
HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 1

H A R T F O R T H

Copyright 1983: A.M. Graham, All rights reserved.
Distributed by MOLIMERX Ltd., East Sussex, ENGLAND
Licensed for U.S. publication to MISOSYS, Inc., Sterling, Virginia 22170

 Table of Contents

Distribution Diskette 2
Model I TRSDOS Patch 2
Note on Model I/III Compatibility 3
Getting Started 3
The FORTH/CMD file 4
An Introduction to FORTH 6
An Overview of HARTFORTH 11
HARTFORTH Error Messages 15
Additional Functions 17
FORTH 79 Standard Reference 26
Additional Words in FORTH Kernel 32
General Utility Words in FORTH Vocabulary . . 33
Assembler 33
Additional Control Functions 34
Terminal and Print Functions 35
Virtual Memory Editor 35
Screen Editor 36
Double Length Words 36
String Handling Words 37
Arrays . 38
TRS-80 Device Words 39
Random Numbers 41
Floating Point 41
Debug Facilities 43

Note: LDOS is a trademark of Logical Systems, Inc.
 TRSDOS is a trademark of Tandy Corp.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 2

Distribution Diskette

 The distribution diskette has one file which contains the HARTFORTH
compiler. The file is named "FORTH/CMD". You should make a working copy of
HARTFORTH and preserve the distribution diskette safely. This manual covers
both the Model I/III version of HARTFORTH and the Model 4 TRSDOS 6.x version
of HARTFORTH. For use on the Model I or Model III, HARTFORTH is distributed
on a 35-track single density LDOS formatted data diskette. The diskette is
readable with DOSs other than TRSDOS on either machine. For Model I TRSDOS
2.3, read the "MODEL I TRSDOS PATCH" section before you attempt to use or
BACKUP the HARTFORTH distribution diskette. For Model III TRSDOS 1.3, use the
CONVERT program supplied with your DOS to copy HARTFORTH to your DOS
diskette. For TRSDOS 6.x, HARTFORTH is distributed on a double density 40
track data diskette.

Model I TRSDOS Patch

 Model I TRSDOS users will find difficulty in reading the distribution
disk due to the data address mark used for the directory. Therefore, before
making a BACKUP or copying HARTFORTH from the diskette, you will need to
change one byte of the TRSDOS 2.3 disk driver using one of the following 3
methods. This change will in no way affect the operation of your TRSDOS.

 Method (1) directly modifies the system diskette with a patch. To
prepare for this patch, obtain a fresh BACKUP of your TRSDOS 2.3 to use for
this operation. Then enter the following BASIC program and RUN it. After you
RUN the program, re-BOOT your TRSDOS diskette to correct the byte in memory.

 10 OPEN"R",1,"SYS0/SYS.WKIA:0"
 20 FIELD 1,171 AS R1$, 1 AS RS$, 84 AS R2$
 30 GET 1,3: LSET RS$="<": PUT 1,3: CLOSE: END

 Method (2) uses DEBUG to change the byte in memory. Use this if you do
not want to patch your TRSDOS system diskette and are familiar with DEBUG.

 1. At TRSDOS Ready, type DEBUG followed by <ENTER>.
 2. Depress the <BREAK> key to enter the DEBUGger.
 3. Type M46B0 followed by the <SPACE> bar.
 4. Type 3C followed by <ENTER>.
 5. Type G402D followed by <ENTER>.

 Method (3) uses a POKE from BASIC to change the value directly in
memory. This procedure is as follows:

 1. Enter BASIC (files = 0, protect no memory)
 2. Type POKE &H46B0,60 followed by <ENTER>.
 3. Type CMD"S followed by <ENTER>.

Now, after using any one of the methods noted above, COPY the FORTH/CMD file
from the HARTFORTH diskette to your TRSDOS diskette.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 3

Note on Model I/III Compatibility

 The Model I/III version of HARTFORTH should be compatible with all
TRSDOS compatible DOS's as it uses only documented DOS and ROM calls that are
common to both the Model I and Model III computers. This U.S. version detects
whether HARTFORTH is running on a Model I or a Model III by the ROM contents
at address 125H (Model III = 49H; Model I anything else). The contents of
SYS+21 (see "An Overview of HARTFORTH") are modified to use the proper
address for the High Memory pointer (4049H for Model I; 4411H Model III).

 Model I users of TRSDOS 2.3 who suffer from the error in TRSDOS that
crashes the system, or enters DEBUG, when the BREAK key is pressed can use
the following FORTH word in your applications to eliminate this problem.

 : BREAK.OFF 0 17173 C! ;

 This error occurs because a flag is erroneously set inside TRSDOS that
makes it think that DEBUG has been activated when it has not. The word above
clears this flag and ensures that DEBUG cannot be entered. After typing the
definition of BREAK.OFF exactly as shown and pressing <ENTER>, type BREAK.OFF
(followed by <ENTER>) to action the definition and disable DEBUG.
Alternatively you could type "0 17173 C! <ENTER>" to clear the flag directly
without actually defining the word, BREAK.OFF.

Getting Started

 Welcome to the world of FORTH. You now have available to you a powerful
high-level language development system that will execute your programs at
least ten times faster than interpreted BASIC while also supporting inter-
active modification and debugging. It is well worth reading this manual
thoroughly and with care from front to back, even if a lot of it does not at
the moment make sense. There is a lot of important detail given in it that
may not at first reading be apparent, but is as well to have in the back of
your mind for when you may need it. Also please remember that Rome wasn't
built in a day and it will take some time to become fluent in FORTH (do you
remember how difficult it seemed when you first started learning BASIC?).
Start gently and work your way in slowly, the effort will be rewarded as you
become fluent in this fascinating language.

 The procedure to use HARTFORTH is very simple. Using the working copy that
you have just made, run HARTFORTH by typing

FORTH <ENTER>

The program title will appear together with the command:

ENTER FILESPEC OF FORTH VIRTUAL MEMORY

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 4

Reply to this by typing:

FORTH/CMD <ENTER>

After a couple of seconds the compiler's prompt of 'OK' will appear. You are
now up and running!

 Note that this filename, FORTH/CMD, must be entered in capital letters
as HARTFORTH does not support automatic lower to upper-case conversion. To
assist this HARTFORTH sets the capital lock bit of the TRSDOS 6.x system flag
table on entry (Model 4 operation) although lower case may be accessed as
normal by toggling the CAPS key or using Shift-0.

The FORTH/CMD File

 The file FORTH/CMD is 80K bytes long (where a 'K' is 1024) and contains
a pre-compiled HARTFORTH system together with the FORTH source code for many
utilities and extensions to the 79-STANDARD HARTFORTH kernel. When you are
typing into HARTFORTH from the keyboard, the Left-Arrow key will backspace
and erase a character, and Shift Left-Arrow will delete the entire line of
text. These facilities to correct mistakes are provided by the FORTH word
EXPECT which is also used by QUERY and by the outer interpreter and so are
available when inputting to any programs that also use these words.

 If you type 'INDEX' <ENTER> you will be given a list of the contents of
the file. The numbers to the left of the vertical line are merely line
numbers as the INDEX word uses the standard word LIST to list the contents of
Screen 13 (i.e. the contents of the thirteenth block of FORTH/CMD, each block
being 1K bytes long). The numbers to the right of the vertical line are the
screen numbers of the relevant blocks of source code. Some of these screens
are already compiled into HARTFORTH, these being screens 21 to 36 inclusive.
If you wish to execute any of the other screens you will first have to
compile them into HARTFORTH's dictionary using either the LOAD or the LOADS
commands. Blocks 1 to 16 (17 to 19 are spare) are used to store the compiled
code of HARTFORTH (this is the function of SAVE-SYSTEM) and so do not appear
on the index. A detailed description of the purpose and words of each of the
screens is given later in this manual.

 The first thing that you will probably want to do (and should do) is to
look at these screens and to do this you will need to use some of the EDITOR
functions, so after reading the rest of the manual sit down and play with the
editor until you feel happy using it. It is important to get completely
familiar with the editor's facilities as you will be using it a lot to write
and modify your screens of source code. To enter the full screen editor type:

EDITOR x VIEW <ENTER>

where "x" is the number of the screen you wish to look at. The screen will
now be shown on the display and using the commands listed in the glossary you
can move the cursor around and edit the screen at either the character or the
line level. To save any changes you have made you need to press 'S' (save)
which copies the contents of the display back to the area in memory where the
Virtual Memory system placed the screen when it read it from disc. If you
didn't do this your changes would be lost. By using the '+' and '-' keys you
can see the last or the next screen and pressing 'Q' gets you back to the

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 5

EDITOR vocabulary. Pressing 'Q' again will return you to FORTH and save any
screens that have been updated to disc.

 At the end of the FORTH/CMD file there are three screens left blank for
you to practice with, and to store your first programs in. Later you will be
able to use the NEW.FILE utility to create new Virtual Memory files, and
RESTART and SAVE-SYSTEM to transfer your programs to them so giving you a lot
more space to work with. One file can occupy a whole disc (except that single
disc drive owners will need to have a minimum DOS on their discs) so you will
not be short of space in the future.

 There is a function VLIST that displays all the words in the CONTEXT
vocabulary and the output of VLIST may be halted by pressing any key; a
further depression of any key will restart the listing. If a word doesn't
seem to be present it is probably because it has not been LOADed. The
following short definition will do a check and tell you without having to
wade through VLIST's output. Try putting it on one of the spare screens with
the EDITOR and then LOAD it so you won't have to type it in next time (though
you will have to LOAD it again).

: GOT FIND IF ." Present" ELSE ." Not found " THEN CR ;

Use it to see if the word FRED is present by typing GOT FRED <ENTER>.

 You will notice a thick vertical bar by some of the words in VLIST's
output, these words are IMMEDIATE words that are always executed even if
encountered in definitions. The reason that a word is IMMEDIATE is normally
because it is required to take some compile-time action, for example, LITERAL
takes a number from the stack and encloses it, together with the run-time
literal handler, in the new word so that the number may be returned to the
stack later when the word is executed.

 Before trying to use a utility or facility it is important to read the
enclosed description of the utility and the associated glossary that will
detail the action of the FORTH words associated with that utility. Note that
not every word that you will find on the HARTFORTH screens is described,
those words that are not are intermediate words used to implement some higher
function and are not meant to be used on their own.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 6

An Introduction to FORTH

 This manual is not intended to be a course of instruction in the FORTH
language. However some of the inherent characteristics of the language will
be briefly described. It is recommended that the user invests in some other
literature concerning the FORTH language, bearing in mind that there are
differences between implementations of FORTH, and that HARTFORTH conforms to
the 79-STANDARD.

 It can at times be difficult to trace FORTH literature but Foyle's of
London carries a small stock in their section on computer languages as do
some other specialist booksellers. In case of desperation I have found that
Mountain View Press Inc, PO Box 4656, Mountain View, CA 9404, U.S.A. who
specialize in the FORTH language are very helpful. They publish a range of
FORTH literature and to order from them just send them your Visa
(Barclaycard) or Mastercard (Access) number together with the expiry date
(they need that in the States for mail-order whereas over here they don't
seem to). They advertise in the BYTE magazine from time to time, and might be
able to supply any books that are difficult to obtain from normal
booksellers.

 Amongst the books I would recommend are:-

FORTH-79 STANDARD published by the Forth Interest Group available from
Mountain View. A copy is highly recommended though it is a standards document
and needs careful study. It is not a tutorial but a reference.

