version to cure the "silent death" problem.

   SYS12/SYS -  A new  system module  containing the execution code to service
   the  @DODIR and the new @RAMDIR vectors. Note that the @DODIR code has been
   removed from SYS10.

NEW SYSTEM VECTOR

   @RAMDIR - This vector was defined by Radio Shack  on the Model III, but was
   not  implemented  by  LDOS. To  provide compatibility  with  upcoming Radio
   Shack  products, this vector was added  to  both  the  Model  I and III. It
   deals with getting a directory listing from inside  an application program,
   and is similar to  @DODIR. Unfortunately, sometime last spring when the 5.1
   version was being developed,  a typographical error on a spec sheet put the
   LDOS  @CKDRV vector  on  the  Model  III at X'4290'.  The true location was
   supposed  to have been  X'4209'.  You guessed it - @RAMDIR on the Model III
   is  defined by  RS to  be at X'4290'. So,  to  provide  compatibility  with
   programs written for  TRSDOS,  the @CKDRV vector has been moved to X'4209'.
   To clear up any confusion:

     Model I   - @RAMDIR = X'4396'   (new)
     Model III - @RAMDIR = X'4290'   (new)
     Model III - @CKDRV  = X'4209'   (moved)

   This change may affect current assembly  language programs that are running
   on  the  Model  III.  By contacting  the  program  author  with  the  above
   information  on the new  @CKDRV vector,  a one  byte patch  should cure any
   problems.  The most usual type of error will be a "Illegal drive number" or
   a "Device not available".

WHAT'S NEW ?

APL*PLUS

From  STSC,  Inc. comes the announcement of APL*PLUS/80, a version  of the APL
language for  the Model  III TRS-80. This version of the APL language  is said
to be compatible with STSC's APL*PLUS running  on the  IBM  and PDP VAX series
computers. Extensive documentation is  provided. Included  in  the promotional
information we received from STSC was a statement from a  user who was running
the system with LDOS and  a 5 Meg hard drive. Information can be acquired from
STSC, Inc., 2115 E. Jefferson Street, Rockville, MD  20852 (301) 984-5000.

Page - 6



MODEM80

From Les Mikesell comes a communications package called  MODEM80. It is a disk
oriented system  designed to allow data  transfer with a wide variety of other
computers or  terminals. All  programs  will run  in  either a Model I  or III
TRS80 with at least 32K and disk.

Programs are included to permit:

   (1)  Remote operation of  a  TRS-80 Model  I or III from  a  terminal  or a
   second TRS-80 through a  telephone link - files may be transferred with the
   unattended computer.

   (2)  Error free  file transfers with another TRS80 or a  computer  that can
   use the  protocol  of  the CP/M program "Modem"  which is  widely  used  on
   computer bulletin boards (and available on CP/M user group disk #25).

   (3)  File  transfers with many  other types of computers  with  the  TRS-80
   acting as  a  terminal.  The  communication parameters,  character set  and
   control characters may be re-defined as desired.

The  terminal  program  is  set  up  to be  easy  to use,  with  most commands
available both from menus and  control keys.  A single line may be transmitted
from  a  file,  allowing a more  flexible response to prompts  from the remote
computer. Both  transmit and receive files  may  be  active  at the same time,
allowing  the instructions to  the remote  to  be  transmitted from  one file,
while downloading its responses to another file.   DOS  commands and  programs
which execute in the  lower 16K  of  memory may be  executed while maintaining
positions in the transmit and receive files. The previous  screen contents are
restored when the DOS command is completed.

To order, send $39.95 + $2.00 shipping to:

        Leslie Mikesell
        4117 W. Hawthorne Trace Rd. Apt 207
        Brown Deer, WI  53209

Or send c/o Logical Systems.

LX80 owners note that a modified  version which uses  the  LDOS R5232L/DVR  is
also available for an additional $10.

ZGRAPH

ZGRAPH  by Karl  Hessinger is a  comprehensive editor  for the  TRS-80  screen
graphics published and distributed by MISOSYS.

The package contains:

   1) ZGRAPH - a BASIC program with a machine language support utility.

   2) BINCONV -  a utility to convert the finished display into several useful
   formats, including disk  load  module,  packed BASIC statements, BASIC DATA
   statements, and EDAS source code.

Page - 7



   3) DOSAVE  -  a filter for *KI that will permit  dumping the video contents
   to a disk file useable by ZGRAPH from any program that uses the  system *KI
   driver.

   4) BINPRINT  - a utility program to print the graphic files using a printer
   that supports compatible bit graphics.

   5) Example files of screen graphics.

Designs may  be created by simply using the cursor positioning commands to set
or reset the screen graphic  blocks, and text can be  interspersed as desired.
Several  complex functions are available to  draw  lines, rectangles, circles,
or  to move or duplicate  parts of the display.    The  <R>everse command will
reverse  all the black/white graphic areas  without  affecting the text on the
screen.  Other  commands  will  produce  horizontally  or  vertically Inverted
mirror  images, or  translate  all  occurrences of any  specific character  to
another character.   Partially completed screens may be merged with previously
saved files  or the  contents of any of the 4 buffers used by  the program for
temporary storage.   To  assist in the  use  of  the  program,  there are  two
helpful menus  of  commands which  can be  invoked without  losing the  screen
contents.

Files output  by  the ZGRAPH  program are  always written as  an  image of the
screen memory,  64 characters per line, terminated with a carriage return. The
utility  prog0am BINCONV can be used to convert these files (saved with a /BIN
extension)  into forms which may be integrated into programs,  or the BINPRINT
program  will  print  them  on a  printer  with  bit graphics (Epson, Okidata,
etc.).

If the goal is to  modify an existing  screen display from some other program,
the  DOSAVE  filter will  greatly  simplify  the  task by  copying  the  video
contents  into  a  file which may  be loaded into  ZGRAPH  for  editing.   The
ability  to  convert the  the output files into forms which may be  integrated
into BASIC or  machine language programs makes this package  useful to  anyone
wishing to integrate  graphics  into  their programs. ZGRAPH is available from
MISOSYS, P0 Box 4848, Alexandria, VA  22303-0848 (703) 960-2998.

NEW PRODUCTS FROM LSI

THE BASIC ANSWER

Logical Systems is  proud to  announce a new product, called The BASIC Answer.
Targetted  release date  for this product  is scheduled for September '82, and
the tentative price has been set at $69.

This software package is a  BASIC text processing utility, and is designed  to
allow the BASIC  programmer to build  his/her programs in a structured manner.
"Source"  code is written  by the user either with  a word  processor (such as
SCRIPSIT), or can even be written  in BASIC. After the creation of this source
code, The BASIC Answer  is used to generate "Object" code,  which is the  same
as a normal "interpretive BASIC" program.

Page - 8



Several  advantages are gained by  using The BASIC Answer to generate programs
as opposed to writing  programs in the BASIC environment. The use  of absolute
line numbers in your BASIC program will be eliminated.  Descriptive Labels (up
to fourteen characters in  length) can be used to reference points of transfer
in your program. This  concept does  away with having to concern yourself with
remembering the line number associated with a given routine. By  using labels,
program  code  is arranged  in a  structured  manner,  allowing for  the  easy
determination of program  logic (even  if the program has  been sitting on the
shelf for several light  years). Also, if the Label method is  used  properly,
the user  may  even have the capability  of writing BASIC code  that  is truly
relocatable.

In addition to  the use  of labels, The BASIC  Answer introduces a new concept
for  the  use  of  variables.  Variable  names  may  contain  up  to  fourteen
characters, all  of  which  are significant  to  defining  the variable.  This
allows selection of more descriptive variable names. Coupled with this  is the
implementation   of  LOCAL  and  GLOBAL  variables.  Using  local  and  global
variables will  eliminate  the need to "chase down" variables when determining
if the use of a new variable will cause a conflict.

Complete  documentation will be provided with the program, and is  written  in
such a manner that it will serve as  a tutorial on using The BASIC  Answer  to
its  fullest  capacities (along  with explaining all  of the functions  of the
program in an easy  to  understand dialogue). Printed output  is also provided
by the program, and will  allow you the option of  generating  cross-reference
tables.

For more detailed information on The BASIC Answer, contact Logical Systems.

QUIZMASTER

Rather than being an LDOS utility, the QuizMaster Series from Logical  Systems
is  an application package made  up of several  modules. The scheduled release
date  of this product is  September  of '82. The  initial release  will be the
"personal" version, and will sell for $39.00.

QuizMaster  is an educational/informational  question and answer  program, and
can also  be used as a  game. Its basic operation is to display a question and
four possible answers, and score  the  operator's response  based on the speed
of selecting the correct answer and on  the number of  incorrect choices made.
There are three skill levels available, so the  operator can choose  the speed
at  which  to play. To prevent memorization of the question  and  answers, the
display  order of  both  is randomized  every time  the  program  is  started.
Scoring  above  a  certain value will provide  extended  operation  which  can
continue as long as no incorrect choices are made.  High scores for each speed
can be saved on the question/answer set disk.

Five  support  programs are provided  to create  or extend, edit,  print,  and
maintain  the  question/answer  set  files.  Also  included  is  a  program to
reconstruct a  file that has been damaged by disk  I/O errors  or  faulty disk
drives  or media.  Creating files is  a simple  procedure, requiring only  the
entering  of  the  question,  four possible  answers, and  the correct  answer
number.

Page - 9



For  ease of entry,  an  "input editor" allows  for  full  transparent  cursor
motion and  character insert,  delete and  type  over during both the Add  and
Edit modes. Each  question/answer set  file  may  contain  up  to 255 entries.
Three question/answer sets  will be  provided, containing 100  questions  each
and covering  U.S. Information, General trivia, and one other as yet undecided
category. A user can create as many new files as desired.

The  main  QuizMaster program and the  file  maintenance,  print  and  recover
programs are written  in assembly  language. The  add  and  edit programs  are
written  in  BASIC and use  assembly language USR routines  to  provide  quick
operation.

An "educational" version of the series is also being developed, and  will deal
with  student names and numbers, and other types  of information for classroom
use.  Additional  question  set  files are  also  being  developed.  For  more
information on the QuizMaster series, contact Logical Systems.

REVIEW by Earle Robinson of:

Microcomputer Math  by William Barden, Jr.

Many of  us know Bill Barden's well  deserved reputation as  a writer from the
books has he done on the Z80.  In fact,  in my opinion, his introductory book,
published by both Radio Shack (at a  very low price of $4.95) and by  Sams (at
a somewhat  higher price) is the  best one available. Bill Barden's books  are
also  noteworthy  for having been  carefully proofed and  for  containing  few
serious errors, typographical or others.  Bill has recently  written a book on
math  for  micros  appropriately  titled  "Microcomputer  Math".  It  is  also
published by Sams, and the  price, as can be expected from  that  house, is on
the high side, $11.95.

For  those  who  are  interested  in  obtaining  an  understanding  of  binary
arithmetic and  wish  to  acquaint themselves with the  hexadecimal base, this
book may assist them.  It is clearly, though in my view a bit  too flippantly,
written. As in his  earlier works,  it is  reasonably carefully  crafted. Bill
knows  how  to present  his  subject in such  a  way  that the beginner is not
overwhelmed with the  jargon which many of us use too often and too freely. We
forget that many people don't understand us.

Unfortunately, "Microcomputer Math" neglects  to  cover  binary coded  decimal
operations. It also  neglects to provide concrete examples for coding with the
major  processors,  especially the Z80 and  the 6502. Such a book  should help
its readers to use the knowledge that  they have obtained. The absence of such
examples detracts  from  the very real  merit of yet another fine book by Bill
Barden.  Another  caveat concerns the illustrations  which accompany the text.
The publisher has made virtually  no effort  to  'landscape'  the drawings and
tables. For a book such as  this  which will be widely read, this demonstrates
a  degree  of greed which, alas, is  a  mark  of  Howard  W.  Sams &  Co,  the
publisher.

Page - 10



----- PARITY = ODD -----
Subtitle: A MESSAGE to HACKERS

By Tim Daneliuk
(c) 1982  T&R Communications Associates  Chicago, IL

     You might  call  this installation of the column "Tim's Soapbox"!  In the
course  of doing product  reviews,  I  come across a wide spectrum of software
products.  They  naturally   fall   into  two  groups:  SYSTEMS  software  and
APPLICATIONS software. The former are things like operating  systems, drivers,
and   utilities.   The   latter   are   packages   like   database   managers,
word-processors, and accounting software. Each,  of course, has it's place and
(hopefully) an audience of  users. However, I've  recently  noticed a TERRIBLE
practice which seems to be pervading the  applications software  industry.  If
you  write  applications programs,  READ  THIS!!!   If  you buy such programs,
BEWARE!!!

