
GO:CMDTM

Golden Oldies:
Command Utility Package

OPERATOR MANUAL

Copyright © 1988 MISOSYS, Inc., All rights reserved

Golden Oldies: Command Utility Package

- i -

GO:CMDTM

Golden Oldies:
Command Utility Package

OPERATOR MANUAL

Revision 1.0.0 11/17/88

Copyright © 1988 MISOSYS, Inc., All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of MISOSYS, Inc.

MISOSYS, Inc
PO Box 239

Sterling, VA 22170-0239
703450-4181

Golden Oldies: Command Utility Package

- ii -

SOFTWARE LICENSE AGREEMENT

MISOSYS, Inc., authorizes you to use this software on only one computer at a
time. You are authorized to make archived copies of the software for the sole
purpose of backing up your software.

MISOSYS, Inc., warrants the physical diskette and physical documentation to be
free of defects in materials and workmanship for a period of 30 days from the
date of purchase. Upon notification of defects in material or workmanship within
the warranty period, MISOSYS, Inc., will replace the defective documentation
or diskette.

MISOSYS, Inc disclaims all other warranties, expressed or
implied, including but not limited to any implied warranty
of merchantability and/or fitness for particular purpose.
Under no circumstances shall MISOSYS, Inc be liable for
any loss of profit or any other damage, including but not
limited to special, incidental, exemplary, consequential or
other damages.

LDOS is a trademark of MISOSYS, Inc
LS-DOS is a trademark of MISOSYS, Inc.
TRSDOS is a trademark of the Tandy Corporation.

Golden Oldies: Command Utility Package

- iii -

Table of Contents

General Description... iv

COMP ..1

FASTBACK - Hard disk to floppy...5

FASTREAD - Restore floppy to hard disk...9

FED2 ..13

IFC ...39

PRO-CESS ...49

ZCAT ...69

Glossary of Terms ..81

Golden Oldies: Command Utility Package

- iv -

General Description

COMP: This program compares two files, parts of files, diskettes,
or parts of diskettes for a character for character match.

FASTBACK: is a utility program that will copy a file larger than can be
held on a single floppy disk to multiple diskettes.

FASTREAD: will restore a set of floppy diskettes back to a file on a hard
drive.

FED2: Allows the user to access a disk file to display,
disassemble, and edit that file. It is a screen-oriented File
EDitor to be used with a LS-DOS compatible operating
system. Its wide range of capabilities make it an excellent
tool for the advanced user. Its simplicity makes it easy to
use for the novice.

IFC: IFC gives you the ability to perform file maintenance of
moving files among disks while purging unneeded files. A
menu-controlled screen provides the tools to easily list,
copy, delete, or rename a file or groups of files. You will
find IFC essential to the task of file maintenance.

PRO-CESS: A powerful maintenance tool for "CMD" or "CIM" type
load module files. It provides for file appending, mapping,
sorting, packing, offsetting, library member and partitioned
data set member extraction, as well as the specified
deletion of any load module record. PRO-CESS can
convert "CMD" files to "CIM" files which are pure binary
core-image constructs. It also provides the capability of
converting "CIM" files to "CMD" files.

ZCAT: A very fast machine language program that creates and
maintains a catalog of all files which reside on your
LS-DOS 6.3 (or TRSDOS 6.x) formatted diskettes.

COMP – File or Disk Compare

- 1 -

COMP

This program compares two files, parts of files, diskettes, or parts of diskettes for
a character for character match. The proper syntax is:

COMP filespec1 TO filespec2 (parm,parm,...)
COMP :drive1 TO :drive2 (parm,parm,...)

The allowable parameters are:

Rec= Starting record number of the
filespecs at which the compare
will begin default is 0

Num= Number of records of a filespec or
sectors of a disk to compare

All Display each non-matching byte

Print Send display to *PR (printer) as
well as *DO (video screen)

Cyl= Cylinder at which to start compare
between two drives (default is 0)

Sec= Starting sector of a diskette to
compare (default is 0)

Abbr: Rec=R, Num=N, All=A,
Print=P, Cyl=C, Sec=S

This utility compares two files or two entire diskettes to determine whether or
not the information in or on them is identical. It is usually performed after a
BACKUP or a COPY to determine the validity of the data.

Golden Oldies: Command Utility Package

- 2 -

If the data is identical the following display will result:

COMP MAY/DAT:3 :4

COMP - Version 2.0.0 - file or disk compare program
Copyright 1982/88 MISOSYS, Inc., All rights reserved

MAY/DAT:3 contains 17 sectors, EOF offset = 70
MAY/DAT:4 contains 17 sectors, EOF offset = 70

Notice that the second filespec was indicated by a drivespec. This is the ONLY
exception to a complete filespec which is allowed. Since the files proved to be
identical, only the number of compared sectors followed by the end-of-file offset
were displayed.

In the case of differing files the following would occur:

COMP F82/DAT:3 F82/DAT:4 (R=4)

COMP - Version 2.0.0 - file or disk compare program
Copyright 1982/88 MISOSYS, Inc., All rights reserved

Posn= X'0005,00 F82/DAT:3 = X'20, F82/DAT:4 - X'00
29 bytes did not match.

Posn= X'0005,B0 F82/DAT:3 - X'54, F82/DAT:4 - X'00
32 bytes did not match.

F82/DAT:3 contains 18 sectors, EOF offset = 100

F82/DAT:4 contains 18 sectors. EOF offset = 100

The display shows record number of a discrepant sector followed by the relative
byte, and the contents of that byte in each filespec. The second line displays the
total number of subsequent bytes which do not match. If the ALL parameter had
been specified, each of the sixty-one bytes would have been displayed in the first
format revealing the content of both files.

COMP – File or Disk Compare

- 3 -

To compare one disk to another, use drive numbers instead of filespecs. The
starting cylinder and sector number may be specified either in X'00' format or as
a decimal integer. The number of contiguous sectors to compare may also be
specified by using the NUM= parameter.

Unlike file to file comparisons, the disk to disk compare will only display the
utility name and return to LS-DOS Ready if no divergent bytes are detected. If
discrepant bytes are detected the following will appear on the video:

Cyl X'0D, Sec X'00, Byte X'00,
Driv e 2 = X'6D, Driv e 3 = x'31

3078 bytes did not match.

If the ALL parameter had been specified then each different byte would display
in the first line format. To send the output to the printer as well as the video,
specify the PRINT parameter.

Golden Oldies: Command Utility Package

- 4 -

FAST-BACK/READ - Hard Drive File Backup/Restore

- 5 -

FASTBACK and FASTREAD

FASTBACK is a utility program that will copy a file larger than can be held on a
single floppy disk to multiple diskettes. FASTREAD will restore a set of floppy
diskettes back to a file on a hard drive. These programs are written entirely in
machine language, and provide a considerable time saving when compared to the
standard Tandy file backup programs written in BASIC. Both of these programs
may be started up and run automatically with a JCL file to allow automated
backup procedures to be used.

Installation

As with any computer software product, it is recommended that you make a
backup copy before starting to use the package. Do so, and place the original
master in a safe place. To install the programs on the hard disk, do a backup
from the floppy onto the hard drive (normally, onto the partition used as drive 0).

FASTBACK - Hard disk to floppy

Prior to using FASTBACK, you need to determine how many floppy disks will
be needed to hold the file you will be copying. Single sided 40 track disks will
have a capacity of 171K; double sided disks will have 342K. Format all of the
disks needed, and then FORMAT 2 EXTRA. Label all disks except the extra
disks with the name of the file, and number them consecutively from 1 to the
end. Put labels on the extra disks but do NOT number them at this time. These
extra disks can be used in the event that one of the numbered disks develops a
flaw during use. This will be explained later.

Any disks that have locked out tracks CANNOT be used by FASTBACK. If
tracks do get locked out during the formatting procedure, set the disk aside (or
throw it away) and format another in its place. Remember - you are making a
copy of the file in case something happens to the original on the hard disk. Why
take chances with marginal floppy media?

To start the file save procedure, place the first floppy disk in the drive to be used
and type in the command FASTBACK at the DOS Ready prompt. Three
prompts must now be answered to start the file save. The first prompt asks
whether you want to verify all writes to the floppy disk:

Golden Oldies: Command Utility Package

- 6 -

VERIFY all writes (Y/N) ?

Normally, this prompt will always be answered Y (for Yes). In the event that
time is extremely critical (approaching electrical storm, office closing in 20
minutes, etc.), you can answer this N (for No), and the file copy time will be cut
approximately 50%. This is NOT recommended, however, and should only be
done in emergency situations and with known reliable floppy drives.

The second prompt will be for the name of the file on the hard drive you wish to
save to floppy:

Source file ?

Type in the name of the file, including the extension (if any) and the drive
number. If the file is not found, the message "File not in directory" will appear
and the program will exit back to the DOS Ready prompt. Once the source file is
found and opened, the next prompt will be for the floppy drive number to save it
to:

Destination drive ?

Answer this with the drive number holding the floppy disk. The file save will
now begin, and two lines of information will appear on the screen:

Using disk # n
Writing cylinder nn

The disk number shown should correspond to the number of the disk in the
floppy drive. If it doesn't, check to see that all the disks in the floppy set you are
using are numbered consecutively and are in order. At any time, pressing the
BREAK key will abort the file save and return to the DOS Ready prompt. Once
the disk is full, you will be prompted:

Insert disk N, Press ENTER

The "N" will be the number of the next disk in the set. Place it in the floppy
drive and press the ENTER key to resume copying. This procedure will continue
until the file is entirely saved to floppy. When finished, the screen will clear, the
message "Completed successfully" will be displayed, and the DOS Ready
prompt will appear.

FAST-BACK/READ - Hard Drive File Backup/Restore

- 7 -

FASTBACK error messages

There are certain error messages that can appear if FASTBACK detects
something wrong. Three of them can appear even before the program actually
starts writing to floppy:

Not enough free memory for FASTBACK

Destination disk MUST be a floppy drive

Source & Destination disks can't be the same

FASTBACK requires approximately 8K of free memory after it is loaded. Since
the program itself is less than 3K long, this message should NEVER appear. If it
does, it indicates a severe hardware error or a bad configuration at the DOS
level. Stop immediately and check things out!

The other two errors usually come from mis-typing the drive number on the
source filename or for the destination drive. Check your answers and restart the
program with the proper values.

One error message deals with flawed tracks on a disk:

Disk has locked out tracks. Press ENTER

If you see this message, the floppy disk you just inserted had tracks locked out
during formatting. As mentioned earlier, this is a no-no. Press ENTER, and the
original prompt for the floppy disk will re-appear. Pull out the offending disk
and put in a new one. If the disk in question is one of your numbered set, take
one of the extra disks, number it to replace the flawed one, and insert it instead.

This brings us to the two last error conditions - an error when writing to the
floppy, and an error when reading from the hard disk:

Floppy disk error

Put in replacement disk, press <ENTER>

DO NOT press Break unless you want to quit!!

This message will appear anytime there is an error writing or verifying the
floppy disk. Here is where the extra disks come into use. Pull out the bad

Golden Oldies: Command Utility Package

- 8 -

floppy, take an extra disk and number it to match the bad disk, place it back in
the drive and press ENTER. If you want to abort the copy instead (or if you
didn't make those extra disks), press BREAK to quit and return to DOS Ready.

The hard disk read error will show as:

Source disk read error, <BREAK> to abort,
<ENTER> to ignore

If this message appears, there is a bad sector on the hard disk. The choice is
yours - continue and get as much of the good information as possible, or stop the
file save. Press the indicated key once you decided what to do.

Automated use from JCL

To run FASTBACK from a JCL file, you need a minimum of four lines:

FASTBACK
Y
FILENAME
DRIVE#

Line I must always be the command FASTBACK to execute the program. Line 2
is usually "Y" (Yes to the verify question). Line 3 is the name and drive of the
source file. Line four is a single digit for the floppy drive #. Of course, comment
lines giving information can be included as shown in the next example. Also,
since all keyboard responses inside FASTBACK are done in a "non-JCL" mode,
two or more of these sequences can be put together in the event that there is
more than one file to save. The following example is one method of starting up
FASTBACK:

. SEMI-WEEKLY backup of mailing list

. Get "A" set of disks

. Place disk 1 in drive 5 (top floppy)

. Close door, and press ENTER when ready...
//pause
FASTBACK
Y
MAIL/KEY:1
5

FAST-BACK/READ - Hard Drive File Backup/Restore

- 9 -

FASTREAD - Restore floppy to hard disk

FASTREAD will read a set of floppy disks created with FASTBACK and
restore the original file back to the hard drive. The hard drive partition does not
have to be the same one the file came from originally.

To start the program, type the command FASTREAD at the DOS Ready prompt.
Several prompts will now appear. The first is for verification of the writes to the
hard drive:

VERIFY all writes (Y/N) ?

This prompt should always be answered by pressing Y (for Yes). The time saved
for not verifying will be approximately 5 seconds when restoring from a 40
track, single sided floppy. In extreme conditions, there may be a reason to not
verify the writes, but it is not recommended. The next prompt will be for the
drive holding the floppy disk:

Source drive ?

Be sure the first floppy disk is in the drive and the door is closed, and respond by
pressing the appropriate number. At this point, the filename of the original file
will be read from the floppy and displayed on the screen.

The next prompt will be for the hard disk to receive the file:

Destination drive ?

Answer with the hard disk drive number where the file should go. The restore
will now start and the screen will show two messages:

Using disk # n
Reading cylinder nn

The disk number currently being read will be shown, and should match the label
on the disk. The cylinder number will increase from 1 until the floppy disk has
been entirely read. The next disk will be called for with the prompt:

Insert disk N, Press ENTER

The "N" represents the number of the next floppy disk in the set. Insert it
and press ENTER. Pressing BREAK at this point or during the reading will

Golden Oldies: Command Utility Package

- 10 -

abort the restore and return to the DOS Ready prompt. However, be aware that
the file on the hard drive will be changed once FASTREAD has started.

The disks will be prompted for until the last disk is read. At that point, the screen
will clear, the message "Completed successfully" will be displayed, and the DOS
Ready prompt will appear.

FASTREAD error messages

Disk read/write errors, trying to restore disks out of order, or using non-
FASTBACK floppy disks will all show different error messages on the screen.
FASTBACK writes certain information to an otherwise unused portion of the
floppy disk for FASTREAD to check during the restore. If this information is
missing, or if disks from different FASTBACK sessions are mixed, an error
message will also appear. Three FASTREAD generated errors can appear at the
start of the restore:

Not enough memory for FASTREAD

Not disk number 1. Insert correct disk, press <ENTER>

Not a FASTBACK disk - can't read

FASTREAD requires approximately 8K of free memory after it is loaded. Since
the program itself is less than 3K long, this message should NEVER appear. If it
does, it indicates a severe hardware error or a bad configuration at the DOS
level. Stop immediately and check things out! The next error message indicates
that the floppy disk in the set is NOT the first disk in the set. Find the correct
disk, place it in the drive, and press ENTER to continue. Pressing BREAK will
abort the restore at this point. The last message indicates that the floppy disk was
not created by FASTBACK. The usual cause of this is typing in the wrong
source drive number. Check your responses and re-start the procedure.

Two error messages can appear if errors on the source floppies are detected:

Error reading header. <BREAK> to abort,
<ENTER> to retry

Source disk read error. <BREAK> to abort,
<ENTER> to ignore

FAST-BACK/READ - Hard Drive File Backup/Restore

- 11 -

The first message will appear if there is a disk read error when a floppy is
initially being read. You should retry several times by pressing ENTER, because
the header information MUST be read successfully before the data on the disk
can be restored to the hard drive. If the retries are not successful, pressing
BREAK will exit back to DOS. The second error indicates a read error in the
data saved on the floppy. This is usually caused by something that happened to
the floppy after it was created with FASTBACK - exposure to a magnetic field,
touching the floppy media with fingers, etc. Pressing enter will ignore the error
and attempt to read the next sector on the disk. Pressing BREAK will abort the
restore and return to DOS. This message may appear several times in a row if
more than one sector of the disk is bad.

Two error messages can appear when accessing the hard drive:

Disk write error. <BREAK> to abort, <ENTER> to ignore

Verify error. <BREAK> to abort, <ENTER> to continue

Since the hard drive media cannot be physically changed, errors when writing or
verifying can be ignored so the entire file is copied. However, it might be a good
idea to re-format the hard drive so the bad areas are locked out, and then restore
the data to it.

