�� EMBED Word.Picture.6 ���JLib

Function Library

Copyright ©1995,1996 Jonathan Paul Griffiths.

All Rights Reserved.

Last Updated: Tuesday 29 October 1996

�Contents

� TOC \o "1-3" \t "JLib_Header1,1" �Contents	� GOTOBUTTON _Toc370546565 � PAGEREF _Toc370546565 �2��

Introduction	� GOTOBUTTON _Toc370546566 � PAGEREF _Toc370546566 �3��

Legal Information	� GOTOBUTTON _Toc370546567 � PAGEREF _Toc370546567 �4��

Installation	� GOTOBUTTON _Toc370546568 � PAGEREF _Toc370546568 �5��

Building the Library	� GOTOBUTTON _Toc370546569 � PAGEREF _Toc370546569 �7��

JLib Design	� GOTOBUTTON _Toc370546570 � PAGEREF _Toc370546570 �8��

Function Categories	� GOTOBUTTON _Toc370546571 � PAGEREF _Toc370546571 �9��

Conventions	� GOTOBUTTON _Toc370546572 � PAGEREF _Toc370546572 �10��

Screen Functions	� GOTOBUTTON _Toc370546573 � PAGEREF _Toc370546573 �11��

Buffer Functions	� GOTOBUTTON _Toc370546574 � PAGEREF _Toc370546574 �16��

Sprite Functions	� GOTOBUTTON _Toc370546575 � PAGEREF _Toc370546575 �20��

Input Functions	� GOTOBUTTON _Toc370546576 � PAGEREF _Toc370546576 �26��

Images	� GOTOBUTTON _Toc370546577 � PAGEREF _Toc370546577 �31��

Miscellaneous Functions	� GOTOBUTTON _Toc370546578 � PAGEREF _Toc370546578 �32��

Debugging	� GOTOBUTTON _Toc370546579 � PAGEREF _Toc370546579 �33��

Utilities	� GOTOBUTTON _Toc370546580 � PAGEREF _Toc370546580 �34��

Performance	� GOTOBUTTON _Toc370546581 � PAGEREF _Toc370546581 �36��

Information	� GOTOBUTTON _Toc370546582 � PAGEREF _Toc370546582 �37��

Contributors	� GOTOBUTTON _Toc370546583 � PAGEREF _Toc370546583 �38��

Target Information.	� GOTOBUTTON _Toc370546584 � PAGEREF _Toc370546584 �39��

Updates & Contacting Me	� GOTOBUTTON _Toc370546585 � PAGEREF _Toc370546585 �41��

��Introduction

Welcome to this release of JLib. This software package is intended for people who want to write graphical applications that port easily to different operating systems.

I think that one of the best ways to learn programming is to look at other peoples source code, fiddle with it and try out new ideas. Hopefully the source code for most functions provided by JLib is simple enough to adapt for use in your projects, if it isn’t what you are after in its current form.

I would like to take this opportunity to thank everyone who sent me mail about JLib or programming in general. Your support is encouraging - keep it coming!

JLib is intended to be useful to C and C++ programmers who want to write portable graphical programs for multiple platforms. The types of program that will benefit most by using JLib are those that update lots of elements on-screen on a regular basis, need sprites, animation or special effects like fading and scrolling. This covers many type of programs such as games, drawing and design programs, demos, graphical simulations, etc.

JLib is used by compiled it for a particular target which consists of both a graphics mode and a programming environment. Your application is linked with the library, allowing use of the functions provided. To port a JLib based program to another target, the library is rebuilt and your application is compiled and re-linked for the new target. This allows programmers to use their favourite application development environment without limiting the potential audience for their work to users of that environment.

This document describes the functions available to programs that use JLib. The design of the library is discussed and considerations are raised concerning the development of portable programs. By the time you have finished reading this document, you should have a good understanding of what JLib offers and how to use it in your programs.

There are several forms of this document: ASCII text (in UNIX style format), WORD document format, and HTML (available as a separate file from JLib distribution sites). The word processed documentation is much easier to read, especially when printed. I recommend that you print all of the available documentation for further reference through the process of installing and using JLib.�Legal Information

Disclaimer

The information, source code and opinion presented here is provided as is, without warranty. I make no claims as to its suitability for a particular purpose or its accuracy. I have endeavoured to ensure that it works, and presents no danger to you or your data. However, you choose to use it at your own risk. Trademarks, copyrights and everything else of anyone I mention are all the property of the people who own them respectively. Once again, in legalese:

I, JONATHAN PAUL GRIFFITHS, DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL I BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Conditions of Use

Except where otherwise noted, The source code in/with this library is distributed under the following terms and conditions:

“You may use this source code in any product, whether it is given away free, or is sold as a commercial product. You must however, keep existing notices in the source code of this product, and retain the name of the author(s) of the original work intact. You may not sell the source code itself, although you may charge a fee to cover costs in distributing it. The copyright of the original author remains with this work. You are granted permission to use this code only if the above conditions are met. By using this code you are agreeing to the above terms and conditions.”

If you strip code from the library to distribute separately, please paste the above into each of the separate program modules you distribute. Putting a pointer to the library into the source would also be a good idea.�Installation

Decompress the Archive

JLib normally comes compressed using PKZIP 2.04g compatible software. The file name of the library archive indicates the version, i.e. jlib_1-6.zip is JLib version 1.6. Before you can do anything else, you must decompress the archive to wherever you would like it on your system.

The library archive has a directory structure in it which includes the base jlib directory. If you are using PKUNZIP to decompress the archive you must use the "-d" switch to recreate the directory structure.

Go to the directory you would like JLib installed in.

Copy the JLib archive file into that directory.

Decompress the archive using one of the following commands:

Users of pkunzip: pkunzip -d jlib_X-X.zip

users of unzip: unzip -L jlib_X-X.zip

Or the appropriate commands for your archive program.

The archive should expand into a directory structure containing the JLib source code and documentation files.

Choose a Target

Choose a target from the following list, and change to the directory listed next to that target.

Compiler�Mode�Directory��djgpp�320x200x256�jlib\source\target\djv2_13h\��djgpp�640x480x256�jlib\source\target\djgrx2\��djgpp�800x600x256�jlib\source\target\djgrx2\��gcc/linux�320x200x256�jlib/source/target/svgalib/��gcc/linux�640x480x256�jlib/source/target/svgalib/��gcc/linux�800x600x256�jlib/source/target/svgalib/��Watcom�320x200x256�jlib/source/target/watcom13/��Watcom�640x480x256�jlib/source/target/wat_vesa/��Watcom�800x600x256�jlib/source/target/wat_vesa/��Ansi, w/X11�320x200x256�jlib/source/target/x/��Ansi, w/X11�640x480x256�jlib/source/target/x/��Ansi, w/X11�800x600x256�jlib/source/target/x/��Ansi Testing library build �Testing Only�jlib/source/target/generic/��

There are two header files and a makefile in each directory, named jconfig.h, jtarget.h and makefile. Copy these to the jlib\source directory.

Change to the jlib\source directory.

�Configuration

You may now edit the file jconfig.h to configure the target if you wish. The following configuration options are available:

If there are multiple modes that the target may be built for, then you may select a mode from the list at the top of the header file. Ensure that only the mode you want is uncommented.

You may comment out the line reading “#define JDEBUG” if you wish the library to be built with out debugging code enabled. This is not recommended until you begin releasing your aplications.

You may add the line #define JLIB_PRODUCTION to remove internal library consistency checks. You should not define JDEBUG if you define this.

You may add the line #define JLIB_PARANOID to make library internal consistency checks extremely thorough. This is only useful if JDEBUG is also defined.

You may add the line “#define JLIB_SAFE_SWAP 1” if you would like integer variable swapping to use a temporary variable rather than an exclusive-or trick.

You may add the line “#define DEBUG_JLB 1” to have the JLib image code output debug information if you are having problems with loading .jlb files.

(Linux Only) If you have a joystick driver available, you can change the JOYSTICK_AVAILABLE #define in jtarget.h to “#define JOYSTICK_AVAILABLE 1” to get joystick support.

When you have made your changes, copy the three header files in the jlib/source directory (jlib.h, jconfig.h, and jtarget.h) to the standard include directory of your compiler, so that they may be included in the compilation. This step may require privileged access on UNIX systems. (Hint: this directory is <path>\gcc\include for djgpp, <path>\Watcom\h for Watcom, and usually /usr/include for UNIX systems).

Configure Make Options

You may edit the following components of the file makefile to change the way the library is built by your compiler:

You may change any command line options to the compiler by changing the CFLAGS= definition. You may wish to put parameters for symbolic debugging code generation or code optimisation. Be sure you know what you are doing if you choose to perform this customisation.

You should change the LIBDIR definition to point to the library file directory used by your compiler. (Hint: this is <path>\gcc\lib for djgpp, <path>\Watcom\lib386 for Watcom, and usually /usr/lib for UNIX systems).

Note that GNU Make can be picky about the placement of tabsin makefiles. Be sure that you use an editor that does not strip tab characters from text files.

�Building the Library

Make the Library

Perform any commands to set up your compilation environment as you normally would before compiling programs.

Ensure that any supplementary libraries that JLib uses for your target are set up and configured before you attempt to build the library. An example of a supplementary library is svgalib for Linux or libgrx for some djgpp targets. Read the targets section at the end of this document to see if the target you have chosen requires any supplementary libraries to be set up.

Run your make program from the jlib\source directory. (Hint: Type make for djgpp or UNIX, and wmake for Watcom). The library, demonstration programs and utilities should compile.

You should probably go and have a cup of tea while the library builds, as it can take a while to compile. Once the build has finished, you can try the demonstration programs (in the sub directories under jlib\demo) to see if the target is working.

You can rebuild the library at any time. To rebuild just the demos or utilities under djgpp or UNIX, you can use the make targets demos or utes. The default target, running make with no arguments, builds the library, demos and utilities.

Clean Up Object Files

You may run make with the target clean to remove the object files that make up the library, and target realclean to remove the demonstration programs and utilities.

for UNIX or djgpp users: make clean or make realclean

for Watcom users: wmake clean or wmake realclean

Depending on your target and any customisations you have made, there may be other ancillary unexpected files that were created during the build and not deleted. You may delete these if you wish (provided you know what you are doing).