     Before I describe  this great programming evil,  I  really ought  to tell
you how I came to write this Quarterly's column. I was innocently reviewing  a
database  manager for this  issue, when  I  noticed that all of  a sudden  KSM
wasn't working.  Further inspection revealed  that the program  had taken over
the printer, keyboard,  and video devices with  it's  own drivers. That wasn't
so  bad,  except that DEVICE  showed  the  respective  DCBs for  these devices
pointing to an area  in memory well below HIGH$!  That's right folks, the next
program that  loaded into memory  below HIGH$ overlayed these "drivers" (and I
use the  word  loosely) and caused a SYSTEM (BLOW-UP)!  Naturally, this tended
to bias my review  of the software somewhat.  A  call to  the author yielded a
"We never had that  problem before."   It seems  that the  program in question
had  been used  only with other programs that had their  own internal drivers.
Consequently, the problem never showed up.

     So,  here's my  gripe:  "APPLICATIONS SOFTWARE HAS  NO BUSINESS  FIDDLING
WITH,  MODIFYING,  OR  "IMPROVING"  THE   OPERATING  SYSTEM...EVER!!!"  (Well,
"Hardly Ever!"  to quote Gilbert and  Sullivan).  Friends,  the whole point of
the operating  system is  to  insulate you  from the  harsh  realities  of the
hardware. LDOS  especially gives you all  the entry points  any reasonable and
competent  programmer should need. In 99% of the cases, the programmers at LSI
have presented you with  code  as  good  as  or better than your own. In those
rare instances where  you must go  directly  to the hardware itself, the  very
least  you  can  do  is  restore the system to what it  was before you started
changing  it.  In  the particular example cited above, everything  would  have
been fine if the programmer had thought  ahead a  little  and restored the DCB
pointers when exiting his program.

     Now, don't get  me wrong. If you're  writing programs just for  yourself,
do  whatever feels good!  But if you're  going to peddle the ultimate program,
here are a few thoughts to consider  (by the  way, this  also  applies to  you
BASIC fanatics who insist on destroying the DOS with PEEKs and POKES!!!):

    TIM'S TIPS FOR TERRIFIC, TRANSPARENT, TRAUMA-FREE BIT TWIDDLING

1) HONOR  THE DCB VECTORS WHENEVER  POSSIBLE (which should be well over 90% of
the time). Try filtering the device instead of re-writing the driver.

Page - 11



2) IF YOU MUST WRITE  YOUR OWN DRIVERS, MAKE THEM "TRANSPARENT" TO THE SYSTEM.
That is, restore the old DCB vectors when your program exits.

3) ALWAYS HONOR  THE HIGH MEMORY POINTER (HIGH$). Even if  all you do is check
to see  if  your program fits  into  the  available  space  (and aborts if  it
doesn't), this  is better  than the usual "try it  and see" mentality of  many
program "philosophies".

4)  BE  SURE YOU KNOW WHAT  YOU'RE  DOING  IF  YOU  DO  GO INTO  THE  HARDWARE
DIRECTLY. EXAMPLE: I  don't  know  how many programs  which  check the printer
directly on Model I systems do it this way:

       LOOP    LD      A,(37E8H)
               CP      3FH
               JR      NZ,LOOP

This  is  WRONG!!!!!!!   It is  so bad, that it  may  even be  criminal!!  The
reason is, that only the  upper nibble (bits 4-7)  actually return the printer
status. The  four lower  bits' values will vary with different hardware. In  a
Tandy  interface, a printer ready will show a X'3F',  while  in the LOBO LX-80
it will be X'3C' unless  a hard disk  is being  used. In the latter case,  the
lower  nibble will take  on different values as the hard disk is accessed. The
point is that the four low bits should be masked. For example:

       LOOP    LD      A,(37E8H)
               AND     0F0H
               CP      30H
               JR      NZ,LOOP

This  is  the way  the  Model  I ROM  does  it.  I  am  really  very  tired of
disassembling "review" software so  I  can patch it  to work on the LX80. This
sort of  thing  is  just sloppy technique and  has  no place in software to be
sold.

5) Point four brings up another thought:  DON'T RELY ON UNDOCUMENTED  HARDWARE
OR SOFTWARE FEATURES TO MAKE  YOUR PROGRAM RUN. In  the example above,  no one
ever  guaranteed  what the  low  four bits would be, so good practice dictates
"defensive" programming.

6) PRESERVE  EVERY REGISTER YOU USE. Just like the DCB pointers, your  program
should handle the registers in a "transparent" fashion.

7)  FOR MAXIMUM PORTABILITY, STAY OUT OF THE ALTERNATE REGISTERS. Just because
they aren't used now, doesn't mean  they never  will be.  Many  systems,  like
interrupt  driven multi-user schemes,  will positively  DIE  if  you  foul the
alternate registers with your code.

8) ALL HIGH  MEMORY OPTIONS SHOULD BE SELF-RELOCATING.  They should also reset
HIGH$ accordingly. This is not that difficult to do, and  saves the end user a
lot of frustration and time.

9)  TRY TO  TEST  NEW SOFTWARE ON ALL OF THE TYPES OF  SYSTEMS IT WAS DESIGNED
FOR. This  will probably  eliminate the majority of  what I call  "retail-time
debugging"!

Page - 12



     This  list  is  by  no  means exhaustive.  I  think,  however,  that  you
offenders out there get  the point. There is  nothing more frustrating for the
non-technical user than to buy a premium  DOS (LDOS of course!) and find  that
applications programs won't  run. If you do  have a piece of software that has
problems on  a system  it claims  to  be  compatible  with, you should do  two
things.  First,  contact  the  manufacturer  and ask  them  to  correct  their
problem. Be very sure,  however, it really  is THEIR  problem. No one likes to
hear that their programs  won't run because you can't or won't read  a manual.
Secondly, if the  problem  is not  resolved,  pass the  word around.  Don't be
slanderous, but  if you're  sure  a problem really  exists,  let  other people
know. If more people  did  this, the dishonest software manufacturers would be
forced to fix their code or go out of business.

     What about this issue's program review?  Well, when I called the  author,
he  told  me  that a new version of the  program was soon  to be released, and
that he would try to fix the  problem. Since the version of the program I have
will  no  longer be available, there isn't  much point in reviewing  it now. I
have,  however,  been promised a copy of the new version.  I will review  that
release. Hopefully, he'll have read my "TIPS" by then......

     While I don't have any complete  software  reviews for this issue, a  few
products have come  to  my attention  which  I'd like  to mention in  passing.
First of all, Earle Robinson has  released a new  version of his DISCATER disk
cataloging system.  This version has  many new features including  "wild-card"
listings,  room  for more file entries (a real  must, for those who  run  DDEN
double-sided  drives,  hard  disks, or  8" floppies), and  listings  of  every
occurrence  of a  file  where it appears  on multiple  disks.  Earle has  also
managed  to optimize his  sorting routine  a  bit  more. This  is an excellent
program that  runs smoothly under  LDOS. There is  also an  upgrade policy for
those of you who had  the old version  of the product.  DISCATER is  available
from:

        softERware
        16007 Miami Way
        Pacific Palisades, CA  90272

You can also reach Earle on the LDOS bulletin board. His ID# is 70135,141.

     Powersoft has released  a  set of  seven  LDOS  Utility Disks for systems
running under LDOS. These perform tasks such as  disk  reformatting, directory
checking,  and providing the  user with  an "on-line"  help  file.  I've  just
gotten  these  in,  so I have not  had  much  chance  to really  evaluate  the
products. Those that  I have used  seem  to work well. Each disk is $29.95 and
they are available from:

        Powersoft
        11500 Stemmons Expwy.
        Suite 125
        Dallas, TX  75229

     Finally,  I must plug the FILTER Disk from LSI. Though this  product  has
been mentioned  before, it deserves  further  notice.  This disk sells for $60
and comes  with many useful filters on it. LSI  has also  included  the Source
Code  for each  filter so you  can learn  how  to write your  own.  One of  my
favorites in this package is CALC/FLT.

Page - 13



This filter  allows you to perform base conversion and arithmetic  from within
an  applications  program.  I   use  this  all  the  time  to  do  decimal/hex
conversions from within  an editor-assembler.  Another interesting  filter  is
XLATE. This  allows  full  bi-directional translation of data in any I/O path.
Using XLATE,  you can  make  your TRS-80 "speak" EBCDIC  or BAUDOT instead  of
ASCII.  There are  many  time saving filters on this disk,  and if you  do any
serious programming whatsoever, you should own this product.

..........er..........

(EDITOR'S NOTE: This is  the first in what will hopefully be a  regular series
of articles on assembly language programming by Earle Robinson.)

As a  veteran  of  Hewlett  Packard  programmable  calculators, I  learned  to
program very  tightly indeed.  Do any of you remember  the HP-65 which allowed
the user to  have up to 100 lines, or the HP-67 which permitted 224 lines, and
had 23 memory  locations?  If I  tell you that I  once wrote a program for the
latter  for  the  evaluation  of a  6 x  6 matrix,  you  will  appreciate  the
constraints.

Therefore,  when I began to program on the Mod I, first with only  16 K of RAM
in the Expansion Interface, then with  32 K, I  retained  the  habit of  using
tightly  written  code.   In fact, there  are three  criteria for any  program
development which should be  kept in mind, and my comments in this article, as
well  as  those which  may follow  should be read  with them  in mind.   These
criteria are:

                 1)  Document your program
                 2)  Write tight code
                 3)  Write code which is fast

As some  of you may surmise these three  can  conflict with each other all too
often, especially because tight code is  not always the fastest.  Further, you
can (and I have, I  must admit)  waste a lot of time  in saving those last few
milliseconds.

The first step  in  improving your programming skills, and I  am assuming that
you already can  write something, is  to  study the  instruction set  and note
where the  T  cycles are the  longest.   A lot of hot air is wasted by  people
talking about the number of megahertz  at which the processor  operates.   The
reason for which  the  6502  chip, used  in the  Apple,  is  often  faster, is
because many of its  instructions  use  fewer T cycles; although the  Z80 does
have a better instruction set, it is often  slower than the  6502 due to the T
cycles.  Also,  the  number  of  bytes used per  instruction doesn't tell  you
everything at all.

Here is  an example.  Let us assume that you are  comparing strings  addressed
by the HL and  the DE registers.  After each  compare, you will increment each
of them, with  the 'INC HL' and 'INC  DE'  instructions.   Each is a one  byte
instruction.  However, if  you could  use  'INC L',  and  'INC E' instructions
instead, and you are doing a  number of such  comparisons, you will save a lot
of time.   These instructions are  also one  byters, and use 4 T cycles versus
the 6  T cycles  used by the  former.   Of course,  you must  be certain  that

Page - 14



neither of the increments will reach the value of  FF  Hex  for reasons that I
will leave the reader to ponder.  It  is  also manifestly  ridiculous to go to
this trouble if you are only  doing doing such a comparison on a single, short
string.

A second example will show how tight code can  be slower.   Look at the number
of  T  cycles for an absolute jump.  It is 10.   Now, look at the cycles for a
relative jump.  There are 12.   However, the absolute  jump is  a  three  byte
instruction;  the relative jump is a two byte instruction.   Naturally, common
sense will tell you that it silly to worry  much about this unless such a jump
is  repeatedly made within  the program.  Further,  it is  more  difficult  to
relocate a program containing absolute jumps.

In the next issue of  the Quarterly  I'll try to provide some more insights on
programming, using a horror story as the basis for the discussion.

LDOS - It's Greek to Me - by Charles Knight

     Both  LDOS  and  the  LDOS  filters  disk   offered  for  it  have  added
immeasurably to  my  wife's  happiness. About the  time  LDOS  5.1  was  first
released, she began studying New Testament  Greek in her spare time. As is the
case  with any well disciplined student, she  forces herself to translate  not
only  from  Greek  to  English  as  in most  Greek courses  at  seminaries and
universities, but also from English into Greek. I  keep telling her that she's
a glutton for punishment, but she keeps plodding along doing her thing.

     When the  LDOS Filters disk  became available, I bought it thinking about
its utility to the  operation of my computer  and never gave a thought that it
might help my wife with  her studies. Since I  speak Greek  about as well as I
do Sanskrit,  Russian, or  Campa indian (not at all), I never thought to bring
all my resources  together  until my wife asked if  it  were possible  to type
Greek into Scripsit. She  expected a  resounding "No"! She received a somewhat
hesitant  "Maybe". I  had purchased a  General  Scientific  printwheel for  my
Diablo printer some time ago at a sale where  I got it for $2.00 and bought it
simply  because  it was so cheap,  never thinking that  I'd someday have a use
for it.

     The first  point to  note is that  the  character  set available  on this
wheel was  not intended  for  the  Greek  language, but rather  for scientific
applications; therefore the  characters are not necessarily in  the best place
on  the  print wheel  and only a complete  set of lower case  Greek letters is
available.  Uppercase  letters are present, but not  a complete set of them. A
period is  also missing, but a raised  dot  is  available that makes a  pretty
good substitute.