Automated use from JCL

Like FASTBACK, the FASTREAD program can be started with a JCL file.
Again, four lines are necessary - the FASTREAD command, the Verify answer,
and the source and destination drive numbers.

For example:

FASTREAD
Y
5
1

This example JCL file would initiate FASTREAD, use verify, read from floppies
in drive 5, and write to the hard drive in logical drive position 1.

Golden Oldies: Command Utility Package

- 12 -

FED2 – Disk and File Editor

- 13 -

FED2

Utility Overview

FED2 allows the user to access a disk file to display, disassemble, and edit that
file. It is a screen-oriented File EDitor to be used with a LS-DOS compatible
operating system. Its wide range of capabilities make it an excellent tool for the
advanced user. Its simplicity makes it easy to use for the novice.

FED2's main features are as follows:

1) Substitution editing capabilities are supported. The user can easily
position to any byte in any given record. Hexadecimal and ASCII
modification are available. Direct disk patching becomes a simple
matter with FED2. Small Changes in files can be made quickly. With
FED2, there is no need to reassemble large source files merely to
change one byte.

2) FED2 allows record advance, backspace, and absolute positioning.
Paging back and forth through the file is accomplished at a keystroke.
The user does not need to know any diskette information (such as
density, number of sides, number of sectors per gran, etc.). The required
information necessary to start FED2 is the file name.

3) ASCII, literal text or hex string searches are easily performed. A repeat
command exists to position to subsequent occurrences of the same
string. FED2 searches the entire file, not just the current record. It
searches for text or ASCII strings up to 16 characters in length.
Searching for Hex strings of up to 6 bytes in length is supported.

4) Mapping of machine language (/CMD) files with loader code
blocking and Z-80 disassembly is available for LS-DOS load

Golden Oldies: Command Utility Package

- 14 -

module format files. The user can page through each load block
(forward or backward), or position to the byte in the file which loads at
a specific address. It is also possible to position to the next Z-80
instruction or position to the address referenced by the current
instruction. These features allow the user to step through and examine
machine language routines within a file. Direct patches are made
quickly and easily.

5) Complete listing of a file, individual records, and disassembly output of
load module files to a printer are supported.

6) FED2 includes a standard 256 byte display mode, and FED2 6.x
includes a display for files with record lengths other than 256. Under
5.x, a screen mode is available to display additional information not
available in the 256 byte display mode due to lack of video space.

7) A Disk Mode is also available to work with an entire disk (at the
cylinder/sector level).

Information on disk organization, file structure, and load module format files can
be found in the Appendix of this manual section.

Throughout this manual, a character or word between angle brackets is used to
represent a keyboard key. Thus the symbol, <ENTER>, refers to the keyboard
key marked ENTER and not a five letter word. <P> means the "P" key etc.

Entering FED2

The full syntax for invoking FED2 is:

FED2 – Disk and File Editor

- 15 -

FED2 [*][!][filespec[,lrl]][drivespec]

* an optional prefix used to force
FED2 not to map a command file.

! an optional prefix used to suppress
FED2's automatic match of the
filespec to DOS library members.

filespec an optional file specification
designating the file you wish to
edit.

lrl an optional parameter to specify a
logical record length other than 256
for the file.

drivespec an optional drive specification of
the drive you wish to edit.

If a load error occurs, refer to the FED2 Load Errors section. Notice that
entering a file or drive specification on the command line is optional. Once
FED2 has loaded, a prompt will appear for the filespec if none was entered on
the command line. Answer this prompt by giving the file specification or drive
specification you wish to examine or modify. The filespec must be entered using
the following syntax:

*!Filename/ext.password:drivespec,lrl

The leading asterisk is an optional parameter (normally not used) which is used
to inhibit FED2's mapping of executable command files. This is necessary if you
want to search a command file while regarding load module record type data as
significant. There will be more information on this later.

FED2 will examine the entered filespec to see if it matches one of the DOS
library commands. If so, FED2 will access the appropriate DOS system file
which contains that command. If the file you wish to edit has the same name as a
DOS library command, FED2 will assume you wish to edit the library file. You
can keep FED2 from matching your filespec with library names by prefixing the
filespec with an exclamation point.

Golden Oldies: Command Utility Package

- 16 -

The filename may consist of up to 8 alphanumeric characters, the first of which
must be alphabetic. All filespecs must contain at least the filename. The
extension may consist of up to 3 alphanumeric characters. Like filenames, the
first character must be alphabetic. The extension is optional. The default
extension for all filespecs is "/CMD". To enter a file which has no extension,
follow the filename with a slash "/". The optional password has the same form as
a filename. The password is necessary only if the protection level is EXEC or
higher. If the file hasREADaccess, then FED2 will not allow writing to the file
unless the owner password was given. The drivespec is a colon followed by a
number between 0 and 7 which is a working drive number. This is an optional
field. If no drivespec is entered, all active drives in the system will be searched
for the filespec. The first match found will be used. If the drivespec is used by
itself, the entire disk will be treated as a file (see Disk Mode).

LRL is a number ranging from 1 through 256. Like the drivespec, the LRL is
optional. If no LRL is specified, the default value will be 256. You would
normally use the LRL parameter only if you wish to examine a file using its
logical record length and it is other than the typical 256.

To exit FED2 at this point rather than entering a filespec, press the <BREAK>
key, and control will return to the DOS level. If an illegal or improper filespec is
given, the appropriate error message will appear, and the filespec prompt will
re-display.

It is advised that when using FED2, the <BREAK> key should always remain
enabled. The <BREAK> key is necessary to abort any operation and to terminate
others. Because of this, FED2 will always enable the <BREAK> key when it is
invoked.

Hexadecimal notation (X'nn') will be used to represent the current record number
and relative byte number. After a valid filespec has been given, record X'0000'
will appear on the screen, and be resident in the "edit buffer". The term "edit
buffer" will refer to the record of the file currently in the computer's memory
which is simultaneously being displayed. The edit buffer (also referred to as
current record) will contain one record (1-256 bytes) at any given time. There
will be two cursors flashing within the record; one cursor will be in the "ASCII"
portion of the screen, the other cursor will be in the "Hex" display portion. Upon
initially accessing a file, these cursors will be positioned over relative byte X'00'
of record X'0000'. Throughout this documentation, the term "relative byte" will

FED2 – Disk and File Editor

- 17 -

be used, and will indicate the byte number (X'00'-X'FF') relative to the beginning
of the current record.

There will be an input cursor located on the lower portion of the screen
following the message "Command". This will be referred to as the "command
buffer", and will be used to pass commands to FED2.

Additional information shown on the screen will be the current record number,
filespec, relative byte within the sector, etc. The following sample displays show
where this information will be presented.

Display mode under FED2

0123456789ABCDEF BYTE 00 01 02 03 04 05 06 07 B8 09 0A 0B 0C OD 0E OF

......(.......KI <00> 00 FE 14 01 00 00 28 10 05 C3 08 00 00 A0 4B 49

......DO.<....PR <10> 07 DO 0B 00 00 00 44 4F A6 3C 0E A0 00 00 50 52

......SI......SO <20> 15 08 02 OD 00 00 53 49 17 10 02 OF A0 00 53 4F

......JL.g.= ..X <30> 0A 00 00 0A A0 00 4A 4C CD 67 A2 3D 20 0C CD 58

..g.w#....r(,.g. <40> 02 CD 67 B2 77 23 10 F9 18 EE 3D 28 0B CD 67 A2
G.g......g.G.g.0 <50> 47 CD 67 02 10 FB 18 EA CD 67 B2 47 CD 67 A2 6F
..g.g..., ...tc. <60> 05 CD 67 82 67 05 C9 D9 2C 20 OD E5 CD 74 43 El
.(............!. <70> 1C 7B D6 12 20 02 5F 14 7E D9 C9 01 88 OF 21 9B
...A..+.....cPV. <80> 02 7E ED 41 D3 89 2B 05 F2 81 02 C9 63 50 56 08
......e......... <90> 18 00 18 18 00 A9 65 09 00 00 00 00 00 00 00 00
................ <A0> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................ <BO> 00 00 00 00 A0 00 00 00 00 00 00 00 00 00 00 00
................ <CO> 00 00 00 00 00 00 00 00 00 00 00 A0 00 00 00 00
................ <DO> 00 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00
................ <E0> 00 00 00 00 00 00 00 A0 00 00 BO 00 00 00 00 A0
................ <F0> 00 00 A0 00 00 00 00 A0 00 00 00 00 00 00 00 00

BOOT/SYS:0 Record X'0000' Byte X'84' => X'D3' = 1101 0011 = 211

Command:

FED2 LIBRARY

<A> Enter ASCII modification mode
 Position to the Beginning of the file
<C><ENTER> Clear record with zeroes
<D><ENTER> Disassemble file to printer
<E> Position to the End of the file

Golden Oldies: Command Utility Package

- 18 -

<F> Enter Find mode and:
<A> find ASCII string
<H> find Hexadecimal string
<T> find Text string
<L> find load address
<G> Go to the next occurrence of last search
<H> Enter Hex modify mode
<I> Position to next Z-80 Instruction
<J> Jump to current instruction reference
<L><ENTER> List disk rite to printer
<N><ENTER> Enter a New file
<P><ENTER> Print current record in edit buffer
<R> Position to Record
<S><ENTER> Save current record in edit buffer
<U><ENTER> Update file's directory entry
<X><ENTER> Exit FED2 and return to DOS Ready
<BREAK> Cancel current FED2 command
<ENTER> Display FED2 instruction set (Menu)
<;> <+> Advance one record in the file
<-> <=> Backup one record in the file
<<> Position to previous load block
<>> Position to next load block
</> Toggle between Directory entry and HIT position

Note: FED2 is an advanced utility, giving the user an opportunity to accomplish
tasks not easily performed by other means. FED2 can also be a hazard to the
inexperienced or uninformed user. It is strongly recommended that all editing be
done on a BACKUP copy of the original file or disk whenever possible.

Cursor Movement Commands

<@> nn Position cursor to relative byte X'nn'
<Lt arrow> Move cursor left one byte
<Rt arrow> Move cursor right one byte
<Up arrow> Move cursor up one line
<Dn arrow> Move cursor down one line

<SHIFT><Up arrow> Position cursor to relative byte X'00' of the
current record

<SHIFT><Rt arrow> Position cursor to end of the line
<SHIFT><Lt arrow> Position cursor to start of the line

FED2 – Disk and File Editor

- 19 -

The @ positioning command requires a hex byte consisting of two hex digits.
This may be any number X'0' through X'FF'; however, if a single digit is used
(no leading zero), the <ENTER> key must be pressed in order to execute the
command. This is because the <@> command expects two digits. If two digits
are used, the command will execute immediately after the second one is typed.

This arrangement is used throughout FED2 whenever information must be
supplied in addition to the command key. Merely remember to press <ENTER>
if nothing occurs after typing in a command. This is especially true for the
strings used in all of the FIND subcommands.

The arrows may be used from within either the ASCII or Hex modification
modes to position within the buffer. The "@" sign will not be accepted during
either modify mode.

The cursor movement commands will not wrap into either a prior or a
subsequent record. To switch records, use the record manipulation commands.
No cursor movement will occur if an attempt to violate buffer boundaries results.

Record Manipulation Commands - File mode

<+>

Advance one record sequentially in the file. For example, if the current record is
X'000C', after pressing <+>, record X'000D' would be displayed (provided that it
exists). An "*" will be displayed adjacent to the record number when positioned
to the last record in a file. Issuing the <+> command will not change the position
of the relative byte cursors. A "+" will be shown in the command buffer to
indicate forward motion in the file.

<->

Back up one record sequentially in the file. If the current record is X'0087', after
pressing <->, record X'0086' would be displayed. Issuing the <-> command does
not change the position of the relative byte cursors. The <-> command will be
ignored if it is issued when record X'0000' is being displayed. A "-" will be
shown in the command buffer to indicate retrograde motion in the file.

Golden Oldies: Command Utility Package

- 20 -

Position to the beginning of the file (record X'0000') and position cursors to
relative byte X'00'.

<E>

Position to the end of the file. An "*" will appear adjacent to the record number,
indicating that the record being displayed is the last record in the file. If the file
has an LRL of 256, then the relative byte cursors will be positioned on the last
byte in the file which is often referred to as the "End-Of-File offset byte". (Note
that this is not necessarily relative byte X'FF'.) For LRLs other than 256, the
cursors will be positioned at the last byte in the record. Any modifications made
to bytes beyond the EOF offset byte are usually superfluous.

<R>nnnn

Position to Record X'nnnn', provided record X'nnnn' exists in the file. If the
record does not exist the request will be ignored. After entering <R>, the prompt
Record X' ' will appear in the command buffer. The input for the record number
will be taken within the single quotes. Hex digits (0-F) must be entered. Any
other characters will be ignored. <BREAK> will cancel this command. The user
may enter the record number without using the standard four digit (X'nnnn')
format. Simply type in the record number and press <ENTER>. For example, if
the desired record number is X'0021', type <H><2><1><ENTER>. To position
to record X'0007', type <R><7><ENTER>. The position of the relative byte
cursors will remain unchanged after positioning to the new record.

</>

This command either positions from a byte in the HIT (Hash Index Table) to a
directory entry, or from a directory entry back to the HIT. If the cursor is
positioned somewhere in the HIT, </> would reposition to the directory entry
corresponding to that HIT position. If positioned in a directory entry, </> would
reposition to the byte in the HIT corresponding to that entry. This command is
only applicable while in DIR/SYS (file mode) or in the directory cylinder (disk
mode). It serves no purpose elsewhere and does not function in any other file or
any other cylinder. For more information, consult your DOS manual on
DIRECTORY structure.

FED2 – Disk and File Editor

- 21 -

FED2 Modification Commands

<A>

Enters the ASCII Modification Mode. In this mode, modifications can be made
directly in ASCII. Any character that can be generated from the keyboard (with
the exceptions of the <BREAK> key and the arrow keys) can be directly entered
into the edit buffer. Modifications can be made by positioning the cursor over
the bytes to be changed. After the <A> command is issued, the cursors will
become larger and the command buffer will display "ASCII Modify". From this
point on, any characters entered will be taken as modifications to the bytes in the
edit buffer. After a character is entered, the cursors will position to the next
character in the edit buffer. If the cursors are positioned at the last character in
the edit buffer, then no advance will occur. The arrow keys may be used to
position the cursor without altering the buffer contents. Any changes made to the
buffer WILL NOT automatically write to the file. In order to save changes to the
file, see the <S>ave command. To exit the ASCII modify mode, press the
<BREAK> key.

<H>

Enters the Hexadecimal Modification Mode. In this mode, modifications to bytes
in the edit buffer are accomplished by typing hexadecimal digits. After the <H>
command is issued, the cursors will become larger and the command buffer will
display "Hex Modify". From this point on, hexadecimal digits (0-F) must be
entered to modify bytes in the buffer. Note that since a single byte is represented
by two hex digits, hex modify edits one nibble (half a byte) at a time. The arrow
keys may also be used to position the cursors for additional editing. To exit the
Hex modify mode, press the <BREAK> key. Like the ASCII Modification
Mode, no changes are automatically made to the file. To make the modifications
to the file, see the <s>ave command.

Golden Oldies: Command Utility Package

- 22 -

<C><ENTER>

Clears the buffer contents from the cursor position to the end of the buffer by
filling it with X'00'. Some files have erroneous or random information past the
end-of-file offset byte in the last record. The clear command can be used to
overwrite the remainder of the buffer with zeros to facilitate viewing. Again,
since none of the edits perform an automatic write to disk, <S> is necessary to
save the buffer contents.

<S><ENTER>

Save the contents of the current edit buffer to disk. The current record will
overwrite the contents of the disk record. Although the changes are made, neither
the date nor the mod flag of the file in the directory record will be changed.

<U><ENTER>

This command is used to update the modification date in the directory entry of
the current file being edited. The modification flag will also be set. Update only
works in the file mode. The current date will be displayed in the prompt:

Update directory (mm/dd/yy) ?

If you wish to set the directory date for the file to this date, just depress the
<ENTER> key. If you wish to choose another date, enter it in the form
"mm/dd/yy". Your date will be checked for validity prior to updating the
directory. If the date is not acceptable, the UPDATE command will abort. If the
disk containing the file is using the extended dating convention, then the
extended date field will be set and the time field will be set to "00:00".