STARTING FORTH by Brodie, published by Prentice-Hall. A copy of this is
recommended for the complete novice but is rather 'American' in its treatment
of the subject.

DISCOVER FORTH by Thom Hogan, published by Osborne/McGraw Hill. Another good
book for the beginner but as with Starting Forth above be aware that some of
the FORTH words described in these books do not belong to the 79-STANDARD but
to other de-facto standards such as FIG-FORTH.

THREADED INTERPRETIVE LANGUAGES by R. Loeliger published by Byte Books. This
is for the Z80 assembly programmer who is interested in how FORTH "ticks"
internally. It does not describe a 79-STANDARD FORTH but a "home-brew" Forth-
like language called ZIP. However the implementation techniques are the same
and very interesting if you wish to have some idea as to how FORTH works. One
for the technically minded who knows the Z80 processor.

THE COMPLETE FORTH by Alan Winfield, published by Sigma Technical Press. A
highly recommended book and a complete introduction to 79-STANDARD FORTH. Be
warned that the single/double precision input from the input stream described
in Chapter 8 is not 79-STANDARD as implied and that as such HARTFORTH does
not provide it, and that Chapter 7 does not stress the importance of clearing
">IN" before using QUERY. Otherwise an excellent book - and British!

BEGINNING FORTH by Paul M. Chirlian, Matrix Publishers, Beaverton, OR.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 7

 There is a FORTH Interest Group in the U.K. and the contact is The Hon.
Sec., Forth Interest Group U.K., 15 St. Albans Mansion, Kensington Court
Place, London, W8 5QH. The 79-STANDARD is available through them, and I would
think that a stamped addressed envelope for their reply might be much
appreciated.

 The FORTH language originated from a man called Charles Moore who
evolved it over about ten years for the rapid design and debugging of fast
real-time programs. He subsequently founded a company, FORTH INC., whose
business is the exploitation of the FORTH language, primarily as POLYFORTH, a
multi-user system for the larger minicomputers although they also have a
MICROFORTH for smaller computers. A Forth Interest Group grew up and has
contributed greatly to the spread of the language on smaller computers by
making widely available a version of FORTH called FIG-FORTH, and more
recently by refining and publishing the 79-STANDARD definition of the
language in an attempt to gain a higher level of transportability from one
computer to another of programs written in FORTH using only this standardized
set of words.

 FORTH is hard to describe in the same terms as other computer languages.
Its major characteristic is that it enables a set of commands that perform a
function to be given a name, which name may then be used with other commands
to form another name which performs a more complicated function.

 A FORTH command consists of a single word which can be any combination
of letters, numbers and punctuation, except that it cannot contain any spaces
as FORTH uses spaces as the gaps between words. The 79-STANDARD defines a
minimum set of these words that are to be supplied with any FORTH that
complies with the standard and these words are then used as the basis for
defining other more complex words. Because of this technique of building up
functions from other lower level functions FORTH could be regarded as a very
convenient way of defining and linking sub-routines or procedures. As you
cannot use a name that has not yet been defined FORTH tends to produce highly
structured programs and its control structures are designed to encourage
this. This makes large programs much easier to understand and debug than
BASIC. For example a PASCAL to FORTH translation and vice-versa is quite
easily done, but it is much more difficult to translate BASIC into either
FORTH or PASCAL due to the lack of structure in most BASIC programs.

 FORTH is designed to operate on 16 bit words which may be data or byte
addresses, thus giving an addressing range of 64K bytes. It is intended to
operate with a mass storage medium (normally disc) and has no file structure.
It regards the mass storage as a set of numbered 'blocks' of 1024 bytes and a
Virtual Memory system is provided to access these blocks by swapping them in
and out of the physical memory of the computer when required. The programmer
accesses any desired block by putting the block number on the stack and
invoking the word BLOCK which reads the block from disc to a buffer in memory
and returns to the stack the address in memory of the start of the buffer.
That address is valid only for the 1024 bytes of the block requested. By this
means the interface to the mass storage device is entirely processor and
memory device independent and provides a simple interface to the programmer
who merely asks for the desired block and finds it placed in memory for him.
If a conventional file structure is required it is entirely possible to write
it in FORTH on top of the standard Virtual Memory system, but this is
normally of little point for single-user micro-processor implementations of
the language.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 8

 FORTH is a stack oriented language in which data is first put onto a
Data Stack and then manipulated on the stack. This leads to the language
having post-fixed operators, better known as Reverse Polish Notation, which
looks odd to many people at first but a little practice is sufficient to make
it second nature, and this has the advantage of not requiring the parentheses
in expressions or the ordering of the priority of operators that conventional
notation requires. Variables and Constants may be declared as required and
this contributes to FORTH's structuring as non-important local variables are
not named but are carried on the stack, while important global Variables and
Constants are named.

 In fact there are two stacks in FORTH; the first being the Data Stack
which is very obvious to the programmer, the second being the Return Stack
which is less obvious, though it can also be used to carry data - but with
great care - because this stack is used by FORTH to hold its linking
information as it works its way down a word's definition to get to the
primitive definitions that do the actual work. It is also used by some
versions of FORTH (HARTFORTH is one) to hold the parameters of a DO ... LOOP
construct thus providing an automatic nesting mechanism to allow loops to be
embedded in other loops. It is thus important that if the Return Stack is
used by the programmer within a DO ... LOOP it is returned to its original
state before the end of the loop. Similarly if the Return Stack is used
within the definition of a word it must be cleaned up by the end of that word
or FORTH's linking back to the higher level that invoked the word will be
wrong and the system will crash.

 All FORTH words are held in a 'dictionary' which can be extended by
defining new words. These new words can be either machine code 'primitives'
which are implemented using the Assembler supplied with FORTH, or they are
'secondaries' built out of words that already exist in the dictionary. It may
not be obvious that the FORTH compiler, also called the 'outer interpreter',
works in two modes depending on the value of a system variable called STATE.
Whenever a word is given to the compiler, either from the keyboard or from a
disc Screen (a disc block that contains FORTH source code is termed a
'screen') then FORTH looks up the address of that word in its dictionary of
existing words. If the word doesn't exist then it is assumed to be a number
and is converted to binary using the current value of the system variable
BASE (normally 10 for decimal input) and placed on the stack if STATE=0,
otherwise it is put into the dictionary as a literal to be returned to the
stack when the word is executed. If it is not a valid number in that base
then a WORD ERROR is displayed and the compiler returns to interpret input
from the keyboard canceling any word that was part compiled. When a word is
found that does exist then if STATE=0 the word is immediately executed,
otherwise the word's address is compiled into the newest dictionary entry to
become a part of the definition of a new word.

 This switching of STATE is mainly performed by two FORTH words, ':' and
';'. The function of ':' is to take the next word <name> that follows, to
create a new entry in the dictionary for that <name> and to set STATE=1.
Following words thus have their addresses compiled into the definition of
<name> so that they may be executed when <name> is invoked. When ';' is
encountered at the end of a definition it sets STATE=0 and checks that no
structuring errors have occurred during the definition. Further words from
the input stream will now be executed until STATE is set non-zero again to
compile the definition of another new word.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 9

 To give a simple example the following trivial word will get a line of
text up to 32 characters long from the keyboard and echo it to the display.
Note that you will have to type this definition into a screen because it is
more than 80 characters long and so overfills the keyboard input buffer.

: ECHO ." Enter text - " PAD 32 EXPECT CR
 ." Your text was "
 PAD BEGIN DUP C DUP 0> WHILE EMIT 1+ REPEAT DROP DROP ;

The ':' creates a new word called ECHO in the dictionary and as STATE is set
to 1 the outer interpreter compiles the addresses of the following words into
the definition of ECHO until ';' is reached. In fact there exists a class of
IMMEDIATE mode words that the compiler will recognize and will execute and
not compile even if STATE=1, and ';' is one of these words as it must be to
actually execute during compilation. Typing ECHO will now ask you for a
string of text, will wait for you to type up to 32 characters and an <ENTER>
and will then echo your line and re-enter the outer interpreter with the 'OK'
prompt. Note that this definition uses the fact that EXPECT returns a null
character at the end of the string.

 Classically the action caused by a FORTH word is described using a
'stack picture' and a written description; this is the case with the enclosed
glossaries. The actual source coding on the supplied FORTH Screens is not
good FORTH practice due to the need to get a lot into a small space. The
closest approach to good FORTH style is probably the Floating Point Screens
where you will see that the structuring is easily visible. It is a good idea
to put a 'stack picture' and description with each word as it is defined
using the 'brackets' that allow comments to be ignored by FORTH. An
alternative idea is to use alternate screens for code and comment and to
compile them with a command that only LOADs every other Screen. For example:-

 : ALTERNATE.LOAD (n1 n2 -> ,compiles every alternate)
 (screen from screen n1 to screen n2)
 1+ SWAP DO (set up loop start and end)
 CR I (get index and do a newline)
 ." Loading Screen " . (print screen to load)
 I LOAD (load the screen)
 2 +LOOP ; (increment loop index by 2)

Used as '2 8 ALTERNATE.LOAD' <ENTER>, this would compile screens 2,4,6, and 8
only, while showing how far it had got in the compilation by displaying the
number of the screen that was currently being interpreted. This allows all
the odd numbered screens to be used for holding comments. Commenting your
source code is highly recommended as FORTH can be a terse language at times
and it helps to know what a word does when you come to try to understand what
you were doing six months later!

 It is worth emphasizing that FORTH makes no distinction between the
keyboard and the screens on disc as it has only one 'input stream'. While it
is waiting for the keyboard it is in fact LOADing from BLOCK 0, although this
block is in fact the keyboard input buffer and is only 80 bytes long. The
blocks on disc start at BLOCK 1 and all that LOAD does is to point the outer
interpreter to the appropriate disc block. Therefore it is possible to do
anything from a screen on disc that can be done from the keyboard, and vice
versa. It is this factor that makes FORTH so interactive and easy to debug.
Any definition, once compiled can be exercised from the keyboard and the
stack and variables examined to check that it is doing the correct thing.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 10

 Note also that several FORTH commands can be given on one line separated
only by spaces. The action of the <ENTER> key only makes the keyboard input
buffer available as Block 0 to be interpreted. During interpretation FORTH
actions each word as it encounters it and does not need to parse commands
like normal compilers with a conventional structure.

 Any FORTH program ends up as a single word definition that is invoked to
execute all the lower level definitions that constitute the program. It is
not necessary for a FORTH program to ever return to the outer interpreter
once it is invoked. The outer interpreter is present only to add new
definitions to the dictionary and takes no part in the execution of a FORTH
program.