     Putting  our two heads together hoping  that the total intelligence might
approximate that of a half-wit,  we designed  the  following table for use  by
XLATE/FLT:

     .table for use with XLATE/FLT and Greek print wheel
     "A"="a" "B"="b" "G"="q" "D"="w" "E"="e" "Z"="z"
     "H"="h" "V"="r" "I"="i" "K"="k" "L"="g" "M"="m"
     "N"="n" "C"="u" "O"="o" "P"="!" "R"="p" "S"="s"

Page - 15



     "T"="t" "U"="y" "F"="d" "X"="v" "Y"="c" "W"="l"
     "g"="q" "d"="w" "v"="r" "l"="g" "c"="u" "p"="!"
     ","="^" "."=22 "'"="["
     . ^ = right arrow on video, clear + on kbd
     . [ = up arrow on video, clear < on kbd
     .end table

     This was  simple  to  do  and  enabled an elementary  sort  of Greek word
     processing to be done. The next thing  my wife said she  wished she could
     do is  to place an iota subscript  in her text. What  the heck is an iota
     subscript? I  asked,  (I  thought from  her pronunciation she  was saying
     Yoda subscript  and  had  spent  too  much  time  listening  to  Starwars
     records)! At any rate, we decided that the iota  to be subscripted should
     be assigned to the  capital  "I". First  we had to change the "I"="i"  in
     the translation table to:  "I"="I" effectively bypassing  translation  of
     this  character. It was  also  necessary to modify  the SLASH0/FLT source
     code thoughtfully  provided with the filters disk.  The modification  was
     easy, requiring only  the addition of  18  lines of code and the changing
     of a  few  of  the  messages.  (This was fortunate,  since  I  program in
     assembly  language   only   slightly   better   than   I  speak   Greek!)
     Unfortunately, it is impossible to have right  justification of  text  at
     the same time as  the iota subscript,  so be  sure  to include the format
     line, J=N somewhere near the top of  the  text.  The following lines were
     either changed or added. The ones that have been added have  line numbers
     not ending in zero:

     00100 ;****    IOTA/FLT
     00501          LD    (OUTP4+1),HL
     00502          LD    (OUTP5+1),HL
     00503          LD    (OUTP6+1),HL
     00750 SIGNON   DB    31,'IOTA/FLT - LDOS  Line  Printer Filter  - Version
     1.0',0AH
     00810 IOTA     JR    START
     00840 FNAME    DB    'IOTA'          ;new filter name
     00890          CP    'I'             ;Capital IOTA?
     00930 OUTCF    LD    C,08            ;send backspace
     00950          LD    C,27            ;send escape
     00970          LD    C,'U'           ;1/2 linefeed
     00971 OUTP4    CALL  0000H           ;send it
     00972          LD    C,'i'           ;send iota
     00973 OUTP5    CALL  0000H           ;send it
     00974          LD    C,27            ;escape
     00975 OUTP6    CALL  0000H           ;send it
     00976          LD    C,44H           ;D neg 1/2 linefeed

          When  the  source is first loaded  into  EDAS,  issue  the  command:
     N,100,10  and the text will be given numbers to match these.  Then change
     or  add each line  shown. You might need to  send a different escape code
     sequence, depending on your printer.

          After  this  was  done, my wife had another chore for me  to do. She
     wanted  me to make a filter to change the comma and dot characters into a

Page - 16



     semicolon which, in Greek, is used as a question mark.  We assigned  this
     character  to  the  question  mark  on  the keyboard  rather than to  the
     semicolon. To  accomplish this, the following lines of code were added to
     or changed from the original unmodified SLASH0/ASM source code:

     00470 SIGNON    DB     31,'QMARK  -  LDOS  Line  Printer Filter - Version
     1.0',0AH
     00830 FNAME     DB    'QMARK'
     00880           CP    '?'            ; ?  ?
     00921           LD    C,5EH          ;Comma character
     00940           LD    C,08H          ;Backspace
     00960           LD    C,'"'          ;Period character

          With  the three filters  residing on  the disk  and  the Translation
     table  which we  have named GREEK/XLT  also present,  it is  necessary to
     install  the  filters in the following  order. If the order isn't  right,
     neither  will the output  to  the printer be right.  We have  made a /JCL
     file for this:

     RESET *PR
     FILTER *PR IOTA
     FILTER *PR QMARK
     FILTER *PR XLATE GREEK(OUTPUT)
     SCRIPSIT

          Now all that is  necessary  to do Greek  word processing is to type:
     DO = GREEK at LDOS Ready. While it's not  yet perfect, we'll have to wait
     for  Diablo or Qume to bring out a more appropriate wheel  for  the Greek
     language to  get  any  better.  It  is indeed fortunate  that I  own  two
     computers,  for now that  she can  do her  studies  on the  computer, I'd
     hardly get  to use mine  if I  didn't have two. It would  be nice if  she
     were taking the course at a university so she  could see the instructor's
     face  when  he is handed a  perfectly typed  piece of  Greek homework. My
     wife now tells  me  that she will study Hebrew when  she has finished her
     Greek. Now, if anyone has a Hebrew daisy wheel for sale cheap....

Page - 17



HINTS FROM OUR USERS

From Jerry Latham of Midwest City, Oklahoma, comes the  following on the MX-80
with the Graftrax ROM.

******
Epson MX-80 printer users  who have  the Graftrax-80 option  installed can now
stop patching,  filtering, and  otherwise  messing  around with  either  their
software  or hardware  in  an  effort to get  the Epson  to properly print the
TRS-80  Model  I  graphics  codes.  On  page  11  of  the Graftrax  manual  is
documented the (apparently little known) command <CTL><:>. That is hex 1B  and
3A or  decimal 27,58. However you get it to  the printer, be it  by POKEing or
LPRINTing  the  result is the same . . . the printer  will now  do  the proper
shifting of graphics codes from the Model  I to the equivalent Epson code. The
added benefit you get is that  no other  printer  functions are lost. You will
no longer have  the command codes listed in  the  original manual  on page 82,
but those are all duplicated below 20H anyhow.

Using this method of controlling the printer  will in  no way effect any other
printer functions  in effect when  the  codes  are sent. It does not reset the
printer (that is reserved for <CTL><@> sequence).  Remember that this function
will be  destroyed if you turn off the printer or send it  the <CTL><@> (1B 40
hex, 27,64 decimal) sequence. There is one other  way to return the printer to
its power up graphic code status. That  is by sending the <CTL><;> sequence to
the printer. That is 1B 3B  hex, or 27,59 decimal. That sequence simply causes
the MX-80 to revert  back to its  original group of graphics  codes  at 160 to
223 decimal.
******

From Peter C. Trenholme of Montclair, New Jersey comes this  information about
using  the MODEM-80 hardware and the included DTERM program. This  patch makes
DTERM's buffer honor HIGH$, so that high memory  drivers such  as PDUBL can be
used. It is for the Model I.

******
X'5936'=C3 7E 59 00 00 00 00
X'597B'=3F 20 00
X'597E'=D5 EB 2A 49 40 EB 23 AF 77 DF 20 FA D1 C3 3D 59
X'56BC'=2D 40
******

ITEMS OF GENERAL INTEREST

This is the TTimer patch for the new 5.1.3 version.

.TTIMER Model I Version 5.1.3 patch
D04,08=D2 45 ED 78 0D CD A6 47 ED 78 0D E6 0F 85 12 1B
D04,18=C9 11 43 40 01 C5 03 CD C3 45 10 FB
D0D,51=2l 46 40 01 CA 01 CD B8 4E 06 03 CD B8 4E 01 CC
D0D,61=0F CD B8 4E EB DB CB E6 03 21 B9 50 20 01 34
D0D,70=l8 21 ED 78 0D A0 07 57 07 07 82 57 ED 78 0D E6
D0D,80=0F 82 77 2B C9

Page - 18



WE SURRENDER! Following  are the patches to  Version 5.1.2 and 5.1.3  to  make
the /BAS extension parameter default to  OFF.  However -  we would rather have
you  rename your current  LBASIC  programs  to  have  a  /BAS extension,  thus
providing instant  ID at  a glance and allowing you  to  view,  move or remove
them as a class  with the DIR, PURGE and  BACKUP commands.  There is a program
in  the USER PROGRAM section  of the  newsletter that provides a "mass rename"
capability  that should help with the task. The new BASIC/CMD program also can
be used to enter LBASIC, as it forces a  EXT=OFF condition. But, if you really
must, apply the following patch to LBASIC/CMD:

   . MODEL I patch to make EXT=OFF the default
   . Good for Versions 5.1.2 and 5.1.3
   D11,3C=00 00
   .EOP

   . MODEL 3 patch to make EXT=OFF the default
   . Good for Versions 5.1.2 and 5.1.3
   D11,25=00 00

For Model I users with 5.1.2 dated 5/25, and  for version 5.1.3, the following
patch to PDUBL or RDUBL will  allow  you  to  write the old DAM. The  patch to
SYS0 is the same as for the original 5.1.2 release.

   .Patch PDUBL/CMD
   X'5476'=A9

   .Patch RDUBL/CMD
   X'54AA'=A9

   .Patch SYS0/SYS
   X'467C'=A9

Requests from those  of you running bulletin  boards with LDOS  brought  about
the  following patch. When  implemented, the ability to access a file with the
LDOS  Master  Password will be disabled.  This should allow you to keep people
out of files  they  don't belong in. Of course, PURGE and BACKUP by Class will
not function with password protected files.

   .Patch SYS2/SYS, Model I
   D02,0B=FE

   .Patch SYS2/SYS, Model III
   D02,29=FE

Page - 19



Roy's Technical Corner

     It  seems that  everytime I  sit down to write  another  article  in this
technical series on  LDOS,  I  want to start  it out  with,  "One of  the most
important and  least understood aspects of  LDOS is..." Is it because LDOS  is
so  complex  that  very  little  about its  inner  workings has been known? Or
perhaps is  it that I feel many things about LDOS are so very important that I
wish every good programmer would be knowledgeable about  the entire  system. I
have  begun  to  get  feedback  on  this  series;  albeit  requests  for  more
information. It is a very good idea to  put forth your comments. Need I expand
on  a previous article's discussion?  Is there  something you  want discussed?
The QUARTERLY is  a two-way street.  If you share  your views and opinions,  I
may be able to clear up some misunderstood point.

     This  issue's RTC stems from such a user request.  How do we use the task
processor? To  begin such a topic,  it is best to agree on the terms I will be
using. This  is as good a place as any to present the concepts of "foreground"
and "background".  To  those in  data  processing, you already have  some idea
what they mean. This  idea  may be  in contrast to how we use these terms  for
LDOS,  so  pay  attention. In  LDOS, any activity that uses most of  the CPU's
time  is called  a  foreground activity or foreground task.  This could  be  a
running LBASIC  program, an LSCRIPT editing session, or the development  of an
assembly  language  program using EDAS. While  you may think that your task is
utilizing 100 percent of the machine,  in reality, other activities (or tasks)
are taking place.

     Notice that cursor  blinking in front of you (of course it's not blinking
in front of you since you are reading  this article from paper; however if you
were looking at the LSCRIPT  file on your  computer as I am, you would see the
cursor  blinking  -  so just imagine  it...).  Some activity is causing it  to
blink at  periodic  intervals. Turn  on the clock display. Notice how it keeps
near perfect  time  (once it  is  set)  and  updates  the video display  every
second! How about recognizing that every time you depress the  keyboard,  LDOS
is  saving  your  entries  until your  application  program  (or LDOS  itself)
requests keyboard input. What each  of these activities has in common  is that
they all are occurring "behind our backs",  so to  speak. Each activity  takes
but a  brief moment  to accomplish its task,  essentially sneaking its time by
interrupting the foreground task. They  are taking such a small amount of time
compared  to  the  amount of time our foreground tasks  are  taking, they  are
called "background" tasks.

     There  is a module within LDOS  that  I call the task processor. This  is
the boss  that supervises all of the  background tasks so that  each  gets its
turn  at sneaking CPU time.  The  task  processor  works  in concert with  and
depends  on part of the  machine's  hardware that generates interrupts  to the
CPU. These interrupts are the  way in which a background task can gain control
from the foreground task. It's therefore a good idea to touch on  some of  the
hardware aspects of interrupts.

     There is an input  to the Z-80 (pin 16 to be exact and labeled INT*) that
is  used  to specify a  hardware interrupt request. The Z-80 has  two  program
instructions that are used to accept or  ignore these requests. If the Disable
Interrupt (DI) instruction has been executed,  the Z-80 will completely ignore
any activation of  the lead.  An Enable Interrupt (EI) instruction is  used to
have the Z-80 honor this lead. (CONTINUED Page 29). . .