Note that updating the directory date is normally not done by FED2 even if the
file has been altered via the <S>ave command.

FED2 – Disk and File Editor

- 23 -

FED2 Control Commands

<N><ENTER>

Causes a prompt for a new filespec. FED2 will clear the screen, print its sign-on
message, and prompt the user for a new filespec to be edited. Note that strings
are saved so that <G> will work on the new file without reentering a search
criterion.

<X><ENTER>

Exit to operating system. Any changes made to the current record buffer, and not
written to disk with the <S> command will be lost.

<ENTER>

The <ENTER> key is used as a confirmation to complete most commands that
result in significant alteration of the current record. <ENTER> alone will display
a menu containing most of the FED2 commands, and a brief description of their
use. Pressing <ENTER> at the menu page will return to the display mode.

<BREAK>

The <BREAK> key is used to abort a FED2 command in progress.

FED2 Output Commands

<P><ENTER>

Print the current buffer contents, to a printer. If the printer is not available, the
error message"Printer Not Ready"will display. Pressing <ENTER> at the error
will attempt to print again. Pressing <BREAK> will abort the operation. Under
DOS 6.x, other error messages are possible if the printer is routed or linked to a
disk file or a device.

Golden Oldies: Command Utility Package

- 24 -

<L><ENTER>

List the file to a line printer starting with the current record. The record length
must be 256. Since FED2 does its own pagination, it is suggested that no printer
filters involved with line counting be used in conjunction with this command.
The listing will terminate when the end of the file is encountered, or when
<BREAK> is pressed. Error handling works exactly as with the <P> command.

<D>

Output disassembly of a Load Module File starting with the current instruction to
a line printer. If the cursor is positioned in loader code, the first instruction
following will be used. The listing will terminate when the end of the load
module is encountered, or when <BREAK> is pressed. Unlike the <L>
command, there is no pagination on the disassembly output. Error handling is
identical to the <P> command.

FED2 Search Commands

<F>

Enters the FIND mode. A "FIND" prompt will appear in the command line. A
subcommand declaring the type of search must be entered. After entering the
subcommand, an appropriate prompt will display followed by a blank space in
quote marks. The following are the four FIND sub-commands:

<A>

Find ASCII "string". This is a literal search for the exact ASCII characters
entered. "string" is a group of from one to sixteen ASCII characters. The only
ASCII characters that can't be generated are the <ENTER>, <BREAK> and
<BACKSPACE> keys. If less than 16 characters are typed, the <ENTER> key
must be pressed to initiate the search.

<H>

Find Hexadecimal "string". This is a literal search for the exact hexadecimal
bytes entered. "string" is a group of up to 12 hex digits (6 bytes). Only the valid
hex characters (0-F) will be accepted.

FED2 – Disk and File Editor

- 25 -

<T>

Find Text "string". This is a search for ASCII characters that ignores differences
in upper or lower case. The same restrictions which apply to <A> apply to <T>.

<L>

Find Load Address X'nnnn'. This is a search for the byte in the file which loads
at memory location X'nnnn'.

<G>

Go to the next occurrence of the last searched string or load address. In order to
do the same search again, it is necessary to usethis command. It simply looks for
the last item specified again. It also "memorizes" the last search criterion as long
as FED2 is active. This means that searches through different files for the same
string are possible without re-entry of the string. The only exception to this is an
attempted <F><L> when switching to a non-load module format file. Obviously
the string is useless in that case. If it is not obvious then read the appendix. If it
is still not obvious just take our word that it makes no sense.

Pressing <BREAK> at any time during the input sequence or actual search, will
cause FED2 to display the record which was current before the search started.
Any changes made to the current edit buffer and not saved will be lost during a
search. The <BACKSPACE> key may be used to correct any mistakes made
during input.

During a search, the record number being searched will be displayed. If the
string or load address is not found, the appropriate message will be displayed.
Control will return back to the position in the file before the search. Note : A
search starts at the byte following the current position. If the cursor were
positioned to relative byte X'FF' of record X'0012', the search would start at
relative byte X'00' of record X'0013'. For load module format files, only data
found in object code blocks will be used in the search. Characters in header,
comment, filename or any other blocks will be ignored. It is also assumed that
object code blocks load contiguously in memory.

Golden Oldies: Command Utility Package

- 26 -

In order to search a Load Module File and include load blocks, precede the
filespec prompt (the very first thing FED2 asks for) with an asterisk

FED2 Load Module Commands

<I>

Position to the next Z-80 instruction. For example, if the cursor is positioned at a
CALL instruction, and the <I> command was used, the cursors would be
positioned 3 bytes after the X'CD' opcode. If the instruction spans a load block,
an additional 4 bytes will be skipped. Note: Using the <I> command may
position to the next record in the file. If this should happen, any changes made to
the edit buffer which were not saved will be lost. If the cursor is positioned in
load code, <I> will position to the first valid instruction found. Note that
opcodes out of sequence will be just as readily disassembled. Make sure the
"logic thread" being followed is the correct one.

<J>

Position to Z-80 instruction reference. This command positions to the address
operand of the current instruction. For example, if the current instruction was a
JP67A9, issuing a <J> would attempt to position to the byte which would load at
address X'67A9'. If the address is not located in the file, the error message "Load
Address not Found" will be displayed, and the original cursor position will be
restored. The <J> command may be used for any instruction referring to an
absolute address or relative branch(CALL, JP, JR, LD, DJNZ),whether conditional or
unconditional. If the cursor is either at the end of the module or with the transfer
address block, a <J> will locate the transfer address. Any address used by <J>
must be a 16 bit address or a JR offset. Branches such as eight bit loads, JP (HL)
or RST will not work. For example, the instructionLD A, 5 will not attempt to
locate X'0005',LD HL, 6060 will, however, attempt to locate X'6060'. Note: any
changes made to the edit buffer prior to using the <J> command will be lost if
the current record is left, unless saved with the <S> command.

FED2 – Disk and File Editor

- 27 -

">" "<": Right and Left angle brackets

Positions the cursors to the next/previous loader block (X'01', X'02', X'03', X'05',
X'07', X'10', X'1F') of a Load Module File. This feature was designed to allow
the user to trace through machine language files quickly. Encountering a X'02'
will terminate a trace. For more information on "Type" bytes, refer to the
appendix onLOAD MODULE FORMAT FILES.

Disk Mode

Occasionally it is desirable to work with an entire disk as opposed to a single
file. For this purpose, the FED2 disk mode makes it possible to treat the entire
disk as a file. Most of the commands available in the file mode are also available
in the disk mode. To enter the disk mode, simply give the drivespec (colon
followed by a number between 0 and 7) at the "Filespec:" prompt or on the
command line.

Since the entire disk is treated as a file, positioning to specific cylinders and
sectors is accomplished by specifying the record number.

The following commands illustrate the difference. More information may be
obtained from the appendix on disk organization.

<R> ccss

Position to Record X'ccss' on disk. The Record number consists of the cylinder
number (cc) and sector number (ss). For example, positioning to cylinder X'34',
sector X'05' (record X'3405'), would be accomplished by typing
<R><3><4><0><5>. Pressing <ENTER> following the record number is
required only for requests consisting of less than four digits. To position to
Record X'030A', type <R><3><0><A><ENTER>. To position to Record
X'0004' type <R> <4><ENTER>.

Position to Beginning of Disk (Cylinder 0, Sector 0). After issuing a , the
current Record number would be X'0000'.

Golden Oldies: Command Utility Package

- 28 -

<E>

Position to End of disk. The actual record number would depend on the type of
disk. A single-sided double density 40-track diskette would have an ending
record of X'271 1' (Cylinder X'27', Sector X'11').

<+>

Position to next record. If positioned at record X '1405', (Cylinder X'14', Sector
X'05'), after pressing <+>, record X'1406' (Cylinder X'14', Sector X'06') would
be displayed. If the <+> is used when positioned at the ending sector number of
a cylinder, sector 0 of the next cylinder would be displayed. For example, a
double-density, double-sided, five-inch diskette has 36 sectors per cylinder
(numbered from X'00' - X'23'). If the current record is X'0223', after issuing <+>,
record X'0300' would be displayed.

<->

Position to previous record. If positioned at record X'1405', (Cylinder X'14',
Sector X'05'), after pressing <->, record X'1404' (Cylinder X'14', Sector X'04')
would be displayed. If the <-> is used when positioned at Sector B of a cylinder,
the ending sector of the previous cylinder would be displayed. For example, one
configuration for a 5" hard disk might use one platter for a logical drive. Each
cylinder might contain 64 sectors (numbered x'00 - X'3F'). Issuing a <-> when
positioned at Record X'5000' (Cylinder X'50', Sector X'00') would cause record
X'4F3F' (Cylinder X'4F', Sector X'3F) to be displayed.

Another feature of the DISK MODE is current file indication. Under 5.x, this is
shown in the 128 byte display mode. When positioned to a sector on a disk
which is allocated to a file, the filespec along with the relative record number is
displayed. With this feature, reconstruction of a damaged directory is possible.

If FED2 attempts to access a disk which it cannot distinguish, the error message
"Can't Log in Disk" will be displayed. Like other errors, pressing <BREAK>
will cancel the current command, causing the filespec to reprompt. Pressing
<ENTER> will indicate to FED2 that it should use the information in the DCT
(Drive Code Table) to access that disk. If FED2 cannot interface properly, it may
be necessary to use DEBUG or another utility to fix the disk.

FED2 – Disk and File Editor

- 29 -

Practical examples of FED2's use

1) Change the byte which loads at address X'57CE' to an X'C9', in a file named
TEST/CMD on drive 2:

A) To edit the file, at the Filespec prompt type:TEST:2<ENTER>

B) To position to address X'57CE', type:<F><L>57CE

C) To enter hex modify mode, press:<H>

D) Then type in the change:C9

E) To exit the hex modify mode, type:<BREAK>

F) To save the change to disk, type:<S><ENTER>

G) To exit FED2, type:<X><ENTER>

Note that in this case, no extension was required to access the file, because the
default extension of /CMD was correct.

2) To null out record X'7A' of a data file named ACCOUNTS/DAT which has an
update password of BOSS:

A) To edit the file, at the filespec prompt type:
ACCOUNTS/DAT.BOSS<ENTER>

B) To position to record X'7A', type:<R>7A<ENTER>

C) To fill the buffer with zeroes, type:<C><ENTER>

D) To save the changes to disk, type:<S><ENTER>

E) To exit FED2, type:<X><ENTER>

3) To change the string "Burgers" to "Hot Dog" in a file named
THEMENU/SCR on drive 6, after editing a different file:

A) To enter a new file, type:<N> <ENTER>

B) To edit the file, type:THEMENU/SCR:6<ENTER>

C) To find the ASCII string "Burgers". type:
<F><A>Burgers<ENTER>

D) To enter the ASCII modify mode, type:<A><ENTER>

Golden Oldies: Command Utility Package

- 30 -

E) To change the ASCII string to "Hot Dog", type:Hot Dog

F) To exit the ASCII modify mode, type:<BREAK>

G) To save the changes to disk, type:<S><ENTER>

H) To exit FED2, type:<X><ENTER>

4) To find out the name of a file on drive B containing the string "joe dude" (in
either upper or lower case):

A) To access the disk as a file, enter the drivespec:: 0

B) To find the text string, type:<F><T>joe dude<ENTER>

C) Under 5. 1. enter the 128 byte display mode by typing:<M>

D) The filename/ext and relative record containing the string will be
displayed at the lower portion of the screen.

5) Find the load address which contains the sequence of bytes X'45', X'22', &
X'77' in a file named HELPME/DCT:

A) To access the file, type:HELPME/DCT<ENTER>

B) To find the hexadecimal string X'452277', type:
<F><H>452277<ENTER>

C) The load address displayed refers to the first byte in the string.

Disk I/O Errors

As with any hardware, there is always that chance of something going wrong.
This could happen when reading from or writing to a disk. For some reason,
some component failed to do its job. The problem could be in the disk media, the
disk drive, the disk controller, or the computer. Whenever an I/O error occurs
under LDOS, an error number is returned to the program that requested the disk
I/O function. FED2 reports the error and allows the user to decide what to do
about it. There are two options available in FED2:

1) Abort the process, and resume whatever was done prior to
the I/O error

2) Ignore the error, and continue the process. Pressing
<BREAK>, indicates an abort operation. Pressing <ENTER>
will ignore the error, and continue the process.

FED2 – Disk and File Editor

- 31 -

Error Examples

Example #1

Assume that a record from a file on a write protected disk was read in. After
examining the record, some changes were made to the edit buffer. Once the
operator was content with the changes, the <S>ave command was issued. Almost
immediately, the error message "Write Protected Disk" is displayed. To make
the changes, simply take off the write protect tab and re-issue the <S>ave
command.

Example #2

While paging through a file, the error message "Parity Error During Read" is
displayed, The edit buffer contains the record which had the error, however the
integrity of the data is doubtful. At this point, the edit buffer could be modified
and followed by a <S>ave attempt.

For a detailed description of I/O errors, refer to the Operating System manual.

FED2 Load Errors

Two rare errors need to be examined. If while attempting to execute FED2, the
error message "Insufficient Memory to load FED" appears, one of two
undesirable events has occurred.

1) The amount of memory left in the system is not enough to
execute the program, or

2) Loading FED has overwritten reserved memory (HIGH$).
Because of the danger of #2, the solution is to re-boot the
system. Re-enter FED2 only if more free memory is available.

The second rare error is that a file is so large and the amount of free memory so
sparse that FED2 runs out of memory to map a file into load blocks. No error
message will be issued but the current file will NOT be mapped. This is exactly
like typing "*" for the first character of the filespec. This error is not fatal but
inconvenient.

Golden Oldies: Command Utility Package

- 32 -

Both errors occur rarely because the amount of memory which must be reserved
to cause either problem is unrealistic in normal use. However, in the interest of
complete error trapping, these accommodations have been made.

Load Module Format Files

One of the most frequent tasks requested of the operating system is the system's
own internal loader. Its function is to load machine language programs from load
module files into memory. Everything from application programs such as FED2,
to utilities like FORMAT and BACKUP, and even system files all are loaded via
the system loader. All programs do not load at the same address, they seldom
have the same length, and they rarely have the same execution address.
Therefore, a special format was established to provide this variable information
to the system loader. This is now called Load Module Format. When an LDOS
compatible assembler, such as EDAS, writes an object file program (/CMD) to
disk, it uses this specific format. Data is written in blocks, not necessarily
contiguous.

Each block consists of.

1) 1 byte indicating the Type of block

2) 1 byte indicating the Length of this block

3) Data pertinent to the particular block type

The blocks are organized sequentially, the length of the block defined indicates
the position of the next block. The system loader reads until it encounters a
block type indicating that it should cease loading. The following is a list of Type
bytes and functions that FED2 will acknowledge.

Type Byte Function
X'01' Load Object block into memory
X'02' Get Transfer Address
X'03' Get Transfer Address (non-executable)
X'05' Load Module Filename Header
X'07' Patch Header Name
X'10' Yanked X-Patch Object block
X'1F' Comment Block

FED2 – Disk and File Editor

- 33 -

The byte following the Type byte is a length byte, which indicates the quantity of
data bytes following. The length byte has a range from X'01' to X'00' (1 to 256:
note that zero is high here). A length byte of X'07' indicates seven bytes in the
data field. A length byte of X'00' indicates 256 bytes of data. For Type bytes
X'01' and X'10', the quantity of object code data bytes following is equivalent to
the length byte minus two. This is because object code blocks contain an
additional two bytes immediately following the length byte indicating the load
address (See Type Byte X'01'). A length byte of X'03', indicates three bytes
follow: 2 bytes for the address, and 1 byte of object code data. A length byte of
X'00' indicates 256 bytes follow: 2 bytes for the address, and 254 bytes of object
code data. Since the address field is always present, its length is assumed by the
loader. A length byte of X'01' indicates 255 bytes (X'FF') of object code data
following. A length byte of X'02' indicates 256 (X'00') bytes of object code. By
subtracting two from the length byte, the actual quantity of bytes loaded can be
obtained.

The data following the length byte is dependent of the type of block. There are
no restrictions on what the data in the block must be. Generally, block types
X'05' and X'1F' contain ASCII text, but aren't required to.