 FORTH's concept of vocabularies is sometimes confusing to beginners. At
any time the outer interpreter acknowledges two vocabularies. These are the
CONTEXT vocabulary which is searched for words to be executed, and the
CURRENT vocabulary to which new words are added. Often these are the same,
and usually they are the FORTH vocabulary. A vocabulary is merely a list of
FORTH words within the dictionary that are linked together and all the words
in the 79-STANDARD kernel are in the FORTH vocabulary. It is possible to
define new vocabularies and two such, the EDITOR and the ASSEMBLER, are
defined in the HARTFORTH screens. The purpose of a vocabulary is to keep a
set of words separate from another set of words. For example INDEX in the
FORTH vocabulary (screen 20) lists the contents of screen 20, while INDEX is
redefined in the EDITOR to list the top (comment) lines of a range of
screens. All vocabularies terminate back at the top of the FORTH vocabulary
so that all vocabularies, besides containing their own words also contain all
of the FORTH vocabulary, even the words that were defined in FORTH after the
new vocabulary was defined. To access the words in any vocabulary it is
necessary to make that vocabulary the CONTEXT vocabulary, which is done
merely by invoking its name. To add words to a vocabulary it is necessary to
make it the CURRENT vocabulary, which is the function of the word
DEFINITIONS. This can be seen in the EDITOR screens and to use any of the
EDITOR functions it is necessary to make EDITOR the CONTEXT vocabulary by
typing 'EDITOR'. Note that all vocabulary names are IMMEDIATE so that you
can change CONTEXT within a definition while compiling; if for some reason
you wish to change CONTEXT during execution you will need to precede the
vocabulary name by (COMPILE). Also note that ' and FIND operate on the
CONTEXT vocabulary, while FORGET operates on the CURRENT vocabulary. To
FORGET a word in the EDITOR vocabulary for example, you will need to say
EDITOR DEFINITIONS to make EDITOR the CURRENT vocabulary. After FORGET both
CONTEXT and CURRENT will be set to FORTH.

 Because it is 16 bit word oriented, the FORTH kernel is specified with
mainly 16 bit integer arithmetic and logical functions, with only a few 32
bit double length integer functions. However due to the extensibility of the
language, and the care with which the original functions were specified, it
is possible to write both extended length integer and floating point
extensions to perform whatever arithmetic operations are required. A minor
disadvantage of FORTH is that its structure is not ideally suited for
'number-crunching' as operands have to be transferred to the stack before
being used, and stored away afterwards. The additional overhead of these
moves slows FORTH down on larger more powerful processors, but on 8 bit
machines other speed factors, like the lack of hardware multiply and divide
instructions, far overshadow this limitation.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 11

An Overview of HARTFORTH

 HARTFORTH is a full FORTH that conforms totally to the 79-STANDARD as
discussed previously. Some of the following information is of a detailed
technical nature that the more advanced programmer may need to know and it is
included for his reference and interest, but it is not necessary to
understand all this information to use HARTFORTH effectively.

 The technically interested may care to know that HARTFORTH is not a
modified FIG-FORTH, but is an entirely new implementation internally designed
around the 79-STANDARD. In fact HARTFORTH version 4 (the Model 4 version) is
a Direct Threaded Code implementation of FORTH which provides an execution
speed between 10% and 40% faster (on a Z80 at least) than the classical
Indirect Threaded Code implementation. This means that all colon definitions
have a three byte code field address that is in fact a CALL to the
appropriate machine code COLON routine. Primitives have no code field as
such, the machine code to be executed commences at the code field address. In
fact all this is transparent to the programmer who need not know the details
of the implementation. The Direct Threading of HARTFORTH is not in fact a
CALL/RETURN implementation as this would slow the compiler down by tying up
the stack for return addresses. The stack is used for data and the return
stack is synthesised using the IX register as this provides the fastest
possible execution speed on a Z80. Its memory usage starts at 3000H (5200H
for the Model I/III version) where the 2 x 1024 byte Virtual Memory block
buffers are situated, followed by the system variables such as BLK and >IN,
the 80 byte terminal input buffer (BLOCK 0) and the Virtual Memory 256 byte
sector buffer and 32 byte File Control Block (50 byte for Model I/III). The
actual program comes next, this is the address that is returned by the word
SYS and is the transfer address to start the program. The purpose of starting
the Model 4 version at 3000H is to allow the advanced user to call TRSDOS 6.x
library commands from within FORTH using the DO.SVC command if he so
requires. During normal Model 4 FORTH operation, the area from 2600H to 2FFFH
is available for use as "scratchpad" memory if required, and in fact the
screen Editor uses the area to build its display output as does the memory,
file and sector Editor on screens 56-62.

 The two stacks are located in high memory with the Data Stack being
located 64 bytes below the top of memory or F400H, whichever is the lower, in
order to allow some measure of stack underflow in error conditions without
overwriting anything important that might be up there (the Model I/III stack
is based on the High Memory pointer contents). The Return Stack is located
512 bytes below the Data Stack. Both stacks grow downwards as is normal Z80
practice.

 When adding new primitive words using the Assembler it is vital that the
following Z80 registers are not altered. They may be used within the word but
must be unchanged when END-CODE is invoked. The function of END-CODE is to
exit from the ASSEMBLER vocabulary and terminate the machine code with a JP
(IY) to return to FORTH's address interpreter.

 Register BC contains FORTH's internal Program pointer.
 Register IX is used as the Return Stack pointer.
 Register IY contains the address of FORTH's NEXT code.
 Register SP is used as the Data Stack pointer.

On entry to a machine code primitive, register HL contains the Code Field
Address of that word. Both HL and DE registers may be used as required

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 12

without being preserved, as can AF and the entire alternate register set. On
entry to a ;CODE machine code sequence DE contains the parameter field
address of the invoked word.

 In addition to all the 79-STANDARD required words the HARTFORTH kernel
contains some additional useful words and utilities which are documented in
the glossary and which turn HARTFORTH into a fully-fledged FORTH development
system.

 Unlike many implementations of FORTH, HARTFORTH is designed to run under
an operating system and so the Virtual Memory that it accesses for storage
and retrieval purposes is not the disc medium directly (as would be normal)
but is a file created and controlled by the operating system. It is the name
of this file that is requested by the FORTH system when it is first entered.
Doing this has several advantages in that it provides for FORTH files to be
used by other programs and vice-versa and the fact that FORTH is running
under an operating system is entirely transparent to the programmer, he
merely appears to have a smaller disc than usual at his disposal.

 In implementing this method the system has been constrained to work only
within pre-created files of fixed lengths so that the possibility of
interfering with other possibly valuable files on the disc by damaging the
directory is eliminated. Pre-allocating the disc space ensures that there is
never any need to update the GAT table in the directory so that FORTH never
has to 'close' its Virtual Memory file. Therefore even if HARTFORTH crashes,
the integrity of the directory is maintained. Having said this it should be
noted that TRSDOS 6.0 sets an "open" bit in the directory of an open file to
avoid two tasks writing to the file at once, so the word DOS in HARTFORTH, as
well as flushing all the Virtual Memory buffers to disc, will also close the
Virtual Memory file. Any error found when closing the Virtual Memory file
will be displayed but normally the words 'NO ERROR' will be shown as
confirmation that there was no problem on exit from HARTFORTH. In the event
that the Virtual Memory file is found to be open when HARTFORTH is started,
for example after a crash during program development, it will display the
fact as 'FILE ALREADY OPEN' but will override the TRSDOS file protection
mechanism and allow the file to be written to and then closed normally on
exit. This effective fixing of the length of the Virtual Memory files is a
slight disadvantage at times, however functions are provided within the
HARTFORTH editor to help overcome this by allowing new files to be created
from within HARTFORTH and to allow the current Virtual Memory file to be
changed for another and manipulated at the individual block level.
Enhancements to the 79-STANDARD have been built into the HARTFORTH kernel in
the form of functions to call the standard operating system file handling
routines so that other files may be created and accessed if required, but
this is of course not 'pure' FORTH practice.

 The Virtual Memory facility in HARTFORTH has two 1024 byte block buffers
that are re-used on a least recently accessed basis. The terminal input
buffer on this system (BLOCK 0) is 80 bytes long and filling it will cause an
automatic ENTER to be generated by the 80'th character.

 Both the KEY and EMIT words of HARTFORTH are defined as simple
secondaries as follows:-

 : KEY KEY.PRIMITIVE ; : EMIT EMIT.PRIMITIVE ;

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 13

This allows input and output to be vectored to another device as required by
'ticking' the Code Field Address of a word that drives the required
peripheral device into the Parameter Field of either KEY or EMIT. An example
of this is shown in Screen 37 where EMIT is vectored to the printer. Care
should be taken to store the original Parameter Field contents and restore
them after use or communication with the system may be lost.

 The HARTFORTH kernel has a function called 'SYS' that leaves on the
FORTH stack the address of the start of the FORTH code. At this address are
found a common set of parameters at standardised addresses relative to that
returned by 'SYS'. A table of these parameters is given below but further
knowledge will be necessary to appreciate the purpose of most of them.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 14

SYS FUNCTION
--- ---
 0 Jump to initialization routine.
 3 Not used by this version of HARTFORTH.
 5 Not used by this version of HARTFORTH.
 7 Value of HERE if only kernel resident.
 9 Value used for HERE at initialization.
11 Value of FORTH vocabulary link if only kernel resident.
13 Value used for FORTH vocabulary link at initialization.
15 Value of VLINK variable if only kernel resident.
17 Value of VLINK variable used for initialization.
19 Code Field Address of word executed after program start, normally
 the disc initialization word for the Virtual Memory file.
21 Pointer to address containing Data Stack address, normally HiMEM
23 Offset of initial Return Stack address from Data Stack, normally
 512 bytes below the data stack.
25 Spare word for possible future use.
27 Spare word for possible future use.
29 Code Field Address of FORTH word executed after Virtual Memory
 file initialization, normally QUIT.
31 Length byte of following filename string. If zero then the user
 is prompted for the filename, otherwise the following string is used.
32 File specification (NNNNNNNN/XXX.PPPPPPPP:D) used for Virtual Memory
 file if SYS+31 is not zero. Maximum length is 23 bytes.
55 Byte containing processor flags after last disk access.
56 Byte containing contents of accumulator returned after last disk
 access.

It will be useful to know how the area of free memory at the top of the
dictionary is used by the system as conflicts here may well occur. The area
at HERE upwards is used by WORD to accept words from the input stream and the
address returned by WORD is usually the same as HERE will return. The area
from PAD (which returns HERE+65) upwards is used by both " and ." to hold the
string of text specified and as the HARTFORTH string functions use PAD as a
temporary storage area conflicts may arise. The print words, including '.'
and 'U.' as well as the number conversion words <# # #> build the numeric
output string from PAD-1 downwards before EMITting it.

 Due to the absence of the square left and right brackets on the TRS-80
keyboard HARTFORTH has to use a non-standard title for the following words

'left-bracket' becomes <(instead of square left bracket
'right-bracket' becomes)> instead of square right bracket
'brackets-compile' becomes (COMPILE)

 A library of standard screens is supplied with HARTFORTH to provide
often used extensions to the language, such as double length and floating
point maths, editing of source screens, string manipulation, arrays, etc.. A
description of each of these classes of functions is given on the following
pages and glossaries of their words are enclosed at the end of the manual,
including a glossary for 79-STANDARD FORTH.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 15

HARTFORTH Error Messages

 There are six error messages that HARTFORTH may display, in addition to
any of the normal DOS error messages that may be displayed in the event of an
error during an attempted disc access. These error messages are detailed
below.

Compile error
Block x ABORT

This error occurs if the compiler finds that the variable STATE is not zero
at the end of interpretation of a block. The most likely cause is the
omission of a semi-colon from the end of a definition. The block number 'x'
gives the number of the source screen being interpreted when the error
occurred. If 'x'=0 then the error was the result of keyboard input.

<name> Forget error

This error occurs if the compiler was asked to FORGET <name> when that name
was not present in the CURRENT vocabulary.

Stack error
Block x ABORT

The reason for this error is that the compiler has found that the stack depth
is less than zero when it has finished compiling a block, i.e. more items
have been taken off the stack than have been put on. A barrier area of 32
words is provided to allow for a measure of stack underflow, but gross
underflow can crash the system without giving any error message if there is
any operating system code in High Memory. As before the number 'x' is the
number of the block that caused the error.