Now You Can Compile Your Own JLib Programs

Assuming all went well, you are now ready to compile your own JLib programs. To do this you only need to remember to #include <jlib.h> in your source and link with the library and any supplementary libraries when compiling. The CFLAGS= line of the makefile you used to build the library will have the correct parameters to pass to your compiler to build JLib programs, and so it may be used as a guide.�JLib Design

The fundamental concept behind JLib is to remove as many of the details of graphical interfaces as possible from the programmer. By abstracting away from hardware considerations, programs are made simpler to write, understand, and debug. JLib hides the details of graphical operations from the programmer. Whether a JLib program is running in a full screen or in a desktop window, the program always treats user input and graphical output in the same way.

Some basic concepts about how JLib is designed are helpful to determine whether you will find it useful. Here, then are the hard and fast rules behind the behaviour of JLib based programs:

256 or less colours.

One fixed-size(at compile time) output screen to draw to.

Currently, common resolutions of 320x200, 648x480, & 800x600.

Things JLib Programs can't Do:

Change to other graphics mode during runtime.

Perform direct to screen drawing of primitives.

Take advantage of particular O/S features or API's.

You can do these three things from JLib programs, but you will have to write the code for it yourself for each target you hope to port to.

Commonly Used Terms

Target

A combination of a programming environment and graphics mode form a JLib target. An example is the MS-DOS based djgpp compiler package (programming environment), and the mode 13h (320x200, 256 colour) graphics mode. Targets are identified by #defines in a library configuration header file. To compile the library for a particular target, the correct target header file is installed, then the library is recompiled. Programs subsequently linked with the library will use the given graphics mode.

Buffer

A buffer is like a drawing pad for JLib programs. Buffers can be different sizes, and there are many graphics primitives that can be used to draw onto them. Part or all of a buffer can be shown on the screen as desired. Anything that you want to draw on the screen in your program must first be drawn to a buffer, and then copied to the screen. Often, a buffer is exactly the same size as the output screen, and is treated like the screen. When the buffer changes in any way, the screen is updated to reflect the buffer.

Sprite

A sprite is an image or picture that does not overwrite the area of the screen that it appears on. Sprites are used to draw cursors, icons and animated images that can move over a backgrounds as though they are floating in front it.

Blitting

Blitting is the process of copying graphics information from one area to another. Blitting to the screen refers to copying a buffers contents onto the screen. Blits always use rectangular areas.

�Function Categories

Functions in the library are split into several logical groupings. Every function within each group is explained in detail later in this document. The following is an overview of the function groups:

screen functions

Screen function names are preceded by screen_. They operate on the screen of the target to allow palette functions like setting a palette and fading in and out. They also include blitting functions which allow all or parts of buffers to be copied on to the screen. This group also includes mode setting functions to enter and leave a graphical state, and functions to clear the screen or fill it with a colour.

palette functions

These functions are palette operations that are not immediately visible on screen, such as re-mapping image palettes, loading palettes and creating new palettes. Functions of this type are preceded by pal_.

buffer functions

Buffer function names are preceded by buff_. This group consists of all the operations that can be performed on buffers, such as blitting functions that copy graphical data from one buffer to another, as well as graphics primitives that allow for drawing shapes and pictures into buffers.

sprite functions

All sprite functions are prefixed by sprite_. This category includes functions for describing, moving and manipulating sprites and sprite images, as well as loading sprites from files for use in your programs.

input functions

Input function provide a portable way for your application to respond to a users actions. Available are functions for reading the mouse, prefixed by mouse_, the keyboard, kb_, and joysticks, joystick_.

image functions

Image functions, prefixed by image_, deal with loading and saving images to and from files. An image is essentially a buffer containing a picture which has its own palette.

miscellaneous functions

Anything not covered by the above categories belongs to this category, including error handling and version information.�Conventions

The following conventions are common throughout all of the functions in JLib:

All co-ordinates are relative to the upper left corner of a sprite, screen or buffer. Position 0,0 is always the top left corner.

Negative co-ordinates may be used to specify positions beyond the top and left hand side of a screen or buffer.

All functions with names ending in NC (No Checking) do not perform tests for invalid co-ordinates or other parameters, and do not perform clipping on graphics operations. Often these functions make assumptions about the input format of parameters that are not documented. These functions are slightly faster than their clipping counterparts, but are considerably more risky if passed the wrong information. In most cases a crash will result from incorrect usage of these functions. I recommend that you use checking functions during program development and change to non-checking functions later if efficiency becomes an issue. This documentation lists both routines but the function description applies only to the checking version unless otherwise stated.

The following basic types are #defined for use by JLib programs:

BYTE 8 bit signed number

UBYTE 8 bit unsigned number

SHORT 16 bit signed number

USHORT 16 bit unsigned number

LONG 32 bit signed number

ULONG 32 bit unsigned number

A point on the screen is referenced by its co-ordinates. These are given as an X and Y co-ordinate pair. The X co-ordinate is how far across the screen a point is, while the Y co-ordinate is how far down the screen a point is. Co-ordinates begin at (0,0) which corresponds to the upper left corner of the screen, and increase downwards (Y) and to the right (X).

The only header file your programs should include to use JLib is <jlib.h>. It includes any other header files you will need for graphics work. Of course, you may need standard other include files for your program- do not rely on JLib including particular system header files for you.

This documentation forms a type of contract about the behaviour of JLib routines. As the library is under constant development, it might fail to live up to parts of this contract for some or all targets in particular areas. I will endeavour to document any failings or likely failings, non-implemented or planned features, or bugs from version to version. My aim is that you will eventually rely on this document to definitively tell you how JLib behaves in a given circumstance.

All functions that clip do so in respect to the destination sprite, buffer, image or screen they are operating on.

Passing invalid data to a function will usually cause the library to exit with an error message. See the discussion on library building options for details on how to change this default behaviour.

Any malloc() failures in library code currently cause execution to stop. This behaviour may be able to be changed at compilation time in a future version of JLib.�Screen Functions

Overview

These functions are designed to give you control over the appearance of the screen during your programs execution. You use mode setting functions to initialise the display before your program runs, and to restore it to its former state when the program ends. While your program runs you can change the palette (colour set) of the screen or blit (copy) buffers on to the screen. A screen may actually be a window or a part of a larger display area on some targets, but your code and the library will still behave in the same way as it would if the whole screen were being used by your program. There is no need to learn complex window manipulation API's for each target.

Buffers can be blitted to any screen co-ordinates. Negative co-ordinates or co-ordinates larger than the current screen dimensions may mean that part or all of the buffer is clipped(not shown).

Screen Initialisation

void screen_set_app_title(char *title);

This function allows you to control the appearance of your application when running in windowing environments, and during abnormal program termination. If you assign a title using this function before calling screen_set_video_mode(), the screen will have the given text as a title, if the target supports this behaviour. Upon abnormal exit, if a title has been set for the application, it will be printed along with an error message, hiding JLib’s presence from the end user. If this function is not used, all progarms will have the default title “JLib Application”.

These functions set and restore the graphics mode for your program as it runs. You must call void screen_set_video_mode(void);

void screen_restore_video_mode(void);

These functions set and restore the graphics mode for your program as it runs. You must call screen_set_video_mode() once in your program before you attempt any graphical operations. This routine will perform the initialisation and set up activities particular to your target, such as opening an output window or changing the graphics resolution. You must always call screen_restore_video_mode() before your program ends to restore the graphical state of the host system. Failing to call either of these functions before and then after performing graphics operations could cause fatal crashes on some operating systems. The exact behaviour of programs in this situation is undefined.

Once the video mode is set, you may output to the screen. The characteristics of the mode JLib was built for are available to your program as a number of constants.

Constant�Meaning��SCREEN_WIDTH�Width of the graphics screen in pixels��SCREEN_HEIGHT�Height of the graphics screen in pixels��SCREEN_MAX_X�Maximum X co-ordinate on the screen��SCREEN_MAX_Y�Maximum Y co-ordinate on the screen��SCREEN_NUM_COLORS�Number of colours on the screen��SCREEN_NUM_PAGES�The number of screen display pages��

You should use these constants in your program rather than explicit values, as they improve the portability and readability of your programs.

Screen Paging

void screen_set_page(int page);

int screen_get_page(void);

void screen_show_page(int page);

A screen may be thought of as a page to which your programs output graphical data. On some target systems, a screens characteristics are such that there are in fact more than one available screen page to draw on. Typically only one page can be seen at a time, although any page may be drawn to. By directing output to a page that is not visible, and then making it the visible page, graphics output can be made to look smoother because you do not see the screen layout being drawn. If the target your program is using supports multiple pages then the constant SCREEN_NUM_PAGES will be defined to have a value other than 1.

Each of the JLib screen functions draws to a current page which the library keeps track of internally. In the case of targets that don't support paging, this current page is always the visible screen. The programmer can set the current output page by calling screen_set_page() with the appropriate page number. All screen output will then draw to that page. The number of the current output page can be found by calling screen_get_page(). By default, page 1 is displayed after a mode setting function. The function screen_show_page() will change the visible page to another page. Changing the displayed page does not affect the current output page (where screen functions will draw to).

Calling a page setting function with a page number of less than 1 or greater than SCREEN_NUM_PAGES is a fatal error. There is currently no function to get the current display page.

(Developers Note: No targets utilising pages have yet been implemented. I plan to write some fake paging code so that all targets will be able to be treated as though they have several (probably two minimum) pages.

Screen Manipulation

void screen_clear(void);

void screen_fill(UBYTE colour);

void screen_wait_vsync(void);

These functions are designed for elementary manipulation of the screen. The function screen_clear() will fill the entire screen with the colour of the background, clearing any previously drawn graphics from it. This function is always called automatically by a screen_set_video_mode() call.

The function screen_fill() fills the entire screen with the given colour, erasing all previously drawn graphics. This function will not change the border colour of the screen (On targets where this is applicable). See Screen Functions: Palette for more information on how colours are used in JLib.

The function screen_wait_vsync() is designed to allow screens to be updated while the screen redrawing beam or raster is off screen or in the retrace period. Updates made during this time are generally smoother because the raster does not pass the drawing output process resulting in a momentarily sheared image. This function is implemented as an empty routine on some targets where retrace checking is not possible. To use the function, place a call to it before any screen blitting function. The function will wait until the retrace period before returning. This wait can slow graphics operations down, and is more noticeable on slower graphics cards.