Page - 20



        Super Utility Plus I/III (LAST CHANCE at THIS price!). 49.95
        Super Uitlity Tech manual ............................ 14.95
        Inside SU+ Manual .................................... 19.95
        PowerDRAW ............................................ 39.95
        PowerPRINT ........................................... 29.95
        PowerTERM ............................................ 29.95
        SCRIPLUS 3.0 ......................................... 39.95
        The BASIC/S Compiler System .......................... 89.95
        Make/80 Mod I ........................................ 14.95
        Make/80 Mod III ...................................... 24.95

        Utility Disks for LDOS(tm) Mod I or III by Kim Watt... 29.95 ea.
        Utility Disks 2-8 all in one package (special) ...... 149.95
        contains:

        PMOD/CMD      PCHECK/CMD     PFIX/CMD         PREFORM/CMD
        PFIND/CMD     PFIND/CMD      PCOMPARE/CMD     PVU/CMD
        PERASE/CMD    PCLEAR/CMD     PSS/CMD          PMAP/CMD
        PMOVE/CMD     PDIRT/CMD      PASSGO/CMD       PUN/CMD
        PEX/CMD       PMX/FLT        PHELP/CMD        PBOOT/FIX
        PFILT/FLT     DVORAK/FLT     DVORAK/JCL       CODE/JCL
        DECODE/JCL

        SNAPP Enhancements for LBASIC are HERE!! Mod I as well as III!

        SNAPP-II  Extended BASIC ............................. 79.00
        SNAPP-III Extended Build-in Functions ................ 69.00
        SNAPP-IV  Extended Mapping Support ................... 69.00
        SNAPP-V   Extended File Mapping Support .............. 59.00
        SNAPP-VI  College Educated Garbage Collector ......... 69.00
        SNAPP-VII Reverse Compression ........................ 39.00

        SNAPP-WARE LDOS Trial Package (ALL the above)......... 10.00

                        Specify Mod I or III LDOS!!

        NOTE: This trial package is a great way to explore the power
              of "Snapped" up LBASIC. The $10 is fully deductable
              from the future purchase price of any LDOS Snapp package.
              The trial package is NOT backupable, and is only good
              for a certain number of LBASIC executions before it
              expires. (Don't worry... you get plenty!)

        BASF 40trk-DD certified BOX of 10 .................... 29.95
        Mod I or III Green Screen (specify) .................. 17.50

        Write for full catalogue.     --     Dealer inquiries welcome!



SuperScript
By Richard Wilkes

An enhancement program to Radio
Shack’s Scripsit, SuperScript turns
a good word processing system into
a great one!
Depending on your printer’s
capabilities you can superscript,
subscript, underline, boldface,
select 10/12 pitch  and slash
zeroes.  Brackets,  braces and
carets can now be entered from the
keyboard. You can get a Directory
and kill files within SuperScript
without losing text. You can pause
while  printing and  insert text
into unjustified lines.  Eleven
drivers are included with
SuperScript -- one of which should
work with almost any type of
printer.  However, not all features
are available on all drivers ...
and not all features are possible
on all printers.  Serial drivers
are provided which use the ETX/ACK
protocol for 1200 baud
communications.  Special drivers
are provided for the NEC 5510, NEC
5530, Daisy Wheel II, Lineprinter
IV (Centronics 737), Diablo
printer, and Epson MX80 (Graftrax
owners can get underlining and
italics). Custom serial and
parallel drivers are included which
can be modified to provide some or
all features on most standard
printers.  Both Model I and Model
III versions require Model I
Scripsit.  Model III owners use the
Model III TRSDOS “CONVERT” utility.
SuperScript for Model I is designed
to work with TRSDOS; Model III
version also is LDOS COMPATIBLE.

32K Disk  $50.00 plus $2.00
shipping and handling.

System Savers
By Tom Stibolt

Two machine language utility
programs designed to make your
use of SYSTEM format tapes easier
and more enjoyable -- You can
make backup copies of standard
SYSTEM tapes on either tape or
disk.

System Savers has two different
programs on the cassette: FLEXL
lets you merge two or more SYSTEM
tapes into a single tape, merging
machine language routines into
one file. On the model III, baud
rates can be changed, allowing
low baud rate tapes to be re-
written to take advantage of
Model III’s high baud rate. FLEXL
enables the user to make and
verify backup copies of programs
written in the TRS-80 SYSTEM
format.

TDISK allows the user to save
programs from SYSTEM format tapes
onto disk. It’s specifically
designed to allow saving and
running disk programs that reside
in the same location as TRSDOS.
TDISK will automatically load
programs with non-contiguous
blocks.

16k Model I/III Tape
(transferable to disk)
$19.95 plus $2.00 shipping and
handling.

Structured Basic Translator
By Gene Bellinger

Structured Basic Translator allows
a whole new world of computer
programming. No longer will you be
lost in a confusing sea of line
numbers, GOTOs and GOSUBs. No
longer will you repeatedly type
subroutines that you use often. No
longer will you be confused by
BASIC programs that are
inadequately documented due to
memory restrictions.  Instead, you
can begin to program in a clear
straight-forward manner that yeilds
source programs that will be as
easy to understand five years from
now as they are when you write
them.

Structured Basic Translator allows
you to develop this new way of
programming -- actually a new way
of thinking -- without having to
learn a whole new language.  SBT
utilizes  the features of BASIC
that you already know and provides
a means to make program writing and
documentation clearer and more
efficient.

See the product review in LDOS
Quarterly v1 #4.

32k Disk Model I (Model III owners
use CONVERT utility.)
$49.95 plus $2.00 shipping and
handling.



L S I    P R O D U C T    G U I D E

O P E R A T I N G     S Y S T E M S

STOCK #       ITEM NAME (TITLE)     RETAIL     S & H
----------  --------------------   --------   -------------------------------------
L-10-010    LDOS 5.1.x Model 1     $ 129.00   $5 + 1  The ULTIMATE DOS
L-10-030    LDOS 5.1.x Model 3     $ 129.00   $5 + 1  The ULTIMATE DOS
L-11-010    smal-LDOS Mod 1 W/Man  $    N/A   ** Available to OEMs ONLY!! **
L-11-015    smal-LDOS Mod 1 WO/Man $    N/A    NOTE: NOT TO BE SOLD RETAIL
L-11-030    smal-LDOS Mod 3 W/Man  $    N/A    Special pricing is available
L-11-03b    smal-LDOS Mod 3 WO/Man $    N/A    for orders over 100.

L A N G U A G E S

STOCK #       ITEM NAME (TITLE)     RETAIL     S & H
----------  --------------------   --------   -------------------------------------
M-20-010    EDAS 3.5.x Mod 1 & 3   $  79.00   $4 + 1     MISOSYS  Editor/Assembler
M-20-015##  EDAS x.x.x Mod 1 & 3   $ 100.00   $4 + 1     ## Not yet released
L-20-020    EDAS 4.0.x Model 2     $  99.00   $4 + 1     Model II Editor/Assembler
L-20-022##  EDAS 5.0.x Model 2     $ 199.00   $4 + 1     ## Not yet released

L-2l-010##  LC - "C" Compiler      $ 150.00   $5 + 1     ## Not yet released
A-21-020    ALCOR Pascal              T/B/A              ## To be announced
L-21-030##  The BASIC Answer       $  69.00   $3 + .50   ## Released Sept. 82

S-25-010    Snapp Trial Model 1    $  10.00   $1.50+.50  Trial BASIC package
S-25-030    Snapp Trial Model 3    $  10.00   $1.50+.50  Trial BASIC package
S-25-040    Extended Basic Mod 1   $  79.00   $1.50+.50  Snapp's extended BASIC
S-25-050    Extended Basic Mod 3   $  79.00   $l.50+.50  Snapp's extended BASIC

U T I L I T I E S

STOCK #       ITEM NAME (TITLE)     RETAIL     S & H
----------  --------------------   --------   -------------------------------------
L-30-010    FED - LDOS File Editor $  40.00   $2 + 1
L-30-020    LED - LDOS Text Editor $  40.00   $2 + 1
L-30-030    I/O Monitor            $  25.00   $2 + 1    Disk I/O error monitor
L-30-040    MemDISK                $  39.00   $2 + 1    Build a disk in memory

L-32-050    Filter Package #1      $  60.00   $2 + 1    General purpose filters
L-32-060##  Filter Package #2      $  T/B/A             ## Not yet released
L-32-070##  Utility Package #1     $  50.00   $2 + 1    ## Not yet released
L-32-080##  Utility Package #2     $  T/B/A             ## Not yet released

M-35-200    Disassembler 2.x       $  25.00   $2 + 1    MISOSYS disassembler
M-35-210    PDS                    $  40.00   $2 + 1    Partitioned data sets
M-35-220    CONV/CPM               $  30.00   $2 + 1    CP/M to LDOS utility
M-35-230    CONV800                $  50.00   $2 + 1    8080 to Z80 source xlater
M-35-240    SOLE (boot DDEN)       $  25.00   $2 + 1    Boot DDEN on Model I
M-35-250    HELP                   $  25.00   $2 + 1    HELP program and Q/R card
M-35-260    Graphic support pack   $  50.00   $2 + 1    MX-80 and MX-100 utility



M A N U A L S

STOCK #       ITEM NAME (TITLE)     RETAIL     S & H
----------  --------------------   --------   -------------------------------------
L-40-010*   LDOS 5.1.x Model 1     $  49.00   $3 + 1
            Without Binder
L-40-030*   LDOS 5.1.x Model 3     $  49.00   $3 + 1
            Without Binder
L-40-035*## LOOS Operators guide   $  10.00   $2
L-40-039*   LDOS exchange 1 & 3    $  29.00   $3 + 1
            Without Binder
L-40-040    smal-LDOS 5.1.x        $  20.00   $2 + 1
L-40-050    LBASIC 5.1.x           $   9.00   $2
L-40-060*## Ref. Card for 5.1.x    $   5.00   $1

L-40-600    Other product manuals  $   50% of the retail price of the product.
L-40-700*   Replacement Manual     $   25% of the retail price of the product.

L-44-010##  LSI 3-ring binder Sm.  $   7.00   $3
L-44-020    LSI 3-ring binder Lg.  $  10.00   $4
L-44-025    TAB Index set (any)    $   2.00   $1

L-49-101    Vol 1-1  Jul  '81      $   5.00   $0       LDOS Quarterly newsletter
L-49-102    Vol 1-2  Oct  '81      $   5.00   $0
L-49-103    Vol 1-3  Jan  '82      $   5.00   $0
L-49-104    Vol 1-4  Apr  '82      $   5.00   $0
L-49-105    Vol 1-5  Jul  '82      $   5.00   $0

A P P L I C A T I O N S

STOCK #       ITEM NAME (TITLE)     RETAIL     S & H
----------  --------------------   --------   -------------------------------------
L-50-010    Mail/File II  Mod 1    $ 159.00   $5 + 1     Mailing list, 0 names
L-50-020    Mail/File II  Mod 2    $ 199.00   $5 + 1     Mailing list, 2500 names
L-50-030    Mail/File II  Mod 3    $ 159.00   $5 + 1     Mailing list, 1200 names
L-50-040    Mass/Mail     Mod 2    $ 795.00   $0         Mailing list, 10500 names
L-50-042    M/M Zone Count   opt.  $ 100.00   $0         2nd class mail count
L-50-044    M/M Country      opt.  $ 100.00   $0         Foreign list option
L-50-046    M/M Reconstruct        $ 100.00   $0         Recover damaged diskettes
L-50-049    M/M Demo Package       $  50.00   $4 + 1
L-50-050    Inventory     Mod 1    $ 159.00   $5 + 1     Retail users, 2700 items
L-50-060    Inventory     Mod 3    $ 259.00   $5 + 1     Retail users, 2700 items
L-50-070##  Inventory     Mod 2       T/B/A              ## To be announced
M-50-210    ZGRAPH    Mod 1 & 3    $  40.00   $2 + 1     Screen graphics package
L-50-410    Stock Market  Mod 1    $  99.00   $4 + 1
L-50-420    Stock Market  Mod 3    $  99.00   $4 + 1

L-51-500##  Quiz-Master Mod 1 & 3  $  39.00   $2 + .50   Game or educational
L-51-500##  Quiz-Master Series "E" $  99.00   $5 + 1     Educational quiz program
L-51-610##  Q/M - Amer. History    $  20.00   $2         Quizmaster Q & A sets
L-51-620##  Q/M - Geography        $  20.00   $2
L-51-630##  Q/M - Solar System     $  20.00   $2
L-51-640##  Q/M - Music Trivia     $  20.00   $2
L-51-650##  Q/M - Math General     $  20.00   $2
L-51-660##  Q/M - Science General  $  20.00   $2
L-51-699##  ANY THREE Q/M MODULES  $  20.00   $3
L-55-010    Ultra-Trek Disk 1 & 3  $  20.00   $2         Star-trek program



S E R V I C E S

STOCK #       ITEM NAME (TITLE)     RETAIL     S & H
----------  --------------------   --------   -------------------------------------
L-70-010    Update 5.0 to 5.1      $ Calculated
L-70-015    Five Dollar Update     $   5.00    N/A
L-70-020    Ten Dollar Update      $  10.00    N/A
L-70-030    Special Update         $ As required
L-70-040    Spc. disk With Media   $  10.00    N/A
L-70-045    Spc. disk W/O Media    $   5.00    N/A

L-71-010    Technical services     $  50.00 per hour
L-71-020    Programming Basic      $  40.00 per hour
L-71-030    Programming Assembler  $  50.00 per hour
L-71-040    Design & Analyze       $  60.00 per hour
L-71-050    Author Tech. Doc.      $  40.00 per hour

L-72-100    Out of town, Per day   $ 300.00 plus expenses
L-72-900    Special Services       $ By qoute

L-75-100    5.1.x Extended support $  25.00    N/A

M I S C E L L A N E O U S   I T E M S

STOCK #       ITEM NAME (TITLE)     RETAIL     S & H
----------  --------------------   --------   -------------------------------------
L-90-015    5 Inch floppy disk     $   5.00    N/A
L-90-018    8 Inch floppy disk     $   8.00    N/A
L-90-019    8 Inch Dbl. Sided      $  10.00    N/A

* - Indicates that the product is available to registered owners ONLY.