Tick error
Block x ABORT

This error occurs if a word that is 'ticked' by the function ' is not present
in the CONTEXT vocabulary. As before 'x' is the number of the block in which
the error occurred.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 16

<name> Structure error
Block x ABORT

This error occurs at the end of a definition, when semi-colon is compiled, if
a DO ... LOOP/+LOOP, BEGIN ... UNTIL/AGAIN, BEGIN ... WHILE ... REPEAT, IF
... THEN or IF ... ELSE ... THEN structure is incorrectly constructed or
nested. The <name> is the name of the definition in error, and 'x' is the
number of the screen in which it is located.

<name> Word error
Block x ABORT

If a word is referenced either from the keyboard or during compilation that
cannot be found in the CONTEXT vocabulary then this error occurs and
compilation ceases. As before 'x' is the number of the screen in which the
offending word may be found.

<name> - IS NOT UNIQUE,Block x

This is not strictly an error message, rather it is a warning that a word
being defined in Block 'x' already exists in the CURRENT or FORTH
vocabularies, and that the previous definition will not be accessible until
the new definition is FORGOTTEN. Compilation is not interrupted and the new
<name> is correctly compiled.

NOTE: Gross stack errors on the Data Stack or incorrectly altering the Return
Stack can crash HARTFORTH without warning or error messages. This is a
characteristic of all FORTH systems and is a result of giving the programmer
the full freedom of the compiler. Fortunately the elegant structure and
interactive nature of FORTH usually makes it extremely simple to diagnose and
correct the offending definition.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 17

Additional Functions

 In the following screen references, the syntax "xx/yy" relates to the
Model I/III screen number (xx) followed by the TRSDOS 6.x screen number (yy).
The FORTH kernel includes some extra functions over and above those required
by the 79-STANDARD. These functions are documented in the glossary and are in
general self-explanatory. The major enhancements are the words that enable
access to other files via the normal documented TRSDOS operating system
calls, but to use them will require some technical appreciation of how to use
these calls. On screen 28/36 there are a few additional functions, defined in
FORTH, that complement these system calls.

 IN and OUT are supplied to enable access to the input/output ports of
the Z80 CPU and some 32 bit arithmetic functions are provided as primitives
to speed up extended length arithmetic, such as the floating point functions.

 A string literal " is provided as it seemed an obvious omission from the
standard, and it should be noted that if executed directly, i.e. used outside
a definition, then the address returned will be PAD. If compiled the address
used will be that of the position of the string's length byte in the
dictionary. The value of this length byte is used by HARTFORTH to jump over
the string while executing a definition that uses " and so it is important
that this value is not changed after compilation, by storing another string
there for example. The word DOS is provided to flush any updated Virtual
Memory buffers to disc and then close the Virtual Memory file and re-enter
the DOS by means of the EXIT SVC call. A constant, VM.DCB, is provided that
retains the address of the first byte of the Virtual Memory file Control
Block and may be useful for advanced users.

Screen 13/20

 This screen is mainly a comment screen that holds the index of the usage
of HARTFORTH screens. It also contains the definition of the FORTH word INDEX
whose job is to send the contents of screen 13/20 to the display.

Screens 14-15/21-22

 Not all the words on these screens will be described here, the functions
of the simpler ones which are not, may be found from the glossary of words of
the screens. This applies also to the descriptions of the other screens as
the function of these descriptions is to give an overview and some useful
detail about the major functions of each screen.

 It is important to realize the purpose of the words FORGET-SYSTEM and
SAVE-SYSTEM. They are intended to be used in conjunction with RESTART,
NEW.FILE, TO.MEMORY and TO.DISC to provide a suite of functions to ease the
generation of new HARTFORTH files. When FORGET-SYSTEM is invoked it will trim
off all the words that have been compiled from screen 13/20 onwards and will
leave only a 79-STANDARD kernel with the additional words that are supplied
in the kernel. This enables a new HARTFORTH to be compiled with only the
functions present that any particular program requires.

 The function of SAVE-SYSTEM is to save a memory image of the current
system, that is loadable by the DOS, in the first blocks of the current
Virtual Memory file. It asks if the entire system is to be saved. If the "N"
key is pressed then only the kernel as left by FORGET-SYSTEM is saved to
disc, the memory being unchanged. After saving the memory image it will

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 18

display the number of blocks it has used. Be careful that sufficient room is
left at the beginning of a Virtual Memory file if you are going to save a
memory image as SAVE-SYSTEM will not care about overwriting a screen if it
needs to. You do not need to save to the same file as you have compiled from
of course, this is the reason that RESTART is provided to change the Virtual
Memory file for another.

 TO.MEMORY allows a range of screens to be read from the current Virtual
Memory file and held in the spare memory from PAD upwards. The intention is
that this is done prior to a RESTART to define a new Virtual Memory file and
then the word TO.DISC can be used to store these screens in the new file.
Note that these two words are in the EDITOR vocabulary and therefore EDITOR
needs to be invoked after a RESTART because RESTART sets CONTEXT to FORTH.

 The word BOOT is provided as a convenience to load the screens that are
required for a given application; you can change it to suit yourself. The
sequence of commands FORGET-SYSTEM 14/21 LOAD BOOT will forget the entire
system and then reinstate it in the form in which you received it.

Screen 16/23

 This screen contains a deliberately extremely limited Assembler for
reasons that are explained in the glossary. It would of course be easy to
provide a more complete Assembler, and in fact Loeliger gives a design for
one in his book Threaded Interpretive Languages. However FORTH Assemblers
tend to bear little resemblance to the native Assemblers for a processor
because they normally rely on FORTH's stack to make their implementation easy
and so have a Reverse Polish type of notation with the op-code after the
operands. To people who also use the native Assemblers this can be very error
prone and coding in Hex for the very minor amounts of machine code that most
FORTH programs do (should!) have is quite easy. There are several examples of
the use of the Assembler in a variety of these screens. In the Model 4
version, however, screens 67-71 contain a very advanced facility that is far
more useful than an Assembler and takes up less space in the dictionary. It
is termed a Native Code Generator and produces actual machine code sequences
when invoked but using normal FORTH syntax so that additional execution speed
may be obtained when required without needing to be able to write in Assembly
code. This utility is more completely described later.

Screen 17/24

 The terminal and print functions here are adequately detailed in the
glossary, as are the useful control functions CASE: and SWITCH:. These two
functions allow multi-way branching decisions to be taken with execution
continuing in-line once the word branched to completes.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 19

Screens 18-20/25-28

 The EDITOR vocabulary contains both a screen editor invoked by the word
VIEW as explained in the FORTH/CMD section of this manual, and also a set of
words that will manipulate full screens. By this means blocks may be moved
around and shuffled to suit your needs. If you need to copy screens from one
Virtual Memory file to another they may be brought into memory using
TO.MEMORY, the Virtual Memory file changed by using RESTART, and then the
screens saved in the new file by using TO.DISC.

 By convention the first line of a FORTH screen contains a title for that
screen and the word INDEX (which is defined differently in the EDITOR than in
FORTH) will print out the first line only of a range of screens. Be careful
when using MOVE.UP and MOVE.DOWN that the screens that will be overwritten do
not have valuable information on them as these words make no check whether
the screens are empty.

 The screen editor word VIEW also supports line editing as well as
character editing and so the EDITOR vocabulary as a whole contains all that
you need to create and maintain your FORTH program screens and Virtual Memory
files.

Screen 21/29

 The word DUMP that is provided on this screen is a facility that enables
an area of memory to be displayed in both ASCII and HEX form without
affecting the present setting of BASE. The display will always be in complete
lines of 16 bytes, with a marker in the first line over the actual byte at
the address that you gave. The words 'STAX' and 'STAX?' on this screen are in
the glossary as general utility words as is 'DUMP' itself.

Screens 22-23/30-31

 On these screens are provided the recommended 79-STANDARD DOUBLE NUMBER
STANDARD EXTENSION word set that provides 32 bit operations together with
some additional words to provide conversion between different word lengths on
the stack.

Screen 24/32

 Here are provided a set of array definitions for arrays of different
word lengths. There is no mechanism for checking array bounds so it is as
well to add checking, at least during development, as writing outside an
array boundary will damage other parts of the dictionary - probably causing
the system to crash. These words are examples of the use of ;CODE and CREATE
... DOES>.

Screen 25/33

 A set of string manipulators are defined in this screen and should
provide most, if not all, of the string handling facilities that any
application may need.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 20

Screens 26-28/34-36

 Words to control the cursor of the TRS-80 display are defined here,
together with a set of words to access the graphic characters and to draw
horizontal and vertical lines.

 The disk words defined build on the DOS calls implemented in the
HARTFORTH kernel and some study of them should indicate their use, which is
illustrated in the important word NEW.FILE which is used to pre-create
Virtual Memory files of any required length. The word DO.SVC allows the
advanced user access to the SVC calls of TRSDOS 6.x.

Screen 29/37

 If you have a printer the words on this screen will provide you with
some ready-made words to format output. Note however that HARTFORTH is
designed to enable the KEY and EMIT words to be vectored to other drivers and
there is an example of this on this screen that vectors EMIT to the printer
using the PEMIT primitive.

Screen 30/38

 The simple words on this screen provide the capability of generating a
pseudo-random number sequence by a standard mathematical algorithm. To avoid
generating the same sequence every time, the word RANDOMIZE will vary the
sequence by changing the SEED value by generating and discarding an
indeterminate number of random values. This indeterminate, but not
necessarily truly random number is obtained by reading the refresh register
of the Z80 processor.

Screens 31-35/39-43

 The facilities provided here are intended to aid in the debugging of
programs, and are hopefully self-explanatory with the possible exception of
DEBUG. DEBUG is meant to be compiled into a definition and when invoked,
perhaps conditionally on the occurrence of a fault, will enter the outer
interpreter where you can examine variables and the stack to try to establish
the cause of an error. The word RESUME will then continue from where the
program was interrupted, but only if the number of items on the stack and the
setting of HERE have not changed. DEBUG on entry stores the values of some
critical parameters and restores them on exit; however it is possible that
other parameters critical to the operation of the program might be altered,
so some care is needed. As the ABORT function is not disabled a typing error
at the keyboard may cause a HARTFORTH error that causes an ABORT. It is then
not possible to RESUME as all the stacks are reset so again care needs to be
taken before pressing the <ENTER> key to ensure that no mistake has been
made.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 21

Screens 36-41/44-49

 These six screens provide a very full set of floating point
manipulations that provide results accurate to eight decimal digits. The
glossary contains a description of the format used to represent a floating
point number but a few notes on the purpose of some of the functions will be
given here.

 Normally a floating point number is six bytes long and is stored and
recalled using F! and F . Functions FPACK and FUNPACK are defined to pack a
number into four bytes and unpack it again so allowing it to be stored and
recalled by the double number functions 2 and 2! if it is required to save
storage space because of memory limitations. The accuracy is however reduced
to five or six decimal places and the constant F.LEN should be 'ticked' to a
value of five if FPACK and FUNPACK are in use. As this packing reduces the
exponent to eight bits and stores it at the bottom of the mantissa it is not
possible to PACK a number whose exponent is less than -128 or greater than
128. FPACK checks for this and as written will ABORT. However this can of
course be changed to take some application specific action if required.

 Besides all the arithmetic and logical operators some scientific
floating point conversions are provided. Note that the scientific notation
adopted is that of single length integer representing the decimal exponent on
the top of the stack, with a double length integer under it which represents
the mantissa. These are provided to make it easier to enter floating point
words from the keyboard if required.