Palette Overview

A palette in JLib is an array of colours specified by 8 bit RGB (red, green and blue component) values. Each colours red, green, and blue component is given in order before the next, giving a palette array of UBYTES. Each palette entry is referred to by its index into the palette. Thus, colour number zero is defined by the first three bytes of a palette. The RGB values of a colour in a palette may be changed to provide effects like fading, glowing or cycling as in fire or plasma effects.

Depending on the target, your program has SCREEN_NUM_COLORS colours available for use, numbered from 0 to (SCREEN_NUM_COLORS-1). For all modes and targets, colour 0 corresponds to the background and border colour of the screen. In many cases this colour will be black (RBG 0:0:0), although it may be changed any colour. Colours 15 and 255 (In 256 colour modes) are used for the mouse cursor by default, so changing these colour entries will change the colour of the mouse pointer if one is visible. This behaviour came about through a feature in MS-DOS that I am not capable of changing yet, so it is an impromptu standard that looks likely to stay.

JLib screen palette functions are output oriented in that they do not change any parameters passed to them. Setting or fading a palette corresponds to changing the screen palette, and does not change the colour specifications held in the passed palette array. Changes that you make to a palette array are reflected on the screen only if the array is passed to a palette function that sets the palette. Changing a colour using one of the palette functions affects the screen immediately, you do not have to redraw the screen to see the effect.

(Developers Note: More palette functions are planned, in particular: palette conversion functions such as colour reduction, increase contrast, invert, pseudo colour etc.

Screen Palette Functions

void screen_put_pal(UBYTE col,UBYTE red,UBYTE green,UBYTE blue);

void screen_block_set_pal(UBYTE *pal);

void screen_blank_pal(void);

void screen_fade_in_pal(UBYTE *pal,unsigned int delay);

void screen_fade_to_pal(UBYTE *pal1, UBYTE *pal2,unsigned int delay);

void screen_fade_out_pal(UBYTE *pal,unsigned int delay);

The function screen_put_pal() takes a colour number and an RGB specification and sets the colour of that index to that specification. screen_block_set_pal() takes a whole palette array as an argument and sets all SCREEN_NUM_COLORS colours at once. This is usually significantly faster than individually changing each palette entry using screen_put_pal(). You must pass this routine an array which is big enough to hold SCREEN_NUM_COLORS indexes. You can't set only half of the palette by passing a shorter array (trying this will probably result in a memory protection or corruption error).

The function screen_blank_pal() sets the whole palette to black. This can be useful when building up a complex screen image which can then be faded in smoothly. The functions screen_fade_in_pal() and screen_fade_out_pal() are provided to allow smooth fading of palettes to and from black. To fade from one palette to another you can use the function screen_fade_to_pal().

The delay parameter is the amount of time the fade should take, expressed as a number of UCLOCK_TICKS_PER_SECOND (see uclock_init() for details of this value). As an example, if your fade was meant to take 6 seconds to complete, you would use the value (UCLOCK_TICKS_PER_SECOND*6). Similarly, a value of (UCLOCK_TICKS_PER_SECOND/2) would represent half a second.

Non-Screen Palette Functions

Other palette functions are available to JLib programs that do not affect the screen output directly. These functions are prefixed by pal_, and generally involve manipulating palettes without producing any visible change on screen. This is useful for loading, converting between palettes, collapsing palettes and similar functions.

UBYTE *pal_init(void);

This function creates space for a new palette and returns a pointer to it. The space is not initialised.

UBYTE *pal_load(char *fname);

UBYTE *pal_load_fp(FILE *fp);

To load a palette from a file you can use the function pal_load() which returns a palette read from the file fname, or NULL if an error occurred while reading in the palette file. You can load a palette from a file which is already open with the function pal_load_fp(). If you use this function you will have to close the file containing the palette yourself, and the file pointer must be positioned at the correct place to begin reading the palette from. Palette files are simple dumps of palette arrays with no header information in the file. Both of these functions allocate the memory for the palette they return.

UBYTE *pal_get_default(void);

This function allocates memory for and returns a pointer to a palette initialised with default values. The palette returned is the same across all target platforms. The default palette is not set by default upon screen initialisation, so if you are not using a custom palette your application should set the default palette to enable different colours to be seen.

UBYTE *pal_copy(UBYTE *pal1, UBYTE *pal2);

This function copies pal2 to pal1. It does not allocate any memory for pal1, so pal1 should be initialised or created before a copy is attempted.

void pal_to_grey(UBYTE *pal);

void pal_to_red(UBYTE *pal);

void pal_to_green(UBYTE *pal);

void pal_to_blue(UBYTE *pal);

These functions take the palette pal and return it with each RGB colour converted to a grey, red, green, or blue scale representation of the colour.

UBYTE pal_closest_color_rgb(UBYTE *pal,UBYTE r,UBYTE g,UBYTE b);

This function returns the colour index in pal that most closely represents the RGB specification given by r, g and b. This function will not return 0 unless pal is NULL, as mapping a colour to colour zero could later cause the colour to be shown as transparent, rather than a solid colour.

UBYTE *pal_create_remap_index(UBYTE *pal1,UBYTE *pal2);

(Undocumented.

Screen Blitting

void screen_blit_buff_to(int x,int y,buffer_rec *buff,int sx1,int sy1,int sx2,int sy2);

void screen_blit_buff_toNC(int x,int y,buffer_rec *buff,int sx1,int sy1,int sx2,int sy2);

void screen_blit_fs_buffer(buffer_rec *sbuff);

Screen blitting functions are the primary way to get graphics onto the screen using JLib, so you should get to know them well. The basic idea is that these functions copy rectangular areas from buffers on to the screen. Anything that you would like to be seen on the screen should be first drawn to a buffer and then blitted to the screen.

The function screen_blit_buff_to() and its non-checking counterpart are designed for blitting buffers that are not the same size as the screen. Buffers of this nature are often used for windowing, scrolling, or when a screen is made up of several parts that are updated at different times. The functions take the screen x and y co-ordinates to place the top left hand corner of the source buffer at, a pointer to the buffer in question, and co-ordinates describing the part of the source buffer that is to be copied. These source co-ordinates are the top left hand and bottom right hand corners of the source rectangle to be copied.

If the co-ordinates given fall outside of the range of the screen or buffer dimensions then clipping will occur (provided the NC function is not used). If this happens, only the part of the source buffer (if any) that falls on the screen will be blitted across.

If you are working with a buffer that is the same size as the screen, then you can gain a faster blit by using the function screen_blit_fs_buffer(). Depending on the target, this call will usually result in the fastest possible copying to the screen due to specific optimisations and assumptions about the size of the buffer. This function copies the buffer to screen position 0,0. Screen sized buffers can be treated just like a screen in your application, and blitted to the output screen as updates occur.

It is important to remember that copying a buffer to a screen will probably be the slowest part of your program, due to the big difference in speed between system memory and video memory, coupled with bus bottlenecks. See the section Performance: Increasing Speed for more information on minimising the amount of blitting your program does.�Buffer Functions

Overview

Buffers are user created portions of system memory set aside to act as screens. They can be almost any width or height, limited only by available system memory. All graphics primitives are drawn to buffers before being copied to the screen.

Due to the peculiarities of some of the targets JLib is intended to work with, there is a rule that the width of any buffer that will be drawn to the screen must be a multiple of four. A width for these buffers that is a multiple of eight is more desirable, and this may become a hard rule depending on some planned targets.

Buffer memory is organised as a contiguous block of width x height UBYTES. Buffer information is kept in a buffer_rec structure. Pointers to structures of this type are used to pass buffers around the various library functions. Macros are provided for accessing information about a particular buffer:

Macro�Information��B_X_SIZE(buff_ptr)�X size of buffer in pixels��B_Y_SIZE(buff_ptr)�Y size of buffer in pixels��B_MAX_X(buff_ptr)�Maximum X co-ordinate in the buffer��B_MAX_Y(buff_ptr)�Maximum Y co-ordinate in the buffer��B_SIZE(buff_ptr)�UBYTES of memory used by buffer data��B_BUFF_PTR(buff_ptr)�A pointer to the buffer memory��B_OFFSET(buff_ptr,y)�A pointer to the buffer memory at line y��

buffer_rec *buff_init(int width,int height);

buffer_rec *buff_free(buffer_rec *buff);

Buffers are created using the buff_init() function. This function allocates the memory needed to hold a buffer of the given width and height and returns a pointer to the structure suitable for the library graphics primitives. Once a buffer is no longer needed, it can be disposed of by calling buff_free(). This function returns a NULL pointer so that any future accesses of the handle are sure to be detected as invalid by the library.

Buffer Blitting

void buff_blit_buff_to(buffer_rec *dest,int dx,int dy,buffer_rec*src, int sx1,int sy1,int sx2,int sy2);

void buff_blit_buff_toNC(buffer_rec*dest,int dx,int dy,buffer_rec*src,int sx1,int sy1,int sx2,int sy2);

This function takes the rectangle outlined by the source buffer co-ordinates and copies it to position dx, dy in the destination buffer performing clipping as needed. Buffer blitting operations are usually orders of magnitude faster than video blitting operations, so liberal use should not adversely affect performance.

void buff_stencil_buff_to(buffer_rec *dst,int x,int y,buffer_rec*src, int sx1,int sy1,int sx2,int sy2);

void buff_stencil_buff_toNC(buffer_rec*dst,int x,int y,buffer_rec*src,int sx1,int sy1,int sx2,int sy2);

This function is just like a buffer to buffer blit except that any parts of the source buffer that are set to colour 0 (background) are treated as though they are transparent, i.e. they do not overwrite the destination buffer.

Buffer Primitives

void buff_clear(buffer_rec *buff);

void buff_fill(buffer_rec *buff,UBYTE colour);

These two functions both fill the buffer passed to them with a colour. Buff fill takes a colour parameter to indicate what colour to fill the buffer with, while buff clear fills the buffer with the background colour, colour 0. Note that these functions do not respect any drawn boundaries when filling. They overwrite the entire contents of the buffer passed to them.

(Developers Note: A buff_flood_fill() routine and variants are planned.

void buff_draw_point(buffer_rec *buff,int x,int y,UBYTE c);

void buff_draw_pointNC(buffer_rec *buff,int x,int y,UBYTE c);

The function buff_draw_point() plots a coloured pixel at the location x, y in the given buffer. Note that visible point co-ordinates are in the range (0-B_MAX_X(buff)),(0-B_MAX_Y(buff)). Points outside of these ranges will not be displayed. Any data at the given co-ordinates will be overwritten.