## -  Indicates that the product has not yet been released.

All Prices and Specifications are subject to change without notice.



===================================================================================
Shipping to foriegn countries -

Shipping to Canada and Mexico: Multiply shipping times TWO
Shipping elsewhere: Multiply shipping times FOUR
===================================================================================

LSI will pay normal shipping and handling charges on any order over $100.00 that is
pre-paid with a check or money order.

Most domestic orders are  shipped standard  UPS. Foreign orders are shipped via air
mail. Special shipping via UPS Blue Label and overnight express  is also available.
Special shipping charges will be determined by the shipper's current rate chart.

A V A I L A B L E    M E D I A

-----------------------------------------------------------------------------------
All LSI products are supplied on LDOS compatible media. For the Model I, single
density 35 track media is provided. For the Model III, double density 40 track
media is provided. For an additional charge of $5 (USER MEDIA) or $10 (LSI MEDIA)
all products are available on the following LDOS compatible diskette types: 5 inch
80, 40 and 35 track in single or double density. 8 inch 77 track, single or double
density. Although LDOS WILL support double sided diskettes LSI products will NOT be
provided on double sided diskettes at this time.







One  very important  point to  make here is  that  once the  Z-80  receives an
interrupt  after it  has executed a EI instruction, it  will  behave  as if it
executed  a  DI -  that  is  so because the action of processing the interrupt
automatically disables the  Z-80  interrupt  flip-flop until the Z-80 executes
an EI instruction.  The TRS-80 operates in  interrupt mode one (IM1).  Without
going into  specifics, if the  INT*  lead is activated  under EI and  IM1, the
Z-80  will execute a RST  38H (RST 56) upon completing the currently executing
instruction.

     In  the  Model I, there is  an interrupt latch memory mapped to  location
37E0H.  If you have access to an  Expansion Interface schematic, you  will  be
able  to  observe that the  INT* lead (E/I pin 21) receives an input from both
the  INTRQ  line  of  the  Floppy  Disk  Controller  and the  Real Time  Clock
circuitry.  A closer examination will show that the INTRQ  lead of  the FDC is
also brought out  to  D6, which is bit 6 of the data bus (E/I pin 24). The RTC
also goes to D7, which is bit 7  of the data bus (E/I pin 20) [Note,  some E/I
schematics erroneously depict this  lead as going to  D5]. The  two lines  are
passed through  gates which are closed only when memory location 37E0H is read
(for example by issuing  a "LD A,(37E0H)" instruction).  A factory Model I, by
the way, does not use bit 0 through bit 5 of the interrupt latch.

     What could happen is that if either the FDC INTRQ or RTC goes  active, it
will  activate  the  INT*  line and a  RST 56  instruction  will  be executed.
Somewhere down  the  road,  the task processor will take control and read  the
interrupt latch so it  can determine  what device  is causing  the  interrupt.
Before I explain what happens  after the RST 56  is executed, let me cover the
Model III interrupt latch.

     The Model III interrupt latch is ported to PORT 0E0H. This means  that to
read the latch, an "IN A,(0E0H)" instruction is used. As an  aside, this latch
uses  logic  reverse of  the  Model  I.  For  example,  on  the  Model  I,  an
interrupting device will present  a one to its corresponding bit  whereas  the
Model  III will  present a zero to  its corresponding bit.  The Model III uses
the following assignments for each bit:

   Bit 7 = Undefined
   Bit 6 = RS-232 Error interrupt
   Bit 5 = RS-232 Received character available
   Bit 4 = RS-232 Transmit holding register empty
   Bit 3 = IOBUS interrupt
   Bit 2 = Real Time Clock interrupt
   Bit 1 = 1500 Baud cassette falling edge
   Bit 0 = 1500 Baud cassette rising edge

Interrupts  for each device  are  only enabled  if  its  corresponding bit  is
output to the  port. A mask  for  this  port showing what has been  enabled is
located at address 4213H. Note that the Floppy Disk  Controller does not  have
its INTRQ  output presented to this latch. On the Model III,  the FDC INTRQ is
tied to  the  Non-maskable interrupt  (NMI) on the  Z-80.  The NMI  cannot  be
suppressed. If generated, a RST 66H instruction is executed.

     The  task  processor in LDOS  is essentially the same on  the Model I and
the Model III. If you  examine  the instruction at ROM location 0038H  (that's
where the RST 56 goes, folks), you will see an  instruction that causes a jump
to address 4012H. At address 4012H, you will find another jump instruction.

Page - 29



The two-level jump  instruction is used to provide an exit from the  ROM to an
address where  we  can alter the  jump vector  if  we want  to.  Some articles
appearing in the  media have documented a way  of interfacing to the interrupt
processor  by  hooking  into the  vector at  this address.  I  would  like  to
discourage  any interfacing in this manner because it could  be detrimental to
the proper operation  of  your  LDOS. Besides, there is a much easier and more
powerful way of having LDOS manage your own  tasks  that you will discover  by
reading further.

     From here on in, I  will refer to  the task  processor as "TP".  Once  an
interrupt is detected by the  Z-80, according to the  discussion above, the TP
gains control and  the  Z-80 is automatically inhibited from accepting further
interrupts  (we don't want  our interrupt  routine interrupted, do  we?).  Its
first  goal  is to  find out  what  peripheral  is  causing the interrupt. The
interrupt latch  is read and  its image stored in  RAM at  INTIM$. A  table of
vectors located  at RAM address INTVC$ contains a branch vector  corresponding
to  each  bit  of  the  latch.  If a  corresponding latch  bit  is unused  (or
undefined), the vector entry will  point to an "RET" instruction just in  case
a hardware glitch  occurs and makes it appear as if  that  bit was active. The
TP  will scan  each bit  of the latch image. If it locates an  active  bit (at
least one  of them must have been active), it will save all  primary registers
and  index  register  IX  and then  branch  to the  routine  according to  the
corresponding vector in  the  INTVC$ table. The servicing routine ends with an
"RET" instruction which comes back to  the TP  and restores the registers. The
TP  will then continue to  examine the  saved interrupt latch  image until all
eight bits have  been examined. In  this  manner,  if two  or more peripherals
interrupted simultaneously, they all will get serviced.

     One  of the hardware interrupts implemented  in the  TRS-80 is  the  Real
Time Clock.  This  is the infamous "heartbeat" which caused such consternation
in the early days of TRS-80 disk systems (boy, it seems strange  to be able to
talk about the early days of the TRS-80). In the Model  I Expansion Interface,
the RTC circuitry is an oscillator that produces  a  pulse  precisely every 25
milliseconds  -  that's  40  per  second.   On  the  Model  III,  the  RTC  is
synchronized  to the AC  line frequency  and pulses at 30  pps  or  every 33.3
milliseconds. When the TP  identifies  the RTC as the source of the interrupt,
a major part of the TP is put into action.

     One important function is to maintain  a counter with the pulsing so that
clock  time can be derived.  Another function  is to execute  some  background
task routine. The system  maintains  a Task Control Block vector table at TCB$
(it  is  actually  at  4500H  on  both  Models  but   the  exact  address   is
unimportant).  This table contains 12  vectors -  one for each of  12 possible
tasks  numbered from zero through  eleven. One  of the  first eight  (0-7)  is
selected each time the RTC interrupts. They each take their turn  in  rotation
while the system keeps track of which  one was last executed so  it can select
the proper one at the next RTC interrupt. Since there are  eight selections at
25/33 millisecond intervals,  each  of the eight  are executed  every  200/267
milliseconds  (the  numbers are Model I/Model III). These eight task slots are
called low priority tasks - executing at 4-5 times per second.

     TCB slots 8-11 are executed at every RTC  interrupt and thus are executed
every 25/33  milliseconds - which is  30 to  40 times  a second.  Since  these
tasks  execute much more frequently, they  are termed  high  priority tasks. A
choice between whether a task  should  be  placed in  high or  low priority is

Page - 30



made by analyzing  the criticality of its timeliness.  For instance, the TRACE
function  is a low priority task because  it would be  rather difficult to see
an address  value that is  changing 30  to 40  times a second. As it is, there
are complaints that the 4-5 per second rate is too fast. Type-ahead  is a high
priority task because 4-5 scans of the keyboard per  second  would most likely
lose some of your key strokes.

     Well,  anyway, now that you know about this  table,  how do you use it? A
good question  deserves a good answer. LDOS contains  four system entry points
that manage the task vectors. These and their functions are:

   @ADTSK = Adds a task to the TCB$ table
   @RMTSK = Removes a task from the TCB$ table
   @KLTSK = Removes the currently executing task
   @RPTSK = Replaces the TCB address for the current task

I  will go  into  a little more detail  concerning  the  use  of  these system
functions;  however,  it  is  interesting  to note  that  Model  I TRSDOS  2.3
contains the  identical  functions and a  similar Task  Processor.  The  entry
addresses are the same as in Model I LDOS.

     I need to make  sure that the next  point is completely understood  since
it has  caused confusion  to many  attempting to learn how to interface to the
TP.  Both the INTVC$  and TCB$ contain  vector pointers.  The  INTVC$  vectors
actually point to the servicing routine; however,  the TCB$ vectors POINT TO A
16-BIT LOCATION IN MEMORY WHICH CONTAINS THE  VECTOR OF THE SERVICING ROUTINE.
Thus,  the  TCB$ tasks are indirectly  addressed. Make sure you keep  this  in
mind! When  you are programming  an interrupt service routine, the entry point
of the routine needs  to be stored in memory. If we call this storage location
the  beginning of a Task Control  Block  (TCB),  the reason  for  the indirect
method of vectoring interrupt tasks  will become more clear. Let's  illustrate
an example TCB.

        MYTCB   DEFW     MYTASK
        COUNTER DEFB     10
        TEMPY   DEFS     1
        MYTASK  RET

     This is obviously an extremely  useless task since all  it does is return
from  the  interrupt. However,  note  that I have  defined  a  TCB location as
"MYTCB" and this  location  contains the address  of  the  task. I  have  also
defined a few more  data bytes immediately following the task address storage.
If  you  think about other  control blocks in LDOS (such as  a  Device Control
Block), you  will observe that control  blocks are  contiguous data areas that
contain vectors and possibly data for a  driver routine. The DCB starts with a
TYPE  code,  followed  by  a vector pointing to  the  device  driver  routine,
followed  by  data  bytes -  the TCB  starts with the  vector. We  also should
remember from a previous article that  upon entry to a device driver, register
IX  is pointing to the  first byte of the control block. This is also  true in
task processing.  UPON ENTRY TO AN INTERRUPT  TASK  DRIVER, REGISTER "IX" WILL
CONTAIN  THE  ADDRESS  OF THE TCB.  You,  therefore, can address any  TCB data
using  index  instructions as  in "DEC  (IX+2)" which will decrement the value
contained in "COUNTER".

Page - 31



     Let's expand the routine slightly.