Screens 42-44/*** [Not available for TRSDOS 6.x version]

 Some benchmarks, that should not necessarily be taken too seriously as
with all benchmarks, are given in these three screens. Probably the ones of
most interest are those that are translations of the Personal Computer World
magazine as these show that HARTFORTH is about ten times faster than
interpreted BASIC. The times are obtained without "cheating". As variables
are used they are fetched and stored each time whereas a real FORTH program
would probably make more use of the stack. Also large BASIC programs run more
slowly than small ones as GOTOs and GOSUBs have to search the program to find
their destination, and variable references have to search the variable
tables. This is why it pays in a BASIC program to use the most often
referenced variables first to ensure that the search for them is short, and
to put sub-routines at the front of a program. FORTH, on the other hand, runs
at constant speed irrespective of the size of the program as all references
are compiled.

Screens 45-47/50-52

 These screens give a demonstration of a HEAPSORT which is one of the
faster of the sorting algorithms and may be useful to you. The demonstration
consists of two words. The first, DOIT, writes a set of random numbers to the
memory at 2600H and sorts them into ascending order. The second, INVERSE,
writes an inverted sequence starting at 255 down to 0 to the memory and then
inverts the sequence. To compile these screens you will first need to compile
screen 38 which contains the random number words. The result of the sort may
be viewed by DUMP or the memory Editor utility.

 The words DO.HEAP and HEAPSORT do a byte sort on an array whose address
is returned by the word ELEMENT which takes a number from the stack

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 22

representing the index into an array and returns the address of that element
of the array. The array in this case is the display screen memory, so that
you may see the sort progress. Note that the HEAPSORT algorithm assumes that
the lowest index of an array is 1 whereas the array words of screen 32 use 0
as the lowest index. Therefore if the sort is to be modified for some other
use the redefinition of ELEMENT should correct for this, or the sort will not
reach the first element of the array. The algorithm uses a single working
store whose address is returned by WORKING.

 It should be quite simple to redefine ELEMENT to suit your own purposes
and change WORKING (if necessary) to suit the type of value you wish to sort
(byte, word, double-word, floating point, string). The C and C!
associated with each ELEMENT and WORKING will also need changing, as will the
comparisons used to make the sorting decisions. A bit of study of the
algorithm, not to understand how it works but to see where it fetches, stores
and compares, should enable you to make the required changes. Assuming that
lines are numbered from 0 to 15 the following lines may need changing:-

 Screen 45/50:
 Line 1 - redefine WORKING and NO.ITEMS
 Line 2 - redefine ELEMENT;
 Line 9 - C and C!
 Line 11 - C , C and <
 Line 13 - C , C and <
 Line 14 - C , C!
 Line 15 - C , C!

 Screen 46/51:
 Line 8 - C , C!
 Line 11 - C , C!
 Line 12 - C , C!

Screens ***/53-55 [Not available for Model I/III]

 These three screens contain some advanced code to interface FORTH to the
TRSDOS interrupt task processor mechanism. If you LOAD these three screens
and invoke INSTALL then you will hear a "click" approximately once per second
as the FORTH word INTERRUPT is executed as a medium priority task in task
slot 0. The word UNSTALL will remove the task.

 To use this facility you need not understand how the code works but
merely need to redefine INTERRUPT to invoke your required task. Be aware that
if your task occupies too much time you will not be able to access the discs
and if it occupies far too much time then the system will seem to lock-up.
Also beware of all the usual interrupt problems of referencing the same
variables etc. at interrupt as well as background level.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 23

Screens ***/56-62 [Not available for Model I/III]

 These screens contain three Editors that are LOADed into the EDITOR
vocabulary. They are MEDITOR for displaying and patching memory contents,
FEDITOR for displaying and patching files on disk and SEDITOR for displaying
and patching disc sectors directly.

 SEDITOR is intelligent enough to know when you are accessing the
directory and will re-write a directory sector with the correct Data Address
Mark.

 FEDITOR cannot tell if it has read a directory or an ordinary sector and
will re-write all sectors with the normal Data Address Mark; so, although
FEDITOR may be used to examine DIR/SYS it must not be used to patch it – use
SEDITOR instead.

Screen ***/63 [Not available for Model I/III]

 This screen contains a more sophisticated floating point input routine
than that provided in the floating point package. This version of F IN will
accept input from the keyboard in the forms xxxx , xx.xx or xxExx.

Screen ***/64 [Not available for Model I/III]

 This screen contains a more sophisticated floating point output routine
than that provided in the floating point package. Numbers whose absolute
value is smaller than 1,000,000 or larger than 0.001 are printed as a mixed
number with the number of digits defined by the constant F.LEN in the
floating point package. Values outside this range are printed in scientific
notation, again with the number of digits defined by F.LEN.

Screens ***/65-66 [Not available for Model I/III]

 One problem with FORTH is that the source code is held on screens in the
Virtual Memory file and this tends to be fairly wasteful of disc storage
space unless the words are packed in tightly, and then the code becomes
unreadable. This waste of space also discourages adequate commenting of the
source code. For those with large programs but limited disc storage this can
be troublesome. These two screens allow FORTH source code to be LOADed from a
word processor file such as SCRIPSIT. This is done by patching the definition
of the FORTH word WORD that is used to accept the next word from the input
stream. ABORT is also patched so that things are restored to normal if an
error occurs. The loader is invoked by typing "WP.LOAD filename" which alters
WORD and ABORT, opens the word processor file and sets BLK=0. Every time a
new line character (13) is encountered BLK is incremented and if an error is
encountered the block number printed is the line number that contains the
error. Any other control characters are ignored except 0 which terminates the
loading sequence and restores WORD and ABORT to their original functions. As
LOADing is terminated when a 0 is encountered the word processor file used
should use this as a terminating character.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 24

Screens ***/67-71 [Not available for Model I/III]

 These screens contain a very advanced utility whose purpose is to
replace the use of a normal FORTH Assembler where the speed of machine code
is necessary. The purpose of this utility is to generate machine code
sequences that emulate the action of normal FORTH words thus giving the
convenience of writing high-level FORTH code with the increased speed of an
Assembler. As always there is a compromise to be made, and in this case it is
that the machine code generated occupies more memory than the equivalent high
level FORTH code - however this is also true of a FORTH Assembler. The
particular advantage of this Native Code Generator over an Assembler is that
it occupies the same, or less, space in the dictionary but most importantly
it offers the familiar FORTH syntax and thus requires no knowledge of the Z80
processor to achieve the benefits of Assembly coding.

 Although the source code on the screens may appear daunting the use of
the utility is very simple as the example screens following will show. The
only words whose functions are necessary to understand are:-

 :CODE , (COMPILE) , LITERAL , <(,)> and ;

Apart from :CODE the others are re-definitions of FORTH words whose actions
are closest to those required by this code generator.

 The code generator is actually in the ASSEMBLER vocabulary and :CODE
performs the same function as : in that it generates the header of the
definition in the dictionary but then instead of setting STATE=1 as : does it
transfers control to the code generator. The code generator is thus running
in execute mode (STATE=0) rather than compile mode and its function is to
identify words that generate sequences of machine code in the definition
created by :CODE and execute them. The words that are recognized by the code
generator are all contained in the Stack Manipulation, Comparison, Arithmetic
and Logical, Memory and Control Structure groups as well as numbers valid
with regard to the current setting of BASE. Words not implemented are
EXECUTE, LEAVE, DEPTH and NOT (which is the same as O=) and the double length
words D<, D+, DNEGATE, */, U*, U/MOD.

 Additional words are 2* and /2 which are self-explanatory, and IN and
OUT which are equivalent to the IN and OUT defined in the HARTFORTH kernel.

 In order to speed up fast loops a new loop count mechanism is provided.
Because the loop counter is kept in registers B and C of the Z80 this
mechanism is not nestable.

 The word ; is redefined in the code generator so that it may be used to
terminate :CODE definitions. When invoked it checks that there have been no
control structuring errors and that the stack depth is the same as it was
when :CODE was invoked; note that a stack error can also be caused by a
structuring error. The code generator may give the following errors:

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 25

Code Generator Word error in xxx

 This signifies that a word is invoked in the :CODE definition of xxx
that is not implemented in the code generator.

Code Generator Compile error in xxx

 This signifies that a stack or control structure error exists in the
:CODE definition of xxx.

Code Generator Structure error in xxx

 This signifies that a stack or control structure error exists in the
:CODE definition of xxx.

Code Generator Stack error in xxx

 This signifies that the depth of the stack when the ; of the definition
of xxx is different to the depth when :CODE was invoked. Note that this means
that unlike high level FORTH you cannot pass parameters into a definition
using the stack but can use <(and)> followed by LITERAL to achieve the same
effects.

 It is useful to be able to invoke a high level FORTH definition from
within the Code Generator and the redefinition of (COMPILE) allows this by
compiling a machine code sequence that will execute the following word which
(COMPILE) will FIND in the CURRENT or FORTH vocabularies. If the word is not
found, the first error message above is given. Note that IMMEDIATE and
CREATE...DOES> words and any other words that have both a compile and a run-
time action cannot be invoked, e.g. ." because the code generator is
executing with STATE=0. To use such words it is necessary to invoke them by a
normal colon definition and then reference this definition using (COMPILE) as
with the PRINT function in the sieve of Eratosthenes example screen.

 It is important to be able to reference constants and variables and
perhaps perform compile time address calculations. The word <(will suspend
code generation and will allow words in the CURRENT or FORTH vocabularies to
be executed, normally to leave a number or numbers on the stack, invoking)>
will then re-activate the code generator and the word LITERAL may be used to
take the number from the stack and create a code sequence to return it to the
stack at run-time.

 Please take note that the code generator is intended for use only to
speed up time critical parts of FORTH code, say interrupt words or inner
loops. It is not meant as a general purpose programming tool. Program in
FORTH, tune your FORTH with the code generator!

Screens ***/72-73 [Not available for Model I/III]

 Screen 72 contains a colon definition of the well-known sieve of
Eratosthenes benchmark and screen 73 is the :CODE definition of the same
algorithm demonstrating (COMPILE), <(,)> and LITERAL.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 26

Screens ***/74-76 [Not available for Model I/III]

 These screens contain a :CODE definition of the HEAPSORT algorithm to
demonstrate the code generator.

Screen ***/77 [Not available for Model I/III]

 It may be that you wish to change the Virtual Memory file from within a
program without doing a RESTART which will only accept the new name from the
keyboard. This screen contains the code to show you how to do it. As shown it
is invoked by typing "VM.FILE filename" but the '32 WORD' phrase in line 3
could be replaced by a string function that returns the address at which the
filename can be found and the error trapping could take some application
specific action.

Screens 48-53/78-80

These are six/three spare screens.

FORTH-79 Standard References

Stack inputs and outputs as shown; top of stack on right. See operand key at
bottom.