Load Object Block - Type X'01'

This type indicates that the following data is to be loaded into Memory. The two
bytes following the length byte are the destination (or starting load address) of
the object block. The load address is stored in LSB, MSB (Least Significant
Byte followed by Most Significant Byte) format. Since two bytes of the block
are used for the load address, the length byte must account for this. The easiest
way to understand this is by looking at a typical block:

01 08 00 70 CD 47 95 C8 B7 DD

The length byte indicates that this block is X'08' bytes long. The address to load
the data block at is X'7000' (lsb,msb format). However, only X'06' bytes are
loaded into memory. This is because two bytes of this block were used to
designate the load address. Therefore the actual area of RAM that will be loaded
is X'7000' - X'7005'. After this block is loaded, location X'7000' will contain an
X'CD', X'7001' will contain X'47' etc.

Golden Oldies: Command Utility Package

- 34 -

Yanked Patch Block - Type X'10'

This type of block is used exclusively by the LDOS PATCH utility. When an
X-patch is installed in a load module file, a header block and series of object
blocks (X'01's) are appended to the end of the file (overwriting the last Transfer
address block). When the patch is YANKed, all of the object blocks belonging
to that patch are changed to X'10's so that the system loader won't load them.

Transfer address Block - Types X'02' and X'03'

These types inform the loader where to begin execution once the entire module
has been loaded into memory. Since it only takes two bytes to store an address,
any bytes following the address with a length other than X'02' would be unused.
In the following example:

02 02 6A 3F

The transfer address of the module would be X'3F6A' (the address is stored in
lsb,msb format). Most assemblers allow the transfer address to be specified in an
END statement. The only difference between the X'02' and X'03' type bytes is
that the latter indicates a file that is not executable.

Header & Comment Blocks - Types X'05', X'07', & X'1F'

These types do not actually load into memory at all. Most assemblers write an
X'05' type as the first block of the file. It usually has a length of 6 bytes and the
data following is most likely the first 6 characters of filename. The DOS PATCH
utility generates the X'07' type block preceding X-patch data blocks. The data
contained therein is the name of the patch file. This is necessary in order to
YANK the patch by that name. Assemblers most likely do not generate this type
of block. This and type X'10' are used primarily by the PATCH utility. It is
sometimes desirable to insert comments into a program but not have the
comments resident in RAM. A block type of X'1F' indicates a comment block to
the loader. Note: none of these block types specified (X'05', X'07', X'1F') have
any effect on the object code.

When FED2 recognizes a file as Load Module format, it reads through the
file and maps every block. Once FED2 has successfully mapped the file,
additional information relevant to that file is now accessible. Wherever the

FED2 – Disk and File Editor

- 35 -

cursors are positioned in the file, the appropriate load module information is
displayed. The following are the block types and the messages that will be
displayed:

X'01' - Block X'nnnn' - X'nnnn'
X'02' - Transfer Address X'nnnn'
X'03' - Transfer Address X'nnnn'
X'05' - File Header Block
X'07' - Patch Header Block
X'10' - Block X'nnnn' - X'nnnn'
X'1F' - Comment Block

When positioned at actual object code in a load block, the following will be
displayed:

Load Address X'nnnn'

This is the memory location that will receive the byte at the current cursor
position. An asterisk before this indicates that this byte would load at that
address, except that this block has been yanked (see type X'10'). Alongside the
load address will also be the mnemonic Z80 instruction. The <L> function of the
<F>ind mode allows positioning the cursors to a byte in a file which loads into
memory at the specified address. The <I> command positions the cursors to the
next instruction. The <J> command locates the position that the current
instruction refers to (either direct or indirect). Both of these commands allow for
instructions spanning load blocks or sectors. With these commands, it is possible
to step through a machine language program.

When in a load module file, some information will always be displayed,
regardless of the current function mode (hex modify, ASCII modify, normal).
When using any modify mode in a load module file, pay VERY close attention
to what is being changed. If loader codes are ever overwritten accidentally,
disastrous results may occur. This might be realized the next time the file is
loaded. If the message "Load file format error" appears, this means that an illegal
type byte was encountered. This could have happened because the type byte
itself was changed, or a length byte was changed indicating the incorrect position
of the next type byte.

Golden Oldies: Command Utility Package

- 36 -

In some cases, it might be desirable to view a load module file as a data file. This
is accomplished by typing an "*" before the filespec at the prompt. This action
will prevent the file from being mapped. Any string searching will encompass
the entire file. including load blocks. For example, to hide a block of object code
by changing an object block, type byte (X'01') to a yanked patch block (X'10') or
comment block (X'1F'), or any other type byte. It is also possible to change the
load address in an object block, of data in a comment block or patch header
block. These actions are not common, but this feature is provided for advanced
users.

Disk Structure

In order to store information of any type on a disk, it must be formatted.
Formatting is the process in which the disk media's magnetic surface is organized
into concentric circular regions called tracks. Five inch floppy disks can be
formatted anywhere from 2 to 80 tracks. Typical standards are 35, 40 and 80,
depending on the drive. Some disk drives have more than one head, in which
case the term "cylinder" comes into play. A cylinder is a collection of tracks
grouped together as one logical unit. For example, a double headed 40 track
drive has 80 total tracks, but only 40 cylinders. Each pair of adjacent tracks on
opposite sides of the diskette form a cylinder. Cylinders are numbered
sequentially starting at the outside edge of the diskette, which is cylinder zero.
Each track is divided into smaller units called sectors. The quantity of sectors per
track depends on the disk type and density. Single density 5" floppy disks have
10 sectors per track, and double density 5" floppy disks have 18 sectors per
track. Some hard drives have up to 32 sectors per track and 256 sectors per
cylinder. Each sector contains smaller units known as bytes. One character of
data is equivalent to a byte.

Disk Files

After formatting and verifying the cylinders on the disk, system information must
also be written to that disk. "System Information" is a collective name for two
disk files - BOOT/SYS and DIR/SYS. A disk file is a collection of sectors on a
disk in a specific order. A file is referred to by means of its filename, extension,
and drive number. This can be abbreviated to the term "File Specification" or
FILESPEC. The first portion of cylinder zero is allocated to a file called
BOOT/SYS, which contains information necessary for that diskette to boot
up. One full cylinder is devoted to a file called DIR/SYS, also known as the

FED2 – Disk and File Editor

- 37 -

directory. The directory is a collection of tables and maps used to determine
anything about that disk - the disk name, password, and date of creation
(specified during format), how much space is available, how much is used, what
files exist, how much space they occupy and where those files are located on that
disk. Any data stored on that disk is stored in a file. Each file is made up of
logical units called records, referred to by a number in the range of 0 through
65535. Each record has a fixed length between 1 and 256 bytes, the most
common being 256 (the same size as a physical sector). For example, the file
named BOOT/SYS contains 5 records, each with a logical record length of 256.
The information such as file length, record length, dates and status are
collectively called attributes of a file. To see the attributes of any file, use the
DIR command with the (A) parameter.

Golden Oldies: Command Utility Package

- 38 -

IFC – Interactive File Control

- 39 -

IFC

General information

Anytime you have more than one disk drive on-line, you develop a collection of
disks containing many files. File maintenance of moving files among disks while
purging unneeded files can become a clumsy series of DIR commands followed
by COPY and or REMOVE commands. Using PURGE with its file-by-file query
can sometimes be useless when you have forgotten the contents of the files - you
need to list them. IFC gives you the ability to perform these maintenance tasks
interactively. A menu-controlled screen provides the tools to easily list, copy,
delete, or rename a file or groups of files. You will find IFC essential to the task
of file maintenance.

Invoking IFC

IFC is easily invoked via the command syntax:

IFC [:d] [(X,Inv)]

d Optionally specifies the logical
drive number to work with.

X Optionally indicates that drive 0
does not contain a SYSTEM disk.

Inv Optionally specifies that you want
INVISIBLE files included in the
directory list

Abbr: I=Inv

If no drive number was entered on the command line, IFC will prompt you for
the working drive with:

Select driv e (0 – 7) ?

Enter the number of the drive you wish to work with. After the disk directory has
been scanned and its contents sorted, the following information will be
displayed:

Golden Oldies: Command Utility Package

- 40 -

FILENAME/EXT:D *IP+ DD-MMM-YY HH:MM xxxxK

The first column is the file specification. The second column contains the file's
attributes. The asterisk [*] indicates that a file is a partitioned data set (PaDS).
The uppercase "I" and "P" stand for invisible and protected file respectively. The
plus sign [+] indicates that the file has been modified since the last time it was
backed up. The third column contains the date and time (where applicable) on
which the file was last modified. The last column is the file size rounded to the
nearest K. This is not the amount of space that the file takes up on the disk but
rather the size of the file. If the file had been tagged, then the filename would be
preceded by an asterisk to indicate its tagged state.

The first file on the screen will have the character string "==>" pointing to it. We
will call this string an "arrow". The file pointed to by the arrow will be referred
to as the "current file". Any command which acts upon a single file will act on
the file pointed to by this arrow. The copy, delete, tag and untag commands all
affect the current file. To move this arrow, simply use the<DOWN ARROW> to
advance to the next file in the list, or the<UP ARROW>to go to the previous file in
the list. You may also depress the<SPACE BAR>to advance the pointer to the
next file.

A <LEFT ARROW> or <SHIFT UP ARROW> will position the arrow to the top of
the list whereas a<RIGHT ARROW> or <SHIFT DOWNARROW> will position the
arrow to the bottom of the list. You may also use <;> to advance to the next page
of files or <-> to decrement to the previous page of files.

When the pointer advances to the start or the end of the list it will "wraparound"
to the end or the beginning. IFC will also display a blank line to indicate that
wrap-around has occurred.

IFC – Interactive File Control

- 41 -

Depress the <H> key and lFC will display the help menu. The help menu looks
like this:

A - Again, retag files C - Copy current file
0 - <Un>Tag old/new files D - Delete current file
T - Tag current file L - List current file
U - Untag current file R - Rename current file
W - Wildcard <un>tag # - Execute program

!+I*P - <Un>Tag by attributes E - Exit to DOS

== <M>ass functions == F - Free space on drive
C - Copy files H - Display help
D - Delete files Q - Execute DOS command
M - Move files S - Select new drive
R - Rename files (- Alter parameters

Press any key to continue

Any of IFC's commands may be aborted by depressing the <BREAK> key.

Current file commands

The following group of commands all deal with a single file. All of these
commands will act on the current filespec.

<C>opy a file

This command will copy the current file to a specified drive. Depressing the <C>
key will generate the prompt,"Copy file(s) to drive ?"Once you select the
destination drive, the prompt,"Reset MOD flags (Y/N) ?"will be displayed.
Depress <Y> and lFC will reset the modification flag in the directory of the
source disk. Once the copy has been completed IFC will advance the arrow
pointer to the next file.

<D>elete a file

Depress the <D> key and lFC will provide you with an opportunity to escape via
the prompt,"OK to delete file : filespec/ext:d ?"Depress the <Y> key to delete
the current file. Depress the <N> key or <BREAK> to abort. Once the file has
been deleted, lFC will advance the arrow to the next file.

Golden Oldies: Command Utility Package

- 42 -

<L>ist a file

Depress the 'L' key and IFC will prompt,"List file in ASCII (Y/N) ?"Depress the
<N> key to list the file in hex, or <Y> to list the file in ASCII. The file can be
printed if the PRINT parameter is turned ON. If PRINT is OFF, the file will be
listed to the screen. A screen listing will pause after each page of the file is
displayed. Any key continues the listing.

<R>ename a file

Press the <R> key and IFC will prompt,"New name for FILESPEC/EXT:D ?"
Type in the new filename for that file and depress the <ENTER> key. The file
will be renamed. The arrow pointer will be returned to the start of the list.

<#> Execute program

If the arrow is currently pointed to a BASIC program file (file extension "BAS"),
an executable program file (file extension "CMD"), or a Job Control Language
file (file extension "JCL"), you can automatically terminate IFC and invoke that
"file" with the <#> command. BASIC programs will be invoked via the
command,BASIC current-file ; JCL files will be invoked via the command,
DO current-file ; and executable programs will be invoked via the command,
current-file . Note that IFC will terminate prior to execution of the program.

If the current file has no extension, or has one other than the three identified
above, the <#> command will be ignored.

Tagging commands

When an IFC command is given that will work on a group of files, the files must
be tagged.

<T>ag files

Depress the <T> key and IFC will tag the current file. An asterisk [*] will be
displayed next to the file to indicate that the file has been tagged. IFC will also
display a running total (in K) of all tagged files.

IFC – Interactive File Control

- 43 -

<U>ntag files

Depress the <U> key and IFC will untag the current file. The untag command
works just like the tag file except in reverse.

<A>gain, retag files

Depress the <A> key and IFC will tag all of the files that were tagged and later
mass copied. These files will be marked with a number sign [#] to indicate that
the file was tagged and then copied.

<O>ld tag

This tagging command references the working disk against a target disk. Depress
the <O> key and IFC will prompt you with,"<O>ld or <N>ew files ?" Depress
the <O> key and all of the files which exist on both disks will be selected. If you
depress the <N> key, all of the files which do not exist on the target disk but are
in the currently selected disk will be selected. You will then be prompted with,
"<T>ag or <U>ntag files ?" Depress the <T> key and all of the selected files
will be set up for tagging, or depress the <U> key and the selected files will be
set for untagging. Finally, you will then be prompted for the target drive with,
"Drive to scan (0 - 7) ?"Depress the number of the drive to scan for the target
drive. Your selection will then be invoked.

<W>ildcard tag

The wildcard tag command is used to tag or untag a group of files that match up
with a wildcard file specification. Depress the <W> key and IFC will prompt
with, "<T>ag or <U>ntag files ?" Depress <T> to have all matching files
tagged, or <U> to have all matching files untagged. IFC will then prompt,
"Filename wildcard ?"Enter a wildcard and IFC will either tag or untag all
matching files. The wildcard file name and extension fields may consist of
standard filespec characters [A-Z,0-9], question marks which match all
characters in their respective position, and an asterisk which will force a match
of all characters to the end of the field.

Golden Oldies: Command Utility Package

- 44 -

<!+IP*> Tag by attribute

This command allows you to tag a multiple of files which match the criteria
associated by the command. The <!> command will flip the state of the files:
tagged files become untagged, and untagged files become tagged.

The <+> modify tag command will tag all files which have the modified flag set
in the directory. These files will be marked with a '+' on the display attribute
field.

Similarly, the <I> invisible tag command tags all files which are classified as
invisible to directory operations so indicated by the "I" attribute.

The <P> tag command will tag those files identified as protected by password
protection or limited access capabilities.

Finally, the <*> command will tag those files which have the PDS bit set in the
directory. Such files are usually Partitioned Data Sets supported by our PaDS
utility or diskDISK host files supported by our diskDISK utility.

Mass commands

The Mass commands are used to act on all of the tagged or all of the untagged
files. Depressing the <M> key will begin the selection of a "mass" command.
IFC will prompt, "Mass <C>opy, <D>elete, <M>ove, or <R>ename ?"Make
the selection by pressing the first letter of the function you wish to perform.

<M>ass copy

The mass copy command works just like a multiple copy command. IFC will
copy all tagged files or all untagged files automatically. The selection is made by
responding to the prompt,"Copy tagged or untagged (T/U) ?"Depress the <T>
key to select all of the tagged files, or the <U> key to select all of the untagged
files. Don't forget that <BREAK> will abort the operation. IFC will then prompt
you for the target drive with,"Copy file(s) to drive?"Enter the destination drive
for the files you wish to copy or depress <BREAK> to abort. IFC then prompts,
"Reset MOD flags (YIN) ?"Answer <Y> and IFC will reset the modification
flags in the source directory. IFC automatically resets the modification flags in

IFC – Interactive File Control

- 45 -

the destination directory, but you may not want them cleared from the source
directory. Depressing <BREAK> will abort the mass copy function.

<M>ass delete

For mass delete, IFC prompts,"Delete tagged or untagged files (T/U) ?"
Depress the <T> key and IFC will purge all tagged files from the disk. If you
depress the <U> key, IFC will purge all of the untagged files. Depressing
<BREAK> will abort the mass file delete operation.

<M>ass move

The mass move command works just like the mass copy command except that it
will delete the file from the logged drive after each file is successfully copied to
the destination disk. IFC will move all tagged files or all untagged files
automatically. The selection is made by responding to the prompt,"Move tagged
or untagged (T/U) ? "Depress the <T> key to select all of the tagged files, or the
<U> key to select all of the untagged files. Don't forget that <BREAK> will
abort the operation. IFC will then prompt you for the target drive with,"Move
file(s) to drive?"Enter the destination drive for the files you wish to move or
depress <BREAK> to abort. IFC automatically resets the modification flags in
the destination directory but you may not want them cleared from the source
directory. Depressing <BREAK> will abort the mass copy function.