          MYTCB   DEFW    MYTASK
          COUNTER DEFB    10
          TEMPY   DEFB    0
          MYTASK  DEC     (IX+2)
                  RET     NZ
                  LD      (IX+2),10
                  RET

Here  we have  made use of the  counter.  Each  time  the  task  executes, the
counter is decremented.  When the count reaches  zero, the counter is restored
to  its original value. This task still is  pretty worthless for its  function
except for its  illustration of data referencing. The big question is how does
this task get added to the task control block table (TCB$)? We use @ADTSK  for
that.  Assuming we have decided  that the task will be low priority, we choose
an unused  low-priority task slot,  say slot  2. The  following code  will add
such a task to TCB$:

                  LD      DE,MYTASK
                  LD      A,2
                  CALL    @ADTSK

     We just  point register "DE" to the TCB, load  the task slot  number into
the accumulator,  then  issue  the system  call.  The task, most likely, would
have  been placed into high memory and protected by  lowering (HIGH$). Chuck's
article  on  RELOCATING CODE  appearing  in  the  January 1982 LDOS  QUARTERLY
should be consulted  if you are  not  knowledgeable on placing  routines  into
high memory.

     Once a task has  been  activated, it is sometimes necessary to deactivate
it. This can  be done  in two ways. The most  often way  is to use  the @RMTSK
system call in the following manner:

                  LD      A,2
                  CALL    @RMTSK

What could be  more simple? We identify what task slot  to remove by the value
placed into the accumulator,  then issue the system  call.  Another method can
be used if we want to remove the task WHILE WE ARE EXECUTING IT. Consider  the
routine modified as follows:

          MYTCB   DEFW    MYTASK
          COUNTER DEFB    10
          TEMPY   DEFB    0
          MYTASK  DEC     (IX+2)
                  RET     NZ
                  CALL    @KLTSK

The  @KLTSK system  routine  will remove  the currently  executing task. Since
this  task is currently executing, it is the  one  that  gets removed from the
TCB$  table. The system will not return to your routine  but  will continue as
if you had executed an "RET"  instruction. Therefore, the "CALL @KLTSK" should
be  the last  instruction  you  want executed. In this  example,  MYTASK  will
decrement the  counter  by one on each  entry to the  task.  When the  counter

Page - 32



reaches zero, the task will be removed from slot  2 (remember it was placed in
slot 2).

     One  additional  TP system call is @RPTSK. The function is easy to say in
words;  however, its function  is best illustrated. The @RPTSK  function  will
update the TCB storage vector (the vector address in your  task control block)
to be  the address  immediately following the CALL @RPTSK instruction. This is
also another case  where the system will NOT return to your  servicing routine
after the CALL is made but rather continues  on with the TP. To illustrate how
this TP  function  is used  in  a  program,  the  following example  should be
examined:

        ORG     9000H
        @ADTSK  EQU     4410H
        @RPTSK  EQU     4416H
        @RMTSK  EQU     4413H
        BEGIN   LD      DE,TCB
                LD      A,0
                CALL    @ADTSK
                JP      402DH
        TCB     DW      TASK
        COUNTER DB      5
        TASKA   CALL    @RPTSK
        TASK    LD      A,'|'
                LD      (3C3FH),A
                DEC     (IX+2)
                RET     NZ
                LD      (IX+2),5
                CALL    @RPTSK
        TASKB   LD      A,'-'
                LD      (3C3FH),A
                DEC     (IX+2)
                RET     NZ
                LD      (IX+2),5
                JR      TASKA
                END     BEGIN

     First, I would  like to  point out  that  this  task routine contains  no
method  of relocating it to protected RAM.  The statements starting  at label,
BEGIN,  add the task to  TCB$ slot  zero and return to  LDOS  Ready.  The task
contains a  one second  down  counter (Model III users would most likely use a
count  of four to  approximate one  second)  and a routine to stuff  video RAM
(64th  character of row 1)  with  a character.  At  one second  intervals, the
character toggles between '|' and '-'.  The toggling  is achieved by  toggling
the execution of two  separate  routines which  perform  the  stuffing. Use is
made of the  @RPTSK TP  call to implement the routine  toggling.  Examine this
task closely to ascertain the functioning of @RPTSK.

      By firmly understanding  the functions  of  each  of the  four TP  calls
discussed,  you  will become proficient at  integrating  interrupt  tasks into
your applications. A final note is  to be aware of the task slots already used
by LDOS utilities.  Consult the  reference  manual for  details. See  you next
quarter and keep those cards and letters coming in, folk's.

Page - 33



THE JCL CORNER by Chuck

Not  much has happened  in  the world  of JCL  since  April's  issue.  No  new
symbols, no new macros. The  change made to the 5.1.2 KI/DVR program kept  the
//INPUT macro  from  working  properly  with the 5.1.2 releases  dated earlier
than 5/25/82.  The fix for this can be  found in the 512 FIXES section in this
issue.  As  stated  last  quarter, this  month's  column will  be  devoted  to
keyboard input  within a  JCL, and keyboard substitution  of JCL lines  within
application programs. If you're  going to be trying any of  these examples, be
sure to patch the KI/DVR program, if necessary.

JCL  keyboard  macros are //KEYIN  and //INPUT, both  execution  macros.  They
function very differently. //KEYIN is used to present a  pre-programmed set of
choices, and  then react to a  numeric  key  response  to make the  selection.
//INPUT  is used to take  any  type of  input at execution  time,  temporarily
turning keyboard  control  back to  the user,  and then passing  the resultant
keyboard  input  to the program  or "level" that requested  it. Each macro has
its own definite purpose.

When executing  at the LDOS Ready  level, //KEYIN menus generally will consist
of a number of comment lines followed by the //KEYIN statement. For example:

   .  1 = PAYROLL
   .  2 = LEDGER
   .  3 = STARTREK
   .
   //KEYIN - Please indicate your choice, 1 to 3

This sequence  of  lines  would display  the  three  program  choices and  the
//KEYIN line, and  then wait until a key was pressed.  To evaluate the key you
would  use the  other two macros  associated with //KEYIN, the //CHARACTER and
the  ///. In  the  //CHARACTER  macro,  CHARACTER  can  be any  single numeric
character  0 to 9. Try adding the  following  lines to the above  example (the
comments  in parentheses are for explanation only; do NOT include  them in the
JCL file):

   //1           (first //CHARACTER block)
   LBASIC
   RUN" PAYROLL/BAS"
   //STOP
   //2           (second //CHARACTER block)
   LBASIC
   RUN"LEDGER/BAS"
   //STOP
   //3           (third //CHARACTER block)
   LBASIC
   RUN" STARTREK/BAS"
   //STOP
   ///           (this /// marks the end of all //KEYIN response blocks)

OK, just what exactly  have we got here.  First,  you can see there  are three
character  blocks, each corresponding  to  one  of the  numeric keys  you  are
allowing. Each block is  a complete set  of commands, entering LBASIC, running
the  program, and ending  with  the  //STOP to return  keyboard control to the

Page - 34



program and end JCL execution. The triple slant /// tells JCL  to stop looking
for  a match to the key  pressed, and to start executing  any following lines.
In other words, if a key other  than 1,  2, or 3 were pressed, execution would
continue with whatever commands you had after the ///.

IMPORTANT  POINT: Each  character  block extends from the //CHARACTER  line to
the next //CHARACTER line, or until a /// line.

You  may notice that the individual  character blocks appear  repetitous, with
each  containing an LBASIC and a //STOP  line.  Remember  the initial display,
consisting  of a series of comments and the  //KEYIN?  If you were to  go into
LBASIC first (so  you  could  remove the LBASIC  command from each block), and
then try  to use the  same lines to display  the menu, you would see a "Syntax
Error"  message  when the  first comment  was displayed.  LDOS  will  tolerate
comment  lines  starting with a period  -  LBASIC won't. You  could remove the
LBASIC command line  and placed it between  the menu comments and  the //KEYIN
macro. Doing that, however, would show the LBASIC sign  on message between the
menu comments and the  //KEYIN line. Acceptable, but not very appealing to the
eye.  It would  also mean that you would be at the LBASIC level if a key other
than 1, 2, or 3 was pressed, so  the line  following the  /// had better be an
acceptable LBASIC command or the JCL will abort.

With this small amount  of menu choices, it's  possible to re-write  the  menu
lines and do the whole //KEYIN from the LBASIC mode. Try the following:

   LBASIC
   %1F//KEYIN 1=Payroll, 2=Ledger, 3=StarTrek - Please select
   //1
   RUN" PAYROLL/BAS"
   //2
   RUN" LEDGER/BAS"
   //3
   RUN" STARTREK/BAS"
   ///
   //STOP

Using this JCL file will  enter  LBASIC and then display the //KEYIN  line and
the three choices. The %1F  will clear the  screen before displaying the keyin
line.  Pressing one  of the indicated keys  will  start  the selected  program
running and then execute the  //STOP after  the triple slash, turning keyboard
control back  to the  program and  ending the  JCL  execution. Pressing  a key
other  than 1, 2, or  3 would execute the //STOP, ending the JCL execution and
displaying the LBASIC Ready prompt.  At this point, the you could type in your
own RUN"PROGRAM" command or any other valid LBASIC statement.

Before explaining  how the //INPUT macro  can  be  used to  provide additional
choices  when  combined  with //KEYIN,  let's discuss what SHOULD NOT be  done
when  using //KEYIN. Since //KEYIN is an execution macro, it cannot be used to
evaluate  //IF macros  or  to  //SET  or //ASSIGN tokens  at  execution  time.
Consider the following example:

   (Lines of menu choices . . .)
   //KEYIN with your comments
   //1           (first //CHARACTER block)
   //SET A

Page - 35



   //ASSIGN BIG=LARGE
   //2           (second //CHARACTER block)
   //SET B
   //3           (third //CHARACTER block)
   //IF B
   //SET C
   //END
   ///

This  JCL  example  does  NOT do what  it appears to do  on  the  surface! For
instance, if  you think  pressing  1 will  ignore  the //SET  B  and the  //IF
statement in  the other  two  option blocks,  you're  wrong! Since the  //SET,
//ASSIGN,  and  //IF  macros  are  compilation macros, they  will be evaluated
during the compile phase. In this example, the compile phase  will  ALWAYS set
the  token  A  true, assign BIG=LARGE, set B  true,  and  set C  true. So, the
important point to remember is - DO NOT USE COMPILATION MACROS INSIDE  //KEYIN
BLOCKS. That's  not the  way  JCL works! You  must  be sure that  any  logical
testing is done before the //KEYIN blocks start.

You can use the  //INPUT macro  to provide an additional  run  time option  in
case one of the //KEYIN choices  was not selected.  Of course, this depends on
the construction of the  //CHARACTER and /// blocks. The LDOS manual shows how
to use //INPUT and  //KEYIN from the  LDOS level  to provide an alternative in
case no  valid  //KEYIN selection is made. Refer to your  manual for that type
of example.  If  you want to allow  an  additional  input from within the  JCL
environment in  LBASIC, you  can use the following format. The important point
to  note is the use  of  the  //STOP macro within  the  individual //CHARACTER
blocks:

   LBASIC
   %1F//KEYIN    (your menu choices)
   //1
   RUN"PROGRAM1"
   //STOP
   //2
   RUN"PROGRAM2"
   //STOP
   //3
   RUN"PROGRAM3"
   //STOP
   ///
   //INPUT  Enter your own command as RUN"PROGRAM"
   //STOP

From the top - the screen clears, the //KEYIN shows the  menu choices and then
waits  for a keyboard  input  from  the user. If 1,  2,  or  3 is pressed, the
corresponding  program is  run and the following  //STOP  halts JCL execution,
returning keyboard  control to the user. HOWEVER  . . . if  any other  key  is
pressed, the //INPUT line will be displayed. This will allow  the user to type
in a RUN"PROGRAM", or any other valid LBASIC  statement, executing the command
and  then  the  //STOP, giving keyboard  control  back to  the user.  If,  for
example,  the user pressed  <ENTER>  in  response to  the //INPUT,  the LBASIC
Ready prompt would appear and the JCL execution would halt.

Page - 36



That about  wraps  up  the basic  uses  of  //KEYIN   The  important points to
remember are:

   1) //KEYIN can only respond to the numbers 0 to 9.
   2) DON'T use compilation macros inside //KEYIN blocks.
   3) Structure your //KEYIN so you  exit  at  the  proper level if no choices
   are selected.