UBYTE buff_get_point(buffer_rec *buff,int x,int y);

UBYTE buff_get_pointNC(buffer_rec *buff,int x,int y);

This function returns the colour of the pixel at co-ordinates x, y in the buffer passed as a parameter. If the co-ordinates given do not fall inside the buffer then a value of 0 is always returned.

void buff_draw_box(buffer_rec *buff,int x1,int y1,int x2,int y2,UBYTE c);

void buff_draw_boxNC(buffer_rec *buff,int x1,int y1,int x2,int y2,UBYTE c);

This function draws a box outline in the given colour, described by the top left and bottom right co-ordinates passed. If any co-ordinates fall outside of the buffer the box outline will be clipped to the buffer.

void buff_draw_rect(buffer_rec *buff,int x1,int y1,int x2,int y2,UBYTE c);

void buff_draw_rectNC(buffer_rec *buff,int x1,int y1,int x2,int y2,UBYTE c);

This function takes the same parameters as buff_draw_box() but draws a filled rectangle of the given colour rather than an outline.

void buff_draw_char(buffer_rec *buff,UBYTE letter,int x,int y,UBYTE c);

void buff_draw_charNC(buffer_rec *buff,UBYTE letter,int x,int y,UBYTE c);

This function draws an alphanumeric character at position x, y in colour c. The letter will be clipped if part or all of it falls outside of the buffer passed. Several macros have been defined to get information about a character to be drawn.

Macro�Meaning��CHAR_WIDTH(ch)�Width of a character in pixels.��CHAR_HEIGHT(ch)�Height of a character in pixels.��HAS_FONT(ch)�Is ch a printable character?��

The size of letters changes according to the size of the screen. The characters used are designed to fit 80x25 onto the screen. This function is mainly intended for debugging and utility style code. Only one font is available and the characters can not be scaled. To get more font-like functionality, use the JLib Font extension package, available from JLib distribution sites.

void buff_draw_string(buffer_rec *buff,char *string,int x,int y,UBYTE c);

void buff_draw_stringNC(buffer_rec *buff,char *string,int x,int y,UBYTE c);

This function takes a text string and outputs it to the buffer using the buff_draw_char() function. Any non printing characters are ignored, and new line characters "\n" cause the string to move to the next 'line' which is taken to be CHAR_HEIGHT('A') pixels below the current Y co-ordinate. See the notes for character drawing functions concerning intended use.

void buff_draw_line(buffer_rec *buff,int x,int y,int x2,int y2,UBYTE c);

void buff_draw_lineNC(buffer_rec *buff,int x,int y,int x2,int y2,UBYTE c);

This function draws a line from the point x, y to point x2, y2 in the given colour. The line will be clipped if any part of it lies outside the destination buffer. Drawn lines are not anti-aliased but are consistent approximations (i.e. the same two points always give the same line).

void buff_draw_h_line(buffer_rec *buff,int x1,int y1,int x2,UBYTE c);

void buff_draw_h_lineNC(buffer_rec *buff,int x1,int y1,int x2,UBYTE c);

This function is an optimised line drawing routine for horizontal lines. It takes the start and end x co-ordinates of the line, and the y co-ordinate (which is the same at both ends).

void buff_draw_v_line(buffer_rec *buff,int x1,int y1,int y2,UBYTE c);

void buff_draw_v_lineNC(buffer_rec *buff,int x1,int y1,int y2,UBYTE c);

This function is an optimised line drawing routine for vertical lines. It takes the start and end y co-ordinates of the line, and the x co-ordinate (which is the same at both ends).

void buff_draw_ellipse(buffer_rec *buff,int x,int y,int a,int b,UBYTE c);

void buff_draw_ellipseNC(buffer_rec *buff,int x,int y,int a,int b,UBYTE c);

This function draws a hollow ellipse centred around the point x, y, with a vertical diameter of a, and a horizontal diameter of b.

void buff_filled_ellipse(buffer_rec *buff,int x,int y,int a,int b,UBYTE c);

void buff_filled_ellipseNC(buffer_rec *buff,int x,int y,int a,int b,UBYTE c);

This function is exactly the same as buff_draw_ellipse() except that a solid ellipse is drawn instead of a hollow outline.

void buff_draw_circle(buffer_rec *buff,int x,int y,int d,UBYTE c);

void buff_draw_circleNC(buffer_rec *buff,int x,int y,int d,UBYTE c);

This function draws a hollow circle centred around the point x, y, with a diameter of d pixels.

void buff_filled_circle(buffer_rec *buff,int x,int y,int d,UBYTE c);

void buff_filled_circleNC(buffer_rec *buff,int x,int y,int d,UBYTE c);

This function draws a filled circle centred around the point x, y, with a diameter of d pixels.

void buff_draw_triangle(buffer_rec *buff,int x1,int y1,int x2,int y2,int x3,int y3,UBYTE c);

void buff_draw_triangleNC(buffer_rec *buff,int x1,int y1,int x2,int y2,int x3,int y3,UBYTE c);

This function draws a hollow triangle from the three points given.

void buff_filled_triangle(buffer_rec *buff,int x1,int y1,int x2,int y2, int x3,int y3,UBYTE c);

void buff_filled_triangleNC(buffer_rec *buff,int x1,int y1,int x2,int y2, int x3,int y3,UBYTE c);

This function draws a filled triangle from the three points given.

void buff_convex_poly(buffer_rec *buff,int n,int *x,int *y,UBYTE c);

void buff_convex_polyNC(buffer_rec *buff,int n,int *x,int *y,UBYTE c);

This function draws a filled convex polygon of n vertices which are listed in the given arrays of x and y co-ordinates. Attempting to draw a concave polygon with this function will have unpredictable results (which may include crashing your machine).

(Developers Note: A buff_concave_poly function is planned

void buff_hollow_poly(buffer_rec *buff,int n,int *x,int *y,UBYTE c);

void buff_hollow_polyNC(buffer_rec *buff,int n,int *x,int *y,UBYTE c);

This function draws the outline of a concave or convex polygon of n vertices which are listed in the given arrays of x and y co-ordinates.

void buff_scale_full_buff_to(buffer_rec *dest,int x1,int y1,int x2,int y2,buffer_rec *src);

void buff_scale_full_buff_toNC(buffer_rec *dest,int x1,int y1,int x2,int y2,buffer_rec *src);

This function takes the buffer src and draws it into the rectangle (x1,y1),(x2,y2) in dest. The source buffer will be scaled larger or smaller to fit into the destination rectangle.

void buff_scale_buff_to(buffer_rec*d,int d1,int d2,int d3,int d4,buffer_rec*s,int x1,int y1,int x2,int y2);

void buff_scale_buff_toNC(buffer_rec *d,int d1,int d2,int d3,int d4,buffer_rec*s,int x1,int y1,int x2,int y2);

This function takes the rectangle (x1,y1),(x2,y2) fomr the source buffer s and draws it into the rectangle (d1,d2),(d3,d4) in the destination buffer. The source rectangle will be scaled to fit into the destination rectangle..�Sprite Functions

Overview

Sprites are like little pictures with transparent backgrounds. When you draw them only the 'solid' part of them is seen. They are used for things like enemies and bullets in games, because they move over a background without overwriting it. The JLib library provides routines to load and display sprites, as well as animate and move them automatically.

Utilities are provided in the jlib/utes directory that enable you to cut sprites from PCX files and edit the sprite files created. This means that you can design your sprites with any drawing tool, convert the output to a PCX file, and then cut the sprites out for use in your game/demo/whatever.

Sprites are positioned in co-ordinates that start from 0,0 in the upper left corner of a buffer. As sprites move into negative co-ordinates or off the sides of buffers, they are clipped, so they appear to slide smoothly out of the buffer. The number of sprites you can have in a JLib program is limited only by your machines memory.

Sprites are grouped together into a sprite_system structure, which holds information which sprites are active, their position and other information. You can have multiple sprite systems to differentiate between different uses or types of sprites. Sprite systems also hold information about what sprites look like. A frame in JLib is a small picture that a sprite is associated with. When a sprite is drawn, it looks like the frame. By changing the frame that a sprite is associated with, the sprite appears to animate. Frames are loaded from .spr files into a sprite system. Many sprites can use the same frames at the same time. Frames can also be stamped or stencilled onto buffers without being involved with a sprite. A pointer to a sprite_system structure is passed to sprite functions to tell JLib which sprites the function should act on.

Sprites themselves are stored as internal records that hold information such as an x and y position, movement and animation details and which frame image a sprite is using. It is important to separate the sprite, which is the object that floats around the screen, with its frames, which are images that the sprite looks like at a given moment. Many sprites can share the same frame, thus they will look the same, but will not be the same sprite. You can also just draw sprite frames into buffers without involving a sprite at all. . Each sprite in JLib has its own movement and animation information, which can be updated for you by JLib.

Sprites have priority according to their number. Priority indicates whether a sprite will be drawn behind or in front of another sprite when the two sprites overlap. The lower a sprites number, the lower its priority, i.e. sprite 1 will always be drawn over sprite 0, and the highest priority sprite is always the last one in the sprite system.

Sprite Initialisation

sprite_system *sprite_init(int max_sprites,int max_frames);

This function creates a new sprite system with enough space to hold max_sprites sprites and max_frames frame images. The sprite system is initially empty, so you will need to load in some sprite frames before you can start to put some sprites on screen. Once a sprite system has been created, the following macros are available to get information about it:

Macro�Meaning��SPR_MAX_X�Biggest possible sprite width.��SPR_MAX_Y�Biggest possible sprite height.��SPR_MAX_SPRITES(spr_sys)�Max. number of sprites you may use.��SPR_MAX_FRAMES(spr_sys)�Max. number of frames you may use.��SPR_NUM_LOADED(spr_sys)�Number of frames currently loaded.��SPR_NUM_ACTIVE(spr_sys)�Number of sprites turned on.��

The following macros are defined to get information about a particular sprite within a sprite system:

Macro�Meaning��SPR_X_SIZE(spr)�X size of the sprite pointed to by spr��SPR_Y_SIZE(spr)�Y size of the sprite pointed to by spr��SPR_IS_ON(sys,num)�Is sprite num in system sys turned on?��SPR_GET_XPOS(sys,num)�X position of sprite number num��SPR_GET_YPOS(sys,num)�Y position of sprite number num��

The biggest sprite frame you can use defaults to 64 by 64 pixels, but you can change this if you want by changing the SPR_MAX_X and SPR_MAX_Y constants in <JLib.h>. You will need to rebuild the whole library if you change these numbers, however.

sprite_system *sprite_free(sprite_system *sys);

This function releases the resources used by a sprite system and returns NULL. Since sprite systems can use large amounts of memory, it is recommended that you use this function as soon as your application is finished with a sprite system.

int sprite_load(char *fname,sprite_system *sys);

This function opens the file called fname and loads the frames it holds into the sprite system sys. This function returns values as follows:

Return code�Meaning��COULDNT_OPEN�The file passed could not be opened.��TOO_MANY_IN_FILE�Too many frames in the file.��SUCCESS�The ffile loaded successfully.��

You may call this function repeatedly to load more than one sprite file into a sprite system, provided that the total number of frames that are loaded will fit into the space reserved for frames in the sprite system as specified when sprite_init() was called.