<M>ass rename

The mass rename operation lets you change the file name and/or extension for all
of the tagged files. The new filespec is derived by passing the current filespec
through a template. The template is entered in response to the query,"Rename
template ?" and is identical in syntax to the wildcard identified above.
Alphanumeric template characters will be passed to the new filespec. The
question mark [?] will cause the correspondingly positioned character of the
current filespec to be part of the new filespec. If the template contains an asterisk
[*], the remaining part of the field of the current filespec: will be transferred to
the new filespec.

Golden Oldies: Command Utility Package

- 46 -

Miscellaneous commands

<E>xit to DOS

Depress the <E> key and IFC will return to DOS Ready. Note that IFC also
accepts the <X> key to specify exit.

<F>ree space

Depress <F> and IFC will prompt, "Free space on drive ?" Depress the number
of the drive you wish IFC to scan. IFC will display the following information:

Drive : D Disk name : NNNNNNNN Free space : xxxxxK

where "D" is the drive number, "NNNNNNNN" is the disk's name, and "xxxxx"
is the total amount of free space on that diskette. Depress <ENTER> to continue.

<H>elp

Depress the <H> key and IFC will display the list of all IFC commands. Press
any key to continue. Note that the <?> key is also accepted to specify HELP.

<Q> Execute DOS command

Depress the <Q> key and IFC will prompt for the DOS command with the query,
"Enter DOS command:" Enter any DOS command and IFC will execute the
command. You should be careful not to perform any DOS command which will
change the contents of HIGH$ as IFC will protect itself above HIGH$ when
executing the DOS command. When the command has completed, IFC will
resume after you respond to the prompt, "Press any key to return to IFC..."

<S>elect new drive

This command is used to change the working drive. Depress the <S> key
and IFC will prompt,"Select drive (0 - 7) ?".Depress the number of the
drive you wish to log in. Depressing <BREAK> will return you to the

IFC – Interactive File Control

- 47 -

command prompt. If, for some reason, IFC cannot log in the new drive, it will
again display the Select drive prompt. Once IFC has returned to the Log drive
prompt for the second time, a <BREAK> will return you to DOS Ready.

<(> Alter parameters

This command is used to alter selected parameters, such as whether the list
command will display or print the file designated, whether full verification
including CRC error checking will be performed, or whether the file list should
include invisible files. When you specify the <(> command, IFC will prompt,
"Parameter <V>erify, <I>nvisible, or <P>rint ?".

If you enter a <V>, IFC will toggle the state of VERIFY; the current state will
always be displayed in the display header.

If you enter an <I>, IFC will toggle the state of invisible files for inclusion into
the file list and then re-log the current disk. The state of accepting invisible files
is indicated by displaying a letter "I" immediately following the drivespec in the
display header.

If you enter a <P>, the current state of the PRINT flag will be inverted. This is
visually observed in the display header. When PRINT is ON, the <L>ist
command will print the selected file rather than displaying it on the video screen.

Golden Oldies: Command Utility Package

- 48 -

PRO-CESS – Command File Processor

- 49 -

PRO-CESS

PRO-CESS is a powerful maintenance tool for "CMD" or "CIM" type load
module files. It provides for file appending, mapping, sorting, packing,
offsetting, library member and partitioned data set member extraction, as well as
the specified deletion of any load module record. PRO-CESS can convert
"CMD" files which contain various types of records to "CIM" files which are
pure binary core-image constructs. It also provides the capability of converting
"CIM" files to "CMD" files. PRO-CESS gives capabilities to load module
maintenance never before possible. PRO-CESS does it all: rapidly, totally, and
economically!

What is PRO-CESS?

The PRO-CESS tool is a powerful machine language program that has been
designed to provide total maintenance of program load modules on a record
basis. This means that it references the load module as a multi-record type,
variable length record file - just like the operating system loader. By using the
various commands identified in the PRO-CESS menu, you can completely
reorganize the load structure of a given module or modules in order to make
them more efficient in terms of loading speed and occupied disk space.

PRO-CESS also provides the capability of converting "CMD" type load modules
to/from "CIM" core-image load modules. This is especially useful to generate
program files in "binary" form for PROM burners. The "CIM" structure is
identical to the "COM" structure used in other types of operating systems.

You get the capability of appending two or more "CMD" machine language load
module files into one file. This is useful to concatenate two or more separately
assembled OBJECT code files, concatenate two or more noncontiguous blocks
of code, or also couple two or more programs together so they load together.
You get control of the program's transfer address or ENTRY point.

"CMD" files can be copied from one SYSTEM diskette to another SYSTEM
diskette on a single drive system provided both diskettes use the same operating
system.

Golden Oldies: Command Utility Package

- 50 -

You get the capability of totally mapping every record in a load module.
Determine the TYPE as well as the load address range of each load record. This
load map is displayed in the MENU status. You can optionally request that a
map listing be sent to a line printer.

You can selectively remove any record in the load module. Get rid of
spacewasting headers that are not necessary. Remove dead space. In case you
make a mistake, you can even un-remove a removed record before clearing the
load-module's memory buffer.

By far, the most powerful function included in this toot is the reorganization
capability of the PACK command. This powerful function converts any X-type
patches to D-type patches [X-type patches are generated by the LS-DOS Version
6 PATCH utility]. It then sorts the buffer by load address to construct sequential
load records and generates a load module file that uses maximum sized
(256-byte) load records. This feature is quite useful for reorganizing large
inefficiently generated load modules such as Tandy's COBOL package. The
PACK function is also useful for reorganizing the out-of-sequence load modules
generated by the LC compiler [the records are out-of-sequence due to the
separation of program and data regions during the compilation process].

The PRO-CESS menu

When you execute the PRO-CESS maintenance tool, all of its functions are
immediately available through single letter commands. These commands are
displayed in the PRO-CESS MENU. A reasonable facsimile of the MENU
follows.

PRO-CESS – Command File Processor

- 51 -

PRO-CESS 2.0 [copyright (C) 1983 Roy Soltoff]

<C>lear the buffer region
<D>OS Command request
<E>xit to DOS
<I>mage file load/write
<L>oad a file into the buffer
<M>ap the buffer records
<O>ffset address from current load origin
<P>ack the buffer records
<R>emove a record from the buffer
<S>ort the load records by address
<U>n-remove a "removed" record
<W>rite the buffer to a disk file

Buffer: Size 46802 Used 00002 Free 46800 Records 00000
Module: Origin FFFF End 0000 Entry 0000 Offset 0000

The menu of commands contains each command letter within angle brackets,
"<>". For instance, the command to"<L>oad a file into the buffer" can be
selected by depressing the ''<L>'' key on the keyboard. Each of the commands
displayed in the MENU may be selected by depressing whatever key is
contained in the angle brackets. Notice that the "<L>" command has a large
blinking graphics block preceding it. This "cursor" is used for an alternate means
of command selection. If you depress the <UP-ARROW> key, the block will
move up to precede another command. The <DOWN-ARROW> key will move
the block down to the next lower command. The block will wrap around in either
direction. When PRO-CESS is waiting for you to enter a command request, this
cursor block will blink. When a command is being processed, the cursor block
will not be blinking. Any menu command that is preceded by the graphics block
can be selected just by depressing the <ENTER> key in lieu of the command
letter. This feature is provided for your convenience. When you use the
command letter to select a command, the block will be automatically moved to
that menu command so you will have a visual indicator as to the command
currently in progress.

In order to provide maintenance on a load module file, the file must be
loaded into the PRO-CESS memory buffer. The MENU will constantly

Golden Oldies: Command Utility Package

- 52 -

display the status of this buffer via the status line titled,"Buffer:". The status line
contains four fields: Size, Used, Free, and Records. The "Size" field will display
the total number of bytes provided for the buffer. This value is determined from
the memory available between the end of the PRO-CESS program and the
highest memory address available based on the "HIGH$" value. The "Used"
field contains the number of buffer bytes that are currently in use. Each record
that is loaded into the buffer requires a two-byte linkage pointer in addition to
the memory taken up to store the record. Two bytes are initially used to store the
"head" linkage pointer. The"Free" field shows you how many bytes are
available for use. This field is the difference between"Size" and "Used". The
"Records"field maintains a count of the total number of records stored in the
buffer.

The MENU also displays the status of the program load records currently stored
in the buffer. This status covers the program's ORIGIN or lowest address, its
END or highest address, its ENTRY or transfer execution address, and any
OFFSET specified. The OFFSET is a maintenance function that can be used to
construct a file which loads into an address space different from where it
executes.

The line of dots represents a third status/prompt line which will display
informational messages pertinent to PRO-CESS commands and prompting
messages where required. It is also used to display any error message returned by
the operating system during service requests.

Re-entering PRO-CESS after inadvertent exit

It sometimes happens that you <E>xit the program without <W>riting the buffer
to a file. Rest assured that you can recover from this mishap. If you immediately
execute:

PROCESS *

the program will not automatically <C>lear the buffer region. The asterisk, "*",
provides the needed error recovery. Use the <M>ap command to scan through
the buffer to ascertain its validity before attempting to generate a file.

PRO-CESS – Command File Processor

- 53 -

Command details

The following sections will describe the function and operation of all
PRO-CESS commands identified in the MENU.

<C>lear the buffer region

The <C>Iear command is simple enough - it restores the buffer as if you just
executed the program. Since this action will automatically clear any load module
contained in the buffer, PRO-CESS gives you a second chance to acknowledge
your selection. The MENU status will display the prompt:

Are you sure you want to clear the buffer <Y,N> ? >

By entering a response of <N>, you will abort the <C>lear selection. A
<BREAK> will also abort the selection. Only by entering a <Y>, will the
<C>lear function activate. When the buffer is cleared, you will observe a "flash"
of the video display as the MENU is re-generated.

<D>OS Command request

The <D>OS Command function provides access to operating system commands
from the MENU level. Your DOS requests should be limited to library
commands [a summary of library commands is normally obtainable via the
"LIB" DOS command]. You enter your command request in response to the
prompt:

Command? >

After your command is entered, the MENU will be erased while your command
line will be displayed at the top of the video display screen. When the command
that you requested is completed, you must depress the <ENTER> key to refresh
the MENU display. This provides the opportunity of analyzing any screen image
displayed by the DOS command before the MENU display erases the image.

<E>xit to DOS

This command provides the means to terminate the maintenance session and
return to DOS.

Golden Oldies: Command Utility Package

- 54 -

<I>mage file load/write

This command provides two functions - both relating to core-image files. Use the
<I>mage command to load a core-image file from disk into the buffer. You also
will use the <I>mage command to write the buffer out as a core-image file. To
help with your selection, the MENU will display the prompt

Image file LOAD or WRITE <L,W> ? >

A response of <L> invokes the image loading function which subsequently
requests you to enter the image file specification via the prompt:

Input file specification >

If you omit the file extension, PRO-CESS will use "/CIM" as the default
extension.

Since core-image files have no loading information contained in the file, it is
necessary to specify the origin address of the module. You do this in response to
the prompt:

Enter the module origin or <ENTER> to use [0000] >

Your selection must be entered in hexadecimal. Also, as can be noted by the
prompt, if you depress just the <ENTER> key without a value. a default origin
of X'0000' will be used. This value will also be used for the ENTRY or transfer
address. The entire file, including the full last sector, will be considered as part
of the program.

If you respond to the initial prompt with a <W>, you will invoke the image
writing function. It is essential that the load records stored in the buffer be in
sequential load order. The <IW> function will first scan the load records to
ensure that they are, for a core-image file cannot be constructed if the records are
out of order. If a problem is detected, the MENU will display the error message:

Buffer is not in sequential load order!

It is not necessary for the load records to be contiguous. The <IW> function will
generate null bytes, X'00', for all addresses interstitial to two adjacent

PRO-CESS – Command File Processor

- 55 -

non-contiguous load records. You identify the file specification of the file to be
written by responding to the MENU prompt

Output file specification >

If you omit the file extension, the default value of "/CIM" will be used. Upon
successful completion of the file generation, the message:

Requested file now written

will be displayed and PRO-CESS will await your next MENU selection.

<L>oad a file into the buffer

The <L>oad function is used to read a load module file into the memory buffer.
The file will be appended to any already contained in the buffer. You identify the
specification of the file in response to the prompt:

Input file specification >

If you omit the file extension, the default value of "/CMD" will be used. While
the file is being read into memory, PRO-CESS analyzes it to determine the
specific type of load module: OBJECT file, ISAM overlay file, or a partitioned
data set (PDS) file [the PDS file structure has been defined by MISOSYS]. An
object file will be loaded directly into the buffer.

If the file is recognized as an LS-DOS structured ISAM overlay file, you will
need to identify the overlay number of the desired member. In general, system
files SYS6/SYS, SYS7/SYS, and SYS8/SYS are ISAM overlay files. These
numbers are listed later. You will be requested to enter this ISAM number entry
with the prompt:

File has ISAM overlays - enter # >

This number is entered in hexadecimal. If you respond to the prompt by
depressing the <ENTER> key without a number, the entire file will be loaded
into the memory buffer. The only purpose for doing this would be to map the file
as no reorganization is possible with this maintenance tool.

If the file is recognized as a PDS file, you need to specify a MEMBER
specification. This is done in response to the prompt:

Golden Oldies: Command Utility Package

- 56 -

File is a partitioned data set,
enter MEMBER >

The MEMBER is the eight-character member specification as observed from a
directory display of the PDS members. If you respond to the prompt by
depressing the <ENTER> key without a MEMBER, the PDS Front End Loader
program will be loaded into the memory buffer. Since it is likely that any given
PDS contains non-CMD members, the PRO-CESS maintenance tool does not
attempt to read the entire PDS file into memory.

If you specified an ISAM number or MEMBER that can not be located in the
file, the error message:

Requested ISAM member is not in the file!

will be displayed. It is highly improbable to receive the error message:

Overlay beyond end of file!

however, if you do, it means that the ISAM directory contains a location for the
member that is not within the scope of the file. You probably have an error in the
file.

If any disk I/O error results while the file is being read, or any problem occurs
that results in the file not being read to completion, PRO-CESS will return to the
MENU command request after displaying an appropriate error message. No
fragment of the file will be added to the memory buffer.

If there is no more available space in the memory buffer during the loading of a
file, the error message:

Insufficient buffer space to load file!

will be displayed.

If you attempt to load in a file that is not a load-module structure file,
PRO-CESS will display the error message:

File is not a load module file structure!

and the load operation will cease.

PRO-CESS – Command File Processor

- 57 -

Upon successful completion of the load operation, the message:

File is now loaded into the buffer

will be displayed. The buffer and module status lines will be updated to reflect
the revisions made to the buffer with the load of the file.

A <BREAK> detected during the loading of a file will immediately abort the
loading operation. No fragment of the file will be added to the memory buffer.

<M>ap the buffer records

This MENU command provides the function of mapping the buffer contents.
Mapping is useful for obtaining the record number of records you wish to
remove. It is also helpful to understand how unorganized your load module file
is. The prompt message:

MAP output to printer <Y,N> ? >

gives you the option of directing a load-module map to a printer by responding
with <Y>. If you respond with <N>, only the status line will display the
mapping, one record at a time. If you do not select a printer map, it is necessary
to depress the <ENTER> key to obtain the mapping information for each record.

Each record will be given a sequential logical record number. This number is
used as a record reference in the <R>emove and <U>n-remove MENU
commands. Records will be identified as to type: Module header, Yanked load
block, Load, Transfer Address, and so forth. The address range of load records
will also be displayed.

If you specified the printer option, the printer will first be checked for
availability. If it is not ready for use, the message:

Printer is not available!

will be displayed until it is made ready. The <BREAK> key can be used to
escape from this condition.

Golden Oldies: Command Utility Package

- 58 -

<O>ffset address from current load origin

Offsetting a load module means changing its loading address so that it loads into
memory at a location different from where it was assembled to execute. There
are a few reasons for wanting to offset a file. One, of course, is to offset a file
assembled to run from a PROM so that it loads into a RAM region usable by a
PROM burner. The <O>ffset MENU command requests the revised load origin
via the prompt:

Enter the offset origin address >

This entry is to be made in hexadecimal. For example, if the existing load
module origin is X'3000' and you want it to load starting at X'5300', enter the
four-character value, <5300>.