Stack Manipulations

DUP n -> n n Duplicate top of stack.
DROP n -> Discard top of stack.
SWAP n1 n2 -> n2 n1 Exchange top two stack items.
OVER n1 n2 -> n1 n2 n1 Make copy of second item on top.
ROT n1 n2 n3 -> n2 n3 n1 Rotate third item to top.
PICK n1 -> n2 Copy n1-th item to top.
ROLL n -> Rotate n- th item to top.
?DUP n -> n (n) Duplicate only if non-zero.
 >R n -> Move top item to "return stack" for
 temporary storage (use caution).
 R> -> n Retrieve item from return stack.
 R -> n Copy top of return stack onto stack.
DEPTH -> n Count number of items on stack.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 27

Comparisons

 < n1 n2 -> flag True if n1 less than n2.
 = n1 n2 -> flag True if top two numbers are equal.
 > n1 n2 -> flag True if n1 greater than n2.
0< n -> flag True if top number negative.
0= n -> flag True if top number zero.
 (Equivalent to NOT).
0> n -> flag True if top number greater than zero.
D< d1 d2 -> flag True if d1 less than d2.
U< un1 un2 -> flag Compare top two items as unsigned
 integers.
NOT flag -> not flag Reverse truth value. (Equivalent to 0=)

Operand key:

 d, d1,... 32-bit signed numbers
 addr, addr1,... addresses
 char 7-bit ASCII character value
 n, n1,... 16-bit signed numbers
 u unsigned
 byte 8-bit byte
 flag boolean flag

Arithmetic and Logical

+ n1 n2 -> sum Add.
D+ d1 d2 -> sum Add double-precision numbers.
- n1 n2 -> diff Subtract (n1 - n2).
1+ n -> n+1 Add 1 to top number.
1- n -> n- Subtract 1 from top number.
2+ n -> n+2 Add 2 to top number.
2- n -> n-2 Subtract 2 from top number.
* n1 n2 -> prod Multiply.
/ n1 n2 -> quot Divide (n1/n2). (Quotient rounded
 toward zero)
MOD n1 n2 -> rem Modulo (i.e. remainder from division
 n1/n2). Remainder has same sign as n1.
/MOD n1 n2 -> rem quot Divide, giving remainder and quotient.
*/MOD n1 n2 n3 -> rem quot Multiply, then divide (n1*n2/n3),
 with double-precision intermediate.
*/ n1 n2 n3 -> quot Like */MOD, but give quotient only,
 rounded toward zero.
U* un1 un2 -> ud Multiply unsigned numbers, leaving
 unsigned double-precision result.
U/MOD ud un -> urem uquot Divide double number by single, giving
 remainder and quotient, all unsigned.
MAX n1 n2 -> max Leave greater of two numbers.
MIN n1 n2 -> min Leave lesser of two numbers.
ABS n -> 1n1 Absolute value.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 28

NEGATE n -> -n Leave two's complement.
DNEGATE d -> -d Leave two's complement of
 double-precision number.
AND n1 n2 -> and Bitwise logical AND.
OR n1 n2 -> or Bitwise logical OR.
XOR n1 n2 -> xor Bitwise logical exclusive-OR.

Memory

 addr -> n Replace address by number at address.
! n addr -> Store n at address.
C addr -> byte Fetch least significant byte only.
C! n addr -> Store least significant byte only.
? addr -> Display number of address.
+! n addr -> Add n to number at addr.
MOVE addr1 addr2 n-> Move n numbers starting at addr1 to
 memory starting at addr2, if n>0.
CMOVE addr1 addr2 n-> Move n bytes starting at addr1 to
 memory starting at addr2, if n>0.
FILL addr n byte -> Fill n bytes in memory with byte
 beginning at addr, if n>0

Control Structures

DO...LOOP do: end+1 start -> Set up loop, given index range.
I -> index Place current loop index on data stack.
J -> index Return index of next outer loop in
 same definition.
LEAVE -> Terminate loop at next LOOP or +LOOP,
 by setting limit equal to index.
DO...+LOOP do: limit start -> Like DO...LOOP, but adds stack value
 (instead of always 1) to index.
 +loop: n -> Loop terminates when index is greater
 than or equal to limit (n>0), or when
 index is less than limit (n<0).
IF...(true)...THEN if: flag -> If top of stack true, execute.
If...(true)...ELSE if: flag -> Same, but if false, execute ELSE clause.
 ...(false)...THEN
BEGIN...UNTIL until: flag -> Loop back to BEGIN until true at UNTIL.
BEGIN...WHILE while: flag -> Loop while true at WHILE; REPEAT loops
 unconditionally to BEGIN.
 ...REPEAT When false, continue after REPEAT
EXIT -> Terminate execution of colon definition.
 (May not be used within DO...LOOP.)
EXECUTE addr -> Execute dictionary entry at compilation
 address on stack (e.g. address returned
 by FIND).

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 29

Terminal Input-Output

CR -> Do a carriage return and line feed.
EMIT char -> Type ASCII value from stack.
SPACE -> Type one space.
SPACES n -> Type n spaces, if n>0.
TYPE addr n -> Type string of n characters
 beginning at addr, if n>0.
COUNT addr -> addr+1 n Change address of string (prefixed by
 length byte at addr) to TYPE form.
-TRAILING addr n1 -> addr n2 Reduce character count of string
 at addr to omit trailing blanks.
KEY -> char Read keyboard and leave ASCII value
 on stack.
EXPECT addr n -> Read n characters (or until carriage
 return) from terminal to address, with
 null(s) at end.
QUERY -> Read line of up to 80 characters from
 terminal to input buffer.
WORD char -> addr Read next word from input stream using
 char as delimiter, or until null. Leave
 addr of length byte.

Numeric Conversion

BASE -> addr System variable containing radix
 for numeric conversion.
DECIMAL -> Set decimal number base.
. n -> Print number with one trailing
 blank and sign if negative.
U. un -> Print top of stack as unsigned
 number with one trailing blank.
CONVERT d1 addr1 -> d2 addr2 Convert string at addr1+1 to double
 number. Add to d1 leaving sum d2 and
 addr2 of first non-digit.
< -> Start numeric output string conversion.
 ud1 -> ud2 Convert next digit of unsigned double
 number and add character to output
 string.
 S ud -> 0 0 Convert all significant digits of
 unsigned double number to output string.
HOLD char -> Add ASCII char to output string.
SIGN n -> Add minus sign to output string if n<0.
 > d -> addr n Drop d and terminate numeric output
 string, leaving addr and count for TYPE.

Mass Storage Input/Output

LIST n -> List screen n and set SCR to contain n.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 30

LOAD n -> Interpret screen n, then resume inter-
 pretation of the current input stream.
SCR -> addr System variable containing screen number
 most recently listed.
BLOCK n -> addr Leave memory address of block, reading
 from mass storage if necessary.
UPDATE -> Mark last block referenced as modified.
BUFFER n -> addr Leave addr of a free buffer, assigned to
 block n; write previous contents to mass
 storage if UPDATEd.
SAVE-BUFFERS -> Write all UPDATEd blocks to mass
 storage.
EMPTY-BUFFERS -> Mark all buffers as empty, without
 writing UPDATEd blocks to mass storage.

Defining Words

: xxx -> Begin colon definition of xxx.
; -> End colon definition.
VARIABLE xxx -> Create a two-byte variable named xxx;
 xxx: -> addr returns address when executed.
CONSTANT xxx n -> Create a constant named xxx with value
 xxx: (-> n) n; returns value when executed.
VOCABULARY xxx -> Create a vocabulary named xxx; becomes
 CONTEXT vocabulary when executed.
CREATE...DOES> does: -> addr Used to create a new defining word, with
 execution-time routine in high-level
 FORTH.

Vocabularies

CONTEXT -> addr System variable pointing to vocabulary
 where word names are searched for.
CURRENT -> addr System variable pointing to vocabulary
 where new definitions are put.
FORTH -> Main vocabulary, contained in all other
 vocabularies. Execution of FORTH sets
 context vocabulary.
DEFINITIONS -> Sets CURRENT vocabulary to CONTEXT.
' xxx -> addr Find address of xxx in dictionary; if
 used in definition, compile address.
FIND -> addr Leave compilation address of next word
 in input stream. If not in CONTEXT or
 FORTH, leave 0.
FORGET xxx -> Forget all definitions back to and
 including xxx, which must be in CURRENT
 or FORTH.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 31

Compiler

 , n -> Compile a number into the dictionary.
 ALLOT n -> Add n bytes to the parameter field of
 the most recently defined word.
 ." -> Print message (terminated by "). If used
 in definition, print when executed.
 IMMEDIATE -> Mark last-defined word to be executed
 when encountered in a definition, rather
 than compiled.
 LITERAL n -> If compiling, save n in dictionary, to
 be returned to stack when definition is
 executed.
 STATE -> addr System variable whose value is non-zero
 when compilation is occurring.
 <(-> Stop compiling input text and begin
 executing.
)> -> Stop executing input text and begin
 compiling.
 COMPILE -> Compile the address of the next
 non-IMMEDIATE word into the dictionary.
 (COMPILE) -> Compile the following word, even if
 IMMEDIATE.
Note: The <(,)> and (COMPILE) are slightly different from the 79-STANDARD
symbols due to the lack of the necessary square bracket keys on the TRS-80
keyboard.

Miscellaneous

 (-> Begin comment, terminated by) on
 same line or screen; space after (.
 HERE -> addr Leave address of next available
 dictionary location.
 PAD -> addr Leave address of a scratch area of at
 least 64 bytes.
 >IN -> addr System variable containing character
 offset into input buffer used,
 e.g. by WORD.
 BLK -> addr System variable containing block number
 currently being interpreted,
 or 0 if from terminal.
 ABORT -> Clear data and return stacks, set exe-
 cution mode, return control to terminal.
 QUIT -> Like ABORT, except does not clear data
 stack or print any message.
 79-STANDARD -> Verify that system conforms to
 FORTH-79 Standard.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 32

Additional Words in FORTH Kernel

NFA n1 -> n2) Return Name Field Address n2 given Code
 Field address n1.
CFA n1 -> n2 Return Code Field Address n2 given Name
 Field Address n1.
IN n1 -> n2 Leave contents n2 of I/O port n1.
OUT n1 n2 -> Output n1 to port n2.
BEGIN...AGAIN -> Unconditional form of BEGIN...UNTIL.
 Equivalent to 0 UNTIL.
INTERPRET -> Begin interpretation of block number
 in BLK.
SEND n -> Equiv. to COUNT followed by TYPE.
HEX -> Set BASE to 16. Equivalent to
 DECIMAL 16 BASE !
SYS -> n Returns address n of start to give
 access to certain parameters.
H -> n Variable used to store HERE.
" xxx" -> String literal. Returns address of
 length byte of string xxxx.
DU* ud1 ud2 -> uq Multiply unsigned double numbers
 leaving quad result.
DU/MOD uq ud -> udrem udquot Divide quad number by double,
 both numbers assumed unsigned.
D- d1 d2 -> diff Subtract (d1 - d2).
DOS -> Flush any updated buffers to disk,
 close VM file, enter DOS.
VM.DCB -> n Return address n of first byte of
 VM file DCB.

The following words invoke DOS standard file handling routines. The logical
record length of all transactions is 256.