----------------

One  use  of  the  //INPUT  macro was  demonstrated  in  the  previous //KEYIN
example, that being  to input  an LBASIC  command.  The same method  would  be
equally valid if the //KEYIN exited at the  LDOS level (as demonstrated in the
JCL section of  the  LDOS  manual). The  main  use for //INPUT is to allow the
computer  operator  to input a command  or response that may vary at  runtime.
The  most important point to remember is  that the operator's response MUST be
valid at whatever level the  JCL  is  at. Keeping the  previous menu selection
theme going, you  could use the following as an AUTO DO file to select certain
/CMD files from the LDOS level every time you powered up:

   %1F. This disk contains the following program files -
   . Be SURE the proper data disks are installed, then select.
   .
   . *=* PROFILE *:* VC *:* LSCRIPT *:* EDAS *=*
   .
   //INPUT     Please type in your choice, or <BREAK> to abort
   //STOP

This example  would  clear the  screen (the %1F), then display all the comment
lines and the //INPUT line.  At this point, JCL execution would stop,  waiting
for the operator  to input a  command line. Since execution paused at the LDOS
level,  entering any of  the listed programs, or any  other program or command
that could execute directly from the LDOS level  is perfectly acceptable.  You
could  even run an LBASIC program by  entering a command  line  such as LBASIC
RUN"PROGRAM". See any pitfalls  in this example? No?  Look  Again. HINT: think
about what the //STOP would do if an LDOS library command were entered.

Entering any program name at the  //INPUT would execute the program, halt  JCL
execution,  and  relinquish  keyboard  control  to  the  program,  exactly  as
desired. Entering an LDOS  library command would execute the command, halt the
JCL,  and relinquish keyboard control to . . . . Well, you would  actually  be
at the LDOS Ready level, except that  the //STOP would  keep the  "LDOS Ready"
prompt from being displayed!!  It may appear  as  if the system had  hung  up.
This is similar to the way the MiniDOS filter returns  when executed from  the
LDOS level, with the cursor displayed but no visible LDOS Ready prompt.

This  example  shows how //INPUT  works, and  demonstrates how the  //STOP can
produce  different  (unexpected, abnormal, undesired, whatever) results if the
JCL  is supposed to //EXIT rather  than //STOP in response to an  //INPUT.  It
also  shows that this type of menu  function could probably  be handled better
by the //KEYIN macro. To demonstrate the  real power of //INPUT, we'll have to
get  into  using pre-arranged keyboard responses in a JCL file.  The following
will try to be practical, using BASIC programs as examples.

Page - 37



As  is  stated  in the  LDOS  manual,  JCL works  by "taking  control  of  the
keyboard".  Actually, this  should read "taking control  of  any LINE  request
from  the  keyboard".  With  the  TRS-80,  there  are  two  visible  types  of
"language"  inputs, those from  BASIC  (LBASIC)  and  those  from  an assembly
language program. To allow  a JCL file to provide  an input, use the following
rules:

   1) From LBASIC, use either  the  INPUT or the  LINEINPUT statement.  INKEY$
   will NOT pull in characters from a JCL file.

   2)  In assembly language,  use the  @KEYIN  call  (X'40')  rather than  the
   single key (X'2B' or X'49') calls to input a keyboard response.

OK. The subject  is "How to control programs totally  with JCL". Starting with
LBASIC programs, use  rule #1.  Use  the LBASIC "LIST"  command  to  determine
where  keyboard entries are requested, and which statement(s) are used for the
input. A  good rule of thumb  is that any program that shows a flashing cursor
and a  field length marked  by  periods  or  graphics characters  is using the
INKEY$ statement to handle keyboard  input. If the keyboard requests show this
flashing cursor or  field display, you can generally assume  that  all  inputs
will  be  taken  through  the  same  subroutine.  Try  and  isolate the  GOSUB
statement that  does this. Once you find the GOSUB line number,  you  can edit
that program line  to be an INPUT or LINEINPUT statement, thereby allowing the
answer to  any prompt to come from a  JCL  file. If  there are certain prompts
that you wish  to  FORCE the user  to  answer at runtime, don't worry! This is
where the //INPUT macro really comes into its own.

In  this following example, you should  assume that you  want to  give  a data
file name, and then stack the  rest of the responses to any future prompts  in
the JCL file.

   LBASIC
   RUN"Report12/bas"
   //INPUT
   15
   JUNE
   FIRST
   //EXIT

Now, let's assume that  the first input request  in the program "Reportl2/bas"
was a LINEINPUT statement to request a filename:

   100 LINEINPUT "Enter the name and drive of the data file ";D$
   110 OPEN"R",1,D$,128

When the program runs, the line 100 LINEINPUT message  will  be displayed, and
the JCL processor will  attempt to  feed in the next line  from  the JCL file.
Since the  next line  is  an //INPUT,  the keyboard will  now  become "alive",
allowing the operator  to type in the filespec of the data  file to be used by
the  program. This filespec will  be assigned to the variable D$ in line  100,
and then be  used  as the filename and drive number  in the OPEN  statement in
line 110. Assuming that  there are three more prompts in the program,  the 15,
JUNE, and FIRST lines in the JCL file will be used to answer them.

Page - 38



Although this example  used only one //INPUT, it's allowable to use as many as
you want anywhere in the program. Just be sure  that you keep the order of the
program's  input request  in mind  when creating  the JCL file  of this  type.
Believe  me, there's nothing  more frustrating than typing in a large JCL file
with pre-arranged  keyboard responses,  only  to discover that a program input
request was missed somewhere along the way. This can definitely  mess  up data
files, so be sure to test any new JCL with backup copies of the data!

The  same  procedure  described  above can be used when  running  an  assembly
language program with  a JCL file. Again, the method of input will have to  be
the  line input  handler  at  X'40' (hereafter referred  to  as  @KEYIN). This
precludes using a JCL file to  control such programs as Scripsit and Visicalc,
as  these programs all use a single key input routine.  As last issue's column
mentioned, the CMDFILE utility does use  the  @KEYIN  call for all  inputs. If
you  assembly  language  programmers are repetitively using  CMDFILE,  you can
make a run through the procedure, writing  down the necessary responses to the
prompts. These responses can then be typed into  a JCL file, using the //INPUT
macro whenever an unpredictable answer may be needed.

HEY!  I heard those moans and groans from some of you when you discovered that
Scripsit, etc., can't be controlled with a JCL file.  In fact, I've  discussed
this  on the phone with  a handful  of  users who have called  about this. How
would y'all like a patch to Scripsit and Visicalc that would let you run  them
from a JCL file? Sorry, but nothing like that exists. However...

The KSM filter can be put to good  use  to  control these  types of  programs.
Although not  a JCL function, I'll mention it here as it is, in most  cases, a
very acceptable substitute (this  is assuming that  you  are using the LSCRIPT
fix  to Scripsit).  To start  the  explanation,  assume  that you  have  three
Scripsit files to  be loaded  and printed,  called TEXT1/SCR,  TEXT2/SCR,  and
TEXT3/SCR (how original). As long as you  have Scripsit,  use it to build  the
following KSM file line:

   #L TEXT1;#P;#L TEXT2;#P;#L TEXT3;#P;

Save  this  file  using  the  ASCII option  of  Scripsit,  giving  it  a  /KSM
extension.  Now comes  the slightly tricky  part. You  must,  in  some manner,
change  every  "#"  to the  character X'1D',  necessary  to  get you  into the
SPECIAL COMMAND? mode of LSCRIPT. If you  have LED, you could use the HEX mode
to insert  this character directly as you were creating the  file. If you have
FED, you can use the H modify option to change the # to  the proper character.
If you  have neither, you can use the "LIST  filespec (H)" command to list the
file to the video, noting the location of every  #. Then the PATCH utility can
be used to  change the # characters to the  necessary X'1D'  value.  With this
method,  you can  create  command  lines up  to  255  characters in length  to
control  Scripsit,  and  other  assembly  language  programs,  with  a  single
keystroke and the KSM filter. In this example, assume that you have  built the
KSM file and assigned  the line  to the "A" key. Enter LSCRIPT, and then press
a  <CLEAR><A>. The three files will now be automatically  loaded and  printed,
with no further need for operator intervention.

Page - 39



LES INFORMATION

HELLO - from Les Mikesell

Frequenters of the MicroNet bulletin  boards  will  know that I have long been
an LDOS  fanatic  (yes, I  even liked  VTOS, if  anyone can remember that  far
back), so perhaps it was inevitable that I  would migrate to  Mequon to become
the  newest  member  of  the  LDOS support and development team.  You  will be
seeing more from  me  on  these pages  in the  future  in the  Les Information
column.  The  name is just in keeping with the general spirit  of the computer
business; actually  there may be some facts included from time to time.  Since
my main involvement with the TRS-80 so  far has been the Modem80 communication
program (see What's New  in this issue), the first  column will deal with some
of the basics of data communication.

First, assuming that the  remote computer  is more than 50 feet away, you will
need a  modem to  allow transmission via the phone lines.  Most modems require
that the TRS-80 be equipped with the RS232 interface,  although  a few connect
directly  to  the  TRS-80  expansion  buss.   For  use  with  a Model  1,  the
buss-connecting types  may  be  a good choice, but the Model 3 RS232 interface
has proven to be reliable and has the advantage of being  able  to generate an
interrupt  to the CPU when  a character is  received allowing  more dependable
operation under LDOS.  There are acoustically-coupled  modems with rubber cups
in  which to place a  telephone handset  and  direct-connect modems  that plug
into the phone line. In the  latter  class, there are also  auto-answer modems
that   will  operate  unattended.    The  newest  innovation  is  to  build  a
microprocessor into the modem itself to  allow features such as your choice of
touch tone  or  pulse dialing controlled by character strings transmitted from
the computer.   Virtually all of the common 300  baud  modems use the standard
Bell 103 tones and can  communicate with each other,  so the choice can simply
be  based  on  cost  versus the  desired features.   Special  programs may  be
required to  activate some  of  the  non-standard  functions,  though, so  you
should  be  sure that what you need is  available  unless  you write your  own
programs.   The  standard LDOS drivers  will  operate  the Radio  Shack  RS232
interface and systems  that are "software compatible", and the serial ports of
the  LOBO  LX80. The  system of "logical  devices" will allow  anyone familiar
with assembly language to write a driver for non-standard equipment.

Now, just dial  the  phone and......  well, next you need someone at the other
end.  Most large cities have one or more bulletin board  type computer systems
which  can be used  free  of  charge  for exchanging  messages (and  sometimes
public domain programs).  It is difficult  to keep an up-to-date directory  of
available systems, but  one  publication that attempts to do so is The On-Line
Computer  Telephone Directory  (OLCTD), published  quarterly  by  Jim Cambron,
P.O. Box 10005,  Kansas City,  MO 64111.  A  year's subscription is  $9.95, or
single copies are available for $2.85.  Most  local systems maintain a list of
numbers for other bulletin  boards currently active, so finding  the first one
is the hardest part.

You may also want to explore the Compuserve Information  service, an  enormous
data base  and  message  system  with  local  phone  access  in  many  cities.
Information on  accessing  this  system  is  available  from:      Compuserve,
Information  Service  Division,  5000  Arlington Centre  Blvd.,  Columbus,  OH
43220, or by phone at 614-457-8600  (in Ohio) or 800-848-8990 (outside  Ohio).

Page - 40



Of  special interest to  LDOS  users  is the bulletin board maintained  by the
LDOS  support group  where  users can discuss new applications and get answers
to technical questions.  Access  is limited to  those who have  sent  in their
LDOS registration form with their Compuserve user number  listed. If you get a
Compuserve  number  after  you register, call or write with the number and you
will be logged as a member on our bulletin board.

There  are  two  main "modes" of operation  on  Compuserve.   The  information
service  is generally accessed  through  menu selections,  which  is  slow but
fairly easy  for new user.  This mode can  be distinguished by the exclamation
point prompt for each entry.  The data  base entries accessable from the menus
have unique page  numbers, and can also be  reached by typing GO nn  (where nn
is the desired  page number) at any exclamation  point prompt, speeding things
up  after you become familiar with the system.  A small magazine  is published
for  subscribers to the service  with an index to the available  page numbers,
although the index  is  also on-line and  constantly  being updated.   For the
more adventurous, there is  also  the  MicroNet area,  distinguished by the OK
prompt.  In this  mode, you are actually operating the DEC PDP-10 computer and
can  write and run  your own  programs using any of several  available editors
and languages.   Each user has his own  128K filespace  which  can be used for
uploading, downloading  or exchanging files with  other users.   The  commands
for the MicroNet area are more complex and generally require a  MicroNet users
guide. The  MicroNet area can be reached through the menus or by typing GO PCS
71 at any of the  exclamation point prompts.  To get  back to the  information
service, type R DISPLA at the OK prompt.  The  DEFALT  program  can be used to
permanently change the area  you enter when you log on to the  system, as well
as your terminal configuration.

        The Public Access  area is  a  fairly recent  addition to  the service
that  allows downloading  of  user-contributed  material.   This is about  a 9
megabyte area, so  be prepared  to spend a long time  just reading the current
directory.  It may be reached through the menus,  or from MicroNet by entering
R ACCESS.  Like most of the other system programs, there  is a  built in  HELP
command  to assist new  users. There are some files  relating to LDOS under my
user number <70010,266> in  this  area  that are  accessable to any Compuserve
user.