<P>ack the buffer records

The <P>ack operation is the most powerful feature of PRO-CESS. It is used to
reorganize an object load module file so that it is most efficient in disk storage
space and optimum for rapid loading by the operating system. Packing is a
three-phase operation. The first phase identifies any LS-DOS X-type patch
records and packs the object code revisions into the preceding load records
wherever possible. Any patch address that is outside the range of the existing
load records, is used to generate new load records. The second phase then uses
the <S>ort facility to sequence the load records by sequential load address. The
third and final phase generates a new object load module file with
maximum-sized load records. This is achieved by combining short contiguous
load records wherever possible.

The first two phases require no action from you. Appropriate status messages are
displayed to apprise you of the phase. The first phase is identified by the
message:

Packing any "X" patches ...

The second phase is noted by the sorting message as noted in the <S>ort
command discussion. The third phase will generate the dialogue as noted in the
<W>rite command discussion.

PRO-CESS – Command File Processor

- 59 -

<R>emove a record from the buffer

This MENU command can be used to delete an entire record from the load
module. You must identify the record by number. The record's number can be
identified with the <M>ap command. The record is deleted by setting a
"removed" flag for the record which is bit-7 of the record's TYPE byte. For
instance, a load record will be changed from TYPE=01 to TYPE=81. If you map
the buffer after removing a record, you will observe the change. Any record that
is "removed" will not be written to a file during the <W>rite or <I>mage
<W>rite commands.

<S>ort the load records by address

This command reorganizes the buffer's load records [record type 01] so that they
are in sequential load order. If non-load records are intermixed between the load
records, they may not maintain their position after the buffer is sorted.

If the buffer contains any X-type patch records that were generated by the
LS-DOS utility, PATCH, the program may be adversely affected by sorting. To
apprise you of this situation, the <S>ort command will display the message:

X-patches present.
Do you still want to sort <Y,N> ? >

If the patch type-01 records are totally outside of the load range of all nonpatch
type-01 load records, you may proceed to sort the buffer. If no patch type-01
record extends into the range of a non-patch type-01 record, you also may
proceed with the sort [this implies that a type-01 patch record is wholly
contained within the range of a previous type-01 record]. If you are unsure of the
consequences, do not sort. An alternative is to use the <P>ack command which
packs any X-type patches into the non-patch area of the buffer space.

The sort operation will commence with the display of the message:

Buffer sort commencing ...

If the buffer contains a very large file, the sorting may take a half-minute or
more. A blinking asterisk will amuse you while you await the completion of the
sort. Upon completion, the status message:

Golden Oldies: Command Utility Package

- 60 -

Buffer is now sorted

will be displayed. Note that the record numbers are changed if the sorting
process detects any out-of-sequence load record.

<U>n-remove a "removed" record

If you inadvertently remove the wrong record with the <R>emove command,
you can recover from your error with this <U>n-remove function. As previously
stated, the record number is obtained from a buffer mapping operation.

<W>rite the buffer to a disk file

This command is used to write the buffer contents to a disk file. Since you may
have appended two or more modules into the buffer, you now have the
opportunity of changing the module's ENTRY address as noted in the
MODULE's status display. This capability is useful when appending two or more
files since the transfer address used would default to the transfer address of the
last file loaded. Respond to the prompt:

Enter new ENTRY address or
<ENTER> to use [xxxx] >

If you want to change the transfer address (entry point), you can enter the new
address in hexadecimal. If you want to maintain the ENTRY as specified in the
MODULE's status line [and also repeated in the prompt], just depress the
<ENTER> key.

You identify the file specification of the file to be written by responding to the
MENU prompt:

Output file specification >

If you omit the file extension, the default value of "/CMD" will be used. Upon
successful completion of the file generation, the message:

Requested file now written

will be displayed and PRO-CESS will await your next MENU selection.

PRO-CESS – Command File Processor

- 61 -

Appending two or more files

You may have the occasion to assemble two separate object files that you want
to combine into one. In order to append or concatenate two or more files into
one contiguous file, use the <L>oad command to combine the files into the
memory buffer. When the last file has been loaded, use the <W>rite command to
generate the combined object load module file. Note that the transfer address of
the concatenated file would be the transfer address detected from the last file
input. The <W>rite command provides the opportunity of modifying the transfer
address to one of your choosing.

Customizing an LS-DOS library with PaDS

Since PRO-CESS provides the capability of extracting ISAM members from
LS-DOS libraries, and PaDS provides the capability of building USER libraries,
we can combine the power of both utilities to customize a USER library with
DOS library commands.

If you execute an LS-DOS LIB command, you will see LIB <A>, LIB , and
LIB <C> commands displayed. The names of each command represent the
entries to members in SYS6, SYS7, and SYS8 respectively. The command
interpreter which resides in SYS1 compares your command entry to a table
which contains ISAM numbers for each LS-DOS LIBrary command. It is these
numbers that are needed to extract one of the LIBrary members. Here is a list of
the codes:

SYS6-LIBA SYS6-LIBA SYS7-LIBB SYS8-LIBC
--------- --------- --------- ---------
31-APPEND 41-LIST 51-ATTRIB B1-FORMS
20-CAT 81-LOAD 11-AUTO B2-SETCOM
24-CLS 1E-MEMORY 33-BUILD B3-SETKI
32-COPY 18-REMOVE 13-CREATE A2-SPOOL
61-DEVICE 53-RENAME 15-DATE 1C-SYSGEN
21-DIR 63-RESET 14-DEBUG A1-SYSTEM
91-DO 64-ROUTE 71-DUMP
66-FILTER 82-RUN 22-FREE
26-ID 65-SET 72-PURGE
19-LIB 25-TOF 16-TIME
62-LINK 1B-VERIFY

Golden Oldies: Command Utility Package

- 62 -

Optimizing an inefficient load module

You just purchased that new COBOL compiler and are perturbed at how long it
takes to load - not to mention the disk space it takes up. When you load it into
PRO-CESS and perform a <M>apping, you are amazed to find that
"RUNCOBOL" and "RSCOBOL" are generated with 16-byte load records. Use
the <P>ack command to reorganize the inefficient RUNCOBOL file and shrink
it from 1537 records to 97 records while at the same time you reduce the amount
of disk space taken up by the file from 121 sectors (31.5K) to 98 sectors (25.5K)
- a savings of 6K of disk space.

Disk load module formats

A load module is simply a disk file that can be loaded into memory by the
system loader. The file is made up of variable length records and is usually a
program. Many different types of records are included in a load module the DOS
makes extensive use of distinct record types in load modules. One record type is
a load record which contains information on where it is to load into memory. If
the file can be directly executed as a program, it then becomes known as an
executable load module (ELM). The usual term that has been applied to such a
file is "CMD". That's because a directly executable load module can be invoked
as if it were a system CoMmanD. We commonly use the file extension of
"/CMD" for these command files.

A load module can be conceptualized as a sequence of RECORDS. Note that we
did not say an ordered sequence. Thus, the implication is that the records do not
have to be in an ascending order (contiguous load addresses). Each record
contains three fields: a TYPE field, a LENGTH field, and a DATA field. It has a
one-byte indicator as to what TYPE of record it is. This TYPE code is used to
denote a record as a HEADER record, a TRANSFER record, an ISAM directory
entry record, a LOAD record, or other meaningful structure. Each record also
has a one-byte LENGTH field which is the length of the data area field. The data
field length thus ranges from <1-256> in value (a 0 implies 256). The remaining
part of the record is its DATA AREA and is used to store program code,
directory information, messages, or other pertinent information. If you are
familiar with BASIC random access files, you will see the similarity in the
fielding of records - except in this case, we have variable length sequentially
accessed records [with partitioned data sets provided in the PaDS utility, you
also have variable length indexed sequential accessed records]. Figure 1 lists the
various TYPE codes currently used in operating systems.

PRO-CESS – Command File Processor

- 63 -

Figure 1: Load Module TYPE Codes

TYPE DATA AREA
---- -----------------------------------
01 Object code load block
02 Transfer address
03 End of load-only program
04 End of partitioned data set member
05 Load module header
06 Partitioned data set header
07 Patch name header
08 ISAM directory entry
0A End of ISAM directory
0C PDS directory entry
0E End of PDS directory
10 Yanked load block
1F Copyright block

Any code above X'1F' is invalid as a record type. In addition, any code not listed
in figure 1 is reserved for future use.

If you could look at a sample object program file, you would notice that it starts
out with something like:

05 06 50 52 4F 43 45 53 1F 1E 43 6F ...
. . P R 0 C E S . . C o ...

stretched across the screen. What you have here is a load module header
(TYPE=05). The length byte (LENGTH=06) follows the TYPE code. The
6-byte DATA AREA field is the header name. All records follow this "fielding"
order. A record is organized with a TYPE, LENGTH, DATA sequence. The
X'1F' begins the second record. It happens to be a copyright record with a
LENGTH of VIE' or 30 decimal bytes. Incidentally, the TYPE=1F record is
generated automatically by the "COM" pseudo-op in PRO-CREATE, the
macro-assembler used to develop and maintain the LS-DOS operating system.

Note that each record begins with the TYPE code and the first byte
following the end of a record is always the TYPE code of the next record.
The only exception is when a TYPE code indicates the end of a file. If you

Golden Oldies: Command Utility Package

- 64 -

look further in the record displayed at relative position X'28', or if you count 30
bytes down from the "C" of "Copyright", you will see:

01 02 00 30 ...

The record TYPE is a load block (TYPE=01). and the length of the data area is
X'02', or 258 data bytes. Yes, we previously stated that the length ranged up to
256 and here we have 258! This TYPE-01 record is a special case. The two-byte
field following the LENGTH is the starting load address for the rest of the field.
Since the LENGTH value includes the 2-byte load address, a length of X'03'
would indicate only one load byte. A length of X'04' would indicate two load
bytes. A length of X'FF' would indicate 253 load bytes. A length of X'00' would
indicate 254 load bytes. To be able to have a data area with up to 256 bytes of
loadable data, the LENGTH values of X'01' and X'02' are indicative of 255 and
256 load bytes respectively. This is accomplished by having the system loader
decrement the length value by two when reading a load address. The resultant
value becomes the true length of the loadable data.

If you could look at the last four bytes of the file, they appear as:

02 02 00 30

This will represent the TRANSFER record (TYPE=02). Again, we have a
LENGTH byte which shows a 2-byte data field. The data field contains the
transfer address or entry point to the program in standard low-order, high-order
sequence. The system uses this address as an entry to the program after
successfully loading it into memory. This address is also what is returned in
register pair HL by the @LOAD SuperVisor Call.

So far we have discussed the HEADER, the COPYRIGHT, the LOAD, and the
TRANSFER records. These are the four common record types you will find in
most load module files. We also observe that our discussion of program load
modules was limited to a single program per file. Another kind of file is one that
contains many program modules (or data modules) as sub-files. Since the file is
divided into sub-files, it is considered a "partitioned data set" abbreviated as
"PDS". The PDS contains a directory of its sub-files with each sub-file being

PRO-CESS – Command File Processor

- 65 -

termed a MEMBER of the PDS and having an entry in the directory. The system
loader supports a particular kind of PDS used to contain the library overlays
used in LS-DOS.

If you could look at a library file, you would see something like:

08 06 21 00 24 00 00 CB 08 06 61 ...

The TYPE code of X'08' indicates an ISAM DIRECTORY ENTRY record. The
LENGTH byte denotes a DATA area of six bytes. After the sixth byte, you will
see another TYPE=08 starting another ISAM directory entry record. The file is a
partitioned data set. The TYPE=08 records are the directory entries for its
members.

The ISAM directory data area is used by the SYSTEM loader to locate where a
particular member can be found in the file. The data area includes positioning
information indicating the exact byte position in the PDS which is the first
record of the member. The six-byte data field is further divided into sub fields.
The first byte (in this case, X'21') is the ISAM entry number. This entry number
is provided to the system loader when a library command is parsed by the
command interpreter. The entry number is the PDS member that will execute
your request. The system loader searches the PDS directory for a matching
directory record. The next two-byte sub-field is the transfer address of the
member. The transfer address is contained in the directory so that more than one
transfer address can be applied to a member. Therefore, a member can have
multiple entry points. The last three-byte field is the triad pointer which points to
the first byte of the member. The triad pointer is composed of the Next Record
Number (NRN) and Relative Byte Offset for the member's first record byte. The
system then positions to the pointer and loads the member. Thus you have six
bytes of data as specified by the LENGTH byte. Since the process uses an index
(the directory) to locate the member's starting byte then proceeds to sequentially
read the member, the access method is termed "Indexed Sequential Access
Method" (ISAM).

A TYPE-08 record can also have a 9-byte data area. In the PaDS utility available
from MISOSYS, the ISAM directory entry record includes a three-byte subfield
which contains the TRUE length of the member. The position of a member's
logical end-of-file (EOF) can thus be calculated by adding its length to its
position and adjusting for sector boundary alignment.

Golden Oldies: Command Utility Package

- 66 -

If you could look at the first byte following the last TYPE-08 record, you would
observe the sequence:

0A 01 00 04 01 00 01 02 00 26 ...

The TYPE=0A indicates that it is the end of a PDS directory. The SYSTEM
loader will return a "file not found" error if it reaches this record without finding
a match of the ISAM number. The LENGTH=01 is needed because ALL load
module records MUST have a length byte. The DATA area contains only a
single arbitrary byte, X'00'. We cannot indicate a null record because a length
byte of X'00' indicates 256 data area bytes. Thus, the X'0A' record type must
have a minimum of one byte in its data area.

The following record is a TYPE=04 to indicate the end of a PDS member. This
record serves but one purpose when used immediately following the directory - it
will result in the return of a "Load file format error" if a library file is executed
as if was a CMD file. When not expecting a partitioned data set file, the
SYSTEM loader will ignore record types other than X'01' and X'02' except for
the X'04'. The file reading will terminate at the X'04' with the above-mentioned
error message.

The record type X'04' is usually used at the end of each partitioned data set
member. Each member will usually end with "04 01 00" rather than a TYPE=02
record. The system loader uses the X'04' type code in lieu of the transfer address
code because the SYSTEM loader recovers the transfer address from the ISAM
directory. Thus it needs to take action different from that when a standard load
file has been completely loaded.

The next record types to discuss are those used in a generalized PDS file as
exemplifiedin the PaDS utility. Such a file starts with a record type X'06' in lieu
of an X'05' which is the normal header type for a load module. This is usedin
certain utility commands to note whether the referenced file is a partitioned data
set compatible with PaDS utilities.

The partitioned data sets include aMEMBER DIRECTORYwhich correlates the
member NAME with its associated ISAM entry number. A representativePDS
MEMBER DIRECTORYentry looks like this:

PRO-CESS – Command File Processor

- 67 -

0C 0B 64 69 72 20 20 20 20 20 01 01 7A 0C ...
. . d i r . . z

The TYPE=0C record indicates a PDS member directory entry record. The
LENGTH byte specifies that the data area is an 11-byte field. The DATA AREA
is subfielded as an 8-byte member name (stored in lower case), a one-byte ISAM
entry number that is used to match up with a corresponding ISAM directory
entry record, and a 2-byte field of member data. The first byte uses bit-7 to
indicate a data member in contrast to an executable CMD program. Bit-6
indicates that the member has been established as "sector-origin". Bit positions
54 store the two high-order bits of the 5-bit year. Bits 3-0 and the next byte
contain the 12-bit DATE field formatted as in the standard directory entry
record. This entry is the modification date of the member which was added to the
PDS. The end of the MEMBER DIRECTORY is indicated by a TYPE=0E
record with its expected length and data field (as in "0E 0100"). The purpose of
this record is similar to the TYPE=0A record for the ISAM directory. It indicates
the end of the MEMBER directory. The ISAM directory is positioned in the
PDS to follow the MEMBER directory.

One last set of record types to discuss is the records associated with the LS-DOS
PATCH utility. When you apply an X-patch to a file, the name of the patch file
is used as a header name with a record type of X'07'. Thus. if you want to YANK
the patch, the PATCH program can read through the file and search for a
like-named header. If a matching header is found, PATCH will change the
header record type to a X'09' to indicate a yanked patch. Also, since it may be
impossible to remove the patch without bubbling up any code blocks following
the patch (another patch maybe?), PATCH will change the TYPE=01 records to
TYPE=10 records. The TYPE=10 records will not be loaded by the SYSTEM
loader but will be considered as non-loadable comment records.