(Developers Note: Should you wish to write any sprite file manipulation code yourself, the format for sprites file is documented in the file sprite/spriteio.c .

Sprite Manipulation

void sprite_turn_on(sprite_system *spr_sys,int snum);

void sprite_turn_off(sprite_system *spr_sys,int snum);

void sprite_set_xy(sprite_system *spr_sys,int snum,int newx,int newy);

void sprite_set_an_frame(sprite_system *spr_sys,int snum,int frame);

void sprite_set_mode(sprite_system *spr_sys,int snum,int mode);

These are the elementary sprite manipulation functions in JLib, which allow you to change the position, current frame and on/off status of a sprite snum. These functions are designed to be called while the sprite being manipulated is not currently drawn anywhere or is turned off. If these functions are called while a sprite is drawn into a buffer, there will probably be corruption of (at least) the sprites buffer when the library tries to restore the background behind the sprite that you are updating (as the sprite will then be at a different position, or have a different frame).

Turning a sprite off and on restores its mode to SPR_MODE_WHOLE. These functions do not cause the sprite to be re drawn automatically. You must redraw the sprites manually within your program, or if you are using one of the sprite_update_() functions then this will be done for you the next time it is called.

�Sprite Drawing

The process of showing sprites on screen and having them move or animate follows a pattern in which order is important. Starting with a sprite turned on, but not drawn anywhere, the process is as follows:

Save the buffer area that the sprite will overwrite.

Draw the sprite into the buffer.

Show the buffer containing the drawn sprite on screen.

Restore the buffer area overwritten by the sprite.

Update the sprite’s movement or animation details.

Go back to step 1.

Remember that if you are drawing and restoring individual sprites yourself in your program, you should save, draw and restore them in the correct order. The _all_ drawing functions perform these operations in the correct order, making them much easier to use.

void buff_save_sprite(sprite_system *sys,int num,buffer_rec *buff);

void buff_save_spriteNC(sprite_system *sys,int num,buffer_rec *buff);

void buff_save_all_sprites(sprite_system *sys,buffer_rec *buff);

These functions save the area in buffer buff that the sprite num (or all sprites in the case of buff_save_all_sprites()) will overwrite if drawn to the buffer. This function should be called after any sprite movement or animation has taken place but before the sprite(s) are drawn.

void buff_draw_sprite(sprite_system *sys,int num,buffer_rec *buff);

void buff_draw_spriteNC(sprite_system *sys,int num,buffer_rec *buff);

void buff_draw_all_sprites(sprite_system *sys,buffer_rec *buff);

These functions draw the sprite num (or all sprites in the system sys) to the given buffer. This function should be used after the sprite(s) are saved and before they are moved or animated further.

void buff_rest_sprite(sprite_system *sys,int num,buffer_rec *buff);

void buff_rest_spriteNC(sprite_system *sys,int num,buffer_rec *buff);

void buff_rest_all_sprites(sprite_system *sys,buffer_rec *buff);

These functions restore the area of buffer buff that the sprite num (or all sprites in the case of buff_save_all_sprites() had overwritten when drawn to the buffer. This function should be called after any sprites have been drawn and displayed, before any movement or animation takes place.

Sprite Movement Overview

There are two possible modes that a sprite may be in: SPR_MODE_WHOLE or SPR_MODE_FIXED. All sprites start out in SPR_MODE_WHOLE. The mode of a sprite affects how it moves and animates; in whole steps or in fixed point fractional steps. To understand this we need to look at the concept of time-slices.

A time-slice is exactly what its name suggests, a slice of time. When you want to have a sprite animated or moved automatically, you must specify how often movement or animation is to occur. These times are given in time-slices. A time-slice passes every time sprites are updated by the function sprite_update_all_anim_and_move() or manually updated by you. So if you wanted a sprite to change its animation frame every time it was updated, you would be setting it to update every time-slice. The actual elapsed time between updates is irrelevant - it is the number of times that an update is performed that determines when sprites will move or animate.

In the default mode, SPR_MODE_WHOLE, the speed parameter is treated as a counter that says how many time-slices to wait before moving or animating . A value of 1 means "do it every time-slice" while a value of 10 means "do it every 10 time-slices.

If the sprites mode is SPR_MODE_FIXED, the speed parameter is treated as a fixed point 4.4 digit number. This means that the top four bits of the byte are the number of times to move/animate each time-slice, while the bottom four bits hold a fractional number of times to move/animate each time-slice. Using this mode you can specify that a sprite is to move or animate from once in every 16 time-slices, to 16 times per time-slice, with many combinations.

For example, to move twice every time-slice you would use a speed value of (1<<5), to move 2.5 times per time-slice you would use a speed value of ((1<<5)&(1<<3)). Note that moving occurs when whole number quantities of time-slices are reached: moving 2.5 times per time-slice is approximated by moving 2 times, then 3 times, then 2 times etc.

Regardless of the mode of the sprite, a speed value of zero indicates that the sprite will stop updating movement or animation.

Sprite Movement Functions

void sprite_set_move_info (sprite_system *sys,int snum,UBYTE speed,int x_inc,int y_inc);

This function tells JLib to update the position of the sprite snum according to the speed and increment parameters. The parameters x_inc and y_inc refer to how many pixels to move in the x and y directions whenever the sprites speed dictates that it is to move. A negative value for either of these parameters means moving up and left respectively, while positive values indicate moving down and right respectively. The speed, x_inc and y_inc parameters are interpreted differently depending on the mode of the sprite, but refer to how many pixels to move in the x and y directions when the sprite does move.

void sprite_set_anim_info(sprite_system *sys,int num,UBYTE speed,int frames,int *pat);

Within this function speed is interpreted in the same way as speed in sprite_set_move_info() above. The parameter frames gives the number of animation frames in the sequence to be followed by the sprite num. pat is an integer array of length frames, where each number from pat[0] to pat[frames-1] is a frame number in the sprite system. When the sprite reaches the end of the pattern it will begin again at the start of the animation sequence.

void sprite_update_anim_and_move(sprite_system *spr_sys,int snum);

void sprite_update_all_anim_and_move(sprite_system *spr_sys);

void sprite_do_all_anim_and_move_n_times(sprite_system *spr_sys,int n);

These functions automatically update the animation and movement information of sprites in the sprite system spr_sys that are turned on, according to the movement and animation information set by sprite_set_anim_info() and sprite_set_move_info(). These functions should be called when the sprite or sprites to be updated are not drawn anywhere.

Sprite Frame Drawing

void buff_stencil_sprite(sprite_sys *ssys, int frame, BR *obuff,int x, int y);

void buff_stencil_spriteNC(sprite_sys *ssys, int frame, BR *obuff,int x, int y);

void buff_stamp_sprite(sprite_sys *ssys, int frame, BR *obuff,int x, int y);

void buff_stamp_spriteNC(sprite_sys *ssys, int frame, BR *obuff,int x, int y);

These functions allow sprite frames to be drawn into a buffer without having to set up a sprite. The stencil_sprite() function draws a sprite frame with a transparent background, while stamp_sprite() draws the background colour 0 as well as the solid parts of the sprite.

void buff_stencil_sprite_color(sprite_sys *ssys, int frame, BR *obuff,int x, int y, UBYTE col);

void buff_stencil_sprite_colorNC(sprite_sys *ssys, int frame, BR *obuff,int x, int y, UBYTE col);

void buff_stamp_sprite_color(sprite_sys *ssys, int frame, BR *obuff,int x, int y, UBYTE col);

void buff_stamp_sprite_colorNC(sprite_sys *ssys, int frame, BR *obuff,int x, int y, UBYTE col);

These functions behave exactly like buff_stencil/stamp_sprite(), except that instead of drawing the given sprite frame in the colours it was defined in, the frame is drawn in solid colour. This allows effects like shadows and fading out on sprite frames.

void buff_stencil_sprite_buff(sprite_sys *ssys,int frame,BR *obuff,int x, int y,BR * sbuff);

void buff_stencil_sprite_buffNC (sprite_sys *ssys,int frame,BR *obuff,int x, int y,BR * sbuff);

void buff_stamp_sprite_buff(sprite_sys *ssys,int frame,BR *obuff,int x, int y,BR * sbuff);

void buff_stamp_sprite_buffNC(sprite_sys *ssys,int frame,BR *obuff,int x, int y,BR * sbuff);

These functions behave exactly like buff_stencil/stamp_sprite(), except that instead of drawing the given sprite frame in the colours it was defined in, the sprite frame is drawn to the buffer obuff as a texture taken from the buffer sbuff. The source buffer sbuff must be at least as wide as the sprite frame being drawn.

void sprite_build_from_buff(sprite_system *sys,int fr,buffer_rec *bf,int x1,int y1,int x2,int y2);

Sprites frames can be "built" out of a buffer’s contents dynamically by using this function. If you have a buffer with data drawn in it that you would like to make a sprite frame out of, then you can copy that data into a frame and use it just like a regular sprite frame. The parameter fr is the frame you would like the data copied into. If the frame was already used then it will be overwritten. To find the next free frame available in the sprite system use the function sprite_find_first_frame(). You can't build a sprite bigger than SPR_MAX_X or SPR_MAX_Y. If the co-ordinates given cover an area bigger than this then the frame will be truncated to the maximum size. Built sprites are created without any bounding rectangles. See the function sprite_add_rect() to add bounding rectangle to sprites at run time.

Collision Testing

You can test any two sprites to see if they are colliding. Each sprite frame has 0-255 rectangles associated with it and stored in its sprite file. These rectangles are used by JLib to calculate whether sprites are intersecting. You can use the utility spr_edit.exe (see Utilities) to examine and change the bounding rectangles of frames within sprite files.