ERROR flag -> flag+192 Display DOS error message. Flag
 is DOS error number.
WRITE dcb -> flag Write and verify a sector.
 Flag = 0 if no error occurred.
READ dcb -> flag Read a sector.
INIT buffer, dcb -> flag Open or create a file.
OPEN buffer, dcb -> flag Open an existing file.
CLOSE dcb -> flag Close an open file.
KILL dcb -> flag Kill an open file.
POSN lrn dcb -> flag Position to read or write a sector.

dcb - is address of 32 byte area for DOS to use.
buffer - is address of 256 byte area for DOS to read/write disk sector.
lrn - is logical record number of sector to be read or written.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 33

General Utility Words (In FORTH Vocabulary)

DOS -> Save buffers and re-enter DOS.
CURRENT? -> Print name of CURRENT vocabulary.
CONTEXT? -> Print name of CONTEXT vocabulary.
BASE? -> Print current BASE in decimal.
VLIST -> Display name of all words in CONTEXT
 vocabulary. Pressing any key will
 temporarily stop/start the listing.
FORGET-SYSTEM -> Used to clear the entire dictionary.
SAVE-SYSTEM -> Will save either a fully compiled system
 or a basic system to the first blocks of
 the VM file in TRS-80 load format.
RESTART -> Will restart FORTH at the Virtual Memory
 file query but will retain the system
 intact thus allowing a system compiled
 from one file to be stored in another.
LOADS n1 n2 -> Will load n2 blocks commencing with
 block n1.
BOOT -> Will load resident system blocks.
STAX -> n1 n2 Leave current data stack pointer n1,
 and return stack pointer n2.
STAX? -> Print current values of data and
 return stack pointers.
DUMP un1 un2 -> Display memory contents from
 address un1 for un2 bytes.

Assembler: FORTH Vocabulary

CODE xxx -> Create dictionary entry for following
 <name>. Set ASSEMBLER as context vocab-
 ulary. BASE is stored and reset to hex.
;CODE -> Terminate a definition, set ASSEMBLER as
 context vocabulary. When definition is
 executed the code sequence following
 ;CODE will be invoked. BASE is set to
 hex. On entry to the definition DE
 contains the address of the parameter
 field of the word.

LABEL xxx -> Create a header and enter ASSEMBLER
 vocabulary.
 xxx -> n Normally used for machine code sub-
 routines to be called by words defined
 by CODE. Invoking xxx puts the address
 of the subroutine on the stack.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 34

Assembler: ASSEMBLER Vocabulary

C, byte -> Take byte from stack and put in dic-
 tionary advancing HERE. If word on stack
 not a byte value i.e. >255, then Abort
 giving error message.
END-CODE -> Terminate code sequence with JP (IY)
 then set context vocabulary to current
 vocabulary and restore BASE to its
 previous value.

The ASSEMBLER offered is deliberately limited to the entering of hand-
assembled hex code using ',' and 'C,'. The facilities it offers should be
entirely adequate for most necessary purposes. The restriction of facilities
is to avoid the syndrome of using a high-level language to provide an
assembler to overcome the limitations of the high-level language to make it
run as fast as possible. The language is for implementation, the assembler
for fine-tuning, not vice-versa!

Additional Control Functions

CASE: xxx -> Used to create dictionary entry for
 following <name> and compile execution
 xxx n -> addresses of words following <name> into
 <name's> body. When <name> is executed
 the word n from the stack is used as an
 index into the following words (0 gets
 first of list, 1 gets second, etc.) to
 choose which one to execute. After that
 word terminates execution continues with
 the next word after xxx. No checks are
 made on value of index. Beware of
 crashing the system if n is negative or
 larger than the list allows; e.g. CASE:
 CHOOSE ZERO ONE TWO THREE ; defines
 CHOOSE. Entering 1 CHOOSE will cause ONE
 to be executed.

SWITCH: xxx -> Used to create dictionary entry for
 following <name> and compile following
 xxx n -> list of numbers and execution addresses
 of words into <name's> body. When <name>
 is executed the value from the stack is
 compared with the number in front of
;SWITCH -> each word's execution address in the
 list, and if the values are equal that
 word is executed. Only one word from the
 list is executed and if there is no
 match with the number execution con-
 tinues with the word after xxx. The

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 35

 definition must be terminated by
 ';SWITCH', e.g. SWITCH: NUMBER 10 TEN 8
 EIGHT 2 TWO ;SWITCH defines NUMBER.
 Entering 8 NUMBER will cause EIGHT to be
 executed.

--> -> An Immediate word allowing colon defini-
 tions to cross block boundaries. Causes
 interpretation on next block whether in
 compile mode or not.

Terminal and Print Functions

"IN -> n Get string from keyboard leaving address
 of length byte (PAD).
 IN -> n Get number from keyboard to stack.
D IN -> d Get double length number from keyboard
 to stack.
?KEY -> n Scan keyboard, n=0 if no key pressed,
 else n=ASCII code.
U.R n1 n2 -> Print unsigned number n1, right aligned
 in field n2 long.
.R n1 n2 -> Print signed number n1, right aligned in
 field n2 long.
D. d -> Print double number signed.
D.R d n -> Print double number signed right aligned
 in n character field.

Virtual Memory Editor [These words are in the EDITOR vocabulary]

n CLEAR n -> Clear screen n to contain all spaces
 and mark as updated.
n1 n2 COPY n1 n2 -> Copy screen n1 to screen n2.
 Mark n2 as updated.
n1 n2 INDEX n1 n2 -> List line 0 of screens n1 to n2
 inclusive.
n1 n2 TO.MEMORY n1 n2 -> Temporarily store in RAM screens
 n1 to n2 inclusive.
n1 n2 TO.DISC n1 n2 -> Reverse action of TO.MEMORY.
n1 n2 n3 MOVE.UP n1 n2 n3 -> Moves screens n1 to n2 inclusive
 up by n3 offset.
n1 n2 n3 MOVE.DOWN n1 n2 n3 -> Moves screens n1 to n2 inclusive
 down by n3 offset.
Q -> Save all updated screens and make FORTH
 the context vocabulary.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 36

Screen Editor [These words are in the EDITOR vocabulary]

n VIEW n -> Enter Full-screen editor, the following
 commands are not FORTH words and are
 actioned immediately.

H Home the cursor to the top left of the screen.
T Toggle the character under the cursor from upper to
 lower-case or vice-versa.
S Save current screen contents in current buffer
 and mark as updated.
Q Leave screen editor and re-enter outer interpreter.
I Insert characters into current line, moving characters under
 and after cursor to the right, until ENTER, <UPARW>, <DNARW>,
 or <RTARW> are pressed.
R Replace existing characters in current line, by typing over
 them, until ENTER, <UPARW>, <DNARW>, or <RTARW> are pressed.
D Delete character under cursor and close up line from right.
<CLEAR> Clear line from cursor to end of line.

<UPARW>, <DNARW>, <LTARW>, <RTARW>, <ENTER>, <SHIFT-RTARW>, and <SHIFT-LTARW>
move cursor about the screen if not in insert or replace mode.

control C Copy current line to PAD.
control P Put line from PAD at this position and move other lines down.
control D Delete this line and move other lines up. Line is saved in
 PAD if needed.
control R Replace this line with the one at PAD.
control E Empty the entire screen, fill with spaces.

+ OR ; Will display next screen.
- Will display previous screen.

Double Length Words

2! d, n -> Store double length number d
 at address n.

2 n -> d Fetch double length number
 from address n.

2CONSTANT xxx d -> Define double length constant xxx. When
 invoked will leave d on stack.

2DROP d -> Drop double number.
2DUP d -> d d Duplicate double number.
2OVER d1 d2 -> d1 d2 d1 Copy double number.
2ROT d1 d2 d3 -> d2 d3 d1 Rotate set of three double numbers.
2SWAP d1 d2 -> d2 d1 Swap two double numbers.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 37

2VARIABLE xxx -> Create double length variable
 of name xxx.

D0= d -> f Leave true flag if d is zero.
D= d1 d2 -> f Leave true flag if d1 = d2.

DABS d1 -> d2 Leave d2 as absolute value of d1.
DMAX d1 d2 -> d3 Leave larger of d1 and d2.
DMIN d1 d2 -> d3 Leave smaller of d1 and d2.

DU< ud1 ud2 -> f True if ud1 is less than ud2.
 Both unsigned.

DNEGATE
D+ These words exist in the FORTH kernel.
D- See glossary of 'Additional words in
DU* FORTH kernel'.
DU/MOD

D* d1 d2 -> d3 Double length signed multiply.
D/ d1 d2 -> d3 Double length divide d1/d2 = d3.
 All signed.
D/MOD,DMOD,D*/,D*/MOD Are analogs of single-length functions.
S>D n -> d Convert signed number to double number.
D>S d -> n Convert signed double number to
 single number.
D>Q d -> q Convert signed double number to
 quad number.
Q>D q -> d Convert signed quad number to
 double number.

String Handling Words

" These words exist in the FORTH kernel. Do NOT do any string
." operations on a string literal as the byte count is used to
SEND jump over the string. The string should be copied elsewhere
 if it is to be altered.

"VARIABLE xxx n -> Create variable named xxx with length n.
 Do not try to store a string longer than
 n in this variable.

"CONSTANT xxx n -> Create string constant named xxx from
 string at n. Invoking xxx leaves address
 of byte count of string on stack.

" n1 -> n2 Fetch string from address n1 to PAD
 leaving address n2 of PAD.

"! n1 n2 -> Store string at address n1 to
 address n2.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 38

"LEFT n1 n2 -> Alter string at n1 to contain n2
 left-most characters of original.

"RIGHT n1 n2 -> Alter string at n1 to contain n2
 right-most characters of original.

"MID n1 n2 n3 -> Alter string at n1 to contain n2
 characters of the original commencing
 from character n3.

"+ n1 n2 -> Alter string at n1 by appending string
 at n2 to it and adjusting length byte.

COMPARE n1 n2 n3 -> f Returns f=0 if number of bytes n3 are
 identical starting at n1 and n2. Returns
 f=1 if bytes at n1 are alphabetically
 greater than those at n2. Returns f=-1
 if bytes at n1 are alphabetically less
 than those at n2, used by "COMPARE.

"COMPARE n1 n2 -> f Return f=0 if strings at n1 and n2 are
 identical, f=1 if string at n1 is
 greater, f=-1 if string at n1 is less.

"= n1 n2 -> f Return flag=1 if string at n1 is ident-
 ical to string at n2, f=0 otherwise.

"> n1 n2 -> f Return f=1 if string at n1 greater than
 string at n2, f=0 otherwise.

"< n1 n2 -> f Return f=1 if string at n1 less than
 string at n2, f=0 otherwise.

Arrays

ARRAY xxx n -> Create an array of n elements of single
 xxx n1 -> n2 precision numbers. When xxx is refer-
 enced the address n2 returned is the
 address of the n1-th element. 0 < n1 <n.

2ARRAY xxx n -> As ARRAY but for double precision
 xxx n1 -> n2 numbers.

"ARRAY xxx n1 n2 -> Create a string array of n2 elements n1
 xxx n1 -> n2 bytes long. Strings may be shorter than
 element size but must not be longer or
 the system may crash as the dictionary
 may be corrupted.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 39

CARRAY xxx n -> Create an array of n bytes.
 xxx n1 -> n2 As ARRAY but for bytes.

FARRAY Defined in the floating point screens.

TRS-80 Device Words

CURSOR n -> Move cursor to screen position n count-
 ing from top left corner; 0 <n < m.
 [m=1023 for Mod 1/3, 1919 for Mod 4]

CLS -> Clear screen and home cursor.

LINE n -> Position cursor to start of line n;
 0< n <m. [max=15 for Mod 1/3; 23 for 4]

TAB n -> Move cursor to n- th position of current
 line.

CURS.OFF -> Turn cursor off.

CURS.ON -> Turn cursor on.

The following six words are graphics functions. In the stack pictures, 0<x<h
and 0<y<v; Model 4: h=159, v=71; Model 1/3: h=127, v=47.

GSET x y -> Set graphics bit at co-ordinates x,y.

GCLR x y -> Clear graphics bit at co-ordinates x,y.

G? x y -> f f=1 if graphics bit at x,y is set,
 f=0 otherwise.

HLINE x y l -> Draw a horizontal line of length l from
 co-ordinates x,y.