Golden Oldies: Command Utility Package

- 68 -

ZCAT – Disk Cataloger

- 69 -

ZCAT

ZCAT creates and maintains a catalog of all files which reside on your LS-DOS
6.3 (or TRSDOS 6.x) formatted diskettes. Each catalog file can store the
directory file information on up to 255 diskettes or disks. Approximately 2000
file specifications are supported per catalog file. This number varies with the
amount of memory available.

ZCAT is the professional way to search for the diskette containing a desired file.
Because the diskette name (pack ID) is so important to isolate specific diskettes,
it is important for you to maintain distinct names on your disks when formatting
them. ZCAT or your DOS "ATTRIB" command can be used to rename a
diskette where that function becomes necessary.

Invoking ZCAT

The ZCAT utility allows you to create and maintain a catalog of all files which
reside on any LS-DOS 6.3 or TRSDOS 6.x compatible formatted diskette. It is
invoked via the syntax:

ZCAT (Inv,Sys,Page=nn)

Inv Allows the cataloging of invisible
files. Defaults to OFF.

Sys Allows the cataloging of system
files. Defaults to OFF.

Page=nn Sets the printed page length
(default=66)

Abbrev: I=Inv, S=Sys, P=Page

When ZCAT is typed from DOS Ready, the program will load and display the
initial logo and version number. After the initialization has been completed, you
will be prompted with the "GETSPEC Menu" as follows:

Enter driv e (0 - 7) or <BREAK> to exit

Selecting a number <0 - 7> will display all files on that drive with a /CAT
extension. "CAT' is the default extension of directory catalog files for use

Golden Oldies: Command Utility Package

- 70 -

with ZCAT. Pressing <ENTER> will bypass this prompt. Pressing <BREAK>
will return you to DOS Ready.

You will then be prompted:

Catalog filespec ?

Enter the name of the catalog file you wish to read or create. The file
specification may be composed of a file name of up to eight characters in length
with an optional drive specification. The extension of "/CAT" will be added to
the file specification automatically by ZCAT.

After the file specification has been entered, the master menu will be displayed
and ZCAT will read in the catalog file if it already exists. Because the maximum
number of files which ZCAT can hold changes with the amount of free memory
available, it is possible to get the error message:

* * File too large for available memory * *

If this occurs, press <ENTER> to return to the master menu and <E>xit to DOS.
Reduce the amount of high memory which is allocated to DOS and again run
ZCAT.

Once the catalog file has been read, the MASTER MENU will be displayed.

> M A S T E R M E N U <

<A>dd disk to list
<U>pdate disk in list
<C>hange a disk name
<R>emove a disk from list
<S>earch for a file
<D>isplay files on a disk
<L>ist disks on file
<P>rint files in list
<E>xit to GETSPEC

Selection ?

CAT file : MARC/CAT:0 Files cataloged : 324
Disks cataloged : 15 Maximum # files : 2226

The desired function may be selected by pressing the letter of the function
which is bracketed between the "<>" symbols. In this display, the"DIR file"

ZCAT – Disk Cataloger

- 71 -

field will display the current catalog file specification [MARC/CAT is shown for
illustration], the "Disks cataloged" field will display the quantity of disks
cataloged in the catalog file, the"Files cataloged"field will contain the total
number of file specifications cataloged, while the"Maximum# files" field will
display the upper limit based on the memory currently available. The following
sections will explain the use of each of the functions.

<A>dd disk to list

The <A>dd function will scan a disk that has not been previously cataloged and
add the disk to the catalog list. All non-system visible files that reside on the disk
will be cataloged [invisible and or system files may be cataloged if those options
are selected at the invocation of ZCAT]. Press the <A> key from the master
menu and you will be prompted:

Scan which driv e (0 - 7) ?

Enter the number of the drive which contains the disk you wish to be scanned, or
press <ENTER> to scan the last accessed drive. The identification of the last
accessed disk drive will be displayed at the bottom of the screen. After the drive
has been selected, ZCAT will scan the directory and add all of the non-system,
visible files to the list [see ZCAT's INV and SYS command line parameters]. If
the disk has already been cataloged the error message:

* * Disk is ALREADY cataloged

will be displayed. You may press <ENTER> to return to the master menu.
Remember, each disk cataloged must have a name that is unique to the disk.

After the disk has been cataloged, ZCAT will sort the directory list and will
again prompt you for the drive to scan. This gives you an easy way to catalog a
number of diskettes via one keystroke. To return to the master menu, press
<BREAK> at the prompt. This function only changes the working copy of the
catalog in memory. The actual changes to the catalog file are made via the
"<E>xit to GETSPEC" command, under your control. This is a safeguard for
your protection.

Golden Oldies: Command Utility Package

- 72 -

<U>pdate disk

The <U>pdate function will scan the directory of an ALREADY cataloged disk.
It will update the directory file to reflect any changes in the free space on the
disk or any changes in the contents of the disk. Press the <U> key from the
master menu and you will be prompted:

Scan which driv e (0 - 7) ?

Enter the number of the drive which contains the disk you wish to be scanned, or
press <ENTER> to scan the last accessed drive. The drive last accessed will be
displayed at the bottom of the screen. After the drive has been selected, ZCAT
will scan the directory and update the directory list to reflect any changes that
have been made since the disk was last <U>pdated or <A>dded. If the disk has
NOT already been cataloged, the error message:

* * Disk is NOT cataloged

will be displayed. You may then press <ENTER> to return to the master menu.
Remember that a disk must be <A>dded before it can be <U>pdated.

After the disk has been scanned, ZCAT will sort the directory list [in case files
have been added to or deleted from the diskette] and will again prompt you for
the drive to scan. This provides you with an easy method to update the catalog
for a quantity of diskettes via one keystroke. To return to the master menu press
<BREAK> at the prompt. This function only changes the working copy of the
catalog in memory. The actual changes to the catalog file are made via the
"<E>xit to GETSPEC" command, under your control. This is a safeguard for
your protection.

<C>hange a disk name

The <C>hange function will allow you to change a diskette's name from within
ZCAT. Press <C> from the master menu and ZCAT will prompt:

Which drive contains dis k (0 - 7) ?

Pressing <BREAK> will return you to the master menu. After the drive has been
selected, the current disk name will be displayed. You will be prompted for the
NEW disk name. Enter the new disk name or depress <BREAK> to return to the
master menu without changing the disk name.

ZCAT – Disk Cataloger

- 73 -

After the name has been changed, ZCAT will wait for <ENTER> to be
depressed before returning to the master menu.

<R>emove a disk from list

The <R>emove function will delete all traces of the disk from the catalog's
directory list. Press <R> from the master menu and ZCAT will display the names
of all disks which are currently in the directory list. ZCAT will pause after
displaying a screen full of disk names. Press <ENTER> to continue the display
or press <BREAK> to be prompted for "Disk name ?". Enter the name of the
disk you wish to remove from the list or press <BREAK> to return to the master
menu. If the disk name cannot be found you will be prompted:

* * Disk name NOT found
Press <ENTER> to return to the master menu.

After the diskette has been removed from the catalog's directory list, the list will
be sorted and you will be prompted to press <ENTER> to return to the master
menu. This function only changes the working copy of the catalog in memory.
The actual changes to the catalog file are made via the"<E>xit to GETSPEC"
command, under your control. This is a safeguard for your protection.

<S>earch for a file

The <S>earch function will allow you to rapidly locate a file or a group of files
in the directory list. Pressing <S> from the master menu will prompt the
question:

Search string ?

Enter the search string or press <BREAK> to return to the master menu. The
search string may be a filename, a partial filename, or an extension. The search
string may also contain a wild card character ("$") which may be used to mark a
position as "don't care".

The partial filespec will display all files that begin with those characters. For
example, a search string of "LB" would return any filenames which have the first
two characters of "LB".

Golden Oldies: Command Utility Package

- 74 -

The extension will display all files which have the same extension. A search
string of "/CMD" would display any files which have an extension of "/CMD".

The dollar sign ("$") wild-card character, may be used to mark a character
position as "don't care". For example, a search string of "F$R" would display all
files in which the first character is an "F" and the third character is an "R". Note
that the second position can be any character.

The following are some examples of possible search strings and possible
matches:

Search string Possible matches
B/CMD BASIC/CMD, BPT/CMD
$A/CMD BACKUP/CMD, BASIC/CMD
/$$T MOD4/DCT, TEST/TXT

ZCAT will then display all files in the directory list which match the search
string. The filename will be followed by an asterisk ("*") if the file is a
Partitioned Data Set. Along with the filename will be displayed the modification
date of the file and the disk on which the file is located. ZCAT will pause after
displaying a screen full of files. Press <ENTER> to continue the display or press
<BREAK> to return to the master menu.

<D>isplay files on a disk

The <D>isplay-files-on-a-disk function will display a list of all files which reside
on a particular disk. Press <D> from the master menu and all of the disk names
cataloged will be displayed. ZCAT will pause after displaying a screen full of
disk names. Press <ENTER> to continue displaying disk names or press
<BREAK> to be prompted for"Disk name ?".At the disk name prompt enter
the name of the disk whose files you wish to view, or press <BREAK> to return
to the master menu. If the disk name cannot be located you will be prompted
with:

* * Disk name NOT found * *

You may press <ENTER> to return to the master menu.

ZCAT – Disk Cataloger

- 75 -

If the disk name has been found, ZCAT will display the disk name and the free
space available on the disk at the top of the screen. ZCAT will then display an
alphabetical list of all files on the disk. ZCAT will pause after displaying a
screen full of files. Press <ENTER> to continue the display, or press <BREAK>
to return to the master menu. The following information will be displayed for
each file:

Filename Followed by an "*" if the file is a
Partitioned Data Set

Protection Access level; i.e. full, read, exec, etc.

LRL Logical Record Length; 1 to 256

of Records number of logical records

Size the amount of space that the file takes
up on the disk, rounded to the nearest
K (1K = 1024 bytes)

Mod date the date the file was last written to

Disk name the disk name where the file is located

A sample of this listing follows:

Disk name : MARC0037 Free Space : 0K
Filespec Prot LRL #Recs Size Mod Date Disk name
==
ATOD/ASM Full 256 2 1K 27-Sep-82 MARC0037
CASSCO/ASM Full 256 34 9K 18-Jun-82 MARC0037
CASSCO/CMD Full 256 4 1K 18-Jun-82 MARC0037
CC2/CCC Full 256 46 12K 22-Sep-82 MARC0037
CC3/CCC Full 256 27 7K 22-Sep-82 MARC0037
CC4/CCC Full 256 32 8K 21-Sep-82 MARC0037
CC6/CCC Full 256 18 5K 31-Aug-82 MARC0037
CHGDATE/BAS Full 256 4 1K 20-Oct-81 MARC0037
DABS/ASM Full 256 2 1K 27-Sep-82 MARC0037
DADD/ASM Full 256 3 1K 27-Sep-82 MARC0037

[listing continues]

Golden Oldies: Command Utility Package

- 76 -

<L>ist disks on file

The <L>ist function will display all the disks which are currently in the directory
list. Press <L> from the master menu and the directory filename will be
displayed at the top of the screen. The filename will be followed by a list of all
the disk names on file with the free space available on that disk. ZCAT will
pause after displaying a screen full of disk names. Press <ENTER> to continue
the display or press <BREAK> to return to the master menu. The following
illustrates such a listing:

These disks are in catalog file : MARC/CAT:0

Disk Free Disk Free Disk Free Disk Free
======== ==== ======== ==== ======== ==== ======== ====
MARC0025 3K MARC0026 3K MARC0027 0K MARC0028 0K
MARC0029 0K MARC0030 33K MARC0031 2K MARC0032 15K
MARC0033 3K MARC0034 9K MARC0035 11K MARC0036 32K
MARC0037 0K MARC0038 84K MARC0039 54K

<P>rint files in list

The <P>rint function will allow you to produce a hardcopy of your directory list.
Press <P> from the master menu to obtain the print menu.

> P R I N T <

<F>iles by disk order
<E>xpanded file order
<C>ompressed file order

Selection ?

Select the type of printout you would like by pressing the first character of the
name or press <BREAK> to return to the master menu. You will be prompted:

Press <ENTER> when paper is set to top of form

ZCAT – Disk Cataloger

- 77 -

When the paper has been positioned such that printing will begin on the first line
of the paper, press <ENTER> to begin printing. Printing may be aborted at any
time by pressing <BREAK>.

<F>iles by disk order

The disk names will be printed in alphabetical order. Printed with each disk
name will be the amount of free space currently available on each disk and an
alphabetical list of all files on that disk.

<E>xpanded file order

Files will be printed alphabetically, one across and 50 per page. The information
printed for each file is the same as the "Display Directory" screen listing.

<C>ompressed file order

Files will be printed in alphabetical order, two per line and 100 per page. The
following information will be printed for each file:

Filename the name of the file

Mod date the date the file was last written to

Disk name the disk name where the file is located

<E>xit to GETSPEC

Press <E> to return to the GETSPEC menu. If changes have been made to the
catalog file list, you will be prompted:

Save changes ?

Press <Y> to save the changes or press <N> to return to GETSPEC without
saving the changes. At the GETSPEC menu you may press <BREAK> to return
to DOS Ready or you may select another catalog file.

Golden Oldies: Command Utility Package

- 78 -

Error messages

* * Disk is ALREADY cataloged * *

This error will occur when the disk name of disk which is being <A>dded is
already in the catalog directory list. Use the <U>pdate function if the disk has
already been cataloged.Warning : this error will also occur if two disks have the
same disk name. If such is the case, change the disk name using the <C>hange
function and then <A>dd it.

* * Disk is NOT cataloged * *

This error will occur when the disk name of a disk which is being <U>pdated is
not in the catalog directory list. Use the <A>dd function to add a disk to the
catalog list.

* * Disk name NOT found * *

This error will occur anytime ZCAT cannot locate a disk name in the catalog
directory list. Check your spelling of the disk name.

* * Maximum file limit reached * *

This error will occur when the number of files in the catalog directory list
becomes equal to the maximum number of files ZCAT can currently hold.

* * Maximum disk limit reached * *

This error will occur when 255 disks have been cataloged in one catalog
directory list.

* * File too large for available memory * *

This error will occur when the requested directory file contains more entries than
the current free memory will allow ZCAT to hold. Return to DOS Ready and
free up some high memory [you may have to reboot and alter your high memory
configuration].

DOS error messages

If an error occurs during disk I/O the standard DOS error message will be
displayed. Press <ENTER> to return to the master menu.

Glossary of Terms

- 79 -

ABORT Terminate an operation, usually with the <BREAK>
key

ADDRESS The location in memory of a particular byte, word, or
string.

ALPHABETIC Any of the ASCII lower case characters "a" through
"z" or upper case "A" through "Z".

ALPHABETICAL Pertains to sorting a list of items in an order which
relates the items as alphabetic characters.

ALPHANUMERICS Any of the ASCII characters including "alphabetic"
and numeric, "0" through "9".

ARROW A general term used to specify any of the four
keyboard arrow keys: <LEFT>, <RIGHT>. <UP>,
and <DOWN>.

ASCENDING A sorted order indicating an arrangement of items
from lowest value to highest value. Sorted
alphabetically, the arrangement would proceed from
"AAAAA" through "Z

ASCII An acronym for the American Standard Code for
Information Interchange. This standard describes the
character set ranging from a value of 0 (decimal)
through 127 (decimal).

ATTRIBUTE A facet of a file indicative of such things as whether
the file is invisible to the DIRectory command,
whether it's a SYSTEM file, whether it's a Partitioned
Data Set, etc.

AUTO A command provided in your operating system to
schedule the automatic operation of a command line
when your computer is started.

BACKSPACE The keystroke used to back up and erase the character
you just typed. A standard Model 4 keyboard uses

Golden Oldies: Command Utility Package

- 80 -

the <LEFT ARROW> key for backspace; model 4D
computers have a <BKSP> key which duplicates the
<LEFT ARROW>.

BACKUP An operating system command used to make a
duplicate copy of a diskette or group of files.

BANK A term which refers to a portion of the extended
memory of your computer. A "bank" represents
32,768 (32K) characters of storage.

BAS A file extension used to designate a program written
in the BASIC language.

BASIC The computer language supplied with your disk
operating system.