There are other, more precise methods of collision detection available than bounding rectangle checks. The reasons I chose bounding rectangles above any other methods are speed and accuracy. Bounding rectangles are fast compared to bit manipulation detection methods. If you want better accuracy of collisions with other sprites, you can increase the number of rectangles associated with a sprite frame to provide more accurate coverage. There is a trade off in accuracy versus time (just like other methods), but this trade off can be made on a per-sprite basis. If a sprite doesn't need collision detection you don't even have to have a bounding rectangle at all.

int sprite_do_intersect(sprite_system *sys,int sprite1,int sprite2);

int sprites_do_intersect(sprite_system *sys1,int sprite1, sprite_system *sys1,int sprite2);

These functions return non zero if sprite1 is colliding with sprite2. Note that the sprites must both be turned on for a collision to be detected. Whether the sprites are currently drawn anywhere or not is not tested when deciding collisions. Thus sprites being drawn into two different buffers can still collide if they are turned on and their bounding rectangle co-ordinates overlap. The first function given is for testing sprites in the same sprite system, the second is for situations where two sprites in diferent sprite systems are to be tested for a collision.

(Developers Note: Collision functions haven't been optimised yet. A collision routine that checks every sprite against one another and then lets you query a table of who is colliding with who (which will be very fast) is planned. A function to automatically generate bounding rectangles for sprite frames is also planned

Miscellaneous Sprite functions

void sprite_add_rect(sprite_system *ssys,int frame,UBYTE x1,UBYTE y1,UBYTE x2,UBYTE y2);

This function adds a bounding rectangle to the specified sprite frame.

int sprite_find_first_free(sprite_system *spr_sys);

This function returns the number of the first unused sprite (the first sprite turned off) in a sprite system.

int sprite_find_first_frame(sprite_system *spr_sys);

This function returns the frame number of the first unused frame in a sprite system.

void sprites_kill_buffers(sprite_system * ssys);

This function destroys the buffers used by a sprite system to save the area underneath sprites. This is useful to save memory in cases where you are not using sprites, but are using sprite frames to stamp or stencil images in your application.

�Input Functions

Overview

Input functions are meant to provide a way for your programs to receive input from the user in a fairly consistent manner across platforms. Three different devices are supported: The keyboard, mouse and joystick.

Once you initialise each device, you can read them using provided functions. Note that if you call an input function and the device has not been initialised, no action is taken. You should only initialise an input device once the screen has been initialised, as some input devices require this to be the case.

Mouse

Functions are available to initialise the mouse and read its button state and position in screen co-ordinates. To provide compatibility for the lowest common system, only one mouse button may be checked.

Your programs can check if the current target provides mouse support by checking the constant MOUSE_AVAILABLE. If this is 0 then no mouse support is available. Any non-zero value for this constant means that the target has support for a mouse. This does not mean that a mouse is actually installed on the machine, just that if one is installed, the mouse functions can be used to get input from it.

int mouse_present(void);

This function initialises the mouse if one is present, and returns MOUSE_PRESENT if there is a mouse available and initialised. If this routine returns MOUSE_ABSENT, it means the computer the program is running on does not have a mouse attached (or it isn’t functioning or recognised). You should always have the screen initialised before calling this function.

void mouse_closedown(void);

This function clears up after the mouse and should always be called before your program exits and before the screen mode is restored. To use the mouse after calling this function you must call mouse_present() again.

void mouse_show_pointer(void);

void mouse_hide_pointer(void);

These two functions are designed to allow the mouse pointer to be hidden. On some systems this may not be possible. The principle function of these routines is to allow drawing to the screen to take place without being disturbed by the mouse cursor. If your system supports this in hardware then these functions will implemented as stubs. If the mouse is initialised and the pointer is showing then you should always hide the mouse cursor before drawing to the screen, and show the pointer once drawing is completed. If you don't do this, drawing may be corrupted on some targets.

void mouse_get_status(int *x_pos,int *y_pos,int *b_status);

This function stores the status of the mouse in the integers passed. x_pos and y_pos are filled with the current x and y position of the mouse in pixels, relative to the top left of the screen. b_status is filled with the status of the mouse button. The value returned in b_status can be read as 0 (no button pressed) or 1 (button pressed) by using the macro BUTTON_DOWN(status).

void mouse_set_status(int x,int y);

This function is intended to allow you to position the mouse pointer on the screen at the given x and y co-ordinates.

Keyboard

The keyboard routines in JLib are intended to provide the user with more control over reading keys than the standard C library provides. Two types of keyboard functions are supported; buffered character input and key-press polling. If the target supports JLib style keyboard input then the constant KEYBOARD_AVAILABLE will be non zero. Note that C standard library keyboard functions are not likely to work while the keyboard is being used by JLib, so calls to getc() and fgetc(stdin) should be avoided while the JLib keyboard routines are being used.

All keyboard input is internally buffered in a 256 character buffer. The oldest elements of the keyboard buffer are overwritten when buffer overflow occurs.

There are several type of keys as far as the library is concerned:

Normal: Keys which correspond to an ASCII character code are stored in the keyboard buffer as their ASCII value.

Extended: Keys which have no ASCII code, such as CTRL,ALT etc.

When you press a key, its value is stored in the keyboard buffer. When the key is released, its value is stored with the most significant bit (bit 15, since the keyboard buffer is internally USHORTS) set to 1.

The keyboard function you should use depends on the type of input you are interested in. If you want to simply poll the keyboard, you should use the kb_keydown() function. If you want buffered input of normal characters only, you should use the kb_get_next_key() function. If you want to know whether CTRL, ALT, a cursor key or SHIFT was pressed as well as ordinary characters, you should use kb_get_next_ext_key(). Finally, if you need buffered input of key-up and key-down events of normal and extended keys alike, you should use kb_get_next_code(). The following table summarises the possibilities:

Function�Constants�Type�Keys��kb_key_hit()��Buffered�Normal��kb_ext_key_hit()��Buffered�Normal & Extended��kb_keydown()�KEY_*�Polling�KEY_* Constants��kb_get_next_key()�ASCII chars�Buffered�Normal��kb_get_next_ext_key()�ASCII chars & EXT_*�Buffered�Normal & Extended��kb_get_next_code()�ASCII (w/bit 7) & KB_*�Buffered�Normal,Extended,Key-up��

void kb_init(void);

This function initialises the keyboard device ready to begin reading key values. You should call this function before using any other keyboard functions, after the screen is initialised with screen_set_video_mode(). This function does not return a success code because if your keyboard is not functioning it is unlikely that you could even run any programs at all. The keyboard state is cleared when the keyboard is initialised, i.e. no key presses made before initialisation will be available.

void kb_closedown(void);

This function returns the keyboard to its former state whereby it is safe to use C standard library input functions, and should be called before the screen state is restored by your program.

int kb_keydown(int key);

This function returns non zero if the given key is pressed down at the moment this function is called. The constants in <jlib.h> starting with KEY_ are the only suitable parameters for this function.

int kb_key_hit(void);

Returns non zero if any non-extended key has been hit or released since the last time the keyboard was cleared or initialised. This function does not remove any keys from the keyboard buffer, so it may be used to peek ahead to determine whether or not to call kb_get_next_key().

int kb_ext_key_hit(void);

This function returns non zero if any key (normal or extended) has been hit or released since the last time the keyboard was cleared or initialised. This function does not remove any keys from the keyboard buffer, so it may be used to peek ahead to determine whether or not to call kb_get_next_ext_key().

char kb_get_next_key(void);

Returns the next non-extended key waiting in the input buffer, or if the buffer is empty, waits for a key to be hit and returns it. This function behaves very similarly to getc() or fgetc(stdin).

USHORT kb_get_next_ext_key(void);

Returns the next key waiting in the input buffer, or if the buffer is empty, waits for a key to be hit and returns it. The lower 8 bits of the value returned contain the character hit, while the upper 8 bits contain the extended keys pressed at the same time as the character. If no NORMAL key has been hit, this function will wait until one has been pressed and then return it along with any extended keys pressed at that time.

Cursor keys are treated like normal keys by this routine, so they are returned as soon as they are encountered in the buffer, without a normal key having been pressed.

The following constants can be used to check the upper 8 bits of the returned value for extended key presses:

Constant�Extended Key��EXT_SHIFT�Shift Key��EXT_CTRL�Control Key��EXT_ALT�Alt Key��EXT_UP�Up Key��EXT_DOWN�Down Key��EXT_LEFT�Left Key��EXT_RIGHT�Right Key��

Since cursor keys are returned straight away, the lower 8 bits of the value returned from this function are undefined if any of EXT_UP/DOWN/LEFT/RIGHT are set.

USHORT kb_get_next_code(void);

This function returns the next code waiting in the keyboard buffer. The code returned may be an ASCII character, an ASCII character with bit 15 set, or a special code. If bit 15 of a returned code is set, the key indicated was released, otherwise it was pressed. The macro KB_WAS_RELEASED(code) evaluate to true if code represents a key that was released.

If the code not an ASCII value with or without bit 15 set, it is a code for an extended key.

The macro KB_IS_SPECIAL_CHAR(code) evaluates to true if code represents an extended key either pressed or released. The following constants may be used to determine which extended key was pressed:

Key down�Key up��KB_LSHIFT�KB_LSHIFT_UP��KB_RSHIFT�KB_RSHIFT_UP��KB_CTRL�KB_CTRL_UP��KB_ALT�KB_ALT_UP��KB_LEFT�KB_LEFT_UP��KB_RIGHT�KB_RIGHT_UP��KB_DOWN�KB_DOWN_UP��KB_UP�KB_UP_UP��KB_NO_CODE�No code was waiting in the buffer.��

void kb_clear(void);

This function flushes the keyboard buffer of all characters, similarly to fflush(stdin). It also clears the status of any pressed keys, until they are pressed again.