USER CONTRIBUTED PROGRAMS

     LDOS,  beginning  with  release 5.1.2, has  LBASIC  assigning  a  default
extension  of /BAS  to  every  file SAVE  or  LOAD  or RUN.  This  is in  full
accordance with  the standard adopted with TRSDOS for command  files from  DOS
Ready, but is a bit foreign  to  LBASIC users and users of  other  systems. At
first I  didn't think I'd like  it this way,  but  after  a couple  of hours I
decided that it was the only way to go. I now love it!.

     The problem  is  that I had a lot  of  files which  needed  renaming.  My
previous practice was to name BASIC programs  without an extension and put one
on most other files. This  works  nicely, but I  wanted to take full advantage
of the default extensions within  LDOS so  I  wrote the following  utility  to
help rename the large number of files that did not  have an extension. Perhaps
you can use it too.

Page - 41



     The  program  is short, so  it should present little difficulty in keying
it in. One thing  to watch  is that there is no error  trapping. Be  sure that
you have the write protect tab off the  disk before putting it in the drive or
you'll get an error.

     The program  will ask for an extension  to be applied  to all files. Then
the directory  is read and  you are asked  if you wish to rename each file. If
you answer "Y", the file  is immediately renamed, if you answer "N",  the file
is left alone. When the  program has finished, you are offered an  opportunity
to run it again or exit to LBASIC or to LDOS Ready.

     I have about four hundred disks with BASIC or parts  of BASIC programs on
each side of them, so this program has proven to  be a real help to me. I hope
you will find it equally useful.

20 REM *******************************************************
40 REM ****   LDOS FILE RENAMING UTILITY (C) 1982 by      ****
60 REM ****   Charles P. Knight  2708 Roberts Cir.        ****
80 REM ****   Arlington, Texas 76010  (817) 640-4452      ****
100 REM*******************************************************
120 CLEAR10000
140 A$="FILE --> ":B$=" rename it to: ":DIMF$(128)
160 CLS:PRINT@512,"Which drive to rename files on";
180 INPUTTT$
200 D=VAL (TT$):IFD<0ORD>7THEN160
220 D$=" "+RIGHT$(STR$(D),1)
240 CLS:PRINT:PRINT:PRINT:PRINTTAB(18)"Select your extension:" PRINT
260 PRINTSTRING$(63,140):PRINTTAB(9)" 1. /BAS                2. /ASM
280 PRINTTAB(9)" 3. /TXT                4. /SCR
300 PRINTTAB(9)" 5. /CMD                6. /DAT
320 PRINTTAB(9)" 7. /REL                8. /CHN
340 PRINTTAB(9)" 9. /MAC                0. another choice
360 PRINTSTRING$(63,140):PRINT"Files are on drive"D
380 INPUT"Enter your choice";EX
400 IFEX=0THENINPUT"Enter your three letter extension";EX$:ELSE440
420 IFLEFT$(EX$,1)<>"/"THENEX$="/"+EX$:IFLEN(EX$)>4ORLEN(EX$)<1THEN240
440 IFEX>0THENONEXGOTO460,480,500,520,540,560,580,600,620ELSE660
460 EX$="/BAS":GOTO660
480 EX$="/ASM":GOTO660
500 EX$="/TXT":GOTO660
520 EX$="/SCR":GOTO660
540 EX$="/CMD":GOTO660
560 EX$="/DAT":GOTO660
580 EX$="/REL":GOTO660
600 EX$="/CHN":GOTO660
620 EX$="/MAC":GOTO660
640 GOTO240
660 X$="DIR/SYS.RS0LT0FF"+D$
680 OPEN"R",1,X$,32
700 FIELD1,1ASF1$,4ASD1$,8ASNA$,3ASE$,16ASD2$
720 Y=0
740 FORX=17TOLOF(1)
760 GET1,X
780 IFASC(F1$)AND128THEN960'IT'S FXDE

Page - 42



800 IFASC(F1$)AND64THEN960'IT'S SYSTEM FILE
820 IFNOTASC(F1$)AND16THEN960'IT'S NOT IN USE
840 IFASC(F1$)AND8THEN960'IT'S NOT VISIBLE
860 N$=NA$
880 IFRIGHT$(N$,1)=" "THENN$=LEFT$(N$,LEN(N$)-1):GOTO880
900 N1$=E$:IFE$<>"   "THEN960'ALREADY HAS EXT
920 F$(Y)=N$
940 Y=Y+1
960 NEXTX
980 CLOSE
1000 CLS:IFY>0THENFORX=0TOY-1ELSE1140
1020 PRINT@448,STRING$(63,140)
1040 PRINT@512,A$;F$(X);B$;F$(X);EX$;STRING$(8,32);
l060 PRINT@576,STRING$(63,140)
1080 IK$=INKEY$:IFIK$=""THEN1080
1100 IFIK$="Y"ORIK$="y"THENGOSUB1160
l120 NEXTX
1140 CLS:IFY>0THENPRINT@448,"***** Function Completed *****";:GOTO1260ELSEPR
INT@448,"**** No files to be renamed ****";:GOTO1260
l160 CM$="RENAME "+F$(X)+" "+EX$
1180 PRINT@960,CM$;STRING$(15,32);
1200 CMD CM$
1220 PRINT@960,STRING$(63,32);
1240 RETURN
1260 PRINT:PRINT:PRINT"1. Return to LDOS.  2. Exit to LBASIC   3. Run again"
1280 PRINT:INPUT"What shall it be";C$
1300 C=VAL(C$):IFC<1 OR C>3THEN1140
1320 IFC=1THENCMD"S"ELSEIFC=2THENSTOPELSERUN

FIXES FOR MODEL III VISICALC

.Patches to Model 3 Enhanced VisiCalc to run on

.LDOS 5.1.2. By Ray Pelzer, partly based on the

.Model 1/3 patches (c) 1981 by Logical Systems, Inc.

.These patches as of 05/15/82  (1st correction)

.These patches will make VisiCalc 3 run on a Model 1 or 3.

.WARNING! for Visicalc Version # VC-150Y0-T83 *ONLY*!!

.Patch in 002B kybd scan for typeahead, etc.

.X'557F'=CD 2B 00

.

. All the stuff for proper HIGH$ and Mod 1/3 conversion.

.X'521A'=CD 86 55

.X'52A6'=CD 86 55

.X'5586'=3A 25 01 FE 49 3E 00 2A 49 40 C0 21 90 42 22 A8 55

.X'5597'=21 64 4B 22 4A A7 21 93 42 22 69 A7 2A 11 44 C9

.

.Part of the @CKDRV call to see if a drive is active.

.X'55A7'=CD B8 44 C8 CD 51 A4 E1 C3 3F A7

.

.Add the ever-popular "/X-" screen-refresh command.

.X'7062'=5E 52

Page - 43



.Change the /V version display

.X'9235'=28 63 29 20 31 39 37 39 2C 38 31 20 56 69 73 69

.X'9245'=43 6F 72 70 20 56 43 2D 31 35 30 59 30 2D 54 38

.X'9255'=33 20 20 4C 44 4F 53 20 62 79 20 52 61 79 20 50

.X'9265'=65 6C 7A 65 72

.

.Now, make the changes to scan filespecs properly in LDOS

.When using a /S command withOUT a explicit filespec.

.X'A43D'=F5 3A 40 38 E6 04 28 06 CD 2D A4 F1 37 C9 CD 35 A4

.X'A44E'=F1 B7 C9 79 F5 78 4F F1 47 C9

.X'A720'=22 88 B5 CD 35 A4 3A 8F B5 FE FF 47 20 02 06 00

.X'A730'=CD 43 A7 D0 CD 3D A4 38 06 04 78 FE 08 38 F1 3E 03

.X'A741'=37 C9 CD 51 A4 CD A7 55 CD 65 4B 1E 01 21 D6 B5

.X'A751'=CD 45 4B CD 51 A4 20 55 21 D6 B5 7E E5 B7 C5

.X'A760'=28 3A 11 D6 B6 CD 51 A4 CD BB 44 EB 7E B7 28 3E

.X'A770'=7E FE 3A 28 39 FE 2F 23 20 F6 ED 5B 8A B5

.X'A77E'=06 03 1A FE 20 20 05 7E FE 3A 18 07 BE 20 21 13 23

.X'A78F'=10 EF 28 0C 3A 91 B5 B7 28 03 AF 18 02 3E 01 B7

.X'A79F'=20 0B CD 17 A8 38 03 C1 E1 C9 CD D8 A7 18 03

.X'A7AE'=CD C8 A7 C1 0C E1 23 CA 3F A7 18 A2

.end of patch (42 LINES)

512 FIXES

For Model I with  file dates  earlier that 5/25/82, apply  the following patch
to KI/DVR.

   D02,C0=00
   D02,C8=28 08 79 B7 28 6E 00 00 00 00
   . EOP

For Model III with file dates earlier  than 5/25/82, apply the following patch
to KI/DVR.

   D02,C3=00
   D02,CB=28 08 79 B7 28 6E 00 00 00 00
   . EOP

For BOTH Model I and Model III with  files dated  earlier  than 5/25/82, apply
the following patch to KSM/FLT.

   D00,60=2A 8E 55
   . EOP

About 100 Model I users had a bad  KSM/FLT file put on  their disk when it was
updated to the 5/25  dated  version.  This  will be evidenced by  the  message
"Load file format error" when trying  to establish a KSM file. If this  is the
case, apply the following patch to KSM/FLT.

   D00,00=05 06

Page - 44



LATE BREAKING NEWS AND OTHER RANDOM ITEMS

To try and clear up any confusion about the  new Model I RDUBL  driver for the
Radio Shack  doubler, it  should  be noted that it requires the 5.1.3  update.
This driver is  not available  for 5.1.2. All of our  testing has been done on
5.1.3, and  we are certain that the new driver works fine with this version of
LDOS.

For those of  you  using DEBUG  to  work on program debugging,  the  following
patch will force the display to initialize  in the  ASCII mode rather  than in
the  HEX mode. This could be very useful  for debugging programs that  do alot
of character string manipulation.

   .SYS5 patch for ASCII display mode.
   X'5147'=68
   X'5148'=28
   X'515C'=B7
   X'515D'=CC
   .EOP

We  get  calls with people having problems such as "I  install  PDUBL and  the
system locks up", or "I set the KI/DVR  and the keyboard locks up". The common
factor between PDUBL and KI/DVR, as  well  as  any  other driver or filter, is
the area of  memory  that they use. Most  of  these calls  come  from Model  I
users. High  memory  (the  top  32K)  on  the  Model I  is  in  the  expansion
interface. Access to  this memory  is made  across a  cable that has two  weak
points - the edgecards on the  keyboard  unit and on the  EI. Also, the memory
chips in the  EI  must  be good quality  chips. To  see  if  you  have  memory
problems  when  something like the above  occurs, try the  following.  Use the
MEMORY (HIGH=) command  to  set memory to X'BFFF' or  X'7FFF'.  This will lock
out the top 16K  or  32K, respectively. Then set the driver or filter  that is
causing  problems. If the problem goes away, its time  to clean the connectors
or change the memory.

The  LDOS  Quarterly  is copyrighted  in  its entirety. No  material contained
herein  may  be duplicated  for any  purpose without  the  written  permission
Logical Systems, Incorporated.

Page - 45





E X T E N D E D    S U P P O R T    A G R E E M E N T
=====================================================

This agreement is to  provide  additional support services to  users  of  LDOS
that have a desire for these services.

The following services will be provided to  any registered LDOS owner for  the
sum of Twenty-five dollars ($25.00)  paid to  Logical  Systems Inc. To execute
this  agreement you must  be a  REGISTERED LDOS OWNER, fill out this  form and
return  it to LSI at 11520  N. Port Washington Rd. Mequon, Wis.  53092,  along
with a check for 0 The  fee is $35.00  for all foreign users,  including
Canada and Mexico.

For ONE year from the  date  of this agreement LSI will provide the  following
services:

1> The users may send  in his MASTER  LDOS disk  for upgrading  at a fee of $5
instead of the $10 charged to owners not on this extended service agreement.

2> You will receive 4 issues (one year) of the LDOS QUARTERLY.

3> If you are a Compuserve  subscriber,  you  will  be given membership in the
LDOS users group on MicroNET. (The LDOS bulletin board.)

4> Foriegn owners  will  have newsletters sent and  updates  returned via  AIR
MAIL.

Name ...................................... LDOS Serial # ....................

Address ......................................................................

City ................................. State ....... Zipcode .................

Country ......................... Phone (.....) ..............................

Model I .....  Model III .....  Other ........................................

Enclosed  $25 ..... $35 .....   MicroNET I.D .................................

   Charge my credit card account # ...........................................

   Mastercard ...    VISA ...    Expiration Date .../...   Bank # ............

   ----------------------------------------------  ---------------------------
   Signature                                       Date

Page - 47