BINARY A number system consisting entirely of 0's and 1's an
environment which can exist in either of two states
(usually ON or OFF).

BIT The smallest unit contained in a byte which is
composed of eight bits.

BOOT The action of starting up your computer by turning on
its power, inserting a system disk into the floppy
drive numbered 0, closing the drive door, and
possibly depressing the RESET switch.

BREAK A key labeled as such on your keyboard; this key is
sometimes used by applications to abort a command
operation.

BUFFER A specific memory space reserved usually for
intermediate storage of data being written to or read
from a disk sector.

BUG A malfunction of a computer program caused by an
error in the program code. We hope there are none of
these critters in this package.

Glossary of Terms

- 81 -

BYTE The smallest storage unit in your computer. A byte
can contain a number value of from zero through 255;
a character is usually represented by a byte value. A
byte contains eight bits.

CATALOG A collection of information on files indicating what
disk they are stored on and other relevant data such as
file size, modification date, etc.

CHARACTER A term applied to the symbols which make up the
language we use to communicate with our computer
and with which it communicates to us. These symbols
may be alphanumerics, special characters
(!@#$%^&*()-=+...), or non-printing control
characters.

CIM A file extension of files usually containing a Core
Image Module. Such files are usually executable
machine code in memory image form.

CLEAR A key on your keyboard used to provide alternate
functions when pressed in combination with another
key or keys.

CMD A file extension of executable command files. These
are programs which can be run by typing the
filename.

COM A driver program provided with your operating
system used to "connect" the DOS to your hardware
serial port (RS-232C).

COMM A utility program provided with your DOS to perform
communications with another computer.

COMMAND The general term applied to the many functions
available in a program.

COMPARE The action of checking two files or disks thought to
be identical images of each other to ascertain if they
are, indeed exact images.

Golden Oldies: Command Utility Package

- 82 -

CONCATENATE The act of connecting together two or more records,
files, or other similar entity.

CONFIGURATION The current operating environment of your computer
indicating such things as resident and active filters,
condition of alterable DOS flags, device assignments,
interrupt handlers, etc.

CONTROL The term applied to a character value, usually in the
range 0 through 31, which performs some special
operation on a device or program.

CORE An old term which indicated a particular type of
memory storage based on magnetic cores. It is
generally is accepted as a synonym of random access
memory (RAM) accessible to a central processing
unit (CPU).

CR An abbreviation for "carriage return". This has an
ASCII character value of 13 decimal; it is entered on
your keyboard via the key labeled. <ENTER>.

CTRL This is the mnemonic on the keyboard key used to
enter control characters; it is used in combination
with another key.

CURSOR Anytime your computer is waiting for you to enter a
keystroke, its position on the video screen is usually
marked with a special character. This character may
be an underline, a block, or a right angle bracket. This
character is the "cursor".

CYLINDER A term to designate all like numbered tracks on all
surfaces of a multi-surface disk drive. A two-headed
drive would have two surfaces and two tracks per
cylinder. On a one-headed disk drive, a track and a
cylinder are synonymous.

DAT A file extension of files usually containing data.

DATA Information usually stored in a disk file.

Glossary of Terms

- 83 -

DCB An acronym for Device Control Block; it is a system
memory storage space associated with character
devices (video, keyboard, printer, serial port, etc.).

DDEN An acronym for double density formatting associated
with floppy diskettes.

DECIMAL A number system based on the ten digits 0, 1, 2, 3, 4,
5, 6, 7, 8, and 9.

DEFAULT A particular operation or configuration which is
installed or designated without any specific action by
you.

DELETE The action of removing, killing, or erasing a file, a
record, a field, or any similar entity.

DENSITY A term applicable to the method of recording data
onto a disk drive media. For floppy diskettes, the
methods are usually single or double density.

DEPRESS The action of tapping, momentarily pressing on, or
otherwise engaging one of the keys on a keyboard.

DEVICE A term applied to a peripheral component of your
computer usually associated with character
input/output (e.g. keyboard device, video device,
printer device, etc.).

DIGIT One of the characters of a numbering system. Binary
digits are the two characters 0 and 1; octal digits are
the eight characters 0, 1, 2, 3, 4, 5, 6, and 7; decimal
digits are the ten characters 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9; and hexadecimal digits are the sixteen
characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
and F.

Golden Oldies: Command Utility Package

- 84 -

DIR An operating system library command used to display
the names and other storage details of the files stored
on a floppy or hard disk.

DIRECTORY A special file on a floppy or hard disk which contains
the location and other pertinent details of all files
stored on that disk.

DISK The abbreviated term for "disk drive" which is the
hardware apparatus used to either store your files, in
the case of a hard or rigid disk drive, or is used to
read your floppy diskettes, in the case of a floppy disk
drive.

DISKETTE A shorthand way of saying "floppy diskette", the
flexible recording medium used by your computer's
disk drives to store files.

DISPLAY A shorthand way of referring to the video display
screen of your computer.

DNARW A mnemonic designating the <DOWN ARROW> key
on your keyboard.

DO An operating system command used to initiate the
commands stored in a Job Control Language file
(JCL).

DOS An acronym for Disk Operating System. This is the
system supplied with your computer which manages
the files stored on diskettes and provides an operating
environment for programs.

DRIVE An abbreviation for *disk drive".

DRIVER A special computer program connecting a hardware
device to the DOS (e.g. COM/DVR).

DRIVESPEC The disk drive identifier field of the file specification.
This is indicated by a colon followed by a number in
the range 0-7.

Glossary of Terms

- 85 -

EOF An abbreviation for "end of file". It is a position in a
file indicating where the last byte is stored.

EXECUTE An action which causes a computer program to start
operating.

EXTENSION One of the fields of a file specification generally used
to indicate a particular class of file such as "/DAT"
for data, "/CMD" for command, "/BAS" for BASIC,
etc.

FIELD One particular item in a group of data making up a
record.

FILE A collection of data records stored on disk.

FILENAME The name field of a file specification.

FILESPEC An abbreviation for file specification: the entire
character string which identifies a particular file. It is
composed of a file name, a file extension, a password,
and a drivespec.

FILTER A special program inserted logically into a device
stream for the purpose of altering the behavior of
input/output.

FLAG A data field used to store a particular envi ronment
state. Flags are usually binary (e.g. ON/OFF,
YES/NO, TRUE/FALSE).

FLOATING POINT A term applied to real numbers (in the mathematical
sense). Floating point number will mostly always
contain fractional values.

FLOPPY An abbreviation for "floppy diskette"; it is the
flexible recording medium used to store files.

FORM A pre-determined layout of fields positioned on the
video display screen or on paper.

Golden Oldies: Command Utility Package

- 86 -

FORMAT An operating system utility used to prepare a blank
diskette before files can be stored on it, or other
diskettes backed up to it.

FULL One of the types of access provided to files. Others
are READ, WRITE, EXEC, etc.

HEADER Generally used to indicate a specific record at tached
to the front of a file which contains data used by the
program or routine which reads the file.

HEXADECIMAL A base-16 character value; hexadecimal digits are the
sixteen characters 0, 1. 2. 3, 4. 5, 6, 7. 8, 9, A, B, C,
D. E, and F.

HIT An acronym for Hash Index Table. It is a portion of
the directory stored on a disk which contains the
one-byte directory entry codes for each active file.

HSB An acronym for "high-order significant byte"; this is
the highest storage portion of a three-byte value.

INSERT The action of adding a character into a screen
position by shifting all characters from the cursor
position one place to the right.

INTEGER A whole number, sometimes referred to as a counting
number. Integer numbers have no fractional part.

INVERSE Another term for "reverse" associated with the
videodisplay screen. Normal displayed characters are
white foreground on a black background. Inverse, or
reverse, video characters are black foreground on a
white background.

INVISIBLE An attribute which can be placed on a file by the
ATTRIB DOS library command which inhibits

Glossary of Terms

- 87 -

the file's information from being presented by the
DIR DOS library command.

INVOKE The name applied to the function of gaining run
access to an application.

ISAM An acronym for "Indexed Sequential Access
Method"; used for a particular type of file which
contains a sequential set of records or members with
an index to the beginning of each record or member.

JCL An acronym for Job Control Language. This is a DOS
facility to execute a predetermined set of command
lines.

KEY One of the keys on your keyboard; sometimes used to
refer to the computer action of scanning the keyboard
to see if a key is depressed.

KEYIN The acronym for "keyboard line input"; a DOS
function used to obtain a line of keystrokes.

KEYSTROKE The result of depressing one or more keyboard keys
to generate a particular character value.

KI The name associated with the keyboard input device;
designated as "*KI" when entering a device
specification.

KSM An acronym for KeyStroke Multiplication; a filter
provided with your DOS which lets you generate a
string of characters by depressing a single keystroke.

LANGUAGE The words, structure, and symbols constituting a
particular programming environment. Typical
programming languages are ASSEMBLER, BASIC,
C, FORTRAN, and PASCAL.

LIBRARY A set of application modules stored together in
one file and which contains an internal directory.

Golden Oldies: Command Utility Package

- 88 -

Also the general term of many DOS commands
identified by issuing a LIB command.

LOAD The act performed by a LOADER.

LOADER A program or routine used to read another file, which
usually contains a computer program, and store it in
memory to be run.

LOGICAL The term applied to an event which is simulated
rather than physical. A character value of 127 decimal
may be interpreted as a carriage return for export
purposes; since 127 is not physically a 13 decimal, it
is termed, in this case, a logical carriage return.

LOWERCASE Any of the alphabetic characters "a" through "z"
entered normally by not depressing the <SHIFT> key
nor by engaging <CAPS>.

LRL An acronym for Logical Record Length; it represents
the length of a record in bytes. Since the record
length is not a physical phenomena, it is termed
logical.

LSB An acronym for "low-order significant byte"; this is
the lowest storage portion of a three-byte value.

LS-DOS A nomenclature of the 6.3 release of the operating
system used on the Model 4 computer.

MACRO The term applied to string of characters automatically
generated from a single character. This is similar in
theory to KSM.

MAINTENANCE Repetitive actions performed at periodic intervals to
keep something working, or to repair something that
is broken.

Glossary of Terms

- 89 -

MASK A character or characters overlaying another
character or characters in a special manner as to
eliminate certain bit positions of the result.

MEDIA A term indicating the magnetic or optical surface of
material used to store computer files.

MEMBER One of the applications stored in a library.

MEMBERSPEC The specification of a library member which denotes
its file name, its application name, and the disk drive
on which the library file is stored.

MEMORY The storage area for characters and programs internal
to your machine (in contrast to disk storage).

MENU The list of commands supported by an application
which are displayed as a screen or a portion of a
screen.

MESSAGE A phrase or sentence used to inform you of some
event. It may apprise you of an error or prompt you
for a particular response.

MNEMONIC An abbreviation or label for an entity.

MODEM A hardware peripheral device used to communicate
with another computer over a telephone or data line.

MODULE Another name meaning "member".

MSB An acronym for "mid-order significant byte"; this is
the middle storage portion of a three-byte value.

MSPEC An abbreviation for "memberspec".

NREC An acronym for "number of records".

Golden Oldies: Command Utility Package

- 90 -

OCTAL A base 8 numbering system; octal digits are the eight
characters 0, 1, 2, 3, 4, 5, 6, and 7.

OFFSET A position of a field, byte, or other piece of data
which is relative to the beginning of a record.

ORIGIN The memory address used to store the first byte of a
program.

OVERLAY A region of the DOS used for swapping in different
processes.

OVERSTRIKE The action of typing one character over another; the
second replacing the first.

PaDS An acronym for Partitioned Data Set. It is a name
applied to the files managed by the utility of the same
name; these files are similar to the DOS library files.

PARAMETER An option, usually entered on the command line,
which alters the behavior of a program.

PARTITION Any one piece of a unit, commonly a hard disk drive,
which has been divided up into more than one logical
unit.

PASSWORD A string of characters required as part of a file
specification or entire disk before a given level of
access is permitted.

PATCH A DOS utility which applies alterations to disk files.
The term also applies to the modifications.

PDS Another "older" way of writing "PaDS".

PORT A physical interface of your computer used to connect
a peripheral piece of equipment (e.g. printer port,
RS-232 serial port).

PRECISION The amount of significance contained in a
floating point number. The best illustration is to

Glossary of Terms

- 91 -

conceptualize a bulls-eye target's shot pattern. A tight
cluster of shots some distance from the bulls eye
would have a high degree of precision but little
accuracy.

PROGRAM A predetermined sequence of machine instructions
which together support some reasonably complex
operations.

PROMPT A displayed message which expects a usable
response.

PROTECTION Measures applied to a file for security purposes.
Itmay relate to access level restrictions or password
control before granting access. Protection is applied
via the DOS ATTRIB command.

PRO-WAM The trademarked name applied to the window
controller and application manager published by
MISOSYS.

PURGE The act of erasing, deleting, removing, or killing a
group of files.

RAM A type of memory storage which provides both read
and write capabilities.

README/TXT A plain text file included on your program diskette
which contains last minute information not printed in
this manual.

RECORD A collection of data fields associated with a particular
key field or fields.

REGISTER A very fast memory storage location located within
the Central Processing Unit (CPU) of your computer.

REMOVE The act of erasing, killing, or deleting a file, a
module, a record, or other similar entity.

Golden Oldies: Command Utility Package

- 92 -

RENAME The act of changing the filename and/or file extension
of a file from one name to another.

RESIDENT The term applied to a program which stays in the
memory region of your computer after control is
passed back to the DOS. The memory resident
module usually embellishes, and is an extension to,
the DOS.

RESPONSE The entry you input into a program after viewing a
particular message prompt.

RESTORE The act of recovering a file archived to some place
other than its working environment.

RETURN Short for "carriage return"; see "CR".

REVERSE Another term for "inverse" associated with the video
display screen. Normal displayed characters are white
foreground on a black background. Reverse, or
inverse, video characters are black foreground on a
white background.

RPN An acronym for Reverse Polish Notation, commonly
referred to as "infix". It relates to the syntax of
entering numbers and operators for mathematical
calculations.

RUN The action of initiating program execution.

SCIENTIFIC A format associated with the presentation of floating
point numbers in fraction and exponent form.

SCREEN Short for the video display screen.

SCROLL The action of shifting the entire text display of the
screen or a window of the screen either vertically
upward or downward.

Glossary of Terms

- 93 -

SEARCH The action of looking throughout a set of data records
to find one which matches a key string.

SECTOR A physical storage unit of a floppy diskette of hard
disk drive.

SERIAL A type of device where the character bytes are passed
bit-wise; this contrasts with parallel where character
bytes are passed as a full byte.

SETCOM A library command provided with your DOS used to
alter the parameters associated with the serial driver
(COM/DVR).

SORT The operation of placing a list of items into some
designated order.

SPEC Short for "file specification".

STRING A series of character values, usually denoted on paper
by enclosing in quotation marks (e.g. "this is a
string").

SVC An acronym for "SuperVisor Call"; a facility of the
DOS used to communicate with it at the program
level in contrast to the command level.

SYNTAX A particular requirement for the entering of
information.

SYS A particular file "tension indicating a "system" file;
e.g. SYS0/SYS.

SYSGEN A command of the DOS used to store the current
operating environment to the CONFIG/SYS file.

SYSTEM The nomenclature of a diskette which is used to either
BOOT your computer or which is used in drive :0.

Golden Oldies: Command Utility Package

- 94 -

TED A text editor application included with the Mister ED
application pack; also bundled with LS-DOS 6.3 as a
stand alone command.

TEMPLATE An outline or "form" used to organize a set of data.

TOGGLE Switch a binary device from its current state to its
opposite state.

TRACK A circular virtual groove of a disk surface; it contains
the sectors read during one rotation of the disk.

TXT A file extension used to designate a plain text file.

UPARW A mnemonic for the <UP ARROW> key.

USER Someone who operates computer programs but does
no or little computer programming.

UTILITY A computer program designed to do some
maintenance operation.

VERIFY The action of reading a sector after it is written to
ensure that it remains readable. It provides an extra
measure of insurance against media wear at the cost
of additional time for disk I/O.

VIDEO Short for the video display screen.

WILDCARD A string of characters which don't completely
designate a file specification but which contain
certain "global" characters such as "*", "$", or "?"
used to match any character thereby specifying a
group of "matching" file specifications.

WORD In the mathematical sense, the term applied to a
16-bit value which will occupy a two-byte storage
region. Also is the name of the word processor used
to prepare this documentation.