Joystick

JLib applications can read the joystick as follows: Your programs can see whether joystick support is enabled for a given target by reading the constant JOYSTICK_AVAILABLE which will be defined as non-zero if joystick support is available for the target. Note that even though a target supports joysticks, a given computer may not have any attached to it. Each joystick has only two buttons which may be read, to cater for the lowest common denominator. Joysticks are treated like digital sticks, so you can read a direction value, but no magnitude. An exception to this statement is that because you can read raw joystick values, it is possible to interpret them (pretty much on a target by target basis) in whatever way you choose. The library supports converting these raw values into a number representing a direction.

int joystick_count(void);

This function returns the number of joysticks connected to the computer. Each stick is identified by a number starting from 1. The number returned is the maximum value that you may pass to the other joystick functions. If 0 is returned you may not use any further joystick functions, since no joysticks are available for use. This function must be called before any other joystick functions such as joystick_init().

int joystick_init(int which);

This function initialises the joystick identified by the number which. If this call returns 0 then an error occurred initialising the joystick and it can not be used.

void joystick_closedown(int which);

When you are finished reading values from a joystick you should shut it down with this function.

void joystick_get_status(int which,int *x_axis,int *y_axis,int *b_status);

This function will return raw information about the joystick position. You may use this raw information on a target by target basis, or you may have the library convert the raw data into a direction for you. On targets that support analogue joysticks, the values returned may indicate the strength of the joysticks position in the x or y axis. On targets using digital sticks, the axis numbers are likely to vary only between -1 and 1.

The button status of a stick can be found with the macros:

Macro�Meaning��FIRE_1_DOWN(status)�Fire button 1 is pressed��FIRE_2_DOWN(status)�Fire button 2 (if any) is pressed��

Direction values can be obtained from the axis values by calling the joystick_get_direction() function.

int joystick_get_direction(int which,int x_axis,int y_axis);

Passing the raw values x_axis and y_axis from a call to joystick_get_status() to this function will return a more easily usable value representing the direction in with the stick is being held. This function will only work if the joystick has previously been calibrated using joystick_calibrate().

Values returned can be any of:

JOY_CENTER��JOY_NORTH��JOY_SOUTH��JOY_EAST��JOY_WEST��JOY_NORTHEAST��JOY_NORTHWEST��JOY_SOUTHEAST��JOY_SOUTHWEST��

void joystick_calibrate(int which,int l,int r,int t,int b,int x_cen,int y_cen);

This function is used to calibrate the joystick in order to allow JLib to convert raw joystick values to directions. You pass this function the stick number and the raw values received when the stick is held to the very left, right, top, bottom, and x and y centres. It is anticipated that you will ask the user to do this once at the start of your joystick using application, record the results and use this function to calibrate the joystick.

Since joysticks can change their values as they warm up, it would be advisable to allow re-calibration at any time during your joystick using application. The demonstration programs distributed with JLib include simple joystick calibration procedure.

�Images

Overview

Images are a convenient way for your program to load and display pictures such as backgrounds and titles. Two image file formats are supported as of JLib version 1.5, PCX files and JLib’s own file format: .jlb files. I probably won't be adding any more image functions, as it is a simple task to convert images to and from PCX files using many public domain image utilities.

(Developers Note: There may be some problems with .jlb files on machines with a different byte order than PC's. The most likely symptom is demo1 crashing. I suggest that non-PC users use PCX routines until I get this problem sorted out.

Image Functions

image *image_load_pcx(char *filename);

image *image_load_jlb(char *filename);

These two functions load PCX and .jlb files respectively, create space for storing them in an image record and return a pointer to that record. If the file given as an argument can't be loaded then the image pointer is set to NULL. If the image was loaded correctly then the following macros can be used to get information about the image:

Macro�Meaning��IMG_WIDTH(image)�Width of the image in pixels.��IMG_HEIGHT(image)�Height of the image in pixels.��IMG_PALETTE(image)�Returns a pointer to the images palette.��

image *image_free(image *img_ptr);

This function releases the memory used by an image back to the operating system. Since images can potentially use a lot of memory, it is recommended that you free the resources used by an image as soon as you are finished with it.

int image_save_jlb(char *filename,buffer_rec *buff,UBYTE *pal);

int image_save_jlb(char *filename,buffer_rec *buff,UBYTE *pal);

If you have a buffer containing some image data you would like to save as a .jlb or .PCX file you can save it with either of these functions. You can then reload the buffer as an image using the appropriate image loading function.

void buff_blit_img_to(buffer_rec *dest,int x,int y,image *img,int ix1,int iy1,int ix2,int iy2);

void buff_blit_img_toNC(buffer_rec *dest,int x,int y,image *img,int ix1,int iy1,int ix2,int iy2);

This function takes as parameters a destination buffer dest and the position x, y in that buffer that you want the upper left corner of the image img blitted to. It also takes the 4 co-ordinates of the rectangle within the image that you would like copied into the buffer. The specified part of the image is copied into the buffer, with clipping performed if required.�Miscellaneous Functions

float jlib_return_version_number(void);

This function returns a floating point value that is the version of the library that was compiled, i.e. 1.6 for JLib version 1.6.

char *jlib_return_version_string_string(void);

This function returns a string with a brief description of the version of the library that was compiled.

void popup_about(UBYTE fg,UBYTE bg);

Draws an “about" dialogue on screen containing target and mode information, in colours fg and bg. You must have either the keyboard or the mouse initialised before calling this function , or the user will not be able to press a key/click to move on. If the target has no keyboard or joystick support the function will use fgetc(stdin) to wait for the user to press a key.

void popup_info(char *text,UBYTE fg,UBYTE bg);

Draw on screen a dialogue containing text. The dialogue size is adjusted to fit the amount of text to be shown You must have one of the keyboard or mouse initialised before calling this function , or the user will not be able to press a key/click to move on. If the target has no keyboard or joystick support the function will use fgetc(stdin) to wait for the user to press a key.

void jlib_exit(char *message);

This function restores the system state if possible and exits to the operating system as gracefully as possible. This function is called internally by the library whenever a fatal error occurs. You may call this function from within your application to handle fatal errors. Note that if a custom error handler has been set with jlib_set_error_handler() than that will be called instead of the default error handler.

void jlib_set_error_handler(exit_function func);

This function allows you to specify your own exit function in the event of a fatal library or application error. If you want to write your own error handler I suggest looking in source/misc/error.c to get an idea of what to do upon an error. Your exit function should take one char * parameter which is a message describing the error that caused the fatal exit.

void jlib_exit_details(char *message);

This function performs most of the processing required from an error handler. It is advised that custom error handlers either call this function, or mimic its actions closely. Note that this call does return, so you must exit() or abort() the program yourself after calling it.

void uclock_init(void);

This function initialises a high resolution timer and starts it counting. Once initialised, time values can be read from the timer by calling the function uclock_read(). The constant UCLOCK_TICKS_PER_SECOND defines how many times per second the clock is updated.

unsigned int uclock_read(void);

This function returns the current value of the high resolution timer. You must call uclock_init() prior to using this function. Note that the values returned by this function will always increase over time. The difference between two successive calls to this function determines how much time has passed. Dividing this number by UCLOCK_TICKS_PER_SECOND will return the time passed in seconds.

�Debugging

Overview

Debugging information can be compiled into JLib programs if debug support is built into the library when it is built. The generation of debug support is turned on by defining JDEBUG in the target header file jconfig.h. Please note that the library debugging code has nothing at all to do with symbolic debugging code as generated by your compiler options. The library debugging facilities may be used in your own programs to aid development.

Debug support may be default debugging code as described here, or target specific debug activity (which will be documented in the targets section of this documentation. If JDEBUG is not defined when the library is built, all library debugging code is stripped from the final executable, and all debugging statements have no effect.

When compiled in, debug support takes the form of a runtime stack manipulated by the library which is dumped if an error occurs, allowing you to see which function caused any problems. In addition, a stream of debug information can be generated which prints every function entered and left, and any ancillary debug information included in the program code. The printing of functions entered and left, and ancillary debug statements can be activated for all or only parts of your program .

Once the library has been built with default debugging enabled, the following macros are available to provide debugging information:

Macro�Meaning��JLIB_DEBUG_ON�Dump debug information from this point.��JLIB_DEBUG_TRACE�Dump all functions entered/left from this point.��JLIB_DEBUG_OFF �Stop dumping all debugging information.��JLIB_ENTER(x)�Record our entry to function x.��JLIB_LEAVE�Record our leaving the current function.�����These apply after JLIB_DEBUG_ON or TRACE���JLIB_DUMP_STACK�Record our leaving the current function.��JLIB_SPRINTF(str,val)�Print the string str with a specifier for val.��JLIB_PRINT_DEBUG_INFO(x)�Print the string x.��

You can use the debugging macros in you own programs if you wish, follow the style of the library source code if you are unsure of how to go about this.

Validity Checking Functions

void jlib_check_buffer(buffer_rec *buff);

void jlib_check_sprite_system(sprite_system *sys);

void jlib_check_sprite(sprite_system *sys,int snum);

void jlib_check_frame(sprite_system *sys,int frame);

(Undocumented.

�Utilities

Overview

Most of the utilities are still under evolving construction, so don't expect too much from them. I've taken the philosophy that if another program exists to do something, then I might as well use that instead of reinventing the wheel, e.g. I haven't written a sprite drawing program. If you want to create sprites I suggest you use whatever package you prefer (I recommend Satan Paint and Povray, available free for many platforms), then convert the output into PCX files and cut them out for inclusion.