VLINE x y l -> Draw a vertical line of length l from
 co-ordinates x,y; l may be negative in
 both HLINE and VLINE.

BOX x1 y1 x2 y2 -> Draw a rectangular box, top left corner
 at x1,y1; bottom right corner at x2,y2.

DCB xxx -> Allocate space for 32 byte DCB and 256
 xxx -> n byte sector buffer. xxx then leaves
 address of this area.

DATA n -> n+50 Used after DCB name to access buffer.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 40

FILENAME n1 n2 -> Moves string, length byte at n1, to DCB
 at n2 for use as filename for OPEN or
 INIT. Appends 0DH to string in DCB.

CHECK f -> If f>0 then do ERROR to display DOS
 error message.

NEW.FILE -> Create new file or extend (but not
 shorten) existing file.

DO.SVC bc de hl n - bc, de, hl, af Do TRSDOS SVC call number n setting the
 processor registers to the initial
 values on the stack and leaving the
 values returned by the SVC call. [Valid
 for TRSDOS 6.x only].

PEMIT c -> Send ASCII character to printer.

PCR -> Send CR to printer.

PSPACE -> Send one space to printer.

PSPACES n -> Send n spaces to printer.

PTYPE n1 n2 -> Send n2 characters from address
 n1 to printer.

PSEND n -> Send string to printer,
 length byte at n.

PLIST n -> List screen n to printer.

PLISTS n1 n2 ->) List screens n1 to n2 inclusive
 to printer.

P. n -> Print n as signed integer with
 trailing blank.

PFF -> Send a form feed to the printer.

P." -> Send message to printer, message
 terminated by ".

EMIT.TO.PRINTER -> Send all terminal output to the printer.

EMIT.TO.DISPLAY -> Restore terminal output to display.

Random Numbers

SEED -> n Variable containing seed for random
 number generator.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 41

RAND -> Calculates next random number in the
 sequence and updates SEED.

RANDOM n1 -> n2 Returns a random number n2 between
 1 and n1.

RANDOMIZE -> Randomizes SEED by discarding the next
 1 to 127 random numbers, the actual
 number to be discarded being obtained by
 reading the Z80 refresh register.

Floating Point

Floating point numbers are held as 3 words on the stack and in memory. On the
stack the binary exponent is on top with the double length mantissa
underneath. The notional decimal point is positioned one position from the
left of the word giving a range of values of approximately +/-0.5, although
numbers are normalized to values of +/-0.25 thus preventing overflow on add
or subtract. The exponent is signed and is the actual binary exponent (no
offset). If a value of zero results from an add or subtract, or is entered
externally, then the normalize function will "round" it upwards by adding a
one at the least significant end of the value and decrementing the exponent.

FDROP f -> Lose floating point number from stack.
FDUP f -> f, f Duplicate f.p. number.
FOVER f1 f2 -> f1 f2 f1 Duplicate second f.p. number on stack.
FSWAP f1 f2 -> f2 f1 Swap top two f.p. numbers on stack.
FROT f1 f2 f3 -> f2 f3 f1 Rotate f.p. numbers on stack.

FABS f1 -> 1f1 Return absolute value of f.p. number.
F n -> f Fetch f.p. number from memory address n.
F! f n -> Store f.p. number at address n.

FCONSTANT xxx f -> Create f.p. constant xxx. Invoking xxx
 returns the f.p. number to the stack.

FVARIABLE xxx -> Create f.p. variable xxx. Invoking xxx
 xxx -> n returns the address of xxx to the stack.

FARRAY xxx n -> Create an array of n f.p. numbers named
 xxx n1 -> n2 xxx. Invoking xxx returns the address n2
 of the n1-th element of the array
 (0 <n1 <n).

FNORM f -> f Normalize f.p. number on stack by
 shifting right or left until in range
 +/-0.25 then adjusting exponent.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 42

FPACK f -> fd Pack floating point number into 2 words
 by putting 8 bit signed exponent at LS
 end of mantissa.

FUNPACK fd -> f Reverse action of FPACK.

F* f1 f2 -> f3 Return normalized product f3
 of f1 and f2.

F/ f1 f2 -> f3 Return normalized quotient f3 of
 f1 divided by f2.

F+ f1 f2 -> f3 Return normalized sum f3 of f1 and f2.

F- f1 f2 -> f3 Return normalized difference f3
 of f1 minus f2.

F< f1 f2 -> flag Return flag = 1 if f1 less than f2,
 flag = 0 otherwise.

F> f1 f2 -> flag Return flag = 1 if f1 greater than f2,
 flag = 0 otherwise.

F0< f1 -> flag Return flag = 1 if f1 negative,
 flag = 0 otherwise.

F0> f1 -> flag Return flag = 2 if f1 positive,
 flag = 0 otherwise.

D>F d -> f Convert double length integer d to
 normalized f.p. number.

F>D f -> d Return integer part of f.p. number as
 double length integer.

SCI>FBIN d1 n2 -> f Convert integer mantissa d1 and decimal
 exponent n1 to normalized f.p. number.

FBIN>SCI f -> d1 n1 Convert f.p. number to integer mantissa
 d1 and decimal exponent n1.

F. f -> Print f.p. number as mixed number
 between 1 and 10 followed by decimal
 exponent. Number of digits printed in
 mantissa is governed by constant F.LEN.

F.LEN -> 8 Constant that returns number of digits
 that F. produces. Normally 8, but may
 be "ticked" if fewer digits required.

FZERO -> f A small floating point number (0.5 x 2)

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 43

 which is meant for use in clearing
 accumulated totals, etc.. Not meant for
 use as a true zero.

FCONS xxx n1 n2 -> Create a f.p. constant xxx from n1 a
 xxx -> f single length integer, and n2, a
 decimal exponent.

Debug Facilities

DEBUG -> If compiled into a definition this will
 enter the outer interpreter to allow ex-
 amination of the stacks, variables, etc.
 to aid fault finding. Do not alter any-
 thing crucial to the operation of the
 system or the application. BASE, >IN,
 BLK and CONTEXT are stored on entry and
 restored on exit. HERE and DEPTH are
 stored and exit not allowed if either
 are changed. A modified OK prompt is
 used while in DEBUG.

RESUME -> Used within DEBUG to return to the
 application.

DSTACK? -> Non-destructively displays the data
 stack contents as signed numbers ac-
 cording to BASE. Shows the top 6 items.

RSTACK? -> Non-destructively displays the top 6
 items of the return stack as word names,
 if a valid Code Field Address, or as
 unsigned hexadecimal numbers otherwise.

DECOMPILE <name> -> Displays a decompilation of the word
 <name> as word names, if a valid Code
 Field Address for a named word, or as
 unsigned hexadecimal numbers as may
 occur for headerless internal words used
 in implementing HARTFORTH. All control
 structures in HARTFORTH compile down to
 conditional branches or unconditional
 branches which may jump forwards or
 backwards. Branches are shown followed
 by a byte offset, the conditional branch
 branching if the top stack item is zero.
 A few trials will show how IF...THEN
 etc. are compiled but remember that each
 FORTH word jumped over is two bytes in
 the definition. If it is obviously going

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 44

 wrong pressing any key stops the
 decompilation. Primitive functions
 cannot be decompiled and produce
 meaningless output.

XREF <name> n1 n2 -> Search screens n1 to n2 inclusive for
 words that match <name> and print out
 the line numbers (0 -> 15) of every
 occurrence in each block. Pressing any
 key aborts the search.

REDEFINE <name1> <name2> -> Amend Code Field Address of <name1> so
 that all existing and future references
 to <name1> actually execute <name2>.
 Effectively <name1> no longer exists
 although VLIST will still show it.
 Useful to temporarily correct an early
 incorrect definition without recompiling
 all subsequent definitions.

HARTFORTH Variations From "STANDARD" Practices

(Not Necessarily Non 79-STANDARD)

1) Doesn't accept multi-line definitions from keyboard. Would need
 minor change to INTERPRET to check STATE only if BLK=0.

2) Doesn't accept double-precision numbers from input stream if "." is
 part of number. Variable DPL is not present. To do this needs a
 rewrite of ?NUMBER.

A fix for 1) above is to FORGET-SYSTEM.

: MOD1 DROP BLK 0= IF STATE IF R> DROP R> 14 - >R THEN THEN;

FIND MOD1 ' INTERPRET 56 + ! HERE SYS 7

The Following Pertains to TRSDOS 6.x Version Only

Memory File and DisK Editor

MEDITOR Displays and amends memory contents
FEDITOR Displays and amends disk files
SEDITOR Displays and amends disks at the individual sector level

All are in the EDITOR vocabulary. At the display level in all three editors
the '+' displays the next disc sector or next 256 byte page of memory; '-'
displays the previous sector or page. Out of range or invalid disk data is
shown as all zeros. The arrow keys move the cursor around the screen.

HARTFORTH - A 79-Standard FORTH Compiler

HARTFORTH - 45

'A' enters the ASCII modification mode which allows ASCII text to be typed
in; 'X' enters the hexadecimal modification mode which allows hex numbers to
be typed in. To exit either mode press a cursor key or ENTER. Memory
modifications are done immediately, disk sector modifications are not done
until 'S' is pressed at the display level. Pressing 'Q' at the display level
exits from the editor.

Pressing 'M' or 'N' in MEDITOR at the display level requests a new memory
address; pressing 'N' in FEDITOR requests a new sector number while in
SEDITOR it requests a disk, track and sector number. The number at the bottom
right of the display represents the cursor memory address in MEDITOR, file
sector and cursor byte number in FEDITOR and track sector and cursor byte
number in SEDITOR which displays a '*' in front of this number if a directory
sector is read.

Native Code Generator

Words for which code can be generated are as follows:

 DUP DROP SWAP OVER ROT PICK ROLL ?DUP >R R> R
 < = > 0< 0= U<
 + - 1+ 1- 2+ 2- * / MOD 2* /2
 MAX MIN ABS NEGATE AND OR XOR
 ! C C! +! MOVE CMOVE FILL
 DO LOOP +LOOP I J IN OUT
 IF ELSE THEN BEGIN UNTIL WHILE REPEAT EXIT

Note that LOOP and +LOOP are non-standard in that they terminate ONLY when
the count (after incrementing) is EQUAL to the limit. This was chosen for
speed of execution.

The following loop mechanism is very fast but is non- nestable.

COUNTS n -> Set initial count to n-1.
COUNT? -> n Return current value of count.
END.COUNT -> Decrement count by 1 and re-execute the
 word after COUNTS if COUNTS is > 0.

LITERAL n -> Enclose n into the definition to be
 returned to the stack when executing.

(COMPILE) xxx -> Enclose code to invoke the CURRENT or
 FORTH word xxx at run-time.

<(-> Stop generating code and execute CURRENT
 or FORTH words normally.

)> -> Re-activate the code generator after a
 previous)>.

	Top of document
	Distribution Diskette
	Model I TRSDOS Patch
	Note on Model I/III Compatibility
	Getting Started
	The FORTH/CMD File
	An Introduction to FORTH
	An Overview of HARTFORTH
	HARTFORTH Error Messages
	Additional Functions
	Additional Words in FORTH Kernel
	General Utility Words (In FORTH Vocabulary)
	Assembler: FORTH Vocabulary
	Additional Control Functions
	Virtual Memory Editor
	Screen Editor
	Double Length Words
	String Handling Words
	Arrays
	TRS-80 Device Words
	Random Numbers
	Floating Point
	Debug Facilities