The utilities began life when the only targets written were 320x200x256, so they are most useful in that resolution. I copied low resolution builds of them into my path so I could use them even after I recompiled the library for higher resolution graphics modes.

textmode.exe

This is a very simple utility, it just puts the screen back into text mode. It is not useful under Linux or X11, as if you trash the screen in these environments something fairly major has probably happened. I use this from DOS with djgpp and Watcom if my program crashes and leaves the screen in graphics mode.

sprgrab.exe

This program lets you grab sprites from PCX files and stores them in sprite files. It is pretty non user friendly, but it works most of the time. Sprites are saved with a default bounding rectangle which surrounds the whole sprite.

autograb.exe

This program lets you grab sprites from PCX files automatically, providing that you follow certain conventions. The PCX file containing sprites must be laid out with one background colour, which does not appear in any of the sprites in the picture. The sprites to be cut out should not be bordered by any boxes, just the background colour. Once run, the utility will surround the each suggested sprite with a white rectangle. If you press the ‘Y’ key, that sprite will be saved out. Any other key causes the sprite to be skipped.

joinspr.exe

This program joins multiple sprite files together. Because the number of sprites in a sprite file is kept at the start of the file, the process involves more than just concatenating the files together. Sprite files are joined in the order given on the command line. Once you have joined your sprite files together you can use spr_edit to put them in the correct order for loading into your application.

strippal.exe

This utility takes the palette out of a PCX or .jlb file and puts it into a file suitable for loading by the function pal_load().

td2spr.exe

This converts a “twilight dreams” sprite file into a JLib sprite file. The twilight dreams sprite editor is available by ftp from x2ftp.oulu.fi. It was written more as an example of how to convert from one format to another than as an incredibly useful utility. I would love to see some other converters come floating my way (hint, hint).

spr_edit.exe

This is probably the most ill-named utility. Basically this program is designed to add and remove bounding rectangles and reorder sprite files. Its also handy for seeing if you have cut out sprites correctly. There are a couple of thing to note about this program: You can only edit the bounding rectangles of the input (left) file. Any changes you make on the left are reflected to the right if the same sprite has been copied to the right. This is because when it copies, it only copies a pointer and so the right hand sprite is the same as the left.

pcx2jlb.exe

This utility takes a PCX file and converts it into a .jlb file. You will probably find that JLib files are smaller than the same image in a PCX. Also, you will never have to worry about the image format becoming proprietary (does anyone remember GIF?).

pal_edit.exe and pal_conv.exe

Pal_edit.exe is a palette editor contributed by Lennart Steinke of Germany. It allows you to manipulate palette colours and create fades from one palette colour to another. The palette is saved using the lower 6 bits of the UBYTE RGB colours, so that PC based paint programs may load and use them. The pal_conv.exe utility converts pal_edit output files into a palette file suitable for loading with pal_load().

�Performance

Increasing Speed

Most of the speed in your programs will be lost when the buffer you are drawing into is blitted to the screen, due to the slow nature of video operations. You can lessen the impact of buffer blitting in your programs by drawing as much as possible into a buffer before you update the screen. If you are drawing hundreds of dots or circles then you will gain a speedup by "batch copying" your updates rather than updating the screen after every drawing operation in your offscreen buffer.

Another way to speed up drawing to the screen is to only update those parts of it that have changed. This principle is known as 'dirty rectangles' and is particularly effective when you only have a few moving things on screen. The basic idea is to minimise actual video writes. Also, in some cases you may be able to draw some parts of the screen less often than others. If you want 30 frames per second of smooth scrolling action, no one will notice if you only update the scoreboard part of the screen twice a second. if the scoreboard is 1/5th of the screen this could speed up your program by 15-30%. You should consider optimising your blitting code on a target by target basis if you need absolute top performance.

Decreasing Memory

It is a good idea for both space and speed efficiency to only create a sprite system with room for as many sprites as you will actually use. It is also more efficient to limit the number of frames to the minimum you need to hold all of your frames, and keep SPR_MAX_X and SPR_MAX_Y as small as possible given your projects needs. This will keep down the amount of memory used by your program, limiting any paging that may occur, and giving other processes more RAM in multitasking environments.

The sprite code automatically minimises its memory usage according to the largest sprite frame in the system. if you will only be stamping or stencilling sprites, and not using the drawing/saving/restoring functions, then you can safely free all buffer memory used by the sprite system

Buffers can also use a large amount of memory, so try to reuse them where you can, and free any structure (i.e. sprite system, buffer, image) as soon as you have finished with it. Good program design is the first step to a memory efficient program.

When you cut out your sprites remember to cut the minimum area around each one, as this means the library will do less work to display it. Use as few bounding rectangles as needed to outline your sprite for collision detection, as each rectangle uses more memory and is another collision to check.�Information

djgpp

djgpp is a port of the GNU C compiler (GCC) for MS-DOS based machines. The GNU C compiler is free and comes with various utilities for developing C and C++ programs. There is a version of GNU C for almost every machine on the planet, making it THE choice for writing portable programs. djgpp is ANSI compliant and provides a 32 bit flat memory model for programs. This means we don’t have to fluff around with “far” pointers and all that, and we get access to heaps of memory (If you’ll pardon the pun). In short, its very useful and is ideal for writing games (as they are such resource hungry applications). Proof of this comes from ID software, who are using djgpp to write “Quake”-their successor to “DOOM”.

You can get more djgpp related information from:

Usenet: comp.os.msdos.djgpp (look for the weekly mini-faq).

WWW: http://www.delorie.com

The standard complaint about GCC seems to be that it has fairly long compilation times. However, the finished executable always seems to run impressively quickly (and that’s the part we both care about, isn’t it?).

Linux

Linux is an operating system. I tried, and failed, to come up with an expression of how cool Linux is. I have now included the Linux info sheet in the library distribution as the file linux.txt. It does a far better job of explaining the great features of linux than I can.

The Future

Future developments planned for JLib:

More Targets-particularly the Macintosh and native Windows.

An order n log n sprite intersection algorithm.

More palette effects.

Joystick code for all targets.

A blow-your-socks-off main demo.

Library of development graphics to get you writing apps quicker.

Some JLib Extensions, bolt-on packages that run over JLib and provide stuff like fonts, special effects, windows, 3D etc.

Some more user code included somewhere (you can help with this!).

More primitives.�Contributors

The following is a list of people who have contributed in some way to the development of JLib, either by sending code, allowing others to use it, or posting bug reports, fixes or suggested fixes. Note that I won’t put peoples email addresses in here, to protect their privacy. If you are featured and want your address put in then write and tell me. If I left you out, I’m sorry, remind me and I will remedy the situation.

Mike Manly

Henrik Schmidt

Lennart Steinke

George Resnick

Shawn Hargreaves

Charles Sandmann

Raymond Penners

Arturo Espinosa

Nissim Chudnoff

Also a big thank you to those who took time out to report bugs and make suggestions. You know who you are! Thanks are also due to the many people who contribute to the development and distribution of free software of such high quality as Linux and djgpp.

Thanks to you all.�Target Information.

Overview

This section is intended to detail each of the targets available for JLib. The peculiarities of the target may limit or change the expected behaviour of any of the library functions. Any such behaviour will be noted here.

I hope to encourage people to add targets as they wish, as each added target makes the library potentially more useful. So if you see a target here that isn't fully functional or lacks a lot of functions, be patient. Someone will be adding functionality somewhere. If you want to contribute a target, but only have some of the functions done, contribute it anyway and let someone else finish it or contribute to it also.

Compiling for multiple targets

If you want to compile for more than one target often on your machine, It will get very annoying to have to constantly recompile. I recommend compiling each targets library and renaming them to something meaningful. Remember to keep the include files separate also, or you might end up in trouble! To do this you will have to manually include the header files at compile time, or define the target on the command line. I will try to include more details on this in a future release.

DJGPP_V2: MODE_13H

Author:�Jonathan Griffiths��Description:�DJGPP compiler, mode 13h graphics.��Performance:�Fast even with slow cards. Rocks under local bus.��Compiling:�Compile with -lj on the command line.��Execution:�Run under DOS, Windows (all flavours) and OS/2.��Comments:�This was the first target I wrote.��Bugs:�Don't seem to be any interrupt problems now.��

DJGPP_V2: GRX2_320x200x256, GRX2_640x480x256, GRX2_800x600x256

Author:�Jonathan Griffiths��Description:�DJGPP with various modes through libgrx V2.��Performance:�Fairly slow, acceptable with local bus cards.��Performance:�If you have a driver for your card it will run faster.��Compiling:�Compile with -lj and -lgrx20 on the command line.��Execution:�In theory, same as the DOS MODE_13H target.��Comments:�A bit of a hack, so it's rough, but DPMI compliant.��Comments:�Check the copyright of the new version.��Comments:�I'm going to create a VESA target to replace this.��Bugs:�Mouse shape/colour sometimes corrupted.��

LINUX_SVGALIB: SVGA_320x200x256, SVGA_640x480x256, SVGA_800x600x256

Author:�Jonathan Griffiths��Description:�Linux with various modes through svgalib.��Performance:�Very fast, congratulations to the svgalib team!.��Compiling:�Compile with -lvga on the command line after -lj.��Compiling:�You need a kernel driver for joystick support.��Execution:�Static library builds should run on all linux's.��Comments:�Uses svgalib palette & mode stuff but Blits itself.��Comments:�Your card needs to be supported by svgalib to use this target.��Bugs:�None reported.��

X_WINDOWS: X_320x200x256, X_640x480x256, X_800x600x256

Author:�Mike Manly ,Jonathan Griffiths, Henrik Schmidt��Description:�Hopefully generic X11.��Performance:�Not functional yet, but should be OK.��Compiling:�You will probably have to edit the makefile to compile under non-linux based X's. ��Execution:�Will need compiling on each X you want to run on. ��Comments:�Thanks to Henrik Schmidt for his Work on this Target.��Bugs:�There may be a problem in the compression code.��Missing:�screen_fill() and screen_clear(),��Missing:�Generic joystick support, if it exists.��

WATCOM: MODE_13H

Author:�Jonathan Griffiths��Description:�Watcom C/C++ ver 9.x, mode 13h.��Performance:�As per djgpp/mode 13h target.��Compiling:�Include JLIB.LIB on the command line.��Execution:�Should run under most DPMI implementations. ��Comments:�Works with 10.x.��Bugs:�The makefile puts object files into jlib\source.��

WATCOM: VESA_640x480x256, VESA_800x600x256

Author:�Jonathan Griffiths��Description:�Watcom C/C++ v 9.x , VESA 1.0+.��Performance:�Good, depends on VESA implementation.��Performance:�Get univbe if you don't have a VESA card.��Compiling:�Include JLIB.LIB on the command line.��Execution:�Should run under most DPMI implementations. ��Comments:�This version is NOT optimised.��Bugs:�The makefile puts object files jlib\source.���Updates & Contacting Me

If you want to get the latest version of the library from me, send me a stamped self addressed envelope with a 1.44 MB disk and a donation. Your comments and letters are also welcome. Please note that the donation is merely to offset the time it takes to prepare a version of the library for release. The library is free in every other respect (see above) and doesn’t represent a money making venture on my part.

That said, donations are always welcome, particularly from anyone who uses library routines in a commercial product.

JLib Distribution Sites

Primary Site�x2ftp.oulu.fi�/pub/msdos/programming/djgpp2/��

Snail Mail

Jonathan Griffiths

82 Kowhai Rd,

Campbells Bay,

Auckland,

New Zealand.

Email

jon@ams.co.nz

Dial-Up Email (For Binaries)

jpg@wave.co.nz

I wish you all the best in using JLib, in your projects and life in general.

Happy Coding,

Jon Griffiths

